/src/quantlib/ql/methods/finitedifferences/operators/fdm2dblackscholesop.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2010 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file fdm2dblackscholesop.cpp |
21 | | */ |
22 | | |
23 | | |
24 | | #include <ql/processes/blackscholesprocess.hpp> |
25 | | #include <ql/methods/finitedifferences/meshers/fdmmesher.hpp> |
26 | | #include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp> |
27 | | #include <ql/methods/finitedifferences/operators/fdm2dblackscholesop.hpp> |
28 | | #include <ql/methods/finitedifferences/operators/secondordermixedderivativeop.hpp> |
29 | | #include <boost/numeric/ublas/matrix.hpp> |
30 | | |
31 | | namespace QuantLib { |
32 | | |
33 | | Fdm2dBlackScholesOp::Fdm2dBlackScholesOp( |
34 | | const ext::shared_ptr<FdmMesher>& mesher, |
35 | | const ext::shared_ptr<GeneralizedBlackScholesProcess>& p1, |
36 | | const ext::shared_ptr<GeneralizedBlackScholesProcess>& p2, |
37 | | Real correlation, |
38 | | Time /*maturity*/, |
39 | | bool localVol, |
40 | | Real illegalLocalVolOverwrite) |
41 | 0 | : mesher_(mesher), |
42 | 0 | p1_(p1), |
43 | 0 | p2_(p2), |
44 | | |
45 | 0 | localVol1_((localVol) ? p1->localVolatility().currentLink() |
46 | 0 | : ext::shared_ptr<LocalVolTermStructure>()), |
47 | 0 | localVol2_((localVol) ? p2->localVolatility().currentLink() |
48 | 0 | : ext::shared_ptr<LocalVolTermStructure>()), |
49 | | |
50 | 0 | x_((localVol) ? Array(Exp(mesher->locations(0))) : Array()), |
51 | 0 | y_((localVol) ? Array(Exp(mesher->locations(1))) : Array()), |
52 | | |
53 | 0 | opX_(mesher, p1, p1->x0(), localVol, illegalLocalVolOverwrite, 0), |
54 | 0 | opY_(mesher, p2, p2->x0(), localVol, illegalLocalVolOverwrite, 1), |
55 | | |
56 | 0 | corrMapT_(0, 1, mesher), |
57 | 0 | corrMapTemplate_(SecondOrderMixedDerivativeOp(0, 1, mesher) |
58 | 0 | .mult(Array(mesher->layout()->size(), correlation))), |
59 | | |
60 | 0 | illegalLocalVolOverwrite_(illegalLocalVolOverwrite) { |
61 | 0 | } |
62 | | |
63 | 0 | Size Fdm2dBlackScholesOp::size() const { |
64 | 0 | return 2; |
65 | 0 | } |
66 | | |
67 | 0 | void Fdm2dBlackScholesOp::setTime(Time t1, Time t2) { |
68 | 0 | opX_.setTime(t1, t2); |
69 | 0 | opY_.setTime(t1, t2); |
70 | |
|
71 | 0 | if (localVol1_ != nullptr) { |
72 | 0 | Array vol1(mesher_->layout()->size()), vol2(mesher_->layout()->size()); |
73 | 0 | for (const auto& iter : *mesher_->layout()) { |
74 | 0 | const Size i = iter.index(); |
75 | |
|
76 | 0 | if (illegalLocalVolOverwrite_ < 0.0) { |
77 | 0 | vol1[i] = localVol1_->localVol(0.5*(t1+t2), x_[i], true); |
78 | 0 | vol2[i] = localVol2_->localVol(0.5*(t1+t2), y_[i], true); |
79 | 0 | } |
80 | 0 | else { |
81 | 0 | try { |
82 | 0 | vol1[i] = localVol1_->localVol(0.5*(t1+t2), x_[i],true); |
83 | 0 | } catch (Error&) { |
84 | 0 | vol1[i] = illegalLocalVolOverwrite_; |
85 | 0 | } |
86 | 0 | try { |
87 | 0 | vol2[i] = localVol2_->localVol(0.5*(t1+t2), y_[i],true); |
88 | 0 | } catch (Error&) { |
89 | 0 | vol2[i] = illegalLocalVolOverwrite_; |
90 | 0 | } |
91 | |
|
92 | 0 | } |
93 | 0 | } |
94 | 0 | corrMapT_ = corrMapTemplate_.mult(vol1*vol2); |
95 | 0 | } else { |
96 | 0 | const Real vol1 = p1_ |
97 | 0 | ->blackVolatility()->blackForwardVol(t1, t2, p1_->x0()); |
98 | | |
99 | 0 | const Real vol2 = p2_ |
100 | 0 | ->blackVolatility()->blackForwardVol(t1, t2, p2_->x0()); |
101 | | |
102 | 0 | corrMapT_ = corrMapTemplate_ |
103 | 0 | .mult(Array(mesher_->layout()->size(), vol1*vol2)); |
104 | 0 | } |
105 | |
|
106 | 0 | currentForwardRate_ = p1_->riskFreeRate() |
107 | 0 | ->forwardRate(t1, t2, Continuous).rate(); |
108 | 0 | } |
109 | | |
110 | 0 | Array Fdm2dBlackScholesOp::apply(const Array& x) const { |
111 | 0 | return opX_.apply(x) + opY_.apply(x) + apply_mixed(x); |
112 | 0 | } |
113 | | |
114 | 0 | Array Fdm2dBlackScholesOp::apply_mixed(const Array& x) const { |
115 | 0 | return corrMapT_.apply(x) + currentForwardRate_*x; |
116 | 0 | } |
117 | | |
118 | | Array Fdm2dBlackScholesOp::apply_direction( |
119 | 0 | Size direction, const Array& x) const { |
120 | 0 | if (direction == 0) { |
121 | 0 | return opX_.apply(x); |
122 | 0 | } |
123 | 0 | else if (direction == 1) { |
124 | 0 | return opY_.apply(x); |
125 | 0 | } |
126 | 0 | else { |
127 | 0 | QL_FAIL("direction is too large"); |
128 | 0 | } |
129 | 0 | } |
130 | | |
131 | | Array Fdm2dBlackScholesOp::solve_splitting(Size direction, |
132 | 0 | const Array& x, Real s) const { |
133 | 0 | if (direction == 0) { |
134 | 0 | return opX_.solve_splitting(direction, x, s); |
135 | 0 | } |
136 | 0 | else if (direction == 1) { |
137 | 0 | return opY_.solve_splitting(direction, x, s); |
138 | 0 | } |
139 | 0 | else |
140 | 0 | QL_FAIL("direction is too large"); |
141 | 0 | } |
142 | | |
143 | | Array Fdm2dBlackScholesOp::preconditioner(const Array& r, |
144 | 0 | Real dt) const { |
145 | 0 | return solve_splitting(0, r, dt); |
146 | 0 | } |
147 | | |
148 | 0 | std::vector<SparseMatrix> Fdm2dBlackScholesOp::toMatrixDecomp() const { |
149 | 0 | return { |
150 | 0 | opX_.toMatrix(), |
151 | 0 | opY_.toMatrix(), |
152 | 0 | corrMapT_.toMatrix() + |
153 | 0 | currentForwardRate_*boost::numeric::ublas::identity_matrix<Real>( |
154 | 0 | mesher_->layout()->size()) |
155 | 0 | }; |
156 | 0 | } |
157 | | |
158 | | } |