/src/quantlib/ql/pricingengines/exotic/analyticamericanmargrabeengine.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2010 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/exercise.hpp> |
21 | | #include <ql/pricingengines/exotic/analyticamericanmargrabeengine.hpp> |
22 | | #include <ql/pricingengines/vanilla/bjerksundstenslandengine.hpp> |
23 | | #include <ql/quotes/simplequote.hpp> |
24 | | #include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp> |
25 | | #include <ql/termstructures/yield/flatforward.hpp> |
26 | | #include <ql/time/calendars/nullcalendar.hpp> |
27 | | #include <utility> |
28 | | |
29 | | namespace QuantLib { |
30 | | |
31 | | AnalyticAmericanMargrabeEngine::AnalyticAmericanMargrabeEngine( |
32 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process1, |
33 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process2, |
34 | | Real correlation) |
35 | 0 | : process1_(std::move(process1)), process2_(std::move(process2)), rho_(correlation) { |
36 | 0 | registerWith(process1_); |
37 | 0 | registerWith(process2_); |
38 | 0 | } |
39 | | |
40 | 0 | void AnalyticAmericanMargrabeEngine::calculate() const { |
41 | |
|
42 | 0 | QL_REQUIRE(arguments_.exercise->type() == Exercise::American, |
43 | 0 | "not an American option"); |
44 | | |
45 | 0 | ext::shared_ptr<AmericanExercise> exercise = |
46 | 0 | ext::dynamic_pointer_cast<AmericanExercise>(arguments_.exercise); |
47 | 0 | QL_REQUIRE(exercise, "not an American option"); |
48 | | |
49 | 0 | ext::shared_ptr<NullPayoff> payoff0 = |
50 | 0 | ext::dynamic_pointer_cast<NullPayoff>(arguments_.payoff); |
51 | 0 | QL_REQUIRE(payoff0, "not a null payoff"); |
52 | | |
53 | | // The option can be priced as an American single-asset option |
54 | | // with an adjusted process and payoff. |
55 | | |
56 | 0 | Date today = Settings::instance().evaluationDate(); |
57 | |
|
58 | 0 | DayCounter rfdc = process1_->riskFreeRate()->dayCounter(); |
59 | 0 | Time t = rfdc.yearFraction(process1_->riskFreeRate()->referenceDate(), |
60 | 0 | arguments_.exercise->lastDate()); |
61 | |
|
62 | 0 | Real s1 = process1_->stateVariable()->value(); |
63 | 0 | Real s2 = process2_->stateVariable()->value(); |
64 | |
|
65 | 0 | ext::shared_ptr<SimpleQuote> spot(new SimpleQuote(arguments_.Q1*s1)); |
66 | |
|
67 | 0 | ext::shared_ptr<StrikedTypePayoff> payoff( |
68 | 0 | new PlainVanillaPayoff(Option::Call, arguments_.Q2*s2)); |
69 | |
|
70 | 0 | DiscountFactor dividendDiscount1 = |
71 | 0 | process1_->dividendYield()->discount(exercise->lastDate()); |
72 | 0 | Rate q1 = -std::log(dividendDiscount1)/t; |
73 | |
|
74 | 0 | DiscountFactor dividendDiscount2 = |
75 | 0 | process2_->dividendYield()->discount(exercise->lastDate()); |
76 | 0 | Rate q2 = -std::log(dividendDiscount2)/t; |
77 | |
|
78 | 0 | ext::shared_ptr<YieldTermStructure> qTS( |
79 | 0 | new FlatForward(today, q1, rfdc)); |
80 | |
|
81 | 0 | ext::shared_ptr<YieldTermStructure> rTS( |
82 | 0 | new FlatForward(today, q2, rfdc)); |
83 | |
|
84 | 0 | Real variance1 = process1_->blackVolatility()->blackVariance( |
85 | 0 | exercise->lastDate(), s1); |
86 | 0 | Real variance2 = process2_->blackVolatility()->blackVariance( |
87 | 0 | exercise->lastDate(), s2); |
88 | 0 | Real variance = variance1 + variance2 |
89 | 0 | - 2*rho_*std::sqrt(variance1)*std::sqrt(variance2); |
90 | 0 | Volatility volatility = std::sqrt(variance/t); |
91 | |
|
92 | 0 | ext::shared_ptr<BlackVolTermStructure> volTS( |
93 | 0 | new BlackConstantVol(today, NullCalendar(), volatility, rfdc)); |
94 | |
|
95 | 0 | ext::shared_ptr<BlackScholesMertonProcess> stochProcess(new |
96 | 0 | BlackScholesMertonProcess(Handle<Quote>(spot), |
97 | 0 | Handle<YieldTermStructure>(qTS), |
98 | 0 | Handle<YieldTermStructure>(rTS), |
99 | 0 | Handle<BlackVolTermStructure>(volTS))); |
100 | |
|
101 | 0 | ext::shared_ptr<PricingEngine> engine( |
102 | 0 | new BjerksundStenslandApproximationEngine(stochProcess)); |
103 | |
|
104 | 0 | VanillaOption option(payoff, exercise); |
105 | 0 | option.setPricingEngine(engine); |
106 | |
|
107 | 0 | results_.value = option.NPV(); |
108 | 0 | } |
109 | | |
110 | | } |