/src/quantlib/ql/math/integrals/trapezoidintegral.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2003 Roman Gitlin |
5 | | Copyright (C) 2003 StatPro Italia srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | /*! \file trapezoidintegral.hpp |
22 | | \brief integral of a one-dimensional function using the trapezoid formula |
23 | | */ |
24 | | |
25 | | #ifndef quantlib_trapezoid_integral_hpp |
26 | | #define quantlib_trapezoid_integral_hpp |
27 | | |
28 | | #include <ql/math/integrals/integral.hpp> |
29 | | #include <ql/utilities/null.hpp> |
30 | | #include <ql/errors.hpp> |
31 | | |
32 | | namespace QuantLib { |
33 | | |
34 | | //! Integral of a one-dimensional function |
35 | | /*! Given a target accuracy \f$ \epsilon \f$, the integral of |
36 | | a function \f$ f \f$ between \f$ a \f$ and \f$ b \f$ is |
37 | | calculated by means of the trapezoid formula |
38 | | \f[ |
39 | | \int_{a}^{b} f \mathrm{d}x = |
40 | | \frac{1}{2} f(x_{0}) + f(x_{1}) + f(x_{2}) + \dots |
41 | | + f(x_{N-1}) + \frac{1}{2} f(x_{N}) |
42 | | \f] |
43 | | where \f$ x_0 = a \f$, \f$ x_N = b \f$, and |
44 | | \f$ x_i = a+i \Delta x \f$ with |
45 | | \f$ \Delta x = (b-a)/N \f$. The number \f$ N \f$ of intervals |
46 | | is repeatedly increased until the target accuracy is reached. |
47 | | |
48 | | \test the correctness of the result is tested by checking it |
49 | | against known good values. |
50 | | */ |
51 | | template <class IntegrationPolicy> |
52 | | class TrapezoidIntegral : public Integrator { |
53 | | public: |
54 | | TrapezoidIntegral(Real accuracy, |
55 | | Size maxIterations) |
56 | 0 | : Integrator(accuracy, maxIterations){} |
57 | | |
58 | | protected: |
59 | 0 | Real integrate(const std::function<Real(Real)>& f, Real a, Real b) const override { |
60 | | |
61 | | // start from the coarsest trapezoid... |
62 | 0 | Size N = 1; |
63 | 0 | Real I = (f(a)+f(b))*(b-a)/2.0, newI; |
64 | 0 | increaseNumberOfEvaluations(2); |
65 | | // ...and refine it |
66 | 0 | Size i = 1; |
67 | 0 | do { |
68 | 0 | newI = IntegrationPolicy::integrate(f,a,b,I,N); |
69 | 0 | increaseNumberOfEvaluations(N*(IntegrationPolicy::nbEvalutions()-1)); |
70 | 0 | N *= IntegrationPolicy::nbEvalutions(); |
71 | | // good enough? Also, don't run away immediately |
72 | 0 | if (std::fabs(I-newI) <= absoluteAccuracy() && i > 5) |
73 | | // ok, exit |
74 | 0 | return newI; |
75 | | // oh well. Another step. |
76 | 0 | I = newI; |
77 | 0 | i++; |
78 | 0 | } while (i < maxEvaluations()); |
79 | 0 | QL_FAIL("max number of iterations reached"); |
80 | 0 | } |
81 | | }; |
82 | | |
83 | | // Integration policies |
84 | | struct Default { |
85 | | static Real integrate(const std::function<Real (Real)>& f, |
86 | | Real a, |
87 | | Real b, |
88 | | Real I, |
89 | | Size N) |
90 | 0 | { |
91 | 0 | Real sum = 0.0; |
92 | 0 | Real dx = (b-a)/N; |
93 | 0 | Real x = a + dx/2.0; |
94 | 0 | for (Size i=0; i<N; x += dx, ++i) |
95 | 0 | sum += f(x); |
96 | 0 | return (I + dx*sum)/2.0; |
97 | 0 | } |
98 | 0 | static Size nbEvalutions(){ return 2;} |
99 | | }; |
100 | | |
101 | | struct MidPoint { |
102 | | static Real integrate(const std::function<Real (Real)>& f, |
103 | | Real a, |
104 | | Real b, |
105 | | Real I, |
106 | | Size N) |
107 | 0 | { |
108 | 0 | Real sum = 0.0; |
109 | 0 | Real dx = (b-a)/N; |
110 | 0 | Real x = a + dx/6.0; |
111 | 0 | Real D = 2.0*dx/3.0; |
112 | 0 | for (Size i=0; i<N; x += dx, ++i) |
113 | 0 | sum += f(x) + f(x+D); |
114 | 0 | return (I + dx*sum)/3.0; |
115 | 0 | } |
116 | 0 | static Size nbEvalutions(){ return 3;} |
117 | | }; |
118 | | |
119 | | } |
120 | | |
121 | | #endif |