/src/quantlib/ql/math/optimization/leastsquare.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
5 | | Copyright (C) 2005, 2007 StatPro Italia srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | /*! \file leastsquare.hpp |
22 | | \brief Least square cost function |
23 | | */ |
24 | | |
25 | | #ifndef quantlib_least_square_hpp |
26 | | #define quantlib_least_square_hpp |
27 | | |
28 | | #include <ql/math/optimization/problem.hpp> |
29 | | #include <ql/math/optimization/conjugategradient.hpp> |
30 | | #include <ql/math/matrix.hpp> |
31 | | |
32 | | namespace QuantLib { |
33 | | |
34 | | class Constraint; |
35 | | class OptimizationMethod; |
36 | | |
37 | | //! Base class for least square problem |
38 | | class LeastSquareProblem { |
39 | | public: |
40 | 0 | virtual ~LeastSquareProblem() = default; |
41 | | //! size of the problem ie size of target vector |
42 | | virtual Size size() = 0; |
43 | | //! compute the target vector and the values of the function to fit |
44 | | virtual void targetAndValue(const Array& x, |
45 | | Array& target, |
46 | | Array& fct2fit) = 0; |
47 | | /*! compute the target vector, the values of the function to fit |
48 | | and the matrix of derivatives |
49 | | */ |
50 | | virtual void targetValueAndGradient(const Array& x, |
51 | | Matrix& grad_fct2fit, |
52 | | Array& target, |
53 | | Array& fct2fit) = 0; |
54 | | }; |
55 | | |
56 | | //! Cost function for least-square problems |
57 | | /*! Implements a cost function using the interface provided by |
58 | | the LeastSquareProblem class. |
59 | | */ |
60 | | class LeastSquareFunction : public CostFunction { |
61 | | public: |
62 | | //! Default constructor |
63 | 0 | LeastSquareFunction(LeastSquareProblem& lsp) : lsp_(lsp) {} |
64 | | //! Destructor |
65 | | ~LeastSquareFunction() override = default; |
66 | | |
67 | | //! compute value of the least square function |
68 | | Real value(const Array& x) const override; |
69 | | Array values(const Array&) const override; |
70 | | //! compute vector of derivatives of the least square function |
71 | | void gradient(Array& grad_f, const Array& x) const override; |
72 | | //! compute value and gradient of the least square function |
73 | | Real valueAndGradient(Array& grad_f, const Array& x) const override; |
74 | | |
75 | | protected: |
76 | | //! least square problem |
77 | | LeastSquareProblem &lsp_; |
78 | | }; |
79 | | |
80 | | //! Non-linear least-square method. |
81 | | /*! Using a given optimization algorithm (default is conjugate |
82 | | gradient), |
83 | | |
84 | | \f[ min \{ r(x) : x in R^n \} \f] |
85 | | |
86 | | where \f$ r(x) = |f(x)|^2 \f$ is the Euclidean norm of \f$ |
87 | | f(x) \f$ for some vector-valued function \f$ f \f$ from |
88 | | \f$ R^n \f$ to \f$ R^m \f$, |
89 | | \f[ f = (f_1, ..., f_m) \f] |
90 | | with \f$ f_i(x) = b_i - \phi(x,t_i) \f$ where \f$ b \f$ is the |
91 | | vector of target data and \f$ phi \f$ is a scalar function. |
92 | | |
93 | | Assuming the differentiability of \f$ f \f$, the gradient of |
94 | | \f$ r \f$ is defined by |
95 | | \f[ grad r(x) = f'(x)^t.f(x) \f] |
96 | | */ |
97 | | class NonLinearLeastSquare { |
98 | | public: |
99 | | //! Default constructor |
100 | | NonLinearLeastSquare(Constraint& c, |
101 | | Real accuracy = 1e-4, |
102 | | Size maxiter = 100); |
103 | | //! Default constructor |
104 | | NonLinearLeastSquare(Constraint& c, |
105 | | Real accuracy, |
106 | | Size maxiter, |
107 | | ext::shared_ptr<OptimizationMethod> om); |
108 | | //! Destructor |
109 | 0 | ~NonLinearLeastSquare() = default; |
110 | | |
111 | | //! Solve least square problem using numerix solver |
112 | | Array& perform(LeastSquareProblem& lsProblem); |
113 | | |
114 | 0 | void setInitialValue(const Array& initialValue) { |
115 | 0 | initialValue_ = initialValue; |
116 | 0 | } |
117 | | |
118 | | //! return the results |
119 | 0 | Array& results() { return results_; } |
120 | | |
121 | | //! return the least square residual norm |
122 | 0 | Real residualNorm() const { return resnorm_; } |
123 | | |
124 | | //! return last function value |
125 | 0 | Real lastValue() const { return bestAccuracy_; } |
126 | | |
127 | | //! return exit flag |
128 | 0 | Integer exitFlag() const { return exitFlag_; } |
129 | | |
130 | | //! return the performed number of iterations |
131 | 0 | Integer iterationsNumber() const { return nbIterations_; } |
132 | | |
133 | | private: |
134 | | //! solution vector |
135 | | Array results_, initialValue_; |
136 | | //! least square residual norm |
137 | | Real resnorm_; |
138 | | //! Exit flag of the optimization process |
139 | | Integer exitFlag_; |
140 | | //! required accuracy of the solver |
141 | | Real accuracy_, bestAccuracy_; |
142 | | //! maximum and real number of iterations |
143 | | Size maxIterations_, nbIterations_; |
144 | | //! Optimization method |
145 | | ext::shared_ptr<OptimizationMethod> om_; |
146 | | //constraint |
147 | | Constraint& c_; |
148 | | |
149 | | }; |
150 | | |
151 | | } |
152 | | |
153 | | #endif |