Coverage Report

Created: 2026-02-03 07:02

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/methods/finitedifferences/operators/numericaldifferentiation.cpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2015 Klaus Spanderen
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
/*! \file numericaldifferentiation.cpp */
21
22
#include <ql/methods/finitedifferences/operators/numericaldifferentiation.hpp>
23
24
#pragma push_macro("BOOST_DISABLE_ASSERTS")
25
#ifndef BOOST_DISABLE_ASSERTS
26
#define BOOST_DISABLE_ASSERTS
27
#endif
28
#include <boost/multi_array.hpp>
29
#pragma pop_macro("BOOST_DISABLE_ASSERTS")
30
31
#include <utility>
32
33
namespace QuantLib {
34
35
    namespace {
36
        Array calcOffsets(
37
0
            Real h, Size n, NumericalDifferentiation::Scheme scheme) {
38
0
            QL_REQUIRE(n > 1, "number of steps must be greater than one");
39
40
0
            Array retVal(n);
41
0
            switch (scheme) {
42
0
              case NumericalDifferentiation::Central:
43
0
                QL_REQUIRE(n > 2 && (n % 2),
44
0
                    "number of steps must be an odd number greater than two");
45
0
                for (Integer i=0; i < Integer(n); ++i)
46
0
                    retVal[i] = (i-Integer(n/2))*h;
47
0
                break;
48
0
              case NumericalDifferentiation::Backward:
49
0
                for (Size i=0; i < n; ++i)
50
0
                    retVal[i]=-(i*h);
51
0
                break;
52
0
              case NumericalDifferentiation::Forward:
53
0
                for (Size i=0; i < n; ++i)
54
0
                    retVal[i]=i*h;
55
0
                break;
56
0
              default:
57
0
                QL_FAIL("unknown numerical differentiation scheme");
58
0
            }
59
60
0
            return retVal;
61
0
        }
62
63
        // This is a C++ implementation of the algorithm/pseudo code in
64
        // B. Fornberg, 1998. Calculation of Weights
65
        //                    in Finite Difference Formulas
66
        // https://amath.colorado.edu/faculty/fornberg/Docs/sirev_cl.pdf
67
0
        Array calcWeights(const Array& x, Size M) {
68
0
            const Size N = x.size();
69
0
            QL_REQUIRE(N > M, "number of points must be greater "
70
0
                               "than the order of the derivative");
71
72
0
            QL_DEPRECATED_DISABLE_WARNING
73
0
            boost::multi_array<Real, 3>  d(boost::extents[M+1][N][N]);
74
0
            QL_DEPRECATED_ENABLE_WARNING
75
0
            d[0][0][0] = 1.0;
76
0
            Real c1 = 1.0;
77
78
0
            for (Size n=1; n < N; ++n) {
79
0
                Real c2 = 1.0;
80
0
                for (Size nu=0; nu < n; ++nu) {
81
0
                    const Real c3 = x[n] - x[nu];
82
0
                    c2*=c3;
83
84
0
                    for (Size m=0; m <= std::min(n, M); ++m) {
85
0
                        d[m][n][nu] = (x[n]*d[m][n-1][nu]
86
0
                             - ((m > 0)? Real(m*d[m-1][n-1][nu]) : 0.0))/c3;
87
0
                    }
88
0
                }
89
90
0
                for (Size m=0; m <= M; ++m) {
91
0
                    d[m][n][n] = c1/c2*( ((m > 0)? Real(m*d[m-1][n-1][n-1]) : 0.0) -
92
0
                        x[n-1]*d[m][n-1][n-1] );
93
0
                }
94
0
                c1=c2;
95
0
            }
96
97
98
0
            Array retVal(N);
99
0
            for (Size i=0; i < N; ++i) {
100
0
                retVal[i] = d[M][N-1][i];
101
0
            }
102
0
            return retVal;
103
0
        }
104
    }
105
106
    NumericalDifferentiation::NumericalDifferentiation(std::function<Real(Real)> f,
107
                                                       Size orderOfDerivative,
108
                                                       Array x_offsets)
109
0
    : offsets_(std::move(x_offsets)), w_(calcWeights(offsets_, orderOfDerivative)),
110
0
      f_(std::move(f)) {}
111
112
113
    NumericalDifferentiation::NumericalDifferentiation(std::function<Real(Real)> f,
114
                                                       Size orderOfDerivative,
115
                                                       Real stepSize,
116
                                                       Size steps,
117
                                                       Scheme scheme)
118
0
    : offsets_(calcOffsets(stepSize, steps, scheme)), w_(calcWeights(offsets_, orderOfDerivative)),
119
0
      f_(std::move(f)) {}
120
}