/src/quantlib/ql/processes/mfstateprocess.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2013 Peter Caspers |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/processes/mfstateprocess.hpp> |
21 | | |
22 | | namespace QuantLib { |
23 | | |
24 | | MfStateProcess::MfStateProcess(Real reversion, Array times, Array vols) |
25 | 0 | : reversion_(reversion), times_(std::move(times)), vols_(std::move(vols)) { |
26 | 0 | if (reversion_ < QL_EPSILON && -reversion_ < QL_EPSILON) |
27 | 0 | reversionZero_ = true; |
28 | 0 | checkTimesVols(); |
29 | 0 | } |
30 | | |
31 | 0 | void MfStateProcess::setTimes(Array times) { |
32 | 0 | times_ = std::move(times); |
33 | 0 | checkTimesVols(); |
34 | 0 | notifyObservers(); |
35 | 0 | } |
36 | | |
37 | 0 | void MfStateProcess::setVols(Array vols) { |
38 | 0 | vols_ = std::move(vols); |
39 | 0 | checkTimesVols(); |
40 | 0 | notifyObservers(); |
41 | 0 | } |
42 | | |
43 | 0 | void MfStateProcess::checkTimesVols() const { |
44 | 0 | QL_REQUIRE(times_.size() == vols_.size() - 1, |
45 | 0 | "number of volatilities (" |
46 | 0 | << vols_.size() << ") compared to number of times (" |
47 | 0 | << times_.size() << " must be bigger by one"); |
48 | 0 | for (int i = 0; i < ((int)times_.size()) - 1; i++) |
49 | 0 | QL_REQUIRE(times_[i] < times_[i + 1], "times must be increasing (" |
50 | 0 | << times_[i] << "@" << i |
51 | 0 | << " , " << times_[i + 1] |
52 | 0 | << "@" << i + 1 << ")"); |
53 | 0 | for (Size i = 0; i < vols_.size(); i++) |
54 | 0 | QL_REQUIRE(vols_[i] >= 0.0, "volatilities must be non negative (" |
55 | 0 | << vols_[i] << "@" << i << ")"); |
56 | 0 | } |
57 | | |
58 | 0 | Real MfStateProcess::x0() const { return 0.0; } |
59 | | |
60 | 0 | Real MfStateProcess::drift(Time, Real) const { return 0.0; } |
61 | | |
62 | 0 | Real MfStateProcess::diffusion(Time t, Real) const { |
63 | 0 | Size i = |
64 | 0 | std::upper_bound(times_.begin(), times_.end(), t) - times_.begin(); |
65 | 0 | return vols_[i]; |
66 | 0 | } |
67 | | |
68 | 0 | Real MfStateProcess::expectation(Time, Real x0, Time dt) const { |
69 | 0 | return x0; |
70 | 0 | } |
71 | | |
72 | 0 | Real MfStateProcess::stdDeviation(Time t, Real x0, Time dt) const { |
73 | 0 | return std::sqrt(variance(t, x0, dt)); |
74 | 0 | } |
75 | | |
76 | 0 | Real MfStateProcess::variance(Time t, Real, Time dt) const { |
77 | |
|
78 | 0 | if (dt < QL_EPSILON) |
79 | 0 | return 0.0; |
80 | 0 | if (times_.empty()) |
81 | 0 | return reversionZero_ ? dt |
82 | 0 | : 1.0 / (2.0 * reversion_) * |
83 | 0 | (std::exp(2.0 * reversion_ * (t + dt)) - |
84 | 0 | std::exp(2.0 * reversion_ * t)); |
85 | | |
86 | 0 | Size i = |
87 | 0 | std::upper_bound(times_.begin(), times_.end(), t) - times_.begin(); |
88 | 0 | Size j = std::upper_bound(times_.begin(), times_.end(), t + dt) - |
89 | 0 | times_.begin(); |
90 | |
|
91 | 0 | Real v = 0.0; |
92 | |
|
93 | 0 | for (Size k = i; k < j; k++) { |
94 | 0 | if (reversionZero_) |
95 | 0 | v += vols_[k] * vols_[k] * |
96 | 0 | (times_[k] - std::max(k > 0 ? times_[k - 1] : 0.0, t)); |
97 | 0 | else |
98 | 0 | v += 1.0 / (2.0 * reversion_) * vols_[k] * vols_[k] * |
99 | 0 | (std::exp(2.0 * reversion_ * times_[k]) - |
100 | 0 | std::exp(2.0 * reversion_ * |
101 | 0 | std::max(k > 0 ? times_[k - 1] : 0.0, t))); |
102 | 0 | } |
103 | |
|
104 | 0 | if (reversionZero_) |
105 | 0 | v += vols_[j] * vols_[j] * |
106 | 0 | (t + dt - std::max(j > 0 ? times_[j - 1] : 0.0, t)); |
107 | 0 | else |
108 | 0 | v += 1.0 / (2.0 * reversion_) * vols_[j] * vols_[j] * |
109 | 0 | (std::exp(2.0 * reversion_ * (t + dt)) - |
110 | 0 | std::exp(2.0 * reversion_ * |
111 | 0 | (std::max(j > 0 ? times_[j - 1] : 0.0, t)))); |
112 | |
|
113 | 0 | return v; |
114 | 0 | } |
115 | | } |