/src/quantlib/ql/methods/finitedifferences/tridiagonaloperator.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2002, 2003, 2011 Ferdinando Ametrano |
5 | | Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | #include <ql/methods/finitedifferences/tridiagonaloperator.hpp> |
22 | | |
23 | | namespace QuantLib { |
24 | | |
25 | 0 | TridiagonalOperator::TridiagonalOperator(Size size) { |
26 | 0 | if (size>=2) { |
27 | 0 | n_ = size; |
28 | 0 | diagonal_ = Array(size); |
29 | 0 | lowerDiagonal_ = Array(size-1); |
30 | 0 | upperDiagonal_ = Array(size-1); |
31 | 0 | temp_ = Array(size); |
32 | 0 | } else if (size==0) { |
33 | 0 | n_ = 0; |
34 | 0 | diagonal_ = Array(0); |
35 | 0 | lowerDiagonal_ = Array(0); |
36 | 0 | upperDiagonal_ = Array(0); |
37 | 0 | temp_ = Array(0); |
38 | 0 | } else { |
39 | 0 | QL_FAIL("invalid size (" << size << ") for tridiagonal operator " |
40 | 0 | "(must be null or >= 2)"); |
41 | 0 | } |
42 | 0 | } |
43 | | |
44 | | TridiagonalOperator::TridiagonalOperator(const Array& low, |
45 | | const Array& mid, |
46 | | const Array& high) |
47 | 0 | : n_(mid.size()), |
48 | 0 | diagonal_(mid), lowerDiagonal_(low), upperDiagonal_(high), temp_(n_) { |
49 | 0 | QL_REQUIRE(low.size() == n_-1, |
50 | 0 | "low diagonal vector of size " << low.size() << |
51 | 0 | " instead of " << n_-1); |
52 | 0 | QL_REQUIRE(high.size() == n_-1, |
53 | 0 | "high diagonal vector of size " << high.size() << |
54 | 0 | " instead of " << n_-1); |
55 | 0 | } |
56 | | |
57 | 0 | Array TridiagonalOperator::applyTo(const Array& v) const { |
58 | 0 | QL_REQUIRE(n_!=0, |
59 | 0 | "uninitialized TridiagonalOperator"); |
60 | 0 | QL_REQUIRE(v.size()==n_, |
61 | 0 | "vector of the wrong size " << v.size() << |
62 | 0 | " instead of " << n_); |
63 | 0 | Array result(n_); |
64 | 0 | std::transform(diagonal_.begin(), diagonal_.end(), |
65 | 0 | v.begin(), |
66 | 0 | result.begin(), |
67 | 0 | std::multiplies<>()); |
68 | | |
69 | | // matricial product |
70 | 0 | result[0] += upperDiagonal_[0]*v[1]; |
71 | 0 | for (Size j=1; j<=n_-2; j++) |
72 | 0 | result[j] += lowerDiagonal_[j-1]*v[j-1]+ |
73 | 0 | upperDiagonal_[j]*v[j+1]; |
74 | 0 | result[n_-1] += lowerDiagonal_[n_-2]*v[n_-2]; |
75 | |
|
76 | 0 | return result; |
77 | 0 | } |
78 | | |
79 | 0 | Array TridiagonalOperator::solveFor(const Array& rhs) const { |
80 | 0 | Array result(rhs.size()); |
81 | 0 | solveFor(rhs, result); |
82 | 0 | return result; |
83 | 0 | } |
84 | | |
85 | | void TridiagonalOperator::solveFor(const Array& rhs, |
86 | 0 | Array& result) const { |
87 | |
|
88 | 0 | QL_REQUIRE(n_!=0, |
89 | 0 | "uninitialized TridiagonalOperator"); |
90 | 0 | QL_REQUIRE(rhs.size()==n_, |
91 | 0 | "rhs vector of size " << rhs.size() << |
92 | 0 | " instead of " << n_); |
93 | | |
94 | 0 | Real bet = diagonal_[0]; |
95 | 0 | QL_REQUIRE(!close(bet, 0.0), |
96 | 0 | "diagonal's first element (" << bet << |
97 | 0 | ") cannot be close to zero"); |
98 | 0 | result[0] = rhs[0]/bet; |
99 | 0 | for (Size j=1; j<=n_-1; ++j) { |
100 | 0 | temp_[j] = upperDiagonal_[j-1]/bet; |
101 | 0 | bet = diagonal_[j]-lowerDiagonal_[j-1]*temp_[j]; |
102 | 0 | QL_ENSURE(!close(bet, 0.0), "division by zero"); |
103 | 0 | result[j] = (rhs[j] - lowerDiagonal_[j-1]*result[j-1])/bet; |
104 | 0 | } |
105 | | // cannot be j>=0 with Size j |
106 | 0 | for (Size j=n_-2; j>0; --j) |
107 | 0 | result[j] -= temp_[j+1]*result[j+1]; |
108 | 0 | result[0] -= temp_[1]*result[1]; |
109 | 0 | } |
110 | | |
111 | | Array TridiagonalOperator::SOR(const Array& rhs, |
112 | 0 | Real tol) const { |
113 | 0 | QL_REQUIRE(n_!=0, |
114 | 0 | "uninitialized TridiagonalOperator"); |
115 | 0 | QL_REQUIRE(rhs.size()==n_, |
116 | 0 | "rhs vector of size " << rhs.size() << |
117 | 0 | " instead of " << n_); |
118 | | |
119 | | // initial guess |
120 | 0 | Array result = rhs; |
121 | | |
122 | | // solve tridiagonal system with SOR technique |
123 | 0 | Real omega = 1.5; |
124 | 0 | Real err = 2.0*tol; |
125 | 0 | Real temp; |
126 | 0 | for (Size sorIteration=0; err>tol ; ++sorIteration) { |
127 | 0 | QL_REQUIRE(sorIteration<100000, |
128 | 0 | "tolerance (" << tol << ") not reached in " << |
129 | 0 | sorIteration << " iterations. " << |
130 | 0 | "The error still is " << err); |
131 | | |
132 | 0 | temp = omega * (rhs[0] - |
133 | 0 | upperDiagonal_[0] * result[1]- |
134 | 0 | diagonal_[0] * result[0])/diagonal_[0]; |
135 | 0 | err = temp*temp; |
136 | 0 | result[0] += temp; |
137 | 0 | Size i; |
138 | 0 | for (i=1; i<n_-1 ; ++i) { |
139 | 0 | temp = omega *(rhs[i] - |
140 | 0 | upperDiagonal_[i] * result[i+1]- |
141 | 0 | diagonal_[i] * result[i] - |
142 | 0 | lowerDiagonal_[i-1] * result[i-1])/diagonal_[i]; |
143 | 0 | err += temp * temp; |
144 | 0 | result[i] += temp; |
145 | 0 | } |
146 | |
|
147 | 0 | temp = omega * (rhs[i] - |
148 | 0 | diagonal_[i] * result[i] - |
149 | 0 | lowerDiagonal_[i-1] * result[i-1])/diagonal_[i]; |
150 | 0 | err += temp*temp; |
151 | 0 | result[i] += temp; |
152 | 0 | } |
153 | 0 | return result; |
154 | 0 | } |
155 | | |
156 | 0 | TridiagonalOperator TridiagonalOperator::identity(Size size) { |
157 | 0 | return TridiagonalOperator(Array(size-1, 0.0), // lower diagonal |
158 | 0 | Array(size, 1.0), // diagonal |
159 | 0 | Array(size-1, 0.0)); // upper diagonal |
160 | 0 | } |
161 | | |
162 | | } |