/src/quantlib/ql/pricingengines/exotic/analyticcomplexchooserengine.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2014 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/exercise.hpp> |
21 | | #include <ql/pricingengines/exotic/analyticcomplexchooserengine.hpp> |
22 | | #include <ql/math/distributions/bivariatenormaldistribution.hpp> |
23 | | #include <utility> |
24 | | |
25 | | using std::pow; |
26 | | using std::log; |
27 | | using std::exp; |
28 | | using std::sqrt; |
29 | | |
30 | | namespace QuantLib { |
31 | | |
32 | | AnalyticComplexChooserEngine::AnalyticComplexChooserEngine( |
33 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process) |
34 | 0 | : process_(std::move(process)) { |
35 | 0 | registerWith(process_); |
36 | 0 | } |
37 | | |
38 | 0 | void AnalyticComplexChooserEngine::calculate() const { |
39 | 0 | Real S = process_->x0(); |
40 | 0 | Real b; |
41 | 0 | Real v; |
42 | 0 | Real Xc = arguments_.strikeCall; |
43 | 0 | Real Xp = arguments_.strikePut; |
44 | 0 | Time T = choosingTime(); |
45 | 0 | Time Tc = callMaturity() - T; |
46 | 0 | Time Tp = putMaturity() - T; |
47 | |
|
48 | 0 | Real i = criticalValue(); |
49 | |
|
50 | 0 | b = riskFreeRate(T) - dividendYield(T); |
51 | 0 | v = volatility(T); |
52 | 0 | Real d1 = (log(S / i) + (b + pow(v, 2) / 2)*T) / (v*sqrt(T)); |
53 | 0 | Real d2 = d1 - v*sqrt(T); |
54 | |
|
55 | 0 | b = riskFreeRate(T + Tc) - dividendYield(T + Tc); |
56 | 0 | v = volatility(Tc); |
57 | 0 | Real y1 = (log(S / Xc) + (b + pow(v, 2) / 2)*Tc) / (v*sqrt(Tc)); |
58 | |
|
59 | 0 | b = riskFreeRate(T + Tp) - dividendYield(T + Tp); |
60 | 0 | v = volatility(Tp); |
61 | 0 | Real y2 = (log(S / Xp) + (b + pow(v, 2) / 2)*Tp) / (v*sqrt(Tp)); |
62 | |
|
63 | 0 | Real rho1 = sqrt(T / Tc); |
64 | 0 | Real rho2 = sqrt(T / Tp); |
65 | 0 | b = riskFreeRate(T + Tc) - dividendYield(T + Tc); |
66 | 0 | Real r = riskFreeRate(T + Tc); |
67 | 0 | Real ComplexChooser = S * exp((b - r)*Tc) * BivariateCumulativeNormalDistributionDr78(rho1)(d1, y1) |
68 | 0 | - Xc * exp(-r*Tc)*BivariateCumulativeNormalDistributionDr78(rho1)(d2, y1 - v * sqrt(Tc)) ; |
69 | 0 | b = riskFreeRate(T + Tp) - dividendYield(T + Tp); |
70 | 0 | r = riskFreeRate(T + Tp); |
71 | 0 | ComplexChooser -= S * exp((b - r)*Tp) * BivariateCumulativeNormalDistributionDr78(rho2)(-d1, -y2); |
72 | 0 | ComplexChooser += Xp * exp(-r*Tp) * BivariateCumulativeNormalDistributionDr78(rho2)(-d2, -y2 + v * sqrt(Tp)); |
73 | |
|
74 | 0 | results_.value = ComplexChooser; |
75 | 0 | } |
76 | | |
77 | | BlackScholesCalculator AnalyticComplexChooserEngine::bsCalculator( |
78 | 0 | Real spot, Option::Type optionType) const { |
79 | 0 | Real vol; |
80 | 0 | DiscountFactor growth; |
81 | 0 | DiscountFactor discount; |
82 | 0 | Time T = choosingTime(); |
83 | | |
84 | | // payoff |
85 | 0 | ext::shared_ptr<PlainVanillaPayoff > vanillaPayoff; |
86 | 0 | if (optionType == Option::Call){ |
87 | | //TC-T |
88 | 0 | Time t=callMaturity()-2*T; |
89 | 0 | vanillaPayoff = ext::make_shared<PlainVanillaPayoff>( |
90 | 0 | Option::Call, strike(Option::Call)); |
91 | | //QuantLib requires sigma * sqrt(t) rather than just sigma/volatility |
92 | 0 | vol = volatility(t) * std::sqrt(t); |
93 | 0 | growth = dividendDiscount(t); |
94 | 0 | discount = riskFreeDiscount(t); |
95 | 0 | } else{ |
96 | 0 | Time t=putMaturity()-2*T; |
97 | 0 | vanillaPayoff = ext::make_shared<PlainVanillaPayoff>( |
98 | 0 | Option::Put, strike(Option::Put)); |
99 | 0 | vol = volatility(t) * std::sqrt(t); |
100 | 0 | growth = dividendDiscount(t); |
101 | 0 | discount = riskFreeDiscount(t); |
102 | 0 | } |
103 | |
|
104 | 0 | BlackScholesCalculator bs(vanillaPayoff, spot, growth, vol, discount); |
105 | 0 | return bs; |
106 | 0 | } |
107 | | |
108 | 0 | Real AnalyticComplexChooserEngine::criticalValue() const{ |
109 | 0 | Real Sv = process_->x0(); |
110 | |
|
111 | 0 | BlackScholesCalculator bs=bsCalculator(Sv,Option::Call); |
112 | 0 | Real ci = bs.value(); |
113 | 0 | Real dc = bs.delta(); |
114 | |
|
115 | 0 | bs=bsCalculator(Sv,Option::Put); |
116 | 0 | Real Pi = bs.value(); |
117 | 0 | Real dp = bs.delta(); |
118 | |
|
119 | 0 | Real yi = ci - Pi; |
120 | 0 | Real di = dc - dp; |
121 | 0 | Real epsilon = 0.001; |
122 | | |
123 | | //Newton-Raphson process |
124 | 0 | while (std::fabs(yi) > epsilon){ |
125 | 0 | Sv = Sv - yi / di; |
126 | |
|
127 | 0 | bs=bsCalculator(Sv,Option::Call); |
128 | 0 | ci = bs.value(); |
129 | 0 | dc = bs.delta(); |
130 | |
|
131 | 0 | bs=bsCalculator(Sv,Option::Put); |
132 | 0 | Pi = bs.value(); |
133 | 0 | dp = bs.delta(); |
134 | |
|
135 | 0 | yi = ci - Pi; |
136 | 0 | di = dc - dp; |
137 | 0 | } |
138 | 0 | return Sv; |
139 | 0 | } |
140 | | |
141 | | |
142 | 0 | Real AnalyticComplexChooserEngine::strike(Option::Type optionType) const { |
143 | 0 | if (optionType == Option::Call) |
144 | 0 | return arguments_.strikeCall; |
145 | 0 | else |
146 | 0 | return arguments_.strikePut; |
147 | 0 | } |
148 | | |
149 | 0 | Time AnalyticComplexChooserEngine::choosingTime() const { |
150 | 0 | return process_->time(arguments_.choosingDate); |
151 | 0 | } |
152 | | |
153 | 0 | Time AnalyticComplexChooserEngine::putMaturity() const { |
154 | 0 | return process_->time(arguments_.exercisePut->lastDate()); |
155 | 0 | } |
156 | | |
157 | 0 | Time AnalyticComplexChooserEngine::callMaturity() const { |
158 | 0 | return process_->time(arguments_.exerciseCall->lastDate()); |
159 | 0 | } |
160 | | |
161 | 0 | Volatility AnalyticComplexChooserEngine::volatility(Time t) const { |
162 | 0 | return process_->blackVolatility()->blackVol(t, arguments_.strikeCall); |
163 | 0 | } |
164 | | |
165 | 0 | Rate AnalyticComplexChooserEngine::dividendYield(Time t) const { |
166 | 0 | return process_->dividendYield()->zeroRate(t, Continuous, NoFrequency); |
167 | 0 | } |
168 | | |
169 | 0 | DiscountFactor AnalyticComplexChooserEngine::dividendDiscount(Time t) const { |
170 | 0 | return process_->dividendYield()->discount(t); |
171 | 0 | } |
172 | | |
173 | 0 | Rate AnalyticComplexChooserEngine::riskFreeRate(Time t) const { |
174 | 0 | return process_->riskFreeRate()->zeroRate(t, Continuous, NoFrequency); |
175 | 0 | } |
176 | | |
177 | 0 | DiscountFactor AnalyticComplexChooserEngine::riskFreeDiscount(Time t) const { |
178 | 0 | return process_->riskFreeRate()->discount(t); |
179 | 0 | } |
180 | | |
181 | | } |