/src/quantlib/ql/math/matrixutilities/tqreigendecomposition.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2005 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file tqreigendecomposition.hpp |
21 | | \brief tridiag. QR eigen decompositions with implicit shift |
22 | | */ |
23 | | |
24 | | #include <ql/math/matrixutilities/tqreigendecomposition.hpp> |
25 | | #include <vector> |
26 | | |
27 | | namespace QuantLib { |
28 | | |
29 | | TqrEigenDecomposition::TqrEigenDecomposition(const Array& diag, |
30 | | const Array& sub, |
31 | | EigenVectorCalculation calc, |
32 | | ShiftStrategy strategy) |
33 | 0 | : d_(diag), ev_((calc == WithEigenVector) ? d_.size() : |
34 | 0 | (calc == WithoutEigenVector) ? 0 : |
35 | 0 | 1, |
36 | 0 | d_.size(), |
37 | 0 | 0) { |
38 | 0 | Size n = diag.size(); |
39 | |
|
40 | 0 | QL_REQUIRE(n == sub.size()+1, "Wrong dimensions"); |
41 | | |
42 | 0 | Array e(n, 0.0); |
43 | 0 | std::copy(sub.begin(),sub.end(),e.begin()+1); |
44 | 0 | for (Size i=0; i < ev_.rows(); ++i) { |
45 | 0 | ev_[i][i] = 1.0; |
46 | 0 | } |
47 | |
|
48 | 0 | for (Size k=n-1; k >=1; --k) { |
49 | 0 | while (!offDiagIsZero(k, e)) { |
50 | 0 | Size l = k; |
51 | 0 | while (--l > 0 && !offDiagIsZero(l,e)); // NOLINT(bugprone-inc-dec-in-conditions) |
52 | 0 | iter_++; |
53 | |
|
54 | 0 | Real q = d_[l]; |
55 | 0 | if (strategy != NoShift) { |
56 | | // calculated eigenvalue of 2x2 sub matrix of |
57 | | // [ d_[k-1] e_[k] ] |
58 | | // [ e_[k] d_[k] ] |
59 | | // which is closer to d_[k+1]. |
60 | 0 | const Real t1 = std::sqrt( |
61 | 0 | 0.25*(d_[k]*d_[k] + d_[k-1]*d_[k-1]) |
62 | 0 | - 0.5*d_[k-1]*d_[k] + e[k]*e[k]); |
63 | 0 | const Real t2 = 0.5*(d_[k]+d_[k-1]); |
64 | |
|
65 | 0 | const Real lambda = |
66 | 0 | (std::fabs(t2+t1 - d_[k]) < std::fabs(t2-t1 - d_[k]))? |
67 | 0 | Real(t2+t1) : Real(t2-t1); |
68 | |
|
69 | 0 | if (strategy == CloseEigenValue) { |
70 | 0 | q-=lambda; |
71 | 0 | } else { |
72 | 0 | q-=((k==n-1)? 1.25 : 1.0)*lambda; |
73 | 0 | } |
74 | 0 | } |
75 | | |
76 | | // the QR transformation |
77 | 0 | Real sine = 1.0; |
78 | 0 | Real cosine = 1.0; |
79 | 0 | Real u = 0.0; |
80 | |
|
81 | 0 | bool recoverUnderflow = false; |
82 | 0 | for (Size i=l+1; i <= k && !recoverUnderflow; ++i) { |
83 | 0 | const Real h = cosine*e[i]; |
84 | 0 | const Real p = sine*e[i]; |
85 | |
|
86 | 0 | e[i-1] = std::sqrt(p*p+q*q); |
87 | 0 | if (e[i-1] != 0.0) { |
88 | 0 | sine = p/e[i-1]; |
89 | 0 | cosine = q/e[i-1]; |
90 | |
|
91 | 0 | const Real g = d_[i-1]-u; |
92 | 0 | const Real t = (d_[i]-g)*sine+2*cosine*h; |
93 | |
|
94 | 0 | u = sine*t; |
95 | 0 | d_[i-1] = g + u; |
96 | 0 | q = cosine*t - h; |
97 | |
|
98 | 0 | for (Size j=0; j < ev_.rows(); ++j) { |
99 | 0 | const Real tmp = ev_[j][i-1]; |
100 | 0 | ev_[j][i-1] = sine*ev_[j][i] + cosine*tmp; |
101 | 0 | ev_[j][i] = cosine*ev_[j][i] - sine*tmp; |
102 | 0 | } |
103 | 0 | } else { |
104 | | // recover from underflow |
105 | 0 | d_[i-1] -= u; |
106 | 0 | e[l] = 0.0; |
107 | 0 | recoverUnderflow = true; |
108 | 0 | } |
109 | 0 | } |
110 | |
|
111 | 0 | if (!recoverUnderflow) { |
112 | 0 | d_[k] -= u; |
113 | 0 | e[k] = q; |
114 | 0 | e[l] = 0.0; |
115 | 0 | } |
116 | 0 | } |
117 | 0 | } |
118 | | |
119 | | // sort (eigenvalues, eigenvectors), |
120 | | // code taken from symmetricSchureDecomposition.cpp |
121 | 0 | std::vector<std::pair<Real, std::vector<Real> > > temp(n); |
122 | 0 | std::vector<Real> eigenVector(ev_.rows()); |
123 | 0 | for (Size i=0; i<n; i++) { |
124 | 0 | if (ev_.rows() > 0) |
125 | 0 | std::copy(ev_.column_begin(i), |
126 | 0 | ev_.column_end(i), eigenVector.begin()); |
127 | 0 | temp[i] = std::make_pair(d_[i], eigenVector); |
128 | 0 | } |
129 | 0 | std::sort(temp.begin(), temp.end(), std::greater<>()); |
130 | | // first element is positive |
131 | 0 | for (Size i=0; i<n; i++) { |
132 | 0 | d_[i] = temp[i].first; |
133 | 0 | Real sign = 1.0; |
134 | 0 | if (ev_.rows() > 0 && temp[i].second[0]<0.0) |
135 | 0 | sign = -1.0; |
136 | 0 | for (Size j=0; j<ev_.rows(); ++j) { |
137 | 0 | ev_[j][i] = sign * temp[i].second[j]; |
138 | 0 | } |
139 | 0 | } |
140 | 0 | } |
141 | | |
142 | | // see NR for abort assumption as it is |
143 | | // not part of the original Wilkinson algorithm |
144 | 0 | bool TqrEigenDecomposition::offDiagIsZero(Size k, Array& e) { |
145 | 0 | return std::fabs(d_[k-1])+std::fabs(d_[k]) |
146 | 0 | == std::fabs(d_[k-1])+std::fabs(d_[k])+std::fabs(e[k]); |
147 | 0 | } |
148 | | |
149 | | } |