/src/quantlib/ql/methods/montecarlo/brownianbridge.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2003 Ferdinando Ametrano |
5 | | Copyright (C) 2006 StatPro Italia srl |
6 | | Copyright (C) 2009 Bojan Nikolic |
7 | | |
8 | | This file is part of QuantLib, a free-software/open-source library |
9 | | for financial quantitative analysts and developers - http://quantlib.org/ |
10 | | |
11 | | QuantLib is free software: you can redistribute it and/or modify it |
12 | | under the terms of the QuantLib license. You should have received a |
13 | | copy of the license along with this program; if not, please email |
14 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
15 | | <https://www.quantlib.org/license.shtml>. |
16 | | |
17 | | This program is distributed in the hope that it will be useful, but WITHOUT |
18 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
19 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
20 | | */ |
21 | | |
22 | | /*! \file brownianbridge.hpp |
23 | | \brief Browian bridge |
24 | | */ |
25 | | |
26 | | // =========================================================================== |
27 | | // NOTE: The following copyright notice applies to the original code, |
28 | | // |
29 | | // Copyright (C) 2002 Peter J�ckel "Monte Carlo Methods in Finance". |
30 | | // All rights reserved. |
31 | | // |
32 | | // Permission to use, copy, modify, and distribute this software is freely |
33 | | // granted, provided that this notice is preserved. |
34 | | // =========================================================================== |
35 | | |
36 | | #ifndef quantlib_brownian_bridge_hpp |
37 | | #define quantlib_brownian_bridge_hpp |
38 | | |
39 | | #include <ql/methods/montecarlo/path.hpp> |
40 | | #include <ql/methods/montecarlo/sample.hpp> |
41 | | |
42 | | namespace QuantLib { |
43 | | |
44 | | //! Builds Wiener process paths using Gaussian variates |
45 | | /*! This class generates normalized (i.e., unit-variance) paths as |
46 | | sequences of variations. In order to obtain the actual path of |
47 | | the underlying, the returned variations must be multiplied by |
48 | | the integrated variance (including time) over the |
49 | | corresponding time step. |
50 | | |
51 | | \ingroup mcarlo |
52 | | */ |
53 | | class BrownianBridge { |
54 | | public: |
55 | | /*! The constructor generates the time grid so that each step |
56 | | is of unit-time length. |
57 | | |
58 | | \param steps The number of steps in the path |
59 | | */ |
60 | | BrownianBridge(Size steps); |
61 | | /*! The step times are copied from the supplied vector |
62 | | |
63 | | \param times A vector containing the times at which the |
64 | | steps occur. This also defines the number of |
65 | | steps that will be generated. |
66 | | |
67 | | \note the starting time of the path is assumed to be 0 and |
68 | | must not be included |
69 | | */ |
70 | | BrownianBridge(const std::vector<Time>& times); |
71 | | /*! The step times are copied from the TimeGrid object |
72 | | |
73 | | \param timeGrid a time grid containing the times at which |
74 | | the steps will occur |
75 | | */ |
76 | | BrownianBridge(const TimeGrid& timeGrid); |
77 | | //! \name inspectors |
78 | | //@{ |
79 | 0 | Size size() const { return size_; } |
80 | 0 | const std::vector<Time>& times() const { return t_; } |
81 | 0 | const std::vector<Size>& bridgeIndex() const { return bridgeIndex_; } |
82 | 0 | const std::vector<Size>& leftIndex() const { return leftIndex_; } |
83 | 0 | const std::vector<Size>& rightIndex() const { return rightIndex_; } |
84 | 0 | const std::vector<Real>& leftWeight() const { return leftWeight_; } |
85 | 0 | const std::vector<Real>& rightWeight() const { return rightWeight_; } |
86 | 0 | const std::vector<Real>& stdDeviation() const { return stdDev_; } |
87 | | //@} |
88 | | |
89 | | //! Brownian-bridge generator function |
90 | | /*! Transforms an input sequence of random variates into a |
91 | | sequence of variations in a Brownian bridge path. |
92 | | |
93 | | \param begin The start iterator of the input sequence. |
94 | | \param end The end iterator of the input sequence. |
95 | | \param output The start iterator of the output sequence. |
96 | | |
97 | | \note To get the canonical Brownian bridge which starts |
98 | | and finishes at the same value, the first element of |
99 | | the input sequence must be zero. Conversely, to get |
100 | | a sloped bridge set the first element to a non-zero |
101 | | value. In this case, the final value in the bridge |
102 | | will be sqrt(last time point)*(first element of |
103 | | input sequence). |
104 | | */ |
105 | | template <class RandomAccessIterator1, |
106 | | class RandomAccessIterator2> |
107 | | void transform(RandomAccessIterator1 begin, |
108 | | RandomAccessIterator1 end, |
109 | 0 | RandomAccessIterator2 output) const { |
110 | 0 | QL_REQUIRE(end >= begin, "invalid sequence"); |
111 | 0 | QL_REQUIRE(Size(end-begin) == size_, |
112 | 0 | "incompatible sequence size"); |
113 | | // We use output to store the path... |
114 | 0 | output[size_-1] = stdDev_[0] * begin[0]; |
115 | 0 | for (Size i=1; i<size_; ++i) { |
116 | 0 | Size j = leftIndex_[i]; |
117 | 0 | Size k = rightIndex_[i]; |
118 | 0 | Size l = bridgeIndex_[i]; |
119 | 0 | if (j != 0) { |
120 | 0 | output[l] = |
121 | 0 | leftWeight_[i] * output[j-1] + |
122 | 0 | rightWeight_[i] * output[k] + |
123 | 0 | stdDev_[i] * begin[i]; |
124 | 0 | } else { |
125 | 0 | output[l] = |
126 | 0 | rightWeight_[i] * output[k] + |
127 | 0 | stdDev_[i] * begin[i]; |
128 | 0 | } |
129 | 0 | } |
130 | | // ...after which, we calculate the variations and |
131 | | // normalize to unit times |
132 | 0 | for (Size i=size_-1; i>=1; --i) { |
133 | 0 | output[i] -= output[i-1]; |
134 | 0 | output[i] /= sqrtdt_[i]; |
135 | 0 | } |
136 | 0 | output[0] /= sqrtdt_[0]; |
137 | 0 | } Unexecuted instantiation: void QuantLib::BrownianBridge::transform<boost::iterators::permutation_iterator<std::__1::__wrap_iter<double const*>, std::__1::__wrap_iter<unsigned long*> >, std::__1::__wrap_iter<double*> >(boost::iterators::permutation_iterator<std::__1::__wrap_iter<double const*>, std::__1::__wrap_iter<unsigned long*> >, boost::iterators::permutation_iterator<std::__1::__wrap_iter<double const*>, std::__1::__wrap_iter<unsigned long*> >, std::__1::__wrap_iter<double*>) const Unexecuted instantiation: void QuantLib::BrownianBridge::transform<boost::iterators::permutation_iterator<std::__1::__wrap_iter<double*>, std::__1::__wrap_iter<unsigned long*> >, std::__1::__wrap_iter<double*> >(boost::iterators::permutation_iterator<std::__1::__wrap_iter<double*>, std::__1::__wrap_iter<unsigned long*> >, boost::iterators::permutation_iterator<std::__1::__wrap_iter<double*>, std::__1::__wrap_iter<unsigned long*> >, std::__1::__wrap_iter<double*>) const |
138 | | private: |
139 | | void initialize(); |
140 | | Size size_; |
141 | | std::vector<Time> t_; |
142 | | std::vector<Real> sqrtdt_; |
143 | | std::vector<Size> bridgeIndex_, leftIndex_, rightIndex_; |
144 | | std::vector<Real> leftWeight_, rightWeight_, stdDev_; |
145 | | }; |
146 | | |
147 | | } |
148 | | |
149 | | #endif |