Coverage Report

Created: 2026-01-25 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/math/incompletegamma.cpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2003 Ferdinando Ametrano
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
/*
21
    The implementation of the algorithm was inspired by
22
    "Numerical Recipes in C", 2nd edition,
23
    Press, Teukolsky, Vetterling, Flannery, chapter 6
24
*/
25
26
#include <ql/math/incompletegamma.hpp>
27
#include <ql/math/distributions/gammadistribution.hpp>
28
29
namespace QuantLib {
30
31
32
    Real incompleteGammaFunction(Real a, Real x, Real accuracy,
33
0
                                 Integer maxIteration) {
34
35
0
        QL_REQUIRE(a>0.0, "non-positive a is not allowed");
36
37
0
        QL_REQUIRE(x>=0.0, "negative x non allowed");
38
39
0
        if (x < (a+1.0)) {
40
            // Use the series representation
41
0
            return incompleteGammaFunctionSeriesRepr(a, x,
42
0
                accuracy, maxIteration);
43
0
        } else {
44
            // Use the continued fraction representation
45
0
            return 1.0-incompleteGammaFunctionContinuedFractionRepr(a, x,
46
0
                accuracy, maxIteration);
47
0
        }
48
49
0
    }
50
51
52
    Real incompleteGammaFunctionSeriesRepr(Real a, Real x, Real accuracy,
53
0
                                           Integer maxIteration) {
54
55
0
        if (x==0.0) return 0.0;
56
57
0
        Real gln = GammaFunction().logValue(a);
58
0
        Real ap=a;
59
0
        Real del=1.0/a;
60
0
        Real sum=del;
61
0
        for (Integer n=1; n<=maxIteration; n++) {
62
0
            ++ap;
63
0
            del *= x/ap;
64
0
            sum += del;
65
0
            if (std::fabs(del) < std::fabs(sum)*accuracy) {
66
0
                return sum*std::exp(-x+a*std::log(x)-gln);
67
0
            }
68
0
        }
69
0
        QL_FAIL("accuracy not reached");
70
0
    }
71
72
    Real incompleteGammaFunctionContinuedFractionRepr(Real a, Real x,
73
                                                      Real accuracy,
74
0
                                                      Integer maxIteration) {
75
76
0
        Integer i;
77
0
        Real an, b, c, d, del, h;
78
0
        Real gln = GammaFunction().logValue(a);
79
0
        b=x+1.0-a;
80
0
        c=1.0/QL_EPSILON;
81
0
        d=1.0/b;
82
0
        h=d;
83
0
        for (i=1; i<=maxIteration; i++) {
84
0
            an = -i*(i-a);
85
0
            b += 2.0;
86
0
            d=an*d+b;
87
0
            if (std::fabs(d) < QL_EPSILON) d=QL_EPSILON;
88
0
            c=b+an/c;
89
0
            if (std::fabs(c) < QL_EPSILON) c=QL_EPSILON;
90
0
            d=1.0/d;
91
0
            del=d*c;
92
0
            h *= del;
93
0
            if (std::fabs(del-1.0) < accuracy) {
94
0
                return std::exp(-x+a*std::log(x)-gln)*h;
95
0
            }
96
0
        }
97
98
0
        QL_FAIL("accuracy not reached");
99
0
    }
100
101
102
103
}