/src/quantlib/ql/methods/lattices/trinomialtree.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb |
5 | | Copyright (C) 2005 StatPro Italia srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | #include <ql/methods/lattices/trinomialtree.hpp> |
22 | | #include <ql/stochasticprocess.hpp> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | TrinomialTree::TrinomialTree( |
27 | | const ext::shared_ptr<StochasticProcess1D>& process, |
28 | | const TimeGrid& timeGrid, |
29 | | bool isPositive) |
30 | 0 | : Tree<TrinomialTree>(timeGrid.size()), dx_(1, 0.0), timeGrid_(timeGrid) { |
31 | 0 | x0_ = process->x0(); |
32 | |
|
33 | 0 | Size nTimeSteps = timeGrid.size() - 1; |
34 | 0 | QL_REQUIRE(nTimeSteps > 0, "null time steps for trinomial tree"); |
35 | | |
36 | 0 | Integer jMin = 0; |
37 | 0 | Integer jMax = 0; |
38 | |
|
39 | 0 | for (Size i=0; i<nTimeSteps; i++) { |
40 | 0 | Time t = timeGrid[i]; |
41 | 0 | Time dt = timeGrid.dt(i); |
42 | | |
43 | | //Variance must be independent of x |
44 | 0 | Real v2 = process->variance(t, 0.0, dt); |
45 | 0 | Volatility v = std::sqrt(v2); |
46 | 0 | dx_.push_back(v*std::sqrt(3.0)); |
47 | |
|
48 | 0 | Branching branching; |
49 | 0 | for (Integer j=jMin; j<=jMax; j++) { |
50 | 0 | Real x = x0_ + j*dx_[i]; |
51 | 0 | Real m = process->expectation(t, x, dt); |
52 | 0 | auto temp = Integer(std::floor((m - x0_) / dx_[i + 1] + 0.5)); |
53 | |
|
54 | 0 | if (isPositive) { |
55 | 0 | while (x0_+(temp-1)*dx_[i+1]<=0) { |
56 | 0 | temp++; |
57 | 0 | } |
58 | 0 | } |
59 | |
|
60 | 0 | Real e = m - (x0_ + temp*dx_[i+1]); |
61 | 0 | Real e2 = e*e; |
62 | 0 | Real e3 = e*std::sqrt(3.0); |
63 | |
|
64 | 0 | Real p1 = (1.0 + e2/v2 - e3/v)/6.0; |
65 | 0 | Real p2 = (2.0 - e2/v2)/3.0; |
66 | 0 | Real p3 = (1.0 + e2/v2 + e3/v)/6.0; |
67 | |
|
68 | 0 | branching.add(temp, p1, p2, p3); |
69 | 0 | } |
70 | 0 | branchings_.push_back(branching); |
71 | |
|
72 | 0 | jMin = branching.jMin(); |
73 | 0 | jMax = branching.jMax(); |
74 | 0 | } |
75 | 0 | } |
76 | | |
77 | | } |
78 | | |