Coverage Report

Created: 2026-01-25 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/math/optimization/armijo.cpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
#include <ql/math/optimization/armijo.hpp>
21
#include <ql/math/optimization/method.hpp>
22
#include <ql/math/optimization/problem.hpp>
23
24
namespace QuantLib {
25
26
    Real ArmijoLineSearch::operator()(Problem& P,
27
                                      EndCriteria::Type& ecType,
28
                                      const EndCriteria& endCriteria,
29
                                      const Real t_ini)
30
0
    {
31
        //OptimizationMethod& method = P.method();
32
0
        Constraint& constraint = P.constraint();
33
0
        succeed_=true;
34
0
        bool maxIter = false;
35
0
        Real qtold, t = t_ini;
36
0
        Size loopNumber = 0;
37
38
0
        Real q0 = P.functionValue();
39
0
        Real qp0 = P.gradientNormValue();
40
41
0
        qt_ = q0;
42
0
        qpt_ = (gradient_.empty()) ? qp0 : -DotProduct(gradient_,searchDirection_);
43
44
        // Initialize gradient
45
0
        gradient_ = Array(P.currentValue().size());
46
        // Compute new point
47
0
        xtd_ = P.currentValue();
48
0
        t = update(xtd_, searchDirection_, t, constraint);
49
        // Compute function value at the new point
50
0
        qt_ = P.value (xtd_);
51
52
        // Enter in the loop if the criterion is not satisfied
53
0
        if ((qt_-q0) > -alpha_*t*qpt_) {
54
0
            do {
55
0
                loopNumber++;
56
                // Decrease step
57
0
                t *= beta_;
58
                // Store old value of the function
59
0
                qtold = qt_;
60
                // New point value
61
0
                xtd_ = P.currentValue();
62
0
                t = update(xtd_, searchDirection_, t, constraint);
63
64
                // Compute function value at the new point
65
0
                qt_ = P.value (xtd_);
66
0
                P.gradient (gradient_, xtd_);
67
                // and it squared norm
68
0
                maxIter = endCriteria.checkMaxIterations(loopNumber, ecType);
69
0
            } while (
70
0
                     (((qt_ - q0) > (-alpha_ * t * qpt_)) ||
71
0
                      ((qtold - q0) <= (-alpha_ * t * qpt_ / beta_))) &&
72
0
                     (!maxIter));
73
0
        }
74
75
0
        if (maxIter)
76
0
            succeed_ = false;
77
78
        // Compute new gradient
79
0
        P.gradient(gradient_, xtd_);
80
        // and it squared norm
81
0
        qpt_ = DotProduct(gradient_, gradient_);
82
83
        // Return new step value
84
0
        return t;
85
0
    }
86
87
}