Coverage Report

Created: 2025-11-16 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.15/src/math/jnf.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2
/*
3
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4
 */
5
/*
6
 * ====================================================
7
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8
 *
9
 * Developed at SunPro, a Sun Microsystems, Inc. business.
10
 * Permission to use, copy, modify, and distribute this
11
 * software is freely granted, provided that this notice
12
 * is preserved.
13
 * ====================================================
14
 */
15
16
use super::{fabsf, j0f, j1f, logf, y0f, y1f};
17
18
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
19
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
20
0
pub fn jnf(n: i32, mut x: f32) -> f32 {
21
    let mut ix: u32;
22
    let mut nm1: i32;
23
    let mut sign: bool;
24
    let mut i: i32;
25
    let mut a: f32;
26
    let mut b: f32;
27
    let mut temp: f32;
28
29
0
    ix = x.to_bits();
30
0
    sign = (ix >> 31) != 0;
31
0
    ix &= 0x7fffffff;
32
0
    if ix > 0x7f800000 {
33
        /* nan */
34
0
        return x;
35
0
    }
36
37
    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
38
0
    if n == 0 {
39
0
        return j0f(x);
40
0
    }
41
0
    if n < 0 {
42
0
        nm1 = -(n + 1);
43
0
        x = -x;
44
0
        sign = !sign;
45
0
    } else {
46
0
        nm1 = n - 1;
47
0
    }
48
0
    if nm1 == 0 {
49
0
        return j1f(x);
50
0
    }
51
52
0
    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
53
0
    x = fabsf(x);
54
0
    if ix == 0 || ix == 0x7f800000 {
55
0
        /* if x is 0 or inf */
56
0
        b = 0.0;
57
0
    } else if (nm1 as f32) < x {
58
        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
59
0
        a = j0f(x);
60
0
        b = j1f(x);
61
0
        i = 0;
62
0
        while i < nm1 {
63
0
            i += 1;
64
0
            temp = b;
65
0
            b = b * (2.0 * (i as f32) / x) - a;
66
0
            a = temp;
67
0
        }
68
0
    } else if ix < 0x35800000 {
69
        /* x < 2**-20 */
70
        /* x is tiny, return the first Taylor expansion of J(n,x)
71
         * J(n,x) = 1/n!*(x/2)^n  - ...
72
         */
73
0
        if nm1 > 8 {
74
0
            /* underflow */
75
0
            nm1 = 8;
76
0
        }
77
0
        temp = 0.5 * x;
78
0
        b = temp;
79
0
        a = 1.0;
80
0
        i = 2;
81
0
        while i <= nm1 + 1 {
82
0
            a *= i as f32; /* a = n! */
83
0
            b *= temp; /* b = (x/2)^n */
84
0
            i += 1;
85
0
        }
86
0
        b = b / a;
87
    } else {
88
        /* use backward recurrence */
89
        /*                      x      x^2      x^2
90
         *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
91
         *                      2n  - 2(n+1) - 2(n+2)
92
         *
93
         *                      1      1        1
94
         *  (for large x)   =  ----  ------   ------   .....
95
         *                      2n   2(n+1)   2(n+2)
96
         *                      -- - ------ - ------ -
97
         *                       x     x         x
98
         *
99
         * Let w = 2n/x and h=2/x, then the above quotient
100
         * is equal to the continued fraction:
101
         *                  1
102
         *      = -----------------------
103
         *                     1
104
         *         w - -----------------
105
         *                        1
106
         *              w+h - ---------
107
         *                     w+2h - ...
108
         *
109
         * To determine how many terms needed, let
110
         * Q(0) = w, Q(1) = w(w+h) - 1,
111
         * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
112
         * When Q(k) > 1e4      good for single
113
         * When Q(k) > 1e9      good for double
114
         * When Q(k) > 1e17     good for quadruple
115
         */
116
        /* determine k */
117
        let mut t: f32;
118
        let mut q0: f32;
119
        let mut q1: f32;
120
        let mut w: f32;
121
        let h: f32;
122
        let mut z: f32;
123
        let mut tmp: f32;
124
        let nf: f32;
125
        let mut k: i32;
126
127
0
        nf = (nm1 as f32) + 1.0;
128
0
        w = 2.0 * nf / x;
129
0
        h = 2.0 / x;
130
0
        z = w + h;
131
0
        q0 = w;
132
0
        q1 = w * z - 1.0;
133
0
        k = 1;
134
0
        while q1 < 1.0e4 {
135
0
            k += 1;
136
0
            z += h;
137
0
            tmp = z * q1 - q0;
138
0
            q0 = q1;
139
0
            q1 = tmp;
140
0
        }
141
0
        t = 0.0;
142
0
        i = k;
143
0
        while i >= 0 {
144
0
            t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
145
0
            i -= 1;
146
0
        }
147
0
        a = t;
148
0
        b = 1.0;
149
        /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
150
         *  Hence, if n*(log(2n/x)) > ...
151
         *  single 8.8722839355e+01
152
         *  double 7.09782712893383973096e+02
153
         *  long double 1.1356523406294143949491931077970765006170e+04
154
         *  then recurrent value may overflow and the result is
155
         *  likely underflow to zero
156
         */
157
0
        tmp = nf * logf(fabsf(w));
158
0
        if tmp < 88.721679688 {
159
0
            i = nm1;
160
0
            while i > 0 {
161
0
                temp = b;
162
0
                b = 2.0 * (i as f32) * b / x - a;
163
0
                a = temp;
164
0
                i -= 1;
165
0
            }
166
        } else {
167
0
            i = nm1;
168
0
            while i > 0 {
169
0
                temp = b;
170
0
                b = 2.0 * (i as f32) * b / x - a;
171
0
                a = temp;
172
                /* scale b to avoid spurious overflow */
173
0
                let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
174
0
                if b > x1p60 {
175
0
                    a /= b;
176
0
                    t /= b;
177
0
                    b = 1.0;
178
0
                }
179
0
                i -= 1;
180
            }
181
        }
182
0
        z = j0f(x);
183
0
        w = j1f(x);
184
0
        if fabsf(z) >= fabsf(w) {
185
0
            b = t * z / b;
186
0
        } else {
187
0
            b = t * w / a;
188
0
        }
189
    }
190
191
0
    if sign { -b } else { b }
192
0
}
193
194
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
195
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
196
0
pub fn ynf(n: i32, x: f32) -> f32 {
197
    let mut ix: u32;
198
    let mut ib: u32;
199
    let nm1: i32;
200
    let mut sign: bool;
201
    let mut i: i32;
202
    let mut a: f32;
203
    let mut b: f32;
204
    let mut temp: f32;
205
206
0
    ix = x.to_bits();
207
0
    sign = (ix >> 31) != 0;
208
0
    ix &= 0x7fffffff;
209
0
    if ix > 0x7f800000 {
210
        /* nan */
211
0
        return x;
212
0
    }
213
0
    if sign && ix != 0 {
214
        /* x < 0 */
215
0
        return 0.0 / 0.0;
216
0
    }
217
0
    if ix == 0x7f800000 {
218
0
        return 0.0;
219
0
    }
220
221
0
    if n == 0 {
222
0
        return y0f(x);
223
0
    }
224
0
    if n < 0 {
225
0
        nm1 = -(n + 1);
226
0
        sign = (n & 1) != 0;
227
0
    } else {
228
0
        nm1 = n - 1;
229
0
        sign = false;
230
0
    }
231
0
    if nm1 == 0 {
232
0
        if sign {
233
0
            return -y1f(x);
234
        } else {
235
0
            return y1f(x);
236
        }
237
0
    }
238
239
0
    a = y0f(x);
240
0
    b = y1f(x);
241
    /* quit if b is -inf */
242
0
    ib = b.to_bits();
243
0
    i = 0;
244
0
    while i < nm1 && ib != 0xff800000 {
245
0
        i += 1;
246
0
        temp = b;
247
0
        b = (2.0 * (i as f32) / x) * b - a;
248
0
        ib = b.to_bits();
249
0
        a = temp;
250
0
    }
251
252
0
    if sign { -b } else { b }
253
0
}