/src/quantlib/ql/termstructures/credit/probabilitytraits.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2008, 2016 Jose Aparicio |
5 | | Copyright (C) 2008 Chris Kenyon |
6 | | Copyright (C) 2008 Roland Lichters |
7 | | Copyright (C) 2008 StatPro Italia srl |
8 | | Copyright (C) 2009, 2011 Ferdinando Ametrano |
9 | | |
10 | | This file is part of QuantLib, a free-software/open-source library |
11 | | for financial quantitative analysts and developers - http://quantlib.org/ |
12 | | |
13 | | QuantLib is free software: you can redistribute it and/or modify it |
14 | | under the terms of the QuantLib license. You should have received a |
15 | | copy of the license along with this program; if not, please email |
16 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
17 | | <https://www.quantlib.org/license.shtml>. |
18 | | |
19 | | This program is distributed in the hope that it will be useful, but WITHOUT |
20 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
21 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
22 | | */ |
23 | | |
24 | | /*! \file probabilitytraits.hpp |
25 | | \brief default-probability bootstrap traits |
26 | | */ |
27 | | |
28 | | #ifndef ql_probability_traits_hpp |
29 | | #define ql_probability_traits_hpp |
30 | | |
31 | | #include <ql/termstructures/credit/interpolatedsurvivalprobabilitycurve.hpp> |
32 | | #include <ql/termstructures/credit/interpolatedhazardratecurve.hpp> |
33 | | #include <ql/termstructures/credit/interpolateddefaultdensitycurve.hpp> |
34 | | #include <ql/termstructures/bootstraphelper.hpp> |
35 | | |
36 | | namespace QuantLib { |
37 | | |
38 | | namespace detail { |
39 | | const Real avgHazardRate = 0.01; |
40 | | const Real maxHazardRate = 1.0; |
41 | | } |
42 | | |
43 | | //! Survival-Probability-curve traits |
44 | | struct SurvivalProbability { |
45 | | // interpolated curve type |
46 | | template <class Interpolator> |
47 | | struct curve { |
48 | | typedef InterpolatedSurvivalProbabilityCurve<Interpolator> type; |
49 | | }; |
50 | | // helper class |
51 | | typedef BootstrapHelper<DefaultProbabilityTermStructure> helper; |
52 | | |
53 | | // start of curve data |
54 | 0 | static Date initialDate(const DefaultProbabilityTermStructure* c) { |
55 | 0 | return c->referenceDate(); |
56 | 0 | } |
57 | | // value at reference date |
58 | 0 | static Real initialValue(const DefaultProbabilityTermStructure*) { |
59 | 0 | return 1.0; |
60 | 0 | } |
61 | | |
62 | | // guesses |
63 | | template <class C> |
64 | | static Real guess(Size i, |
65 | | const C* c, |
66 | | bool validData, |
67 | | Size) // firstAliveHelper |
68 | | { |
69 | | if (validData) // previous iteration value |
70 | | return c->data()[i]; |
71 | | |
72 | | if (i==1) // first pillar |
73 | | return 1.0/(1.0+detail::avgHazardRate*0.25); |
74 | | |
75 | | // extrapolate |
76 | | Date d = c->dates()[i]; |
77 | | return c->survivalProbability(d,true); |
78 | | } |
79 | | // constraints |
80 | | template <class C> |
81 | | static Real minValueAfter(Size i, |
82 | | const C* c, |
83 | | bool validData, |
84 | | Size) // firstAliveHelper |
85 | | { |
86 | | if (validData) { |
87 | | return c->data().back()/2.0; |
88 | | } |
89 | | Time dt = c->times()[i] - c->times()[i-1]; |
90 | | return c->data()[i-1] * std::exp(- detail::maxHazardRate * dt); |
91 | | } |
92 | | template <class C> |
93 | | static Real maxValueAfter(Size i, |
94 | | const C* c, |
95 | | bool validData, |
96 | | Size) // firstAliveHelper |
97 | | { |
98 | | // survival probability cannot increase |
99 | | return c->data()[i-1]; |
100 | | } |
101 | | |
102 | | // root-finding update |
103 | | static void updateGuess(std::vector<Real>& data, |
104 | | Probability p, |
105 | 0 | Size i) { |
106 | 0 | data[i] = p; |
107 | 0 | } |
108 | | // upper bound for convergence loop |
109 | 0 | static Size maxIterations() { return 50; } |
110 | | }; |
111 | | |
112 | | |
113 | | |
114 | | //! Hazard-rate-curve traits |
115 | | struct HazardRate { |
116 | | // interpolated curve type |
117 | | template <class Interpolator> |
118 | | struct curve { |
119 | | typedef InterpolatedHazardRateCurve<Interpolator> type; |
120 | | }; |
121 | | // helper class |
122 | | typedef BootstrapHelper<DefaultProbabilityTermStructure> helper; |
123 | | |
124 | | // start of curve data |
125 | 0 | static Date initialDate(const DefaultProbabilityTermStructure* c) { |
126 | 0 | return c->referenceDate(); |
127 | 0 | } |
128 | | // dummy value at reference date |
129 | 0 | static Real initialValue(const DefaultProbabilityTermStructure*) { |
130 | 0 | return detail::avgHazardRate; |
131 | 0 | } |
132 | | |
133 | | // guesses |
134 | | template <class C> |
135 | | static Real guess(Size i, |
136 | | const C* c, |
137 | | bool validData, |
138 | | Size) // firstAliveHelper |
139 | | { |
140 | | if (validData) // previous iteration value |
141 | | return c->data()[i]; |
142 | | |
143 | | if (i==1) // first pillar |
144 | | return detail::avgHazardRate; |
145 | | |
146 | | // extrapolate |
147 | | Date d = c->dates()[i]; |
148 | | return c->hazardRate(d, true); |
149 | | } |
150 | | |
151 | | // constraints |
152 | | template <class C> |
153 | | static Real minValueAfter(Size i, |
154 | | const C* c, |
155 | | bool validData, |
156 | | Size) // firstAliveHelper |
157 | | { |
158 | | if (validData) { |
159 | | Real r = *(std::min_element(c->data().begin(), c->data().end())); |
160 | | return r/2.0; |
161 | | } |
162 | | return QL_EPSILON; |
163 | | } |
164 | | template <class C> |
165 | | static Real maxValueAfter(Size i, |
166 | | const C* c, |
167 | | bool validData, |
168 | | Size) // firstAliveHelper |
169 | | { |
170 | | if (validData) { |
171 | | Real r = *(std::max_element(c->data().begin(), c->data().end())); |
172 | | return r*2.0; |
173 | | } |
174 | | // no constraints. |
175 | | // We choose as max a value very unlikely to be exceeded. |
176 | | return detail::maxHazardRate; |
177 | | } |
178 | | // update with new guess |
179 | | static void updateGuess(std::vector<Real>& data, |
180 | | Real rate, |
181 | 0 | Size i) { |
182 | 0 | data[i] = rate; |
183 | 0 | if (i==1) |
184 | 0 | data[0] = rate; // first point is updated as well |
185 | 0 | } |
186 | | // upper bound for convergence loop |
187 | 0 | static Size maxIterations() { return 30; } |
188 | | }; |
189 | | |
190 | | |
191 | | //! Default-density-curve traits |
192 | | struct DefaultDensity { |
193 | | // interpolated curve type |
194 | | template <class Interpolator> |
195 | | struct curve { |
196 | | typedef InterpolatedDefaultDensityCurve<Interpolator> type; |
197 | | }; |
198 | | // helper class |
199 | | typedef BootstrapHelper<DefaultProbabilityTermStructure> helper; |
200 | | // start of curve data |
201 | 0 | static Date initialDate(const DefaultProbabilityTermStructure* c) { |
202 | 0 | return c->referenceDate(); |
203 | 0 | } |
204 | | // value at reference date |
205 | 0 | static Real initialValue(const DefaultProbabilityTermStructure*) { |
206 | 0 | return detail::avgHazardRate; |
207 | 0 | } |
208 | | |
209 | | // guesses |
210 | | template <class C> |
211 | | static Real guess(Size i, |
212 | | const C* c, |
213 | | bool validData, |
214 | | Size) // firstAliveHelper |
215 | | { |
216 | | if (validData) // previous iteration value |
217 | | return c->data()[i]; |
218 | | |
219 | | if (i==1) // first pillar |
220 | | return detail::avgHazardRate; |
221 | | |
222 | | // extrapolate |
223 | | Date d = c->dates()[i]; |
224 | | return c->defaultDensity(d, true); |
225 | | } |
226 | | |
227 | | // constraints |
228 | | template <class C> |
229 | | static Real minValueAfter(Size i, |
230 | | const C* c, |
231 | | bool validData, |
232 | | Size) // firstAliveHelper |
233 | | { |
234 | | if (validData) { |
235 | | Real r = *(std::min_element(c->data().begin(), c->data().end())); |
236 | | return r/2.0; |
237 | | } |
238 | | return QL_EPSILON; |
239 | | } |
240 | | template <class C> |
241 | | static Real maxValueAfter(Size i, |
242 | | const C* c, |
243 | | bool validData, |
244 | | Size) // firstAliveHelper |
245 | | { |
246 | | if (validData) { |
247 | | Real r = *(std::max_element(c->data().begin(), c->data().end())); |
248 | | return r*2.0; |
249 | | } |
250 | | // no constraints. |
251 | | // We choose as max a value very unlikely to be exceeded. |
252 | | return detail::maxHazardRate; |
253 | | } |
254 | | |
255 | | // update with new guess |
256 | | static void updateGuess(std::vector<Real>& data, |
257 | | Real density, |
258 | 0 | Size i) { |
259 | 0 | data[i] = density; |
260 | 0 | if (i==1) |
261 | 0 | data[0] = density; // first point is updated as well |
262 | 0 | } |
263 | | // upper bound for convergence loop |
264 | 0 | static Size maxIterations() { return 30; } |
265 | | }; |
266 | | |
267 | | } |
268 | | |
269 | | #endif |