/src/quantlib/ql/math/solvers1d/halley.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2024 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file halley.hpp |
21 | | \brief Halley 1-D solver |
22 | | */ |
23 | | |
24 | | #ifndef quantlib_solver1d_halley_hpp |
25 | | #define quantlib_solver1d_halley_hpp |
26 | | |
27 | | #include <ql/math/solvers1d/newtonsafe.hpp> |
28 | | |
29 | | namespace QuantLib { |
30 | | |
31 | | //! %Halley 1-D solver |
32 | | /*! \note This solver requires that the passed function object |
33 | | implement a method <tt>Real derivative(Real)</tt> |
34 | | and <tt> Real secondDerivative(Real></tt> |
35 | | |
36 | | \test the correctness of the returned values is tested by |
37 | | checking them against known good results. |
38 | | |
39 | | \ingroup solvers |
40 | | */ |
41 | | class Halley : public Solver1D<Halley> { |
42 | | public: |
43 | | template <class F> |
44 | | Real solveImpl(const F& f, |
45 | 0 | Real xAccuracy) const { |
46 | |
|
47 | 0 | while (++evaluationNumber_ <= maxEvaluations_) { |
48 | 0 | const Real fx = f(root_); |
49 | 0 | const Real fPrime = f.derivative(root_); |
50 | 0 | const Real lf = fx*f.secondDerivative(root_)/(fPrime*fPrime); |
51 | 0 | const Real step = 1.0/(1.0 - 0.5*lf)*fx/fPrime; |
52 | 0 | root_ -= step; |
53 | | |
54 | | // jumped out of brackets, switch to NewtonSafe |
55 | 0 | if ((xMin_-root_)*(root_-xMax_) < 0.0) { |
56 | 0 | NewtonSafe s; |
57 | 0 | s.setMaxEvaluations(maxEvaluations_-evaluationNumber_); |
58 | 0 | return s.solve(f, xAccuracy, root_+step, xMin_, xMax_); |
59 | 0 | } |
60 | | |
61 | 0 | if (std::abs(step) < xAccuracy) { |
62 | 0 | f(root_); |
63 | 0 | ++evaluationNumber_; |
64 | 0 | return root_; |
65 | 0 | } |
66 | |
|
67 | 0 | } |
68 | | |
69 | 0 | QL_FAIL("maximum number of function evaluations (" |
70 | 0 | << maxEvaluations_ << ") exceeded"); |
71 | 0 | } |
72 | | }; |
73 | | } |
74 | | |
75 | | #endif |