/rust/registry/src/index.crates.io-1949cf8c6b5b557f/regex-1.12.2/src/regexset/bytes.rs
Line | Count | Source |
1 | | use alloc::string::String; |
2 | | |
3 | | use regex_automata::{meta, Input, PatternID, PatternSet, PatternSetIter}; |
4 | | |
5 | | use crate::{bytes::RegexSetBuilder, Error}; |
6 | | |
7 | | /// Match multiple, possibly overlapping, regexes in a single search. |
8 | | /// |
9 | | /// A regex set corresponds to the union of zero or more regular expressions. |
10 | | /// That is, a regex set will match a haystack when at least one of its |
11 | | /// constituent regexes matches. A regex set as its formulated here provides a |
12 | | /// touch more power: it will also report *which* regular expressions in the |
13 | | /// set match. Indeed, this is the key difference between regex sets and a |
14 | | /// single `Regex` with many alternates, since only one alternate can match at |
15 | | /// a time. |
16 | | /// |
17 | | /// For example, consider regular expressions to match email addresses and |
18 | | /// domains: `[a-z]+@[a-z]+\.(com|org|net)` and `[a-z]+\.(com|org|net)`. If a |
19 | | /// regex set is constructed from those regexes, then searching the haystack |
20 | | /// `foo@example.com` will report both regexes as matching. Of course, one |
21 | | /// could accomplish this by compiling each regex on its own and doing two |
22 | | /// searches over the haystack. The key advantage of using a regex set is |
23 | | /// that it will report the matching regexes using a *single pass through the |
24 | | /// haystack*. If one has hundreds or thousands of regexes to match repeatedly |
25 | | /// (like a URL router for a complex web application or a user agent matcher), |
26 | | /// then a regex set *can* realize huge performance gains. |
27 | | /// |
28 | | /// Unlike the top-level [`RegexSet`](crate::RegexSet), this `RegexSet` |
29 | | /// searches haystacks with type `&[u8]` instead of `&str`. Consequently, this |
30 | | /// `RegexSet` is permitted to match invalid UTF-8. |
31 | | /// |
32 | | /// # Limitations |
33 | | /// |
34 | | /// Regex sets are limited to answering the following two questions: |
35 | | /// |
36 | | /// 1. Does any regex in the set match? |
37 | | /// 2. If so, which regexes in the set match? |
38 | | /// |
39 | | /// As with the main [`Regex`][crate::bytes::Regex] type, it is cheaper to ask |
40 | | /// (1) instead of (2) since the matching engines can stop after the first |
41 | | /// match is found. |
42 | | /// |
43 | | /// You cannot directly extract [`Match`][crate::bytes::Match] or |
44 | | /// [`Captures`][crate::bytes::Captures] objects from a regex set. If you need |
45 | | /// these operations, the recommended approach is to compile each pattern in |
46 | | /// the set independently and scan the exact same haystack a second time with |
47 | | /// those independently compiled patterns: |
48 | | /// |
49 | | /// ``` |
50 | | /// use regex::bytes::{Regex, RegexSet}; |
51 | | /// |
52 | | /// let patterns = ["foo", "bar"]; |
53 | | /// // Both patterns will match different ranges of this string. |
54 | | /// let hay = b"barfoo"; |
55 | | /// |
56 | | /// // Compile a set matching any of our patterns. |
57 | | /// let set = RegexSet::new(patterns).unwrap(); |
58 | | /// // Compile each pattern independently. |
59 | | /// let regexes: Vec<_> = set |
60 | | /// .patterns() |
61 | | /// .iter() |
62 | | /// .map(|pat| Regex::new(pat).unwrap()) |
63 | | /// .collect(); |
64 | | /// |
65 | | /// // Match against the whole set first and identify the individual |
66 | | /// // matching patterns. |
67 | | /// let matches: Vec<&[u8]> = set |
68 | | /// .matches(hay) |
69 | | /// .into_iter() |
70 | | /// // Dereference the match index to get the corresponding |
71 | | /// // compiled pattern. |
72 | | /// .map(|index| ®exes[index]) |
73 | | /// // To get match locations or any other info, we then have to search the |
74 | | /// // exact same haystack again, using our separately-compiled pattern. |
75 | | /// .map(|re| re.find(hay).unwrap().as_bytes()) |
76 | | /// .collect(); |
77 | | /// |
78 | | /// // Matches arrive in the order the constituent patterns were declared, |
79 | | /// // not the order they appear in the haystack. |
80 | | /// assert_eq!(vec![&b"foo"[..], &b"bar"[..]], matches); |
81 | | /// ``` |
82 | | /// |
83 | | /// # Performance |
84 | | /// |
85 | | /// A `RegexSet` has the same performance characteristics as `Regex`. Namely, |
86 | | /// search takes `O(m * n)` time, where `m` is proportional to the size of the |
87 | | /// regex set and `n` is proportional to the length of the haystack. |
88 | | /// |
89 | | /// # Trait implementations |
90 | | /// |
91 | | /// The `Default` trait is implemented for `RegexSet`. The default value |
92 | | /// is an empty set. An empty set can also be explicitly constructed via |
93 | | /// [`RegexSet::empty`]. |
94 | | /// |
95 | | /// # Example |
96 | | /// |
97 | | /// This shows how the above two regexes (for matching email addresses and |
98 | | /// domains) might work: |
99 | | /// |
100 | | /// ``` |
101 | | /// use regex::bytes::RegexSet; |
102 | | /// |
103 | | /// let set = RegexSet::new(&[ |
104 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
105 | | /// r"[a-z]+\.(com|org|net)", |
106 | | /// ]).unwrap(); |
107 | | /// |
108 | | /// // Ask whether any regexes in the set match. |
109 | | /// assert!(set.is_match(b"foo@example.com")); |
110 | | /// |
111 | | /// // Identify which regexes in the set match. |
112 | | /// let matches: Vec<_> = set.matches(b"foo@example.com").into_iter().collect(); |
113 | | /// assert_eq!(vec![0, 1], matches); |
114 | | /// |
115 | | /// // Try again, but with a haystack that only matches one of the regexes. |
116 | | /// let matches: Vec<_> = set.matches(b"example.com").into_iter().collect(); |
117 | | /// assert_eq!(vec![1], matches); |
118 | | /// |
119 | | /// // Try again, but with a haystack that doesn't match any regex in the set. |
120 | | /// let matches: Vec<_> = set.matches(b"example").into_iter().collect(); |
121 | | /// assert!(matches.is_empty()); |
122 | | /// ``` |
123 | | /// |
124 | | /// Note that it would be possible to adapt the above example to using `Regex` |
125 | | /// with an expression like: |
126 | | /// |
127 | | /// ```text |
128 | | /// (?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net)) |
129 | | /// ``` |
130 | | /// |
131 | | /// After a match, one could then inspect the capture groups to figure out |
132 | | /// which alternates matched. The problem is that it is hard to make this |
133 | | /// approach scale when there are many regexes since the overlap between each |
134 | | /// alternate isn't always obvious to reason about. |
135 | | #[derive(Clone)] |
136 | | pub struct RegexSet { |
137 | | pub(crate) meta: meta::Regex, |
138 | | pub(crate) patterns: alloc::sync::Arc<[String]>, |
139 | | } |
140 | | |
141 | | impl RegexSet { |
142 | | /// Create a new regex set with the given regular expressions. |
143 | | /// |
144 | | /// This takes an iterator of `S`, where `S` is something that can produce |
145 | | /// a `&str`. If any of the strings in the iterator are not valid regular |
146 | | /// expressions, then an error is returned. |
147 | | /// |
148 | | /// # Example |
149 | | /// |
150 | | /// Create a new regex set from an iterator of strings: |
151 | | /// |
152 | | /// ``` |
153 | | /// use regex::bytes::RegexSet; |
154 | | /// |
155 | | /// let set = RegexSet::new([r"\w+", r"\d+"]).unwrap(); |
156 | | /// assert!(set.is_match(b"foo")); |
157 | | /// ``` |
158 | 0 | pub fn new<I, S>(exprs: I) -> Result<RegexSet, Error> |
159 | 0 | where |
160 | 0 | S: AsRef<str>, |
161 | 0 | I: IntoIterator<Item = S>, |
162 | | { |
163 | 0 | RegexSetBuilder::new(exprs).build() |
164 | 0 | } |
165 | | |
166 | | /// Create a new empty regex set. |
167 | | /// |
168 | | /// An empty regex never matches anything. |
169 | | /// |
170 | | /// This is a convenience function for `RegexSet::new([])`, but doesn't |
171 | | /// require one to specify the type of the input. |
172 | | /// |
173 | | /// # Example |
174 | | /// |
175 | | /// ``` |
176 | | /// use regex::bytes::RegexSet; |
177 | | /// |
178 | | /// let set = RegexSet::empty(); |
179 | | /// assert!(set.is_empty()); |
180 | | /// // an empty set matches nothing |
181 | | /// assert!(!set.is_match(b"")); |
182 | | /// ``` |
183 | 0 | pub fn empty() -> RegexSet { |
184 | 0 | let empty: [&str; 0] = []; |
185 | 0 | RegexSetBuilder::new(empty).build().unwrap() |
186 | 0 | } |
187 | | |
188 | | /// Returns true if and only if one of the regexes in this set matches |
189 | | /// the haystack given. |
190 | | /// |
191 | | /// This method should be preferred if you only need to test whether any |
192 | | /// of the regexes in the set should match, but don't care about *which* |
193 | | /// regexes matched. This is because the underlying matching engine will |
194 | | /// quit immediately after seeing the first match instead of continuing to |
195 | | /// find all matches. |
196 | | /// |
197 | | /// Note that as with searches using [`Regex`](crate::bytes::Regex), the |
198 | | /// expression is unanchored by default. That is, if the regex does not |
199 | | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
200 | | /// to match anywhere in the haystack. |
201 | | /// |
202 | | /// # Example |
203 | | /// |
204 | | /// Tests whether a set matches somewhere in a haystack: |
205 | | /// |
206 | | /// ``` |
207 | | /// use regex::bytes::RegexSet; |
208 | | /// |
209 | | /// let set = RegexSet::new([r"\w+", r"\d+"]).unwrap(); |
210 | | /// assert!(set.is_match(b"foo")); |
211 | | /// assert!(!set.is_match("☃".as_bytes())); |
212 | | /// ``` |
213 | | #[inline] |
214 | 0 | pub fn is_match(&self, haystack: &[u8]) -> bool { |
215 | 0 | self.is_match_at(haystack, 0) |
216 | 0 | } |
217 | | |
218 | | /// Returns true if and only if one of the regexes in this set matches the |
219 | | /// haystack given, with the search starting at the offset given. |
220 | | /// |
221 | | /// The significance of the starting point is that it takes the surrounding |
222 | | /// context into consideration. For example, the `\A` anchor can only |
223 | | /// match when `start == 0`. |
224 | | /// |
225 | | /// # Panics |
226 | | /// |
227 | | /// This panics when `start >= haystack.len() + 1`. |
228 | | /// |
229 | | /// # Example |
230 | | /// |
231 | | /// This example shows the significance of `start`. Namely, consider a |
232 | | /// haystack `foobar` and a desire to execute a search starting at offset |
233 | | /// `3`. You could search a substring explicitly, but then the look-around |
234 | | /// assertions won't work correctly. Instead, you can use this method to |
235 | | /// specify the start position of a search. |
236 | | /// |
237 | | /// ``` |
238 | | /// use regex::bytes::RegexSet; |
239 | | /// |
240 | | /// let set = RegexSet::new([r"\bbar\b", r"(?m)^bar$"]).unwrap(); |
241 | | /// let hay = b"foobar"; |
242 | | /// // We get a match here, but it's probably not intended. |
243 | | /// assert!(set.is_match(&hay[3..])); |
244 | | /// // No match because the assertions take the context into account. |
245 | | /// assert!(!set.is_match_at(hay, 3)); |
246 | | /// ``` |
247 | | #[inline] |
248 | 0 | pub fn is_match_at(&self, haystack: &[u8], start: usize) -> bool { |
249 | 0 | self.meta.is_match(Input::new(haystack).span(start..haystack.len())) |
250 | 0 | } |
251 | | |
252 | | /// Returns the set of regexes that match in the given haystack. |
253 | | /// |
254 | | /// The set returned contains the index of each regex that matches in |
255 | | /// the given haystack. The index is in correspondence with the order of |
256 | | /// regular expressions given to `RegexSet`'s constructor. |
257 | | /// |
258 | | /// The set can also be used to iterate over the matched indices. The order |
259 | | /// of iteration is always ascending with respect to the matching indices. |
260 | | /// |
261 | | /// Note that as with searches using [`Regex`](crate::bytes::Regex), the |
262 | | /// expression is unanchored by default. That is, if the regex does not |
263 | | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
264 | | /// to match anywhere in the haystack. |
265 | | /// |
266 | | /// # Example |
267 | | /// |
268 | | /// Tests which regular expressions match the given haystack: |
269 | | /// |
270 | | /// ``` |
271 | | /// use regex::bytes::RegexSet; |
272 | | /// |
273 | | /// let set = RegexSet::new([ |
274 | | /// r"\w+", |
275 | | /// r"\d+", |
276 | | /// r"\pL+", |
277 | | /// r"foo", |
278 | | /// r"bar", |
279 | | /// r"barfoo", |
280 | | /// r"foobar", |
281 | | /// ]).unwrap(); |
282 | | /// let matches: Vec<_> = set.matches(b"foobar").into_iter().collect(); |
283 | | /// assert_eq!(matches, vec![0, 2, 3, 4, 6]); |
284 | | /// |
285 | | /// // You can also test whether a particular regex matched: |
286 | | /// let matches = set.matches(b"foobar"); |
287 | | /// assert!(!matches.matched(5)); |
288 | | /// assert!(matches.matched(6)); |
289 | | /// ``` |
290 | | #[inline] |
291 | 0 | pub fn matches(&self, haystack: &[u8]) -> SetMatches { |
292 | 0 | self.matches_at(haystack, 0) |
293 | 0 | } |
294 | | |
295 | | /// Returns the set of regexes that match in the given haystack. |
296 | | /// |
297 | | /// The set returned contains the index of each regex that matches in |
298 | | /// the given haystack. The index is in correspondence with the order of |
299 | | /// regular expressions given to `RegexSet`'s constructor. |
300 | | /// |
301 | | /// The set can also be used to iterate over the matched indices. The order |
302 | | /// of iteration is always ascending with respect to the matching indices. |
303 | | /// |
304 | | /// The significance of the starting point is that it takes the surrounding |
305 | | /// context into consideration. For example, the `\A` anchor can only |
306 | | /// match when `start == 0`. |
307 | | /// |
308 | | /// # Panics |
309 | | /// |
310 | | /// This panics when `start >= haystack.len() + 1`. |
311 | | /// |
312 | | /// # Example |
313 | | /// |
314 | | /// Tests which regular expressions match the given haystack: |
315 | | /// |
316 | | /// ``` |
317 | | /// use regex::bytes::RegexSet; |
318 | | /// |
319 | | /// let set = RegexSet::new([r"\bbar\b", r"(?m)^bar$"]).unwrap(); |
320 | | /// let hay = b"foobar"; |
321 | | /// // We get matches here, but it's probably not intended. |
322 | | /// let matches: Vec<_> = set.matches(&hay[3..]).into_iter().collect(); |
323 | | /// assert_eq!(matches, vec![0, 1]); |
324 | | /// // No matches because the assertions take the context into account. |
325 | | /// let matches: Vec<_> = set.matches_at(hay, 3).into_iter().collect(); |
326 | | /// assert_eq!(matches, vec![]); |
327 | | /// ``` |
328 | | #[inline] |
329 | 0 | pub fn matches_at(&self, haystack: &[u8], start: usize) -> SetMatches { |
330 | 0 | let input = Input::new(haystack).span(start..haystack.len()); |
331 | 0 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
332 | 0 | self.meta.which_overlapping_matches(&input, &mut patset); |
333 | 0 | SetMatches(patset) |
334 | 0 | } |
335 | | |
336 | | /// Returns the same as matches, but starts the search at the given |
337 | | /// offset and stores the matches into the slice given. |
338 | | /// |
339 | | /// The significance of the starting point is that it takes the surrounding |
340 | | /// context into consideration. For example, the `\A` anchor can only |
341 | | /// match when `start == 0`. |
342 | | /// |
343 | | /// `matches` must have a length that is at least the number of regexes |
344 | | /// in this set. |
345 | | /// |
346 | | /// This method returns true if and only if at least one member of |
347 | | /// `matches` is true after executing the set against `haystack`. |
348 | | #[doc(hidden)] |
349 | | #[inline] |
350 | 0 | pub fn matches_read_at( |
351 | 0 | &self, |
352 | 0 | matches: &mut [bool], |
353 | 0 | haystack: &[u8], |
354 | 0 | start: usize, |
355 | 0 | ) -> bool { |
356 | | // This is pretty dumb. We should try to fix this, but the |
357 | | // regex-automata API doesn't provide a way to store matches in an |
358 | | // arbitrary &mut [bool]. Thankfully, this API is doc(hidden) and |
359 | | // thus not public... But regex-capi currently uses it. We should |
360 | | // fix regex-capi to use a PatternSet, maybe? Not sure... PatternSet |
361 | | // is in regex-automata, not regex. So maybe we should just accept a |
362 | | // 'SetMatches', which is basically just a newtype around PatternSet. |
363 | 0 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
364 | 0 | let mut input = Input::new(haystack); |
365 | 0 | input.set_start(start); |
366 | 0 | self.meta.which_overlapping_matches(&input, &mut patset); |
367 | 0 | for pid in patset.iter() { |
368 | 0 | matches[pid] = true; |
369 | 0 | } |
370 | 0 | !patset.is_empty() |
371 | 0 | } |
372 | | |
373 | | /// An alias for `matches_read_at` to preserve backward compatibility. |
374 | | /// |
375 | | /// The `regex-capi` crate used this method, so to avoid breaking that |
376 | | /// crate, we continue to export it as an undocumented API. |
377 | | #[doc(hidden)] |
378 | | #[inline] |
379 | 0 | pub fn read_matches_at( |
380 | 0 | &self, |
381 | 0 | matches: &mut [bool], |
382 | 0 | haystack: &[u8], |
383 | 0 | start: usize, |
384 | 0 | ) -> bool { |
385 | 0 | self.matches_read_at(matches, haystack, start) |
386 | 0 | } |
387 | | |
388 | | /// Returns the total number of regexes in this set. |
389 | | /// |
390 | | /// # Example |
391 | | /// |
392 | | /// ``` |
393 | | /// use regex::bytes::RegexSet; |
394 | | /// |
395 | | /// assert_eq!(0, RegexSet::empty().len()); |
396 | | /// assert_eq!(1, RegexSet::new([r"[0-9]"]).unwrap().len()); |
397 | | /// assert_eq!(2, RegexSet::new([r"[0-9]", r"[a-z]"]).unwrap().len()); |
398 | | /// ``` |
399 | | #[inline] |
400 | 0 | pub fn len(&self) -> usize { |
401 | 0 | self.meta.pattern_len() |
402 | 0 | } |
403 | | |
404 | | /// Returns `true` if this set contains no regexes. |
405 | | /// |
406 | | /// # Example |
407 | | /// |
408 | | /// ``` |
409 | | /// use regex::bytes::RegexSet; |
410 | | /// |
411 | | /// assert!(RegexSet::empty().is_empty()); |
412 | | /// assert!(!RegexSet::new([r"[0-9]"]).unwrap().is_empty()); |
413 | | /// ``` |
414 | | #[inline] |
415 | 0 | pub fn is_empty(&self) -> bool { |
416 | 0 | self.meta.pattern_len() == 0 |
417 | 0 | } |
418 | | |
419 | | /// Returns the regex patterns that this regex set was constructed from. |
420 | | /// |
421 | | /// This function can be used to determine the pattern for a match. The |
422 | | /// slice returned has exactly as many patterns givens to this regex set, |
423 | | /// and the order of the slice is the same as the order of the patterns |
424 | | /// provided to the set. |
425 | | /// |
426 | | /// # Example |
427 | | /// |
428 | | /// ``` |
429 | | /// use regex::bytes::RegexSet; |
430 | | /// |
431 | | /// let set = RegexSet::new(&[ |
432 | | /// r"\w+", |
433 | | /// r"\d+", |
434 | | /// r"\pL+", |
435 | | /// r"foo", |
436 | | /// r"bar", |
437 | | /// r"barfoo", |
438 | | /// r"foobar", |
439 | | /// ]).unwrap(); |
440 | | /// let matches: Vec<_> = set |
441 | | /// .matches(b"foobar") |
442 | | /// .into_iter() |
443 | | /// .map(|index| &set.patterns()[index]) |
444 | | /// .collect(); |
445 | | /// assert_eq!(matches, vec![r"\w+", r"\pL+", r"foo", r"bar", r"foobar"]); |
446 | | /// ``` |
447 | | #[inline] |
448 | 0 | pub fn patterns(&self) -> &[String] { |
449 | 0 | &self.patterns |
450 | 0 | } |
451 | | } |
452 | | |
453 | | impl Default for RegexSet { |
454 | 0 | fn default() -> Self { |
455 | 0 | RegexSet::empty() |
456 | 0 | } |
457 | | } |
458 | | |
459 | | /// A set of matches returned by a regex set. |
460 | | /// |
461 | | /// Values of this type are constructed by [`RegexSet::matches`]. |
462 | | #[derive(Clone, Debug)] |
463 | | pub struct SetMatches(PatternSet); |
464 | | |
465 | | impl SetMatches { |
466 | | /// Whether this set contains any matches. |
467 | | /// |
468 | | /// # Example |
469 | | /// |
470 | | /// ``` |
471 | | /// use regex::bytes::RegexSet; |
472 | | /// |
473 | | /// let set = RegexSet::new(&[ |
474 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
475 | | /// r"[a-z]+\.(com|org|net)", |
476 | | /// ]).unwrap(); |
477 | | /// let matches = set.matches(b"foo@example.com"); |
478 | | /// assert!(matches.matched_any()); |
479 | | /// ``` |
480 | | #[inline] |
481 | 0 | pub fn matched_any(&self) -> bool { |
482 | 0 | !self.0.is_empty() |
483 | 0 | } |
484 | | |
485 | | /// Whether all patterns in this set matched. |
486 | | /// |
487 | | /// # Example |
488 | | /// |
489 | | /// ``` |
490 | | /// use regex::bytes::RegexSet; |
491 | | /// |
492 | | /// let set = RegexSet::new(&[ |
493 | | /// r"^foo", |
494 | | /// r"[a-z]+\.com", |
495 | | /// ]).unwrap(); |
496 | | /// let matches = set.matches(b"foo.example.com"); |
497 | | /// assert!(matches.matched_all()); |
498 | | /// ``` |
499 | 0 | pub fn matched_all(&self) -> bool { |
500 | 0 | self.0.is_full() |
501 | 0 | } |
502 | | |
503 | | /// Whether the regex at the given index matched. |
504 | | /// |
505 | | /// The index for a regex is determined by its insertion order upon the |
506 | | /// initial construction of a `RegexSet`, starting at `0`. |
507 | | /// |
508 | | /// # Panics |
509 | | /// |
510 | | /// If `index` is greater than or equal to the number of regexes in the |
511 | | /// original set that produced these matches. Equivalently, when `index` |
512 | | /// is greater than or equal to [`SetMatches::len`]. |
513 | | /// |
514 | | /// # Example |
515 | | /// |
516 | | /// ``` |
517 | | /// use regex::bytes::RegexSet; |
518 | | /// |
519 | | /// let set = RegexSet::new([ |
520 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
521 | | /// r"[a-z]+\.(com|org|net)", |
522 | | /// ]).unwrap(); |
523 | | /// let matches = set.matches(b"example.com"); |
524 | | /// assert!(!matches.matched(0)); |
525 | | /// assert!(matches.matched(1)); |
526 | | /// ``` |
527 | | #[inline] |
528 | 0 | pub fn matched(&self, index: usize) -> bool { |
529 | 0 | self.0.contains(PatternID::new_unchecked(index)) |
530 | 0 | } |
531 | | |
532 | | /// The total number of regexes in the set that created these matches. |
533 | | /// |
534 | | /// **WARNING:** This always returns the same value as [`RegexSet::len`]. |
535 | | /// In particular, it does *not* return the number of elements yielded by |
536 | | /// [`SetMatches::iter`]. The only way to determine the total number of |
537 | | /// matched regexes is to iterate over them. |
538 | | /// |
539 | | /// # Example |
540 | | /// |
541 | | /// Notice that this method returns the total number of regexes in the |
542 | | /// original set, and *not* the total number of regexes that matched. |
543 | | /// |
544 | | /// ``` |
545 | | /// use regex::bytes::RegexSet; |
546 | | /// |
547 | | /// let set = RegexSet::new([ |
548 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
549 | | /// r"[a-z]+\.(com|org|net)", |
550 | | /// ]).unwrap(); |
551 | | /// let matches = set.matches(b"example.com"); |
552 | | /// // Total number of patterns that matched. |
553 | | /// assert_eq!(1, matches.iter().count()); |
554 | | /// // Total number of patterns in the set. |
555 | | /// assert_eq!(2, matches.len()); |
556 | | /// ``` |
557 | | #[inline] |
558 | 0 | pub fn len(&self) -> usize { |
559 | 0 | self.0.capacity() |
560 | 0 | } |
561 | | |
562 | | /// Returns an iterator over the indices of the regexes that matched. |
563 | | /// |
564 | | /// This will always produces matches in ascending order, where the index |
565 | | /// yielded corresponds to the index of the regex that matched with respect |
566 | | /// to its position when initially building the set. |
567 | | /// |
568 | | /// # Example |
569 | | /// |
570 | | /// ``` |
571 | | /// use regex::bytes::RegexSet; |
572 | | /// |
573 | | /// let set = RegexSet::new([ |
574 | | /// r"[0-9]", |
575 | | /// r"[a-z]", |
576 | | /// r"[A-Z]", |
577 | | /// r"\p{Greek}", |
578 | | /// ]).unwrap(); |
579 | | /// let hay = "βa1".as_bytes(); |
580 | | /// let matches: Vec<_> = set.matches(hay).iter().collect(); |
581 | | /// assert_eq!(matches, vec![0, 1, 3]); |
582 | | /// ``` |
583 | | /// |
584 | | /// Note that `SetMatches` also implements the `IntoIterator` trait, so |
585 | | /// this method is not always needed. For example: |
586 | | /// |
587 | | /// ``` |
588 | | /// use regex::bytes::RegexSet; |
589 | | /// |
590 | | /// let set = RegexSet::new([ |
591 | | /// r"[0-9]", |
592 | | /// r"[a-z]", |
593 | | /// r"[A-Z]", |
594 | | /// r"\p{Greek}", |
595 | | /// ]).unwrap(); |
596 | | /// let hay = "βa1".as_bytes(); |
597 | | /// let mut matches = vec![]; |
598 | | /// for index in set.matches(hay) { |
599 | | /// matches.push(index); |
600 | | /// } |
601 | | /// assert_eq!(matches, vec![0, 1, 3]); |
602 | | /// ``` |
603 | | #[inline] |
604 | 0 | pub fn iter(&self) -> SetMatchesIter<'_> { |
605 | 0 | SetMatchesIter(self.0.iter()) |
606 | 0 | } |
607 | | } |
608 | | |
609 | | impl IntoIterator for SetMatches { |
610 | | type IntoIter = SetMatchesIntoIter; |
611 | | type Item = usize; |
612 | | |
613 | 0 | fn into_iter(self) -> Self::IntoIter { |
614 | 0 | let it = 0..self.0.capacity(); |
615 | 0 | SetMatchesIntoIter { patset: self.0, it } |
616 | 0 | } |
617 | | } |
618 | | |
619 | | impl<'a> IntoIterator for &'a SetMatches { |
620 | | type IntoIter = SetMatchesIter<'a>; |
621 | | type Item = usize; |
622 | | |
623 | 0 | fn into_iter(self) -> Self::IntoIter { |
624 | 0 | self.iter() |
625 | 0 | } |
626 | | } |
627 | | |
628 | | /// An owned iterator over the set of matches from a regex set. |
629 | | /// |
630 | | /// This will always produces matches in ascending order of index, where the |
631 | | /// index corresponds to the index of the regex that matched with respect to |
632 | | /// its position when initially building the set. |
633 | | /// |
634 | | /// This iterator is created by calling `SetMatches::into_iter` via the |
635 | | /// `IntoIterator` trait. This is automatically done in `for` loops. |
636 | | /// |
637 | | /// # Example |
638 | | /// |
639 | | /// ``` |
640 | | /// use regex::bytes::RegexSet; |
641 | | /// |
642 | | /// let set = RegexSet::new([ |
643 | | /// r"[0-9]", |
644 | | /// r"[a-z]", |
645 | | /// r"[A-Z]", |
646 | | /// r"\p{Greek}", |
647 | | /// ]).unwrap(); |
648 | | /// let hay = "βa1".as_bytes(); |
649 | | /// let mut matches = vec![]; |
650 | | /// for index in set.matches(hay) { |
651 | | /// matches.push(index); |
652 | | /// } |
653 | | /// assert_eq!(matches, vec![0, 1, 3]); |
654 | | /// ``` |
655 | | #[derive(Debug)] |
656 | | pub struct SetMatchesIntoIter { |
657 | | patset: PatternSet, |
658 | | it: core::ops::Range<usize>, |
659 | | } |
660 | | |
661 | | impl Iterator for SetMatchesIntoIter { |
662 | | type Item = usize; |
663 | | |
664 | 0 | fn next(&mut self) -> Option<usize> { |
665 | | loop { |
666 | 0 | let id = self.it.next()?; |
667 | 0 | if self.patset.contains(PatternID::new_unchecked(id)) { |
668 | 0 | return Some(id); |
669 | 0 | } |
670 | | } |
671 | 0 | } |
672 | | |
673 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
674 | 0 | self.it.size_hint() |
675 | 0 | } |
676 | | } |
677 | | |
678 | | impl DoubleEndedIterator for SetMatchesIntoIter { |
679 | 0 | fn next_back(&mut self) -> Option<usize> { |
680 | | loop { |
681 | 0 | let id = self.it.next_back()?; |
682 | 0 | if self.patset.contains(PatternID::new_unchecked(id)) { |
683 | 0 | return Some(id); |
684 | 0 | } |
685 | | } |
686 | 0 | } |
687 | | } |
688 | | |
689 | | impl core::iter::FusedIterator for SetMatchesIntoIter {} |
690 | | |
691 | | /// A borrowed iterator over the set of matches from a regex set. |
692 | | /// |
693 | | /// The lifetime `'a` refers to the lifetime of the [`SetMatches`] value that |
694 | | /// created this iterator. |
695 | | /// |
696 | | /// This will always produces matches in ascending order, where the index |
697 | | /// corresponds to the index of the regex that matched with respect to its |
698 | | /// position when initially building the set. |
699 | | /// |
700 | | /// This iterator is created by the [`SetMatches::iter`] method. |
701 | | #[derive(Clone, Debug)] |
702 | | pub struct SetMatchesIter<'a>(PatternSetIter<'a>); |
703 | | |
704 | | impl<'a> Iterator for SetMatchesIter<'a> { |
705 | | type Item = usize; |
706 | | |
707 | 0 | fn next(&mut self) -> Option<usize> { |
708 | 0 | self.0.next().map(|pid| pid.as_usize()) |
709 | 0 | } |
710 | | |
711 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
712 | 0 | self.0.size_hint() |
713 | 0 | } |
714 | | } |
715 | | |
716 | | impl<'a> DoubleEndedIterator for SetMatchesIter<'a> { |
717 | 0 | fn next_back(&mut self) -> Option<usize> { |
718 | 0 | self.0.next_back().map(|pid| pid.as_usize()) |
719 | 0 | } |
720 | | } |
721 | | |
722 | | impl<'a> core::iter::FusedIterator for SetMatchesIter<'a> {} |
723 | | |
724 | | impl core::fmt::Debug for RegexSet { |
725 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
726 | 0 | write!(f, "RegexSet({:?})", self.patterns()) |
727 | 0 | } |
728 | | } |