Coverage Report

Created: 2025-07-23 07:12

/src/quickjs/dtoa.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Tiny float64 printing and parsing library
3
 *
4
 * Copyright (c) 2024 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <inttypes.h>
28
#include <string.h>
29
#include <assert.h>
30
#include <ctype.h>
31
#include <sys/time.h>
32
#include <math.h>
33
#include <setjmp.h>
34
35
#include "cutils.h"
36
#include "dtoa.h"
37
38
/* 
39
   TODO:
40
   - test n_digits=101 instead of 100
41
   - simplify subnormal handling
42
   - reduce max memory usage
43
   - free format: could add shortcut if exact result
44
   - use 64 bit limb_t when possible
45
   - use another algorithm for free format dtoa in base 10 (ryu ?)
46
*/
47
48
#define USE_POW5_TABLE
49
/* use fast path to print small integers in free format */
50
#define USE_FAST_INT
51
52
0
#define LIMB_LOG2_BITS 5
53
54
0
#define LIMB_BITS (1 << LIMB_LOG2_BITS)
55
56
typedef int32_t slimb_t;
57
typedef uint32_t limb_t;
58
typedef uint64_t dlimb_t;
59
60
#define LIMB_DIGITS 9
61
62
#define JS_RADIX_MAX 36
63
64
1
#define DBIGNUM_LEN_MAX 52 /* ~ 2^(1072+53)*36^100 (dtoa) */
65
0
#define MANT_LEN_MAX 18 /* < 36^100 */
66
67
typedef intptr_t mp_size_t;
68
69
/* the represented number is sum(i, tab[i]*2^(LIMB_BITS * i)) */
70
typedef struct {
71
    int len; /* >= 1 */
72
    limb_t tab[];
73
} mpb_t;
74
75
static limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n)
76
0
{
77
0
    size_t i;
78
0
    limb_t k, a;
79
80
0
    k=b;
81
0
    for(i=0;i<n;i++) {
82
0
        if (k == 0)
83
0
            break;
84
0
        a = tab[i] + k;
85
0
        k = (a < k);
86
0
        tab[i] = a;
87
0
    }
88
0
    return k;
89
0
}
90
91
/* tabr[] = taba[] * b + l. Return the high carry */
92
static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n, 
93
                      limb_t b, limb_t l)
94
0
{
95
0
    limb_t i;
96
0
    dlimb_t t;
97
98
0
    for(i = 0; i < n; i++) {
99
0
        t = (dlimb_t)taba[i] * (dlimb_t)b + l;
100
0
        tabr[i] = t;
101
0
        l = t >> LIMB_BITS;
102
0
    }
103
0
    return l;
104
0
}
105
106
/* WARNING: d must be >= 2^(LIMB_BITS-1) */
107
static inline limb_t udiv1norm_init(limb_t d)
108
0
{
109
0
    limb_t a0, a1;
110
0
    a1 = -d - 1;
111
0
    a0 = -1;
112
0
    return (((dlimb_t)a1 << LIMB_BITS) | a0) / d;
113
0
}
114
115
/* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0
116
   / d' with 0 <= a1 < d. */
117
static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0,
118
                                limb_t d, limb_t d_inv)
119
0
{
120
0
    limb_t n1m, n_adj, q, r, ah;
121
0
    dlimb_t a;
122
0
    n1m = ((slimb_t)a0 >> (LIMB_BITS - 1));
123
0
    n_adj = a0 + (n1m & d);
124
0
    a = (dlimb_t)d_inv * (a1 - n1m) + n_adj;
125
0
    q = (a >> LIMB_BITS) + a1;
126
    /* compute a - q * r and update q so that the remainder is between
127
       0 and d - 1 */
128
0
    a = ((dlimb_t)a1 << LIMB_BITS) | a0;
129
0
    a = a - (dlimb_t)q * d - d;
130
0
    ah = a >> LIMB_BITS;
131
0
    q += 1 + ah;
132
0
    r = (limb_t)a + (ah & d);
133
0
    *pr = r;
134
0
    return q;
135
0
}
136
137
static limb_t mp_div1(limb_t *tabr, const limb_t *taba, limb_t n,
138
                      limb_t b, limb_t r)
139
0
{
140
0
    slimb_t i;
141
0
    dlimb_t a1;
142
0
    for(i = n - 1; i >= 0; i--) {
143
0
        a1 = ((dlimb_t)r << LIMB_BITS) | taba[i];
144
0
        tabr[i] = a1 / b;
145
0
        r = a1 % b;
146
0
    }
147
0
    return r;
148
0
}
149
150
/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift). 
151
   1 <= shift <= LIMB_BITS - 1 */
152
static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n, 
153
                     int shift, limb_t high)
154
0
{
155
0
    mp_size_t i;
156
0
    limb_t l, a;
157
158
0
    assert(shift >= 1 && shift < LIMB_BITS);
159
0
    l = high;
160
0
    for(i = n - 1; i >= 0; i--) {
161
0
        a = tab[i];
162
0
        tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift));
163
0
        l = a;
164
0
    }
165
0
    return l & (((limb_t)1 << shift) - 1);
166
0
}
167
168
/* r = (a << shift) + low. 1 <= shift <= LIMB_BITS - 1, 0 <= low <
169
   2^shift. */
170
static limb_t mp_shl(limb_t *tab_r, const limb_t *tab, mp_size_t n, 
171
              int shift, limb_t low)
172
0
{
173
0
    mp_size_t i;
174
0
    limb_t l, a;
175
176
0
    assert(shift >= 1 && shift < LIMB_BITS);
177
0
    l = low;
178
0
    for(i = 0; i < n; i++) {
179
0
        a = tab[i];
180
0
        tab_r[i] = (a << shift) | l;
181
0
        l = (a >> (LIMB_BITS - shift)); 
182
0
    }
183
0
    return l;
184
0
}
185
186
static no_inline limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n,
187
                                    limb_t b, limb_t r, limb_t b_inv, int shift)
188
0
{
189
0
    slimb_t i;
190
191
0
    if (shift != 0) {
192
0
        r = (r << shift) | mp_shl(tabr, taba, n, shift, 0);
193
0
    }
194
0
    for(i = n - 1; i >= 0; i--) {
195
0
        tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
196
0
    }
197
0
    r >>= shift;
198
0
    return r;
199
0
}
200
201
static __maybe_unused void mpb_dump(const char *str, const mpb_t *a)
202
0
{
203
0
    int i;
204
0
    
205
0
    printf("%s= 0x", str);
206
0
    for(i = a->len - 1; i >= 0; i--) {
207
0
        printf("%08x", a->tab[i]);
208
0
        if (i != 0)
209
0
            printf("_");
210
0
    }
211
0
    printf("\n");
212
0
}
213
214
static void mpb_renorm(mpb_t *r)
215
1
{
216
1
    while (r->len > 1 && r->tab[r->len - 1] == 0)
217
0
        r->len--;
218
1
}
219
220
#ifdef USE_POW5_TABLE
221
static const uint32_t pow5_table[17] = {
222
    0x00000005, 0x00000019, 0x0000007d, 0x00000271, 
223
    0x00000c35, 0x00003d09, 0x0001312d, 0x0005f5e1, 
224
    0x001dcd65, 0x009502f9, 0x02e90edd, 0x0e8d4a51, 
225
    0x48c27395, 0x6bcc41e9, 0x1afd498d, 0x86f26fc1, 
226
    0xa2bc2ec5, 
227
};
228
229
static const uint8_t pow5h_table[4] = {
230
    0x00000001, 0x00000007, 0x00000023, 0x000000b1, 
231
};
232
233
static const uint32_t pow5_inv_table[13] = {
234
    0x99999999, 0x47ae147a, 0x0624dd2f, 0xa36e2eb1,
235
    0x4f8b588e, 0x0c6f7a0b, 0xad7f29ab, 0x5798ee23,
236
    0x12e0be82, 0xb7cdfd9d, 0x5fd7fe17, 0x19799812,
237
    0xc25c2684,
238
};
239
#endif
240
241
/* return a^b */
242
static uint64_t pow_ui(uint32_t a, uint32_t b)
243
0
{
244
0
    int i, n_bits;
245
0
    uint64_t r;
246
0
    if (b == 0)
247
0
        return 1;
248
0
    if (b == 1)
249
0
        return a;
250
0
#ifdef USE_POW5_TABLE
251
0
    if ((a == 5 || a == 10) && b <= 17) {
252
0
        r = pow5_table[b - 1];
253
0
        if (b >= 14) {
254
0
            r |= (uint64_t)pow5h_table[b - 14] << 32;
255
0
        }
256
0
        if (a == 10)
257
0
            r <<= b;
258
0
        return r;
259
0
    }
260
0
#endif
261
0
    r = a;
262
0
    n_bits = 32 - clz32(b);
263
0
    for(i = n_bits - 2; i >= 0; i--) {
264
0
        r *= r;
265
0
        if ((b >> i) & 1)
266
0
            r *= a;
267
0
    }
268
0
    return r;
269
0
}
270
271
static uint32_t pow_ui_inv(uint32_t *pr_inv, int *pshift, uint32_t a, uint32_t b)
272
0
{
273
0
    uint32_t r_inv, r;
274
0
    int shift;
275
0
#ifdef USE_POW5_TABLE
276
0
    if (a == 5 && b >= 1 && b <= 13) {
277
0
        r = pow5_table[b - 1];
278
0
        shift = clz32(r);
279
0
        r <<= shift;
280
0
        r_inv = pow5_inv_table[b - 1];
281
0
    } else
282
0
#endif
283
0
    {
284
0
        r = pow_ui(a, b);
285
0
        shift = clz32(r);
286
0
        r <<= shift;
287
0
        r_inv = udiv1norm_init(r);
288
0
    }
289
0
    *pshift = shift;
290
0
    *pr_inv = r_inv;
291
0
    return r;
292
0
}
293
294
enum {
295
    JS_RNDN, /* round to nearest, ties to even */
296
    JS_RNDNA, /* round to nearest, ties away from zero */
297
    JS_RNDZ,
298
};
299
300
static int mpb_get_bit(const mpb_t *r, int k)
301
0
{
302
0
    int l;
303
    
304
0
    l = (unsigned)k / LIMB_BITS;
305
0
    k = k & (LIMB_BITS - 1);
306
0
    if (l >= r->len)
307
0
        return 0;
308
0
    else
309
0
        return (r->tab[l] >> k) & 1;
310
0
}
311
312
/* compute round(r / 2^shift). 'shift' can be negative */
313
static void mpb_shr_round(mpb_t *r, int shift, int rnd_mode)
314
0
{
315
0
    int l, i;
316
317
0
    if (shift == 0)
318
0
        return;
319
0
    if (shift < 0) {
320
0
        shift = -shift;
321
0
        l = (unsigned)shift / LIMB_BITS;
322
0
        shift = shift & (LIMB_BITS - 1);
323
0
        if (shift != 0) {
324
0
            r->tab[r->len] = mp_shl(r->tab, r->tab, r->len, shift, 0);
325
0
            r->len++;
326
0
            mpb_renorm(r);
327
0
        }
328
0
        if (l > 0) {
329
0
            for(i = r->len - 1; i >= 0; i--)
330
0
                r->tab[i + l] = r->tab[i];
331
0
            for(i = 0; i < l; i++)
332
0
                r->tab[i] = 0;
333
0
            r->len += l;
334
0
        }
335
0
    } else {
336
0
        limb_t bit1, bit2;
337
0
        int k, add_one;
338
        
339
0
        switch(rnd_mode) {
340
0
        default:
341
0
        case JS_RNDZ:
342
0
            add_one = 0;
343
0
            break;
344
0
        case JS_RNDN:
345
0
        case JS_RNDNA:
346
0
            bit1 = mpb_get_bit(r, shift - 1);
347
0
            if (bit1) {
348
0
                if (rnd_mode == JS_RNDNA) {
349
0
                    bit2 = 1;
350
0
                } else {
351
                    /* bit2 = oring of all the bits after bit1 */
352
0
                    bit2 = 0;
353
0
                    if (shift >= 2) {
354
0
                        k = shift - 1;
355
0
                        l = (unsigned)k / LIMB_BITS;
356
0
                        k = k & (LIMB_BITS - 1);
357
0
                        for(i = 0; i < min_int(l, r->len); i++)
358
0
                            bit2 |= r->tab[i];
359
0
                        if (l < r->len)
360
0
                            bit2 |= r->tab[l] & (((limb_t)1 << k) - 1);
361
0
                    }
362
0
                }
363
0
                if (bit2) {
364
0
                    add_one = 1;
365
0
                } else {
366
                    /* round to even */
367
0
                    add_one = mpb_get_bit(r, shift);
368
0
                }
369
0
            } else {
370
0
                add_one = 0;
371
0
            }
372
0
            break;
373
0
        }
374
375
0
        l = (unsigned)shift / LIMB_BITS;
376
0
        shift = shift & (LIMB_BITS - 1);
377
0
        if (l >= r->len) {
378
0
            r->len = 1;
379
0
            r->tab[0] = add_one;
380
0
        } else {
381
0
            if (l > 0) {
382
0
                r->len -= l;
383
0
                for(i = 0; i < r->len; i++)
384
0
                    r->tab[i] = r->tab[i + l];
385
0
            }
386
0
            if (shift != 0) {
387
0
                mp_shr(r->tab, r->tab, r->len, shift, 0);
388
0
                mpb_renorm(r);
389
0
            }
390
0
            if (add_one) {
391
0
                limb_t a;
392
0
                a = mp_add_ui(r->tab, 1, r->len);
393
0
                if (a)
394
0
                    r->tab[r->len++] = a;
395
0
            }
396
0
        }
397
0
    }
398
0
}
399
400
/* return -1, 0 or 1 */
401
static int mpb_cmp(const mpb_t *a, const mpb_t *b)
402
0
{
403
0
    mp_size_t i;
404
0
    if (a->len < b->len)
405
0
        return -1;
406
0
    else if (a->len > b->len)
407
0
        return 1;
408
0
    for(i = a->len - 1; i >= 0; i--) {
409
0
        if (a->tab[i] != b->tab[i]) {
410
0
            if (a->tab[i] < b->tab[i])
411
0
                return -1;
412
0
            else
413
0
                return 1;
414
0
        }
415
0
    }
416
0
    return 0;
417
0
}
418
419
static void mpb_set_u64(mpb_t *r, uint64_t m)
420
0
{
421
#if LIMB_BITS == 64
422
    r->tab[0] = m;
423
    r->len = 1;
424
#else
425
0
    r->tab[0] = m;
426
0
    r->tab[1] = m >> LIMB_BITS;
427
0
    if (r->tab[1] == 0)
428
0
        r->len = 1;
429
0
    else
430
0
        r->len = 2;
431
0
#endif
432
0
}
433
434
static uint64_t mpb_get_u64(mpb_t *r)
435
0
{
436
#if LIMB_BITS == 64
437
    return r->tab[0];
438
#else
439
0
    if (r->len == 1) {
440
0
        return r->tab[0];
441
0
    } else {
442
0
        return r->tab[0] | ((uint64_t)r->tab[1] << LIMB_BITS);
443
0
    }
444
0
#endif
445
0
}
446
447
/* floor_log2() = position of the first non zero bit or -1 if zero. */
448
static int mpb_floor_log2(mpb_t *a)
449
0
{
450
0
    limb_t v;
451
0
    v = a->tab[a->len - 1];
452
0
    if (v == 0)
453
0
        return -1;
454
0
    else
455
0
        return a->len * LIMB_BITS - 1 - clz32(v);
456
0
}
457
458
0
#define MUL_LOG2_RADIX_BASE_LOG2 24
459
460
/* round((1 << MUL_LOG2_RADIX_BASE_LOG2)/log2(i + 2)) */
461
static const uint32_t mul_log2_radix_table[JS_RADIX_MAX - 1] = {
462
    0x000000, 0xa1849d, 0x000000, 0x6e40d2, 
463
    0x6308c9, 0x5b3065, 0x000000, 0x50c24e, 
464
    0x4d104d, 0x4a0027, 0x4768ce, 0x452e54, 
465
    0x433d00, 0x418677, 0x000000, 0x3ea16b, 
466
    0x3d645a, 0x3c43c2, 0x3b3b9a, 0x3a4899, 
467
    0x39680b, 0x3897b3, 0x37d5af, 0x372069, 
468
    0x367686, 0x35d6df, 0x354072, 0x34b261, 
469
    0x342bea, 0x33ac62, 0x000000, 0x32bfd9, 
470
    0x3251dd, 0x31e8d6, 0x318465,
471
};
472
473
/* return floor(a / log2(radix)) for -2048 <= a <= 2047 */
474
static int mul_log2_radix(int a, int radix)
475
0
{
476
0
    int radix_bits, mult;
477
478
0
    if ((radix & (radix - 1)) == 0) {
479
        /* if the radix is a power of two better to do it exactly */
480
0
        radix_bits = 31 - clz32(radix);
481
0
        if (a < 0)
482
0
            a -= radix_bits - 1;
483
0
        return a / radix_bits;
484
0
    } else {
485
0
        mult = mul_log2_radix_table[radix - 2];
486
0
        return ((int64_t)a * mult) >> MUL_LOG2_RADIX_BASE_LOG2;
487
0
    }
488
0
}
489
490
#if 0
491
static void build_mul_log2_radix_table(void)
492
{
493
    int base, radix, mult, col, base_log2;
494
495
    base_log2 = 24;
496
    base = 1 << base_log2;
497
    col = 0;
498
    for(radix = 2; radix <= 36; radix++) {
499
        if ((radix & (radix - 1)) == 0)
500
            mult = 0;
501
        else
502
            mult = lrint((double)base / log2(radix));
503
        printf("0x%06x, ", mult);
504
        if (++col == 4) {
505
            printf("\n");
506
            col = 0;
507
        }
508
    }
509
    printf("\n");
510
}
511
512
static void mul_log2_radix_test(void)
513
{
514
    int radix, i, ref, r;
515
    
516
    for(radix = 2; radix <= 36; radix++) {
517
        for(i = -2048; i <= 2047; i++) {
518
            ref = (int)floor((double)i / log2(radix));
519
            r = mul_log2_radix(i, radix);
520
            if (ref != r) {
521
                printf("ERROR: radix=%d i=%d r=%d ref=%d\n",
522
                       radix, i, r, ref);
523
                exit(1);
524
            }
525
        }
526
    }
527
    if (0)
528
        build_mul_log2_radix_table();
529
}
530
#endif
531
532
static void u32toa_len(char *buf, uint32_t n, size_t len)
533
0
{
534
0
    int digit, i;
535
0
    for(i = len - 1; i >= 0; i--) {
536
0
        digit = n % 10;
537
0
        n = n / 10;
538
0
        buf[i] = digit + '0';
539
0
    }
540
0
}
541
542
/* for power of 2 radixes. len >= 1 */
543
static void u64toa_bin_len(char *buf, uint64_t n, unsigned int radix_bits, int len)
544
0
{
545
0
    int digit, i;
546
0
    unsigned int mask;
547
548
0
    mask = (1 << radix_bits) - 1;
549
0
    for(i = len - 1; i >= 0; i--) {
550
0
        digit = n & mask;
551
0
        n >>= radix_bits;
552
0
        if (digit < 10)
553
0
            digit += '0';
554
0
        else
555
0
            digit += 'a' - 10;
556
0
        buf[i] = digit;
557
0
    }
558
0
}
559
560
/* len >= 1. 2 <= radix <= 36 */
561
static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len)
562
0
{
563
0
    int digit, i;
564
565
0
    if (radix == 10) {
566
        /* specific case with constant divisor */
567
0
#if LIMB_BITS == 32
568
0
        u32toa_len(buf, n, len);
569
#else
570
        /* XXX: optimize */
571
        for(i = len - 1; i >= 0; i--) {
572
            digit = (limb_t)n % 10;
573
            n = (limb_t)n / 10;
574
            buf[i] = digit + '0';
575
        }
576
#endif
577
0
    } else {
578
0
        for(i = len - 1; i >= 0; i--) {
579
0
            digit = (limb_t)n % radix;
580
0
            n = (limb_t)n / radix;
581
0
            if (digit < 10)
582
0
                digit += '0';
583
0
            else
584
0
                digit += 'a' - 10;
585
0
            buf[i] = digit;
586
0
        }
587
0
    }
588
0
}
589
590
size_t u32toa(char *buf, uint32_t n)
591
0
{
592
0
    char buf1[10], *q;
593
0
    size_t len;
594
    
595
0
    q = buf1 + sizeof(buf1);
596
0
    do {
597
0
        *--q = n % 10 + '0';
598
0
        n /= 10;
599
0
    } while (n != 0);
600
0
    len = buf1 + sizeof(buf1) - q;
601
0
    memcpy(buf, q, len);
602
0
    return len;
603
0
}
604
605
size_t i32toa(char *buf, int32_t n)
606
0
{
607
0
    if (n >= 0) {
608
0
        return u32toa(buf, n);
609
0
    } else {
610
0
        buf[0] = '-';
611
0
        return u32toa(buf + 1, -(uint32_t)n) + 1;
612
0
    }
613
0
}
614
615
#ifdef USE_FAST_INT
616
size_t u64toa(char *buf, uint64_t n)
617
0
{
618
0
    if (n < 0x100000000) {
619
0
        return u32toa(buf, n);
620
0
    } else {
621
0
        uint64_t n1;
622
0
        char *q = buf;
623
0
        uint32_t n2;
624
        
625
0
        n1 = n / 1000000000;
626
0
        n %= 1000000000;
627
0
        if (n1 >= 0x100000000) {
628
0
            n2 = n1 / 1000000000;
629
0
            n1 = n1 % 1000000000;
630
            /* at most two digits */
631
0
            if (n2 >= 10) {
632
0
                *q++ = n2 / 10 + '0';
633
0
                n2 %= 10;
634
0
            }
635
0
            *q++ = n2 + '0';
636
0
            u32toa_len(q, n1, 9);
637
0
            q += 9;
638
0
        } else {
639
0
            q += u32toa(q, n1);
640
0
        }
641
0
        u32toa_len(q, n, 9);
642
0
        q += 9;
643
0
        return q - buf;
644
0
    }
645
0
}
646
647
size_t i64toa(char *buf, int64_t n)
648
0
{
649
0
    if (n >= 0) {
650
0
        return u64toa(buf, n);
651
0
    } else {
652
0
        buf[0] = '-';
653
0
        return u64toa(buf + 1, -(uint64_t)n) + 1;
654
0
    }
655
0
}
656
657
/* XXX: only tested for 1 <= n < 2^53 */
658
size_t u64toa_radix(char *buf, uint64_t n, unsigned int radix)
659
0
{
660
0
    int radix_bits, l;
661
0
    if (likely(radix == 10))
662
0
        return u64toa(buf, n);
663
0
    if ((radix & (radix - 1)) == 0) {
664
0
        radix_bits = 31 - clz32(radix);
665
0
        if (n == 0)
666
0
            l = 1;
667
0
        else
668
0
            l = (64 - clz64(n) + radix_bits - 1) / radix_bits;
669
0
        u64toa_bin_len(buf, n, radix_bits, l);
670
0
        return l;
671
0
    } else {
672
0
        char buf1[41], *q; /* maximum length for radix = 3 */
673
0
        size_t len;
674
0
        int digit;
675
0
        q = buf1 + sizeof(buf1);
676
0
        do {
677
0
            digit = n % radix;
678
0
            n /= radix;
679
0
            if (digit < 10)
680
0
                digit += '0';
681
0
            else
682
0
                digit += 'a' - 10;
683
0
            *--q = digit;
684
0
        } while (n != 0);
685
0
        len = buf1 + sizeof(buf1) - q;
686
0
        memcpy(buf, q, len);
687
0
        return len;
688
0
    }
689
0
}
690
691
size_t i64toa_radix(char *buf, int64_t n, unsigned int radix)
692
0
{
693
0
    if (n >= 0) {
694
0
        return u64toa_radix(buf, n, radix);
695
0
    } else {
696
0
        buf[0] = '-';
697
0
        return u64toa_radix(buf + 1, -(uint64_t)n, radix) + 1;
698
0
    }
699
0
}
700
#endif /* USE_FAST_INT */
701
702
static const uint8_t digits_per_limb_table[JS_RADIX_MAX - 1] = {
703
#if LIMB_BITS == 32
704
32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
705
#else
706
64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
707
#endif
708
};
709
710
static const uint32_t radix_base_table[JS_RADIX_MAX - 1] = {
711
 0x00000000, 0xcfd41b91, 0x00000000, 0x48c27395,
712
 0x81bf1000, 0x75db9c97, 0x40000000, 0xcfd41b91,
713
 0x3b9aca00, 0x8c8b6d2b, 0x19a10000, 0x309f1021,
714
 0x57f6c100, 0x98c29b81, 0x00000000, 0x18754571,
715
 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
716
 0x94ace180, 0xcaf18367, 0x0b640000, 0x0e8d4a51,
717
 0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899,
718
 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1,
719
 0x5c13d840, 0x6d91b519, 0x81bf1000,
720
};
721
722
/* XXX: remove the table ? */
723
static uint8_t dtoa_max_digits_table[JS_RADIX_MAX - 1] = {
724
    54, 35, 28, 24, 22, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12,
725
};
726
727
/* we limit the maximum number of significant digits for atod to about
728
   128 bits of precision for non power of two bases. The only
729
   requirement for Javascript is at least 20 digits in base 10. For
730
   power of two bases, we do an exact rounding in all the cases. */
731
static uint8_t atod_max_digits_table[JS_RADIX_MAX - 1] = {
732
     64, 80, 32, 55, 49, 45, 21, 40, 38, 37, 35, 34, 33, 32, 16, 31, 30, 30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 12, 25, 25, 24, 24,
733
};
734
735
/* if abs(d) >= B^max_exponent, it is an overflow */
736
static const int16_t max_exponent[JS_RADIX_MAX - 1] = {
737
 1024,   647,   512,   442,   397,   365,   342,   324, 
738
  309,   297,   286,   277,   269,   263,   256,   251, 
739
  246,   242,   237,   234,   230,   227,   224,   221, 
740
  218,   216,   214,   211,   209,   207,   205,   203, 
741
  202,   200,   199, 
742
};
743
744
/* if abs(d) <= B^min_exponent, it is an underflow */
745
static const int16_t min_exponent[JS_RADIX_MAX - 1] = {
746
-1075,  -679,  -538,  -463,  -416,  -383,  -359,  -340, 
747
 -324,  -311,  -300,  -291,  -283,  -276,  -269,  -263, 
748
 -258,  -254,  -249,  -245,  -242,  -238,  -235,  -232, 
749
 -229,  -227,  -224,  -222,  -220,  -217,  -215,  -214, 
750
 -212,  -210,  -208, 
751
};
752
753
#if 0
754
void build_tables(void)
755
{
756
    int r, j, radix, n, col, i;
757
    
758
    /* radix_base_table */
759
    for(radix = 2; radix <= 36; radix++) {
760
        r = 1;
761
        for(j = 0; j < digits_per_limb_table[radix - 2]; j++) {
762
            r *= radix;
763
        }
764
        printf(" 0x%08x,", r);
765
        if ((radix % 4) == 1)
766
            printf("\n");
767
    }
768
    printf("\n");
769
770
    /* dtoa_max_digits_table */
771
    for(radix = 2; radix <= 36; radix++) {
772
        /* Note: over estimated when the radix is a power of two */
773
        printf(" %d,", 1 + (int)ceil(53.0 / log2(radix)));
774
    }
775
    printf("\n");
776
777
    /* atod_max_digits_table */
778
    for(radix = 2; radix <= 36; radix++) {
779
        if ((radix & (radix - 1)) == 0) {
780
            /* 64 bits is more than enough */
781
            n = (int)floor(64.0 / log2(radix));
782
        } else {
783
            n = (int)floor(128.0 / log2(radix));
784
        }
785
        printf(" %d,", n);
786
    }
787
    printf("\n");
788
789
    printf("static const int16_t max_exponent[JS_RADIX_MAX - 1] = {\n");
790
    col = 0;
791
    for(radix = 2; radix <= 36; radix++) {
792
        printf("%5d, ", (int)ceil(1024 / log2(radix)));
793
        if (++col == 8) {
794
            col = 0;
795
            printf("\n");
796
        }
797
    }
798
    printf("\n};\n\n");
799
800
    printf("static const int16_t min_exponent[JS_RADIX_MAX - 1] = {\n");
801
    col = 0; 
802
    for(radix = 2; radix <= 36; radix++) {
803
        printf("%5d, ", (int)floor(-1075 / log2(radix)));
804
        if (++col == 8) {
805
            col = 0;
806
            printf("\n");
807
        }
808
    }
809
    printf("\n};\n\n");
810
811
    printf("static const uint32_t pow5_table[16] = {\n");
812
    col = 0; 
813
    for(i = 2; i <= 17; i++) {
814
        r = 1;
815
        for(j = 0; j < i; j++) {
816
            r *= 5;
817
        }
818
        printf("0x%08x, ", r);
819
        if (++col == 4) {
820
            col = 0;
821
            printf("\n");
822
        }
823
    }
824
    printf("\n};\n\n");
825
826
    /* high part */
827
    printf("static const uint8_t pow5h_table[4] = {\n");
828
    col = 0; 
829
    for(i = 14; i <= 17; i++) {
830
        uint64_t r1;
831
        r1 = 1;
832
        for(j = 0; j < i; j++) {
833
            r1 *= 5;
834
        }
835
        printf("0x%08x, ", (uint32_t)(r1 >> 32));
836
        if (++col == 4) {
837
            col = 0;
838
            printf("\n");
839
        }
840
    }
841
    printf("\n};\n\n");
842
}
843
#endif
844
845
/* n_digits >= 1. 0 <= dot_pos <= n_digits. If dot_pos == n_digits,
846
   the dot is not displayed. 'a' is modified. */
847
static int output_digits(char *buf,
848
                         mpb_t *a, int radix, int n_digits1,
849
                         int dot_pos)
850
0
{
851
0
    int n_digits, digits_per_limb, radix_bits, n, len;
852
853
0
    n_digits = n_digits1;
854
0
    if ((radix & (radix - 1)) == 0) {
855
        /* radix = 2^radix_bits */
856
0
        radix_bits = 31 - clz32(radix);
857
0
    } else {
858
0
        radix_bits = 0;
859
0
    }
860
0
    digits_per_limb = digits_per_limb_table[radix - 2];
861
0
    if (radix_bits != 0) {
862
0
        for(;;) {
863
0
            n = min_int(n_digits, digits_per_limb);
864
0
            n_digits -= n;
865
0
            u64toa_bin_len(buf + n_digits, a->tab[0], radix_bits, n);
866
0
            if (n_digits == 0)
867
0
                break;
868
0
            mpb_shr_round(a, digits_per_limb * radix_bits, JS_RNDZ);
869
0
        }
870
0
    } else {
871
0
        limb_t r;
872
0
        while (n_digits != 0) {
873
0
            n = min_int(n_digits, digits_per_limb);
874
0
            n_digits -= n;
875
0
            r = mp_div1(a->tab, a->tab, a->len, radix_base_table[radix - 2], 0);
876
0
            mpb_renorm(a);
877
0
            limb_to_a(buf + n_digits, r, radix, n);
878
0
        }
879
0
    }
880
881
    /* add the dot */
882
0
    len = n_digits1;
883
0
    if (dot_pos != n_digits1) {
884
0
        memmove(buf + dot_pos + 1, buf + dot_pos, n_digits1 - dot_pos);
885
0
        buf[dot_pos] = '.';
886
0
        len++;
887
0
    }
888
0
    return len;
889
0
}
890
891
/* return (a, e_offset) such that a = a * (radix1*2^radix_shift)^f *
892
   2^-e_offset. 'f' can be negative. */
893
static int mul_pow(mpb_t *a, int radix1, int radix_shift, int f, BOOL is_int, int e)
894
0
{
895
0
    int e_offset, d, n, n0;
896
897
0
    e_offset = -f * radix_shift;
898
0
    if (radix1 != 1) {
899
0
        d = digits_per_limb_table[radix1 - 2];
900
0
        if (f >= 0) {
901
0
            limb_t h, b;
902
            
903
0
            b = 0;
904
0
            n0 = 0;
905
0
            while (f != 0) {
906
0
                n = min_int(f, d);
907
0
                if (n != n0) {
908
0
                    b = pow_ui(radix1, n);
909
0
                    n0 = n;
910
0
                }
911
0
                h = mp_mul1(a->tab, a->tab, a->len, b, 0);
912
0
                if (h != 0) {
913
0
                    a->tab[a->len++] = h;
914
0
                }
915
0
                f -= n;
916
0
            }
917
0
        } else {
918
0
            int extra_bits, l, shift;
919
0
            limb_t r, rem, b, b_inv;
920
            
921
0
            f = -f;
922
0
            l = (f + d - 1) / d; /* high bound for the number of limbs (XXX: make it better) */
923
0
            e_offset += l * LIMB_BITS;
924
0
            if (!is_int) {
925
                /* at least 'e' bits are needed in the final result for rounding */
926
0
                extra_bits = max_int(e - mpb_floor_log2(a), 0);
927
0
            } else {
928
                /* at least two extra bits are needed in the final result
929
                   for rounding */
930
0
                extra_bits = max_int(2 + e - e_offset, 0);
931
0
            }
932
0
            e_offset += extra_bits;
933
0
            mpb_shr_round(a, -(l * LIMB_BITS + extra_bits), JS_RNDZ);
934
            
935
0
            b = 0;
936
0
            b_inv = 0;
937
0
            shift = 0;
938
0
            n0 = 0;
939
0
            rem = 0;
940
0
            while (f != 0) {
941
0
                n = min_int(f, d);
942
0
                if (n != n0) {
943
0
                    b = pow_ui_inv(&b_inv, &shift, radix1, n);
944
0
                    n0 = n;
945
0
                }
946
0
                r = mp_div1norm(a->tab, a->tab, a->len, b, 0, b_inv, shift);
947
0
                rem |= r;
948
0
                mpb_renorm(a);
949
0
                f -= n;
950
0
            }
951
            /* if the remainder is non zero, use it for rounding */
952
0
            a->tab[0] |= (rem != 0);
953
0
        }
954
0
    }
955
0
    return e_offset;
956
0
}
957
958
/* tmp1 = round(m*2^e*radix^f). 'tmp0' is a temporary storage */
959
static void mul_pow_round(mpb_t *tmp1, uint64_t m, int e, int radix1, int radix_shift, int f,
960
                          int rnd_mode)
961
0
{
962
0
    int e_offset;
963
964
0
    mpb_set_u64(tmp1, m);
965
0
    e_offset = mul_pow(tmp1, radix1, radix_shift, f, TRUE, e);
966
0
    mpb_shr_round(tmp1, -e + e_offset, rnd_mode);
967
0
}
968
969
/* return round(a*2^e_offset) rounded as a float64. 'a' is modified */
970
static uint64_t round_to_d(int *pe, mpb_t *a, int e_offset, int rnd_mode)
971
0
{
972
0
    int e;
973
0
    uint64_t m;
974
975
0
    if (a->tab[0] == 0 && a->len == 1) {
976
        /* zero result */
977
0
        m = 0;
978
0
        e = 0; /* don't care */
979
0
    } else {
980
0
        int prec, prec1, e_min;
981
0
        e = mpb_floor_log2(a) + 1 - e_offset;
982
0
        prec1 = 53;
983
0
        e_min = -1021;
984
0
        if (e < e_min) {
985
            /* subnormal result or zero */
986
0
            prec = prec1 - (e_min - e);
987
0
        } else {
988
0
            prec = prec1;
989
0
        }
990
0
        mpb_shr_round(a, e + e_offset - prec, rnd_mode);
991
0
        m = mpb_get_u64(a);
992
0
        m <<= (53 - prec);
993
        /* mantissa overflow due to rounding */
994
0
        if (m >= (uint64_t)1 << 53) {
995
0
            m >>= 1;
996
0
            e++;
997
0
        }
998
0
    }
999
0
    *pe = e;
1000
0
    return m;
1001
0
}
1002
1003
/* return (m, e) such that m*2^(e-53) = round(a * radix^f) with 2^52
1004
   <= m < 2^53 or m = 0.
1005
   'a' is modified. */
1006
static uint64_t mul_pow_round_to_d(int *pe, mpb_t *a,
1007
                                   int radix1, int radix_shift, int f, int rnd_mode)
1008
0
{
1009
0
    int e_offset;
1010
1011
0
    e_offset = mul_pow(a, radix1, radix_shift, f, FALSE, 55);
1012
0
    return round_to_d(pe, a, e_offset, rnd_mode);
1013
0
}
1014
1015
#ifdef JS_DTOA_DUMP_STATS
1016
static int out_len_count[17];
1017
1018
void js_dtoa_dump_stats(void)
1019
{
1020
    int i, sum;
1021
    sum = 0;
1022
    for(i = 0; i < 17; i++)
1023
        sum += out_len_count[i];
1024
    for(i = 0; i < 17; i++) {
1025
        printf("%2d %8d %5.2f%%\n",
1026
               i + 1, out_len_count[i], (double)out_len_count[i] / sum * 100);
1027
    }
1028
}
1029
#endif
1030
1031
/* return a maximum bound of the string length. The bound depends on
1032
   'd' only if format = JS_DTOA_FORMAT_FRAC or if JS_DTOA_EXP_DISABLED
1033
   is enabled. */
1034
int js_dtoa_max_len(double d, int radix, int n_digits, int flags)
1035
0
{
1036
0
    int fmt = flags & JS_DTOA_FORMAT_MASK;
1037
0
    int n, e;
1038
0
    uint64_t a;
1039
1040
0
    if (fmt != JS_DTOA_FORMAT_FRAC) {
1041
0
        if (fmt == JS_DTOA_FORMAT_FREE) {
1042
0
            n = dtoa_max_digits_table[radix - 2];
1043
0
        } else {
1044
0
            n = n_digits;
1045
0
        }
1046
0
        if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_DISABLED) {
1047
            /* no exponential */
1048
0
            a = float64_as_uint64(d);
1049
0
            e = (a >> 52) & 0x7ff;
1050
0
            if (e == 0x7ff) {
1051
                /* NaN, Infinity */
1052
0
                n = 0;
1053
0
            } else {
1054
0
                e -= 1023;
1055
                /* XXX: adjust */
1056
0
                n += 10 + abs(mul_log2_radix(e - 1, radix));
1057
0
            }
1058
0
        } else {
1059
            /* extra: sign, 1 dot and exponent "e-1000" */
1060
0
            n += 1 + 1 + 6;
1061
0
        }
1062
0
    } else {
1063
0
        a = float64_as_uint64(d);
1064
0
        e = (a >> 52) & 0x7ff;
1065
0
        if (e == 0x7ff) {
1066
            /* NaN, Infinity */
1067
0
            n = 0;
1068
0
        } else {
1069
            /* high bound for the integer part */
1070
0
            e -= 1023;
1071
            /* x < 2^(e + 1) */
1072
0
            if (e < 0) {
1073
0
                n = 1;
1074
0
            } else {
1075
0
                n = 2 + mul_log2_radix(e - 1, radix);
1076
0
            }
1077
            /* sign, extra digit, 1 dot */
1078
0
            n += 1 + 1 + 1 + n_digits;
1079
0
        }
1080
0
    }
1081
0
    return max_int(n, 9); /* also include NaN and [-]Infinity */
1082
0
}
1083
1084
#if defined(__SANITIZE_ADDRESS__) && 0
1085
static void *dtoa_malloc(uint64_t **pptr, size_t size)
1086
{
1087
    return malloc(size);
1088
}
1089
static void dtoa_free(void *ptr)
1090
{
1091
    free(ptr);
1092
}
1093
#else
1094
static void *dtoa_malloc(uint64_t **pptr, size_t size)
1095
1
{
1096
1
    void *ret;
1097
1
    ret = *pptr;
1098
1
    *pptr += (size + 7) / 8;
1099
1
    return ret;
1100
1
}
1101
1102
static void dtoa_free(void *ptr)
1103
1
{
1104
1
}
1105
#endif
1106
1107
/* return the length */
1108
int js_dtoa(char *buf, double d, int radix, int n_digits, int flags,
1109
            JSDTOATempMem *tmp_mem)
1110
0
{
1111
0
    uint64_t a, m, *mptr = tmp_mem->mem;
1112
0
    int e, sgn, l, E, P, i, E_max, radix1, radix_shift;
1113
0
    char *q;
1114
0
    mpb_t *tmp1, *mant_max;
1115
0
    int fmt = flags & JS_DTOA_FORMAT_MASK;
1116
1117
0
    tmp1 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
1118
0
    mant_max = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * MANT_LEN_MAX);
1119
0
    assert((mptr - tmp_mem->mem) <= sizeof(JSDTOATempMem) / sizeof(mptr[0]));
1120
1121
0
    radix_shift = ctz32(radix);
1122
0
    radix1 = radix >> radix_shift;
1123
0
    a = float64_as_uint64(d);
1124
0
    sgn = a >> 63;
1125
0
    e = (a >> 52) & 0x7ff;
1126
0
    m = a & (((uint64_t)1 << 52) - 1);
1127
0
    q = buf;
1128
0
    if (e == 0x7ff) {
1129
0
        if (m == 0) {
1130
0
            if (sgn)
1131
0
                *q++ = '-';
1132
0
            memcpy(q, "Infinity", 8);
1133
0
            q += 8;
1134
0
        } else {
1135
0
            memcpy(q, "NaN", 3);
1136
0
            q += 3;
1137
0
        }
1138
0
        goto done;
1139
0
    } else if (e == 0) {
1140
0
        if (m == 0) {
1141
0
            tmp1->len = 1;
1142
0
            tmp1->tab[0] = 0;
1143
0
            E = 1;
1144
0
            if (fmt == JS_DTOA_FORMAT_FREE)
1145
0
                P = 1;
1146
0
            else if (fmt == JS_DTOA_FORMAT_FRAC)
1147
0
                P = n_digits + 1;
1148
0
            else
1149
0
                P = n_digits;
1150
            /* "-0" is displayed as "0" if JS_DTOA_MINUS_ZERO is not present */
1151
0
            if (sgn && (flags & JS_DTOA_MINUS_ZERO))
1152
0
                *q++ = '-';
1153
0
            goto output;
1154
0
        }
1155
        /* denormal number: convert to a normal number */
1156
0
        l = clz64(m) - 11;
1157
0
        e -= l - 1;
1158
0
        m <<= l;
1159
0
    } else {
1160
0
        m |= (uint64_t)1 << 52;
1161
0
    }
1162
0
    if (sgn)
1163
0
        *q++ = '-';
1164
    /* remove the bias */
1165
0
    e -= 1022;
1166
    /* d = 2^(e-53)*m */
1167
    //    printf("m=0x%016" PRIx64 " e=%d\n", m, e);
1168
0
#ifdef USE_FAST_INT
1169
0
    if (fmt == JS_DTOA_FORMAT_FREE &&
1170
0
        e >= 1 && e <= 53 &&
1171
0
        (m & (((uint64_t)1 << (53 - e)) - 1)) == 0 &&
1172
0
        (flags & JS_DTOA_EXP_MASK) != JS_DTOA_EXP_ENABLED) {
1173
0
        m >>= 53 - e;
1174
        /* 'm' is never zero */
1175
0
        q += u64toa_radix(q, m, radix);
1176
0
        goto done;
1177
0
    }
1178
0
#endif
1179
    
1180
    /* this choice of E implies F=round(x*B^(P-E) is such as: 
1181
       B^(P-1) <= F < 2.B^P. */
1182
0
    E = 1 + mul_log2_radix(e - 1, radix);
1183
    
1184
0
    if (fmt == JS_DTOA_FORMAT_FREE) {
1185
0
        int P_max, E0, e1, E_found, P_found;
1186
0
        uint64_t m1, mant_found, mant, mant_max1;
1187
        /* P_max is guarranteed to work by construction */
1188
0
        P_max = dtoa_max_digits_table[radix - 2];
1189
0
        E0 = E;
1190
0
        E_found = 0;
1191
0
        P_found = 0;
1192
0
        mant_found = 0;
1193
        /* find the minimum number of digits by successive tries */
1194
0
        P = P_max; /* P_max is guarateed to work */
1195
0
        for(;;) {
1196
            /* mant_max always fits on 64 bits */
1197
0
            mant_max1 = pow_ui(radix, P);
1198
            /* compute the mantissa in base B */
1199
0
            E = E0;
1200
0
            for(;;) {
1201
                /* XXX: add inexact flag */
1202
0
                mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDN);
1203
0
                mant = mpb_get_u64(tmp1);
1204
0
                if (mant < mant_max1)
1205
0
                    break;
1206
0
                E++; /* at most one iteration is possible */
1207
0
            }
1208
            /* remove useless trailing zero digits */
1209
0
            while ((mant % radix) == 0) {
1210
0
                mant /= radix;
1211
0
                P--;
1212
0
            }
1213
            /* garanteed to work for P = P_max */
1214
0
            if (P_found == 0)
1215
0
                goto prec_found;
1216
            /* convert back to base 2 */
1217
0
            mpb_set_u64(tmp1, mant);
1218
0
            m1 = mul_pow_round_to_d(&e1, tmp1, radix1, radix_shift, E - P, JS_RNDN);
1219
            //            printf("P=%2d: m=0x%016" PRIx64 " e=%d m1=0x%016" PRIx64 " e1=%d\n", P, m, e, m1, e1);
1220
            /* Note: (m, e) is never zero here, so the exponent for m1
1221
               = 0 does not matter */
1222
0
            if (m1 == m && e1 == e) {
1223
0
            prec_found:
1224
0
                P_found = P;
1225
0
                E_found = E;
1226
0
                mant_found = mant;
1227
0
                if (P == 1)
1228
0
                    break;
1229
0
                P--; /* try lower exponent */
1230
0
            } else {
1231
0
                break;
1232
0
            }
1233
0
        }
1234
0
        P = P_found;
1235
0
        E = E_found;
1236
0
        mpb_set_u64(tmp1, mant_found);
1237
#ifdef JS_DTOA_DUMP_STATS
1238
        if (radix == 10) {
1239
            out_len_count[P - 1]++;
1240
        }
1241
#endif        
1242
0
    } else if (fmt == JS_DTOA_FORMAT_FRAC) {
1243
0
        int len;
1244
1245
0
        assert(n_digits >= 0 && n_digits <= JS_DTOA_MAX_DIGITS);
1246
        /* P = max_int(E, 1) + n_digits; */
1247
        /* frac is rounded using RNDNA */
1248
0
        mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, n_digits, JS_RNDNA);
1249
1250
        /* we add one extra digit on the left and remove it if needed
1251
           to avoid testing if the result is < radix^P */
1252
0
        len = output_digits(q, tmp1, radix, max_int(E + 1, 1) + n_digits,
1253
0
                            max_int(E + 1, 1));
1254
0
        if (q[0] == '0' && len >= 2 && q[1] != '.') {
1255
0
            len--;
1256
0
            memmove(q, q + 1, len);
1257
0
        }
1258
0
        q += len;
1259
0
        goto done;
1260
0
    } else {
1261
0
        int pow_shift;
1262
0
        assert(n_digits >= 1 && n_digits <= JS_DTOA_MAX_DIGITS);
1263
0
        P = n_digits;
1264
        /* mant_max = radix^P */
1265
0
        mant_max->len = 1;
1266
0
        mant_max->tab[0] = 1;
1267
0
        pow_shift = mul_pow(mant_max, radix1, radix_shift, P, FALSE, 0);
1268
0
        mpb_shr_round(mant_max, pow_shift, JS_RNDZ);
1269
        
1270
0
        for(;;) {
1271
            /* fixed and frac are rounded using RNDNA */
1272
0
            mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDNA);
1273
0
            if (mpb_cmp(tmp1, mant_max) < 0)
1274
0
                break;
1275
0
            E++; /* at most one iteration is possible */
1276
0
        }
1277
0
    }
1278
0
 output:
1279
0
    if (fmt == JS_DTOA_FORMAT_FIXED)
1280
0
        E_max = n_digits;
1281
0
    else
1282
0
        E_max = dtoa_max_digits_table[radix - 2] + 4;
1283
0
    if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_ENABLED ||
1284
0
        ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_AUTO && (E <= -6 || E > E_max))) {
1285
0
        q += output_digits(q, tmp1, radix, P, 1);
1286
0
        E--;
1287
0
        if (radix == 10) {
1288
0
            *q++ = 'e';
1289
0
        } else if (radix1 == 1 && radix_shift <= 4) {
1290
0
            E *= radix_shift;
1291
0
            *q++ = 'p';
1292
0
        } else {
1293
0
            *q++ = '@';
1294
0
        }
1295
0
        if (E < 0) {
1296
0
            *q++ = '-';
1297
0
            E = -E;
1298
0
        } else {
1299
0
            *q++ = '+';
1300
0
        }
1301
0
        q += u32toa(q, E);
1302
0
    } else if (E <= 0) {
1303
0
        *q++ = '0';
1304
0
        *q++ = '.';
1305
0
        for(i = 0; i < -E; i++)
1306
0
            *q++ = '0';
1307
0
        q += output_digits(q, tmp1, radix, P, P);
1308
0
    } else {
1309
0
        q += output_digits(q, tmp1, radix, P, min_int(P, E));
1310
0
        for(i = 0; i < E - P; i++)
1311
0
            *q++ = '0';
1312
0
    }
1313
0
 done:
1314
0
    *q = '\0';
1315
0
    dtoa_free(mant_max);
1316
0
    dtoa_free(tmp1);
1317
0
    return q - buf;
1318
0
}
1319
1320
static inline int to_digit(int c)
1321
1.04M
{
1322
1.04M
    if (c >= '0' && c <= '9')
1323
20
        return c - '0';
1324
1.04M
    else if (c >= 'A' && c <= 'Z')
1325
0
        return c - 'A' + 10;
1326
1.04M
    else if (c >= 'a' && c <= 'z')
1327
1.04M
        return c - 'a' + 10;
1328
1
    else
1329
1
        return 36;
1330
1.04M
}
1331
1332
/* r = r * radix_base + a. radix_base = 0 means radix_base = 2^32 */
1333
static void mpb_mul1_base(mpb_t *r, limb_t radix_base, limb_t a)
1334
2
{
1335
2
    int i;
1336
2
    if (r->tab[0] == 0 && r->len == 1) {
1337
1
        r->tab[0] = a;
1338
1
    } else {
1339
1
        if (radix_base == 0) {
1340
3
            for(i = r->len; i >= 0; i--) {
1341
2
                r->tab[i + 1] = r->tab[i];
1342
2
            }
1343
1
            r->tab[0] = a;
1344
1
        } else {
1345
0
            r->tab[r->len] = mp_mul1(r->tab, r->tab, r->len,
1346
0
                                     radix_base, a);
1347
0
        }
1348
1
        r->len++;
1349
1
        mpb_renorm(r);
1350
1
    }
1351
2
}
1352
1353
/* XXX: add fast path for small integers */
1354
double js_atod(const char *str, const char **pnext, int radix, int flags,
1355
               JSATODTempMem *tmp_mem)
1356
1
{
1357
1
    uint64_t *mptr = tmp_mem->mem;
1358
1
    const char *p, *p_start;
1359
1
    limb_t cur_limb, radix_base, extra_digits;
1360
1
    int is_neg, digit_count, limb_digit_count, digits_per_limb, sep, radix1, radix_shift;
1361
1
    int radix_bits, expn, e, max_digits, expn_offset, dot_pos, sig_pos, pos;
1362
1
    mpb_t *tmp0;
1363
1
    double dval;
1364
1
    BOOL is_bin_exp, is_zero, expn_overflow;
1365
1
    uint64_t m, a;
1366
1367
1
    tmp0 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
1368
1
    assert((mptr - tmp_mem->mem) <= sizeof(JSATODTempMem) / sizeof(mptr[0]));
1369
    /* optional separator between digits */
1370
1
    sep = (flags & JS_ATOD_ACCEPT_UNDERSCORES) ? '_' : 256;
1371
1372
1
    p = str;
1373
1
    is_neg = 0;
1374
1
    if (p[0] == '+') {
1375
0
        p++;
1376
0
        p_start = p;
1377
1
    } else if (p[0] == '-') {
1378
0
        is_neg = 1;
1379
0
        p++;
1380
0
        p_start = p;
1381
1
    } else {
1382
1
        p_start = p;
1383
1
    }
1384
    
1385
1
    if (p[0] == '0') {
1386
0
        if ((p[1] == 'x' || p[1] == 'X') &&
1387
0
            (radix == 0 || radix == 16)) {
1388
0
            p += 2;
1389
0
            radix = 16;
1390
0
        } else if ((p[1] == 'o' || p[1] == 'O') &&
1391
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
1392
0
            p += 2;
1393
0
            radix = 8;
1394
0
        } else if ((p[1] == 'b' || p[1] == 'B') &&
1395
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
1396
0
            p += 2;
1397
0
            radix = 2;
1398
0
        } else if ((p[1] >= '0' && p[1] <= '9') &&
1399
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_LEGACY_OCTAL)) {
1400
0
            int i;
1401
0
            sep = 256;
1402
0
            for (i = 1; (p[i] >= '0' && p[i] <= '7'); i++)
1403
0
                continue;
1404
0
            if (p[i] == '8' || p[i] == '9')
1405
0
                goto no_prefix;
1406
0
            p += 1;
1407
0
            radix = 8;
1408
0
        } else {
1409
0
            goto no_prefix;
1410
0
        }
1411
        /* there must be a digit after the prefix */
1412
0
        if (to_digit((uint8_t)*p) >= radix)
1413
0
            goto fail;
1414
0
    no_prefix: ;
1415
1
    } else {
1416
1
        if (!(flags & JS_ATOD_INT_ONLY) && strstart(p, "Infinity", &p))
1417
0
            goto overflow;
1418
1
    }
1419
1
    if (radix == 0)
1420
0
        radix = 10;
1421
1422
1
    cur_limb = 0;
1423
1
    expn_offset = 0;
1424
1
    digit_count = 0;
1425
1
    limb_digit_count = 0;
1426
1
    max_digits = atod_max_digits_table[radix - 2];
1427
1
    digits_per_limb = digits_per_limb_table[radix - 2];
1428
1
    radix_base = radix_base_table[radix - 2];
1429
1
    radix_shift = ctz32(radix);
1430
1
    radix1 = radix >> radix_shift;
1431
1
    if (radix1 == 1) {
1432
        /* radix = 2^radix_bits */
1433
1
        radix_bits = radix_shift;
1434
1
    } else {
1435
0
        radix_bits = 0;
1436
0
    }
1437
1
    tmp0->len = 1;
1438
1
    tmp0->tab[0] = 0;
1439
1
    extra_digits = 0;
1440
1
    pos = 0;
1441
1
    dot_pos = -1;
1442
    /* skip leading zeros */
1443
1
    for(;;) {
1444
1
        if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
1445
1
            !(flags & JS_ATOD_INT_ONLY)) {
1446
0
            if (*p == sep)
1447
0
                goto fail;
1448
0
            if (dot_pos >= 0)
1449
0
                break;
1450
0
            dot_pos = pos;
1451
0
            p++;
1452
0
        }
1453
1
        if (*p == sep && p > p_start && p[1] == '0')
1454
0
            p++;
1455
1
        if (*p != '0')
1456
1
            break;
1457
0
        p++;
1458
0
        pos++;
1459
0
    }
1460
    
1461
1
    sig_pos = pos;
1462
1.04M
    for(;;) {
1463
1.04M
        limb_t c;
1464
1.04M
        if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
1465
1.04M
            !(flags & JS_ATOD_INT_ONLY)) {
1466
0
            if (*p == sep)
1467
0
                goto fail;
1468
0
            if (dot_pos >= 0)
1469
0
                break;
1470
0
            dot_pos = pos;
1471
0
            p++;
1472
0
        }
1473
1.04M
        if (*p == sep && p > p_start && to_digit(p[1]) < radix)
1474
0
            p++;
1475
1.04M
        c = to_digit(*p);
1476
1.04M
        if (c >= radix)
1477
1
            break;
1478
1.04M
        p++;
1479
1.04M
        pos++;
1480
1.04M
        if (digit_count < max_digits) {
1481
            /* XXX: could be faster when radix_bits != 0 */
1482
16
            cur_limb = cur_limb * radix + c;
1483
16
            limb_digit_count++;
1484
16
            if (limb_digit_count == digits_per_limb) {
1485
2
                mpb_mul1_base(tmp0, radix_base, cur_limb);
1486
2
                cur_limb = 0;
1487
2
                limb_digit_count = 0;
1488
2
            }
1489
16
            digit_count++;
1490
1.04M
        } else {
1491
1.04M
            extra_digits |= c;
1492
1.04M
        }
1493
1.04M
    }
1494
1
    if (limb_digit_count != 0) {
1495
0
        mpb_mul1_base(tmp0, pow_ui(radix, limb_digit_count), cur_limb);
1496
0
    }
1497
1
    if (digit_count == 0) {
1498
0
        is_zero = TRUE;
1499
0
        expn_offset = 0;
1500
1
    } else {
1501
1
        is_zero = FALSE;
1502
1
        if (dot_pos < 0)
1503
1
            dot_pos = pos;
1504
1
        expn_offset = sig_pos + digit_count - dot_pos;
1505
1
    }
1506
    
1507
    /* Use the extra digits for rounding if the base is a power of
1508
       two. Otherwise they are just truncated. */
1509
1
    if (radix_bits != 0 && extra_digits != 0) {
1510
1
        tmp0->tab[0] |= 1;
1511
1
    }
1512
    
1513
    /* parse the exponent, if any */
1514
1
    expn = 0;
1515
1
    expn_overflow = FALSE;
1516
1
    is_bin_exp = FALSE;
1517
1
    if (!(flags & JS_ATOD_INT_ONLY) &&
1518
1
        ((radix == 10 && (*p == 'e' || *p == 'E')) ||
1519
0
         (radix != 10 && (*p == '@' ||
1520
0
                          (radix_bits >= 1 && radix_bits <= 4 && (*p == 'p' || *p == 'P'))))) &&
1521
1
        p > p_start) {
1522
0
        BOOL exp_is_neg;
1523
0
        int c;
1524
0
        is_bin_exp = (*p == 'p' || *p == 'P');
1525
0
        p++;
1526
0
        exp_is_neg = 0;
1527
0
        if (*p == '+') {
1528
0
            p++;
1529
0
        } else if (*p == '-') {
1530
0
            exp_is_neg = 1;
1531
0
            p++;
1532
0
        }
1533
0
        c = to_digit(*p);
1534
0
        if (c >= 10)
1535
0
            goto fail; /* XXX: could stop before the exponent part */
1536
0
        expn = c;
1537
0
        p++;
1538
0
        for(;;) {
1539
0
            if (*p == sep && to_digit(p[1]) < 10)
1540
0
                p++;
1541
0
            c = to_digit(*p);
1542
0
            if (c >= 10)
1543
0
                break;
1544
0
            if (!expn_overflow) {
1545
0
                if (unlikely(expn > ((INT32_MAX - 2 - 9) / 10))) {
1546
0
                    expn_overflow = TRUE;
1547
0
                } else {
1548
0
                    expn = expn * 10 + c;
1549
0
                }
1550
0
            }
1551
0
            p++;
1552
0
        }
1553
0
        if (exp_is_neg)
1554
0
            expn = -expn;
1555
        /* if zero result, the exponent can be arbitrarily large */
1556
0
        if (!is_zero && expn_overflow) {
1557
0
            if (exp_is_neg)
1558
0
                a = 0;
1559
0
            else
1560
0
                a = (uint64_t)0x7ff << 52; /* infinity */
1561
0
            goto done;
1562
0
        }
1563
0
    }
1564
1565
1
    if (p == p_start)
1566
0
        goto fail;
1567
1568
1
    if (is_zero) {
1569
0
        a = 0;
1570
1
    } else {
1571
1
        int expn1;
1572
1
        if (radix_bits != 0) {
1573
1
            if (!is_bin_exp)
1574
1
                expn *= radix_bits;
1575
1
            expn -= expn_offset * radix_bits;
1576
1
            expn1 = expn + digit_count * radix_bits;
1577
1
            if (expn1 >= 1024 + radix_bits)
1578
1
                goto overflow;
1579
0
            else if (expn1 <= -1075)
1580
0
                goto underflow;
1581
0
            m = round_to_d(&e, tmp0, -expn, JS_RNDN);
1582
0
        } else {
1583
0
            expn -= expn_offset;
1584
0
            expn1 = expn + digit_count;
1585
0
            if (expn1 >= max_exponent[radix - 2] + 1)
1586
0
                goto overflow;
1587
0
            else if (expn1 <= min_exponent[radix - 2])
1588
0
                goto underflow;
1589
0
            m = mul_pow_round_to_d(&e, tmp0, radix1, radix_shift, expn, JS_RNDN);
1590
0
        }
1591
0
        if (m == 0) {
1592
0
        underflow:
1593
0
            a = 0;
1594
0
        } else if (e > 1024) {
1595
1
        overflow:
1596
            /* overflow */
1597
1
            a = (uint64_t)0x7ff << 52;
1598
1
        } else if (e < -1073) {
1599
            /* underflow */
1600
            /* XXX: check rounding */
1601
0
            a = 0;
1602
0
        } else if (e < -1021) {
1603
            /* subnormal */
1604
0
            a = m >> (-e - 1021);
1605
0
        } else {
1606
0
            a = ((uint64_t)(e + 1022) << 52) | (m & (((uint64_t)1 << 52) - 1));
1607
0
        }
1608
0
    }
1609
1
 done:
1610
1
    a |= (uint64_t)is_neg << 63;
1611
1
    dval = uint64_as_float64(a);
1612
1
 done1:
1613
1
    if (pnext)
1614
0
        *pnext = p;
1615
1
    dtoa_free(tmp0);
1616
1
    return dval;
1617
0
 fail:
1618
0
    dval = NAN;
1619
0
    goto done1;
1620
1
}