/src/quantlib/ql/experimental/math/particleswarmoptimization.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2015 Andres Hernandez |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/experimental/math/particleswarmoptimization.hpp> |
21 | | #include <ql/math/randomnumbers/sobolrsg.hpp> |
22 | | #include <cmath> |
23 | | #include <utility> |
24 | | |
25 | | using std::sqrt; |
26 | | |
27 | | namespace QuantLib { |
28 | | ParticleSwarmOptimization::ParticleSwarmOptimization(Size M, |
29 | | ext::shared_ptr<Topology> topology, |
30 | | ext::shared_ptr<Inertia> inertia, |
31 | | Real c1, |
32 | | Real c2, |
33 | | unsigned long seed) |
34 | 0 | : M_(M), rng_(seed), topology_(std::move(topology)), inertia_(std::move(inertia)) { |
35 | 0 | Real phi = c1 + c2; |
36 | 0 | QL_ENSURE(phi*phi - 4 * phi != 0.0, "Invalid phi"); |
37 | 0 | c0_ = 2.0 / std::abs(2.0 - phi - sqrt(phi*phi - 4 * phi)); |
38 | 0 | c1_ = c0_*c1; |
39 | 0 | c2_ = c0_*c2; |
40 | 0 | } |
41 | | |
42 | | ParticleSwarmOptimization::ParticleSwarmOptimization(Size M, |
43 | | ext::shared_ptr<Topology> topology, |
44 | | ext::shared_ptr<Inertia> inertia, |
45 | | Real omega, |
46 | | Real c1, |
47 | | Real c2, |
48 | | unsigned long seed) |
49 | 0 | : M_(M), c0_(omega), c1_(c1), c2_(c2), rng_(seed), topology_(std::move(topology)), |
50 | 0 | inertia_(std::move(inertia)) {} |
51 | | |
52 | 0 | void ParticleSwarmOptimization::startState(Problem &P, const EndCriteria &endCriteria) { |
53 | 0 | QL_REQUIRE(topology_, "Invalid topology"); |
54 | 0 | QL_REQUIRE(inertia_, "Invalid inertia"); |
55 | 0 | N_ = P.currentValue().size(); |
56 | 0 | topology_->setSize(M_); |
57 | 0 | inertia_->setSize(M_, N_, c0_, endCriteria); |
58 | 0 | X_.reserve(M_); |
59 | 0 | V_.reserve(M_); |
60 | 0 | pBX_.reserve(M_); |
61 | 0 | pBF_ = Array(M_); |
62 | 0 | gBX_.reserve(M_); |
63 | 0 | gBF_ = Array(M_); |
64 | 0 | uX_ = P.constraint().upperBound(P.currentValue()); |
65 | 0 | lX_ = P.constraint().lowerBound(P.currentValue()); |
66 | 0 | Array bounds = uX_ - lX_; |
67 | | |
68 | | //Random initialization is done by Sobol sequence |
69 | 0 | SobolRsg sobol(N_ * 2); |
70 | | |
71 | | //Prepare containers |
72 | 0 | for (Size i = 0; i < M_; i++) { |
73 | 0 | const SobolRsg::sample_type::value_type &sample = sobol.nextSequence().value; |
74 | 0 | X_.emplace_back(N_, 0.0); |
75 | 0 | Array& x = X_.back(); |
76 | 0 | V_.emplace_back(N_, 0.0); |
77 | 0 | Array& v = V_.back(); |
78 | 0 | gBX_.emplace_back(N_, 0.0); |
79 | 0 | for (Size j = 0; j < N_; j++) { |
80 | | //Assign X=lb+(ub-lb)*random |
81 | 0 | x[j] = lX_[j] + bounds[j] * sample[2 * j]; |
82 | | //Assign V=(ub-lb)*2*random-(ub-lb) -> between (lb-ub) and (ub-lb) |
83 | 0 | v[j] = bounds[j] * (2.0*sample[2 * j + 1] - 1.0); |
84 | 0 | } |
85 | | //Evaluate X and assign as personal best |
86 | 0 | pBX_.push_back(X_.back()); |
87 | 0 | pBF_[i] = P.value(X_.back()); |
88 | 0 | } |
89 | | |
90 | | //init topology & inertia |
91 | 0 | topology_->init(this); |
92 | 0 | inertia_->init(this); |
93 | 0 | } |
94 | | |
95 | 0 | EndCriteria::Type ParticleSwarmOptimization::minimize(Problem &P, const EndCriteria &endCriteria) { |
96 | 0 | QL_REQUIRE(!P.constraint().empty(), "PSO is a constrained optimizer"); |
97 | | |
98 | 0 | EndCriteria::Type ecType = EndCriteria::None; |
99 | 0 | P.reset(); |
100 | 0 | Size iteration = 0; |
101 | 0 | Size iterationStat = 0; |
102 | 0 | Size maxIteration = endCriteria.maxIterations(); |
103 | 0 | Size maxIStationary = endCriteria.maxStationaryStateIterations(); |
104 | 0 | Real bestValue = QL_MAX_REAL; |
105 | 0 | Size bestPosition = 0; |
106 | |
|
107 | 0 | startState(P, endCriteria); |
108 | | //Set best value & position |
109 | 0 | for (Size i = 0; i < M_; i++) { |
110 | 0 | if (pBF_[i] < bestValue) { |
111 | 0 | bestValue = pBF_[i]; |
112 | 0 | bestPosition = i; |
113 | 0 | } |
114 | 0 | } |
115 | | |
116 | | //Run optimization |
117 | 0 | do { |
118 | 0 | iteration++; |
119 | 0 | iterationStat++; |
120 | | //Check if stopping criteria is met |
121 | 0 | if (iteration > maxIteration || iterationStat > maxIStationary) |
122 | 0 | break; |
123 | | |
124 | | //According to the topology, determine best global position |
125 | 0 | topology_->findSocialBest(); |
126 | | |
127 | | //Call inertia to change internal state |
128 | 0 | inertia_->setValues(); |
129 | | |
130 | | //Loop over particles |
131 | 0 | for (Size i = 0; i < M_; i++) { |
132 | 0 | Array& x = X_[i]; |
133 | 0 | Array& pB = pBX_[i]; |
134 | 0 | const Array& gB = gBX_[i]; |
135 | 0 | Array& v = V_[i]; |
136 | | |
137 | | //Loop over dimensions |
138 | 0 | for (Size j = 0; j < N_; j++) { |
139 | | //Update velocity |
140 | 0 | v[j] += c1_*rng_.nextReal()*(pB[j] - x[j]) + c2_*rng_.nextReal()*(gB[j] - x[j]); |
141 | | //Update position |
142 | 0 | x[j] += v[j]; |
143 | | //Enforce bounds on positions |
144 | 0 | if (x[j] < lX_[j]) { |
145 | 0 | x[j] = lX_[j]; |
146 | 0 | v[j] = 0.0; |
147 | 0 | } |
148 | 0 | else if (x[j] > uX_[j]) { |
149 | 0 | x[j] = uX_[j]; |
150 | 0 | v[j] = 0.0; |
151 | 0 | } |
152 | 0 | } |
153 | | //Evaluate x |
154 | 0 | Real f = P.value(x); |
155 | 0 | if (f < pBF_[i]) { |
156 | | //Update personal best |
157 | 0 | pBF_[i] = f; |
158 | 0 | pB = x; |
159 | | //Check stationary condition |
160 | 0 | if (f < bestValue) { |
161 | 0 | bestValue = f; |
162 | 0 | bestPosition = i; |
163 | 0 | iterationStat = 0; |
164 | 0 | } |
165 | 0 | } |
166 | 0 | } |
167 | 0 | } while (true); |
168 | 0 | if (iteration > maxIteration) |
169 | 0 | ecType = EndCriteria::MaxIterations; |
170 | 0 | else |
171 | 0 | ecType = EndCriteria::StationaryPoint; |
172 | | |
173 | | //Set result to best point |
174 | 0 | P.setCurrentValue(pBX_[bestPosition]); |
175 | 0 | P.setFunctionValue(bestValue); |
176 | 0 | return ecType; |
177 | 0 | } |
178 | | |
179 | 0 | void AdaptiveInertia::setValues() { |
180 | 0 | Real currBest = (*pBF_)[0]; |
181 | 0 | for (Size i = 1; i < M_; i++) { |
182 | 0 | if (currBest >(*pBF_)[i]) currBest = (*pBF_)[i]; |
183 | 0 | } |
184 | 0 | if (started_) { //First iteration leaves inertia unchanged |
185 | 0 | if (currBest < best_) { |
186 | 0 | best_ = currBest; |
187 | 0 | adaptiveCounter--; |
188 | 0 | } |
189 | 0 | else { |
190 | 0 | adaptiveCounter++; |
191 | 0 | } |
192 | 0 | if (adaptiveCounter > sh_) { |
193 | 0 | c0_ = std::max(minInertia_, std::min(maxInertia_, c0_*0.5)); |
194 | 0 | } |
195 | 0 | else if (adaptiveCounter < sl_) { |
196 | 0 | c0_ = std::max(minInertia_, std::min(maxInertia_, c0_*2.0)); |
197 | 0 | } |
198 | 0 | } |
199 | 0 | else { |
200 | 0 | best_ = currBest; |
201 | 0 | started_ = true; |
202 | 0 | } |
203 | 0 | for (Size i = 0; i < M_; i++) { |
204 | 0 | (*V_)[i] *= c0_; |
205 | 0 | } |
206 | 0 | } |
207 | | |
208 | 0 | void KNeighbors::findSocialBest() { |
209 | 0 | for (Size i = 0; i < M_; i++) { |
210 | 0 | Real bestF = (*pBF_)[i]; |
211 | 0 | Size bestX = 0; |
212 | | //Search K_ neightbors upwards |
213 | 0 | Size upper = std::min(i + K_, M_); |
214 | | //Search K_ neighbors downwards |
215 | 0 | Size lower = std::max(i, K_ + 1) - K_ - 1; |
216 | 0 | for (Size j = lower; j < upper; j++) { |
217 | 0 | if ((*pBF_)[j] < bestF) { |
218 | 0 | bestF = (*pBF_)[j]; |
219 | 0 | bestX = j; |
220 | 0 | } |
221 | 0 | } |
222 | 0 | if (i + K_ >= M_) { //loop around if i+K >= M_ |
223 | 0 | for (Size j = 0; j < i + K_ - M_; j++) { |
224 | 0 | if ((*pBF_)[j] < bestF) { |
225 | 0 | bestF = (*pBF_)[j]; |
226 | 0 | bestX = j; |
227 | 0 | } |
228 | 0 | } |
229 | 0 | } |
230 | 0 | else if (i < K_) {//loop around from above |
231 | 0 | for (Size j = M_ - (K_ - i) - 1; j < M_; j++) { |
232 | 0 | if ((*pBF_)[j] < bestF) { |
233 | 0 | bestF = (*pBF_)[j]; |
234 | 0 | bestX = j; |
235 | 0 | } |
236 | 0 | } |
237 | 0 | } |
238 | 0 | (*gBX_)[i] = (*pBX_)[bestX]; |
239 | 0 | (*gBF_)[i] = bestF; |
240 | 0 | } |
241 | 0 | } |
242 | | |
243 | | ClubsTopology::ClubsTopology(Size defaultClubs, |
244 | | Size totalClubs, |
245 | | Size maxClubs, |
246 | | Size minClubs, |
247 | | Size resetIteration, |
248 | | unsigned long seed) |
249 | 0 | : totalClubs_(totalClubs), maxClubs_(maxClubs), minClubs_(minClubs), |
250 | 0 | defaultClubs_(defaultClubs), resetIteration_(resetIteration), bestByClub_(totalClubs, 0), |
251 | 0 | worstByClub_(totalClubs, 0), generator_(seed), distribution_(1, totalClubs_) { |
252 | 0 | QL_REQUIRE(totalClubs_ >= defaultClubs_, |
253 | 0 | "Total number of clubs must be larger or equal than default clubs"); |
254 | 0 | QL_REQUIRE(defaultClubs_ >= minClubs_, |
255 | 0 | "Number of default clubs must be larger or equal than minimum clubs"); |
256 | 0 | QL_REQUIRE(maxClubs_ >= defaultClubs_, |
257 | 0 | "Number of maximum clubs must be larger or equal than default clubs"); |
258 | 0 | QL_REQUIRE(totalClubs_ >= maxClubs_, |
259 | 0 | "Total number of clubs must be larger or equal than maximum clubs"); |
260 | 0 | } |
261 | | |
262 | 0 | void ClubsTopology::setSize(Size M) { |
263 | 0 | M_ = M; |
264 | |
|
265 | 0 | if (defaultClubs_ < totalClubs_) { |
266 | 0 | clubs4particles_ = std::vector<std::vector<bool> >(M_, std::vector<bool>(totalClubs_, false)); |
267 | 0 | particles4clubs_ = std::vector<std::vector<bool> >(totalClubs_, std::vector<bool>(M_, false)); |
268 | | //Assign particles to clubs randomly |
269 | 0 | for (Size i = 0; i < M_; i++) { |
270 | 0 | std::vector<bool> &clubSet = clubs4particles_[i]; |
271 | 0 | for (Size j = 0; j < defaultClubs_; j++) { |
272 | 0 | Size index = distribution_(generator_); |
273 | 0 | while (clubSet[index]) { index = distribution_(generator_); } |
274 | 0 | clubSet[index] = true; |
275 | 0 | particles4clubs_[index][i] = true; |
276 | 0 | } |
277 | 0 | } |
278 | 0 | } |
279 | 0 | else { |
280 | | //Since totalClubs_ == defaultClubs_, then just initialize to true |
281 | 0 | clubs4particles_ = std::vector<std::vector<bool> >(M_, std::vector<bool>(totalClubs_, true)); |
282 | 0 | particles4clubs_ = std::vector<std::vector<bool> >(totalClubs_, std::vector<bool>(M_, true)); |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | 0 | void ClubsTopology::findSocialBest() { |
287 | | //Update iteration |
288 | 0 | iteration_++; |
289 | 0 | bool reset = false; |
290 | 0 | if (iteration_ == resetIteration_) { |
291 | 0 | iteration_ = 0; |
292 | 0 | reset = true; |
293 | 0 | } |
294 | | |
295 | | //Find best by current club |
296 | 0 | for (Size i = 0; i < totalClubs_; i++) { |
297 | 0 | Real bestByClub = QL_MAX_REAL; |
298 | 0 | Real worstByClub = -QL_MAX_REAL; |
299 | 0 | Size bestP = 0; |
300 | 0 | Size worstP = 0; |
301 | 0 | const std::vector<bool> &particlesSet = particles4clubs_[i]; |
302 | 0 | for (Size j = 0; j < M_; j++) { |
303 | 0 | if (particlesSet[j]) { |
304 | 0 | if (bestByClub >(*pBF_)[j]) { |
305 | 0 | bestByClub = (*pBF_)[j]; |
306 | 0 | bestP = j; |
307 | 0 | } |
308 | 0 | else if (worstByClub < (*pBF_)[j]) { |
309 | 0 | worstByClub = (*pBF_)[j]; |
310 | 0 | worstP = j; |
311 | 0 | } |
312 | 0 | } |
313 | 0 | } |
314 | 0 | bestByClub_[i] = bestP; |
315 | 0 | worstByClub_[i] = worstP; |
316 | 0 | } |
317 | | |
318 | | //Update clubs && global best |
319 | 0 | for (Size i = 0; i < M_; i++) { |
320 | 0 | std::vector<bool> &clubSet = clubs4particles_[i]; |
321 | 0 | bool best = true; |
322 | 0 | bool worst = true; |
323 | 0 | Size currentClubs = 0; |
324 | 0 | for (Size j = 0; j < totalClubs_; j++) { |
325 | 0 | if (clubSet[j]) { |
326 | | //If still thought of the best, check if best in club j |
327 | 0 | if (best && i != bestByClub_[j]) best = false; |
328 | | //If still thought of the worst, check if worst in club j |
329 | 0 | if (worst && i != worstByClub_[j]) worst = false; |
330 | | //Update currentClubs |
331 | 0 | currentClubs++; |
332 | 0 | } |
333 | 0 | } |
334 | | //Update clubs |
335 | 0 | if (best) { |
336 | | //Leave random club |
337 | 0 | leaveRandomClub(i, currentClubs); |
338 | 0 | } |
339 | 0 | else if (worst) { |
340 | | //Join random club |
341 | 0 | joinRandomClub(i, currentClubs); |
342 | 0 | } |
343 | 0 | else if (reset && currentClubs != defaultClubs_) { |
344 | | //If membership != defaultClubs_, then leave or join accordingly |
345 | 0 | if (currentClubs < defaultClubs_) { |
346 | | //Join random club |
347 | 0 | joinRandomClub(i, currentClubs); |
348 | 0 | } |
349 | 0 | else { |
350 | | //Leave random club |
351 | 0 | leaveRandomClub(i, currentClubs); |
352 | 0 | } |
353 | 0 | } |
354 | | |
355 | | //Update global best |
356 | 0 | Real bestNeighborF = QL_MAX_REAL; |
357 | 0 | Size bestNeighborX = 0; |
358 | 0 | for (Size j = 0; j < totalClubs_; j++) { |
359 | 0 | if (clubSet[j] && bestNeighborF >(*pBF_)[bestByClub_[j]]) { |
360 | 0 | bestNeighborF = (*pBF_)[bestByClub_[j]]; |
361 | 0 | bestNeighborX = j; |
362 | 0 | } |
363 | 0 | } |
364 | 0 | (*gBX_)[i] = (*pBX_)[bestNeighborX]; |
365 | 0 | (*gBF_)[i] = bestNeighborF; |
366 | 0 | } |
367 | 0 | } |
368 | | |
369 | 0 | void ClubsTopology::leaveRandomClub(Size particle, Size currentClubs) { |
370 | 0 | Size randIndex = distribution_(generator_, param_type(1, currentClubs)); |
371 | 0 | Size index = 1; |
372 | 0 | std::vector<bool> &clubSet = clubs4particles_[particle]; |
373 | 0 | for (Size j = 0; j < totalClubs_; j++) { |
374 | 0 | if (clubSet[j]) { |
375 | 0 | if (index == randIndex) { |
376 | 0 | clubSet[j] = false; |
377 | 0 | particles4clubs_[j][particle] = false; |
378 | 0 | break; |
379 | 0 | } |
380 | 0 | index++; |
381 | 0 | } |
382 | 0 | } |
383 | 0 | } |
384 | | |
385 | 0 | void ClubsTopology::joinRandomClub(Size particle, Size currentClubs) { |
386 | 0 | Size randIndex = totalClubs_ == currentClubs ? 1 : |
387 | 0 | distribution_(generator_, param_type(1, totalClubs_ - currentClubs)); |
388 | 0 | Size index = 1; |
389 | 0 | std::vector<bool> &clubSet = clubs4particles_[particle]; |
390 | 0 | for (Size j = 0; j < totalClubs_; j++) { |
391 | 0 | if (!clubSet[j]) { |
392 | 0 | if (index == randIndex) { |
393 | 0 | clubSet[j] = true; |
394 | 0 | particles4clubs_[j][particle] = true; |
395 | 0 | break; |
396 | 0 | } |
397 | 0 | index++; |
398 | 0 | } |
399 | 0 | } |
400 | 0 | } |
401 | | } |
402 | | |