Coverage Report

Created: 2025-10-10 06:23

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quickjs/dtoa.c
Line
Count
Source
1
/*
2
 * Tiny float64 printing and parsing library
3
 *
4
 * Copyright (c) 2024 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <inttypes.h>
28
#include <string.h>
29
#include <assert.h>
30
#include <ctype.h>
31
#include <sys/time.h>
32
#include <math.h>
33
#include <setjmp.h>
34
35
#include "cutils.h"
36
#include "dtoa.h"
37
38
/* 
39
   TODO:
40
   - test n_digits=101 instead of 100
41
   - simplify subnormal handling
42
   - reduce max memory usage
43
   - free format: could add shortcut if exact result
44
   - use 64 bit limb_t when possible
45
   - use another algorithm for free format dtoa in base 10 (ryu ?)
46
*/
47
48
#define USE_POW5_TABLE
49
/* use fast path to print small integers in free format */
50
#define USE_FAST_INT
51
52
6.02M
#define LIMB_LOG2_BITS 5
53
54
6.02M
#define LIMB_BITS (1 << LIMB_LOG2_BITS)
55
56
typedef int32_t slimb_t;
57
typedef uint32_t limb_t;
58
typedef uint64_t dlimb_t;
59
60
#define LIMB_DIGITS 9
61
62
#define JS_RADIX_MAX 36
63
64
2.14M
#define DBIGNUM_LEN_MAX 52 /* ~ 2^(1072+53)*36^100 (dtoa) */
65
0
#define MANT_LEN_MAX 18 /* < 36^100 */
66
67
typedef intptr_t mp_size_t;
68
69
/* the represented number is sum(i, tab[i]*2^(LIMB_BITS * i)) */
70
typedef struct {
71
    int len; /* >= 1 */
72
    limb_t tab[];
73
} mpb_t;
74
75
static limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n)
76
1.57k
{
77
1.57k
    size_t i;
78
1.57k
    limb_t k, a;
79
80
1.57k
    k=b;
81
3.22k
    for(i=0;i<n;i++) {
82
3.15k
        if (k == 0)
83
1.50k
            break;
84
1.65k
        a = tab[i] + k;
85
1.65k
        k = (a < k);
86
1.65k
        tab[i] = a;
87
1.65k
    }
88
1.57k
    return k;
89
1.57k
}
90
91
/* tabr[] = taba[] * b + l. Return the high carry */
92
static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n, 
93
                      limb_t b, limb_t l)
94
4.00k
{
95
4.00k
    limb_t i;
96
4.00k
    dlimb_t t;
97
98
10.8k
    for(i = 0; i < n; i++) {
99
6.81k
        t = (dlimb_t)taba[i] * (dlimb_t)b + l;
100
6.81k
        tabr[i] = t;
101
6.81k
        l = t >> LIMB_BITS;
102
6.81k
    }
103
4.00k
    return l;
104
4.00k
}
105
106
/* WARNING: d must be >= 2^(LIMB_BITS-1) */
107
static inline limb_t udiv1norm_init(limb_t d)
108
0
{
109
0
    limb_t a0, a1;
110
0
    a1 = -d - 1;
111
0
    a0 = -1;
112
0
    return (((dlimb_t)a1 << LIMB_BITS) | a0) / d;
113
0
}
114
115
/* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0
116
   / d' with 0 <= a1 < d. */
117
static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0,
118
                                limb_t d, limb_t d_inv)
119
2.68k
{
120
2.68k
    limb_t n1m, n_adj, q, r, ah;
121
2.68k
    dlimb_t a;
122
2.68k
    n1m = ((slimb_t)a0 >> (LIMB_BITS - 1));
123
2.68k
    n_adj = a0 + (n1m & d);
124
2.68k
    a = (dlimb_t)d_inv * (a1 - n1m) + n_adj;
125
2.68k
    q = (a >> LIMB_BITS) + a1;
126
    /* compute a - q * r and update q so that the remainder is between
127
       0 and d - 1 */
128
2.68k
    a = ((dlimb_t)a1 << LIMB_BITS) | a0;
129
2.68k
    a = a - (dlimb_t)q * d - d;
130
2.68k
    ah = a >> LIMB_BITS;
131
2.68k
    q += 1 + ah;
132
2.68k
    r = (limb_t)a + (ah & d);
133
2.68k
    *pr = r;
134
2.68k
    return q;
135
2.68k
}
136
137
static limb_t mp_div1(limb_t *tabr, const limb_t *taba, limb_t n,
138
                      limb_t b, limb_t r)
139
0
{
140
0
    slimb_t i;
141
0
    dlimb_t a1;
142
0
    for(i = n - 1; i >= 0; i--) {
143
0
        a1 = ((dlimb_t)r << LIMB_BITS) | taba[i];
144
0
        tabr[i] = a1 / b;
145
0
        r = a1 % b;
146
0
    }
147
0
    return r;
148
0
}
149
150
/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift). 
151
   1 <= shift <= LIMB_BITS - 1 */
152
static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n, 
153
                     int shift, limb_t high)
154
2.22k
{
155
2.22k
    mp_size_t i;
156
2.22k
    limb_t l, a;
157
158
2.22k
    assert(shift >= 1 && shift < LIMB_BITS);
159
2.22k
    l = high;
160
7.41k
    for(i = n - 1; i >= 0; i--) {
161
5.18k
        a = tab[i];
162
5.18k
        tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift));
163
5.18k
        l = a;
164
5.18k
    }
165
2.22k
    return l & (((limb_t)1 << shift) - 1);
166
2.22k
}
167
168
/* r = (a << shift) + low. 1 <= shift <= LIMB_BITS - 1, 0 <= low <
169
   2^shift. */
170
static limb_t mp_shl(limb_t *tab_r, const limb_t *tab, mp_size_t n, 
171
              int shift, limb_t low)
172
1.19M
{
173
1.19M
    mp_size_t i;
174
1.19M
    limb_t l, a;
175
176
1.19M
    assert(shift >= 1 && shift < LIMB_BITS);
177
1.19M
    l = low;
178
2.39M
    for(i = 0; i < n; i++) {
179
1.19M
        a = tab[i];
180
1.19M
        tab_r[i] = (a << shift) | l;
181
1.19M
        l = (a >> (LIMB_BITS - shift)); 
182
1.19M
    }
183
1.19M
    return l;
184
1.19M
}
185
186
static no_inline limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n,
187
                                    limb_t b, limb_t r, limb_t b_inv, int shift)
188
895
{
189
895
    slimb_t i;
190
191
895
    if (shift != 0) {
192
895
        r = (r << shift) | mp_shl(tabr, taba, n, shift, 0);
193
895
    }
194
3.58k
    for(i = n - 1; i >= 0; i--) {
195
2.68k
        tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
196
2.68k
    }
197
895
    r >>= shift;
198
895
    return r;
199
895
}
200
201
static __maybe_unused void mpb_dump(const char *str, const mpb_t *a)
202
0
{
203
0
    int i;
204
0
    
205
0
    printf("%s= 0x", str);
206
0
    for(i = a->len - 1; i >= 0; i--) {
207
0
        printf("%08x", a->tab[i]);
208
0
        if (i != 0)
209
0
            printf("_");
210
0
    }
211
0
    printf("\n");
212
0
}
213
214
static void mpb_renorm(mpb_t *r)
215
1.20M
{
216
2.40M
    while (r->len > 1 && r->tab[r->len - 1] == 0)
217
1.19M
        r->len--;
218
1.20M
}
219
220
#ifdef USE_POW5_TABLE
221
static const uint32_t pow5_table[17] = {
222
    0x00000005, 0x00000019, 0x0000007d, 0x00000271, 
223
    0x00000c35, 0x00003d09, 0x0001312d, 0x0005f5e1, 
224
    0x001dcd65, 0x009502f9, 0x02e90edd, 0x0e8d4a51, 
225
    0x48c27395, 0x6bcc41e9, 0x1afd498d, 0x86f26fc1, 
226
    0xa2bc2ec5, 
227
};
228
229
static const uint8_t pow5h_table[4] = {
230
    0x00000001, 0x00000007, 0x00000023, 0x000000b1, 
231
};
232
233
static const uint32_t pow5_inv_table[13] = {
234
    0x99999999, 0x47ae147a, 0x0624dd2f, 0xa36e2eb1,
235
    0x4f8b588e, 0x0c6f7a0b, 0xad7f29ab, 0x5798ee23,
236
    0x12e0be82, 0xb7cdfd9d, 0x5fd7fe17, 0x19799812,
237
    0xc25c2684,
238
};
239
#endif
240
241
/* return a^b */
242
static uint64_t pow_ui(uint32_t a, uint32_t b)
243
1.19M
{
244
1.19M
    int i, n_bits;
245
1.19M
    uint64_t r;
246
1.19M
    if (b == 0)
247
0
        return 1;
248
1.19M
    if (b == 1)
249
1.18M
        return a;
250
11.7k
#ifdef USE_POW5_TABLE
251
11.7k
    if ((a == 5 || a == 10) && b <= 17) {
252
11.7k
        r = pow5_table[b - 1];
253
11.7k
        if (b >= 14) {
254
0
            r |= (uint64_t)pow5h_table[b - 14] << 32;
255
0
        }
256
11.7k
        if (a == 10)
257
11.3k
            r <<= b;
258
11.7k
        return r;
259
11.7k
    }
260
0
#endif
261
0
    r = a;
262
0
    n_bits = 32 - clz32(b);
263
0
    for(i = n_bits - 2; i >= 0; i--) {
264
0
        r *= r;
265
0
        if ((b >> i) & 1)
266
0
            r *= a;
267
0
    }
268
0
    return r;
269
11.7k
}
270
271
static uint32_t pow_ui_inv(uint32_t *pr_inv, int *pshift, uint32_t a, uint32_t b)
272
895
{
273
895
    uint32_t r_inv, r;
274
895
    int shift;
275
895
#ifdef USE_POW5_TABLE
276
895
    if (a == 5 && b >= 1 && b <= 13) {
277
895
        r = pow5_table[b - 1];
278
895
        shift = clz32(r);
279
895
        r <<= shift;
280
895
        r_inv = pow5_inv_table[b - 1];
281
895
    } else
282
0
#endif
283
0
    {
284
0
        r = pow_ui(a, b);
285
0
        shift = clz32(r);
286
0
        r <<= shift;
287
0
        r_inv = udiv1norm_init(r);
288
0
    }
289
895
    *pshift = shift;
290
895
    *pr_inv = r_inv;
291
895
    return r;
292
895
}
293
294
enum {
295
    JS_RNDN, /* round to nearest, ties to even */
296
    JS_RNDNA, /* round to nearest, ties away from zero */
297
    JS_RNDZ,
298
};
299
300
static int mpb_get_bit(const mpb_t *r, int k)
301
2.22k
{
302
2.22k
    int l;
303
    
304
2.22k
    l = (unsigned)k / LIMB_BITS;
305
2.22k
    k = k & (LIMB_BITS - 1);
306
2.22k
    if (l >= r->len)
307
0
        return 0;
308
2.22k
    else
309
2.22k
        return (r->tab[l] >> k) & 1;
310
2.22k
}
311
312
/* compute round(r / 2^shift). 'shift' can be negative */
313
static void mpb_shr_round(mpb_t *r, int shift, int rnd_mode)
314
1.19M
{
315
1.19M
    int l, i;
316
317
1.19M
    if (shift == 0)
318
0
        return;
319
1.19M
    if (shift < 0) {
320
1.19M
        shift = -shift;
321
1.19M
        l = (unsigned)shift / LIMB_BITS;
322
1.19M
        shift = shift & (LIMB_BITS - 1);
323
1.19M
        if (shift != 0) {
324
1.19M
            r->tab[r->len] = mp_shl(r->tab, r->tab, r->len, shift, 0);
325
1.19M
            r->len++;
326
1.19M
            mpb_renorm(r);
327
1.19M
        }
328
1.19M
        if (l > 0) {
329
2.39M
            for(i = r->len - 1; i >= 0; i--)
330
1.19M
                r->tab[i + l] = r->tab[i];
331
2.39M
            for(i = 0; i < l; i++)
332
1.19M
                r->tab[i] = 0;
333
1.19M
            r->len += l;
334
1.19M
        }
335
1.19M
    } else {
336
2.22k
        limb_t bit1, bit2;
337
2.22k
        int k, add_one;
338
        
339
2.22k
        switch(rnd_mode) {
340
0
        default:
341
0
        case JS_RNDZ:
342
0
            add_one = 0;
343
0
            break;
344
2.22k
        case JS_RNDN:
345
2.22k
        case JS_RNDNA:
346
2.22k
            bit1 = mpb_get_bit(r, shift - 1);
347
2.22k
            if (bit1) {
348
1.57k
                if (rnd_mode == JS_RNDNA) {
349
0
                    bit2 = 1;
350
1.57k
                } else {
351
                    /* bit2 = oring of all the bits after bit1 */
352
1.57k
                    bit2 = 0;
353
1.57k
                    if (shift >= 2) {
354
1.57k
                        k = shift - 1;
355
1.57k
                        l = (unsigned)k / LIMB_BITS;
356
1.57k
                        k = k & (LIMB_BITS - 1);
357
2.15k
                        for(i = 0; i < min_int(l, r->len); i++)
358
582
                            bit2 |= r->tab[i];
359
1.57k
                        if (l < r->len)
360
1.57k
                            bit2 |= r->tab[l] & (((limb_t)1 << k) - 1);
361
1.57k
                    }
362
1.57k
                }
363
1.57k
                if (bit2) {
364
1.57k
                    add_one = 1;
365
1.57k
                } else {
366
                    /* round to even */
367
0
                    add_one = mpb_get_bit(r, shift);
368
0
                }
369
1.57k
            } else {
370
652
                add_one = 0;
371
652
            }
372
2.22k
            break;
373
2.22k
        }
374
375
2.22k
        l = (unsigned)shift / LIMB_BITS;
376
2.22k
        shift = shift & (LIMB_BITS - 1);
377
2.22k
        if (l >= r->len) {
378
0
            r->len = 1;
379
0
            r->tab[0] = add_one;
380
2.22k
        } else {
381
2.22k
            if (l > 0) {
382
574
                r->len -= l;
383
1.72k
                for(i = 0; i < r->len; i++)
384
1.14k
                    r->tab[i] = r->tab[i + l];
385
574
            }
386
2.22k
            if (shift != 0) {
387
2.22k
                mp_shr(r->tab, r->tab, r->len, shift, 0);
388
2.22k
                mpb_renorm(r);
389
2.22k
            }
390
2.22k
            if (add_one) {
391
1.57k
                limb_t a;
392
1.57k
                a = mp_add_ui(r->tab, 1, r->len);
393
1.57k
                if (a)
394
0
                    r->tab[r->len++] = a;
395
1.57k
            }
396
2.22k
        }
397
2.22k
    }
398
1.19M
}
399
400
/* return -1, 0 or 1 */
401
static int mpb_cmp(const mpb_t *a, const mpb_t *b)
402
0
{
403
0
    mp_size_t i;
404
0
    if (a->len < b->len)
405
0
        return -1;
406
0
    else if (a->len > b->len)
407
0
        return 1;
408
0
    for(i = a->len - 1; i >= 0; i--) {
409
0
        if (a->tab[i] != b->tab[i]) {
410
0
            if (a->tab[i] < b->tab[i])
411
0
                return -1;
412
0
            else
413
0
                return 1;
414
0
        }
415
0
    }
416
0
    return 0;
417
0
}
418
419
static void mpb_set_u64(mpb_t *r, uint64_t m)
420
0
{
421
#if LIMB_BITS == 64
422
    r->tab[0] = m;
423
    r->len = 1;
424
#else
425
0
    r->tab[0] = m;
426
0
    r->tab[1] = m >> LIMB_BITS;
427
0
    if (r->tab[1] == 0)
428
0
        r->len = 1;
429
0
    else
430
0
        r->len = 2;
431
0
#endif
432
0
}
433
434
static uint64_t mpb_get_u64(mpb_t *r)
435
1.19M
{
436
#if LIMB_BITS == 64
437
    return r->tab[0];
438
#else
439
1.19M
    if (r->len == 1) {
440
0
        return r->tab[0];
441
1.19M
    } else {
442
1.19M
        return r->tab[0] | ((uint64_t)r->tab[1] << LIMB_BITS);
443
1.19M
    }
444
1.19M
#endif
445
1.19M
}
446
447
/* floor_log2() = position of the first non zero bit or -1 if zero. */
448
static int mpb_floor_log2(mpb_t *a)
449
1.19M
{
450
1.19M
    limb_t v;
451
1.19M
    v = a->tab[a->len - 1];
452
1.19M
    if (v == 0)
453
0
        return -1;
454
1.19M
    else
455
1.19M
        return a->len * LIMB_BITS - 1 - clz32(v);
456
1.19M
}
457
458
0
#define MUL_LOG2_RADIX_BASE_LOG2 24
459
460
/* round((1 << MUL_LOG2_RADIX_BASE_LOG2)/log2(i + 2)) */
461
static const uint32_t mul_log2_radix_table[JS_RADIX_MAX - 1] = {
462
    0x000000, 0xa1849d, 0x000000, 0x6e40d2, 
463
    0x6308c9, 0x5b3065, 0x000000, 0x50c24e, 
464
    0x4d104d, 0x4a0027, 0x4768ce, 0x452e54, 
465
    0x433d00, 0x418677, 0x000000, 0x3ea16b, 
466
    0x3d645a, 0x3c43c2, 0x3b3b9a, 0x3a4899, 
467
    0x39680b, 0x3897b3, 0x37d5af, 0x372069, 
468
    0x367686, 0x35d6df, 0x354072, 0x34b261, 
469
    0x342bea, 0x33ac62, 0x000000, 0x32bfd9, 
470
    0x3251dd, 0x31e8d6, 0x318465,
471
};
472
473
/* return floor(a / log2(radix)) for -2048 <= a <= 2047 */
474
static int mul_log2_radix(int a, int radix)
475
0
{
476
0
    int radix_bits, mult;
477
478
0
    if ((radix & (radix - 1)) == 0) {
479
        /* if the radix is a power of two better to do it exactly */
480
0
        radix_bits = 31 - clz32(radix);
481
0
        if (a < 0)
482
0
            a -= radix_bits - 1;
483
0
        return a / radix_bits;
484
0
    } else {
485
0
        mult = mul_log2_radix_table[radix - 2];
486
0
        return ((int64_t)a * mult) >> MUL_LOG2_RADIX_BASE_LOG2;
487
0
    }
488
0
}
489
490
#if 0
491
static void build_mul_log2_radix_table(void)
492
{
493
    int base, radix, mult, col, base_log2;
494
495
    base_log2 = 24;
496
    base = 1 << base_log2;
497
    col = 0;
498
    for(radix = 2; radix <= 36; radix++) {
499
        if ((radix & (radix - 1)) == 0)
500
            mult = 0;
501
        else
502
            mult = lrint((double)base / log2(radix));
503
        printf("0x%06x, ", mult);
504
        if (++col == 4) {
505
            printf("\n");
506
            col = 0;
507
        }
508
    }
509
    printf("\n");
510
}
511
512
static void mul_log2_radix_test(void)
513
{
514
    int radix, i, ref, r;
515
    
516
    for(radix = 2; radix <= 36; radix++) {
517
        for(i = -2048; i <= 2047; i++) {
518
            ref = (int)floor((double)i / log2(radix));
519
            r = mul_log2_radix(i, radix);
520
            if (ref != r) {
521
                printf("ERROR: radix=%d i=%d r=%d ref=%d\n",
522
                       radix, i, r, ref);
523
                exit(1);
524
            }
525
        }
526
    }
527
    if (0)
528
        build_mul_log2_radix_table();
529
}
530
#endif
531
532
static void u32toa_len(char *buf, uint32_t n, size_t len)
533
0
{
534
0
    int digit, i;
535
0
    for(i = len - 1; i >= 0; i--) {
536
0
        digit = n % 10;
537
0
        n = n / 10;
538
0
        buf[i] = digit + '0';
539
0
    }
540
0
}
541
542
/* for power of 2 radixes. len >= 1 */
543
static void u64toa_bin_len(char *buf, uint64_t n, unsigned int radix_bits, int len)
544
0
{
545
0
    int digit, i;
546
0
    unsigned int mask;
547
548
0
    mask = (1 << radix_bits) - 1;
549
0
    for(i = len - 1; i >= 0; i--) {
550
0
        digit = n & mask;
551
0
        n >>= radix_bits;
552
0
        if (digit < 10)
553
0
            digit += '0';
554
0
        else
555
0
            digit += 'a' - 10;
556
0
        buf[i] = digit;
557
0
    }
558
0
}
559
560
/* len >= 1. 2 <= radix <= 36 */
561
static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len)
562
0
{
563
0
    int digit, i;
564
565
0
    if (radix == 10) {
566
        /* specific case with constant divisor */
567
0
#if LIMB_BITS == 32
568
0
        u32toa_len(buf, n, len);
569
#else
570
        /* XXX: optimize */
571
        for(i = len - 1; i >= 0; i--) {
572
            digit = (limb_t)n % 10;
573
            n = (limb_t)n / 10;
574
            buf[i] = digit + '0';
575
        }
576
#endif
577
0
    } else {
578
0
        for(i = len - 1; i >= 0; i--) {
579
0
            digit = (limb_t)n % radix;
580
0
            n = (limb_t)n / radix;
581
0
            if (digit < 10)
582
0
                digit += '0';
583
0
            else
584
0
                digit += 'a' - 10;
585
0
            buf[i] = digit;
586
0
        }
587
0
    }
588
0
}
589
590
size_t u32toa(char *buf, uint32_t n)
591
0
{
592
0
    char buf1[10], *q;
593
0
    size_t len;
594
    
595
0
    q = buf1 + sizeof(buf1);
596
0
    do {
597
0
        *--q = n % 10 + '0';
598
0
        n /= 10;
599
0
    } while (n != 0);
600
0
    len = buf1 + sizeof(buf1) - q;
601
0
    memcpy(buf, q, len);
602
0
    return len;
603
0
}
604
605
size_t i32toa(char *buf, int32_t n)
606
0
{
607
0
    if (n >= 0) {
608
0
        return u32toa(buf, n);
609
0
    } else {
610
0
        buf[0] = '-';
611
0
        return u32toa(buf + 1, -(uint32_t)n) + 1;
612
0
    }
613
0
}
614
615
#ifdef USE_FAST_INT
616
size_t u64toa(char *buf, uint64_t n)
617
0
{
618
0
    if (n < 0x100000000) {
619
0
        return u32toa(buf, n);
620
0
    } else {
621
0
        uint64_t n1;
622
0
        char *q = buf;
623
0
        uint32_t n2;
624
        
625
0
        n1 = n / 1000000000;
626
0
        n %= 1000000000;
627
0
        if (n1 >= 0x100000000) {
628
0
            n2 = n1 / 1000000000;
629
0
            n1 = n1 % 1000000000;
630
            /* at most two digits */
631
0
            if (n2 >= 10) {
632
0
                *q++ = n2 / 10 + '0';
633
0
                n2 %= 10;
634
0
            }
635
0
            *q++ = n2 + '0';
636
0
            u32toa_len(q, n1, 9);
637
0
            q += 9;
638
0
        } else {
639
0
            q += u32toa(q, n1);
640
0
        }
641
0
        u32toa_len(q, n, 9);
642
0
        q += 9;
643
0
        return q - buf;
644
0
    }
645
0
}
646
647
size_t i64toa(char *buf, int64_t n)
648
0
{
649
0
    if (n >= 0) {
650
0
        return u64toa(buf, n);
651
0
    } else {
652
0
        buf[0] = '-';
653
0
        return u64toa(buf + 1, -(uint64_t)n) + 1;
654
0
    }
655
0
}
656
657
/* XXX: only tested for 1 <= n < 2^53 */
658
size_t u64toa_radix(char *buf, uint64_t n, unsigned int radix)
659
0
{
660
0
    int radix_bits, l;
661
0
    if (likely(radix == 10))
662
0
        return u64toa(buf, n);
663
0
    if ((radix & (radix - 1)) == 0) {
664
0
        radix_bits = 31 - clz32(radix);
665
0
        if (n == 0)
666
0
            l = 1;
667
0
        else
668
0
            l = (64 - clz64(n) + radix_bits - 1) / radix_bits;
669
0
        u64toa_bin_len(buf, n, radix_bits, l);
670
0
        return l;
671
0
    } else {
672
0
        char buf1[41], *q; /* maximum length for radix = 3 */
673
0
        size_t len;
674
0
        int digit;
675
0
        q = buf1 + sizeof(buf1);
676
0
        do {
677
0
            digit = n % radix;
678
0
            n /= radix;
679
0
            if (digit < 10)
680
0
                digit += '0';
681
0
            else
682
0
                digit += 'a' - 10;
683
0
            *--q = digit;
684
0
        } while (n != 0);
685
0
        len = buf1 + sizeof(buf1) - q;
686
0
        memcpy(buf, q, len);
687
0
        return len;
688
0
    }
689
0
}
690
691
size_t i64toa_radix(char *buf, int64_t n, unsigned int radix)
692
0
{
693
0
    if (n >= 0) {
694
0
        return u64toa_radix(buf, n, radix);
695
0
    } else {
696
0
        buf[0] = '-';
697
0
        return u64toa_radix(buf + 1, -(uint64_t)n, radix) + 1;
698
0
    }
699
0
}
700
#endif /* USE_FAST_INT */
701
702
static const uint8_t digits_per_limb_table[JS_RADIX_MAX - 1] = {
703
#if LIMB_BITS == 32
704
32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
705
#else
706
64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
707
#endif
708
};
709
710
static const uint32_t radix_base_table[JS_RADIX_MAX - 1] = {
711
 0x00000000, 0xcfd41b91, 0x00000000, 0x48c27395,
712
 0x81bf1000, 0x75db9c97, 0x40000000, 0xcfd41b91,
713
 0x3b9aca00, 0x8c8b6d2b, 0x19a10000, 0x309f1021,
714
 0x57f6c100, 0x98c29b81, 0x00000000, 0x18754571,
715
 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
716
 0x94ace180, 0xcaf18367, 0x0b640000, 0x0e8d4a51,
717
 0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899,
718
 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1,
719
 0x5c13d840, 0x6d91b519, 0x81bf1000,
720
};
721
722
/* XXX: remove the table ? */
723
static uint8_t dtoa_max_digits_table[JS_RADIX_MAX - 1] = {
724
    54, 35, 28, 24, 22, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12,
725
};
726
727
/* we limit the maximum number of significant digits for atod to about
728
   128 bits of precision for non power of two bases. The only
729
   requirement for Javascript is at least 20 digits in base 10. For
730
   power of two bases, we do an exact rounding in all the cases. */
731
static uint8_t atod_max_digits_table[JS_RADIX_MAX - 1] = {
732
     64, 80, 32, 55, 49, 45, 21, 40, 38, 37, 35, 34, 33, 32, 16, 31, 30, 30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 12, 25, 25, 24, 24,
733
};
734
735
/* if abs(d) >= B^max_exponent, it is an overflow */
736
static const int16_t max_exponent[JS_RADIX_MAX - 1] = {
737
 1024,   647,   512,   442,   397,   365,   342,   324, 
738
  309,   297,   286,   277,   269,   263,   256,   251, 
739
  246,   242,   237,   234,   230,   227,   224,   221, 
740
  218,   216,   214,   211,   209,   207,   205,   203, 
741
  202,   200,   199, 
742
};
743
744
/* if abs(d) <= B^min_exponent, it is an underflow */
745
static const int16_t min_exponent[JS_RADIX_MAX - 1] = {
746
-1075,  -679,  -538,  -463,  -416,  -383,  -359,  -340, 
747
 -324,  -311,  -300,  -291,  -283,  -276,  -269,  -263, 
748
 -258,  -254,  -249,  -245,  -242,  -238,  -235,  -232, 
749
 -229,  -227,  -224,  -222,  -220,  -217,  -215,  -214, 
750
 -212,  -210,  -208, 
751
};
752
753
#if 0
754
void build_tables(void)
755
{
756
    int r, j, radix, n, col, i;
757
    
758
    /* radix_base_table */
759
    for(radix = 2; radix <= 36; radix++) {
760
        r = 1;
761
        for(j = 0; j < digits_per_limb_table[radix - 2]; j++) {
762
            r *= radix;
763
        }
764
        printf(" 0x%08x,", r);
765
        if ((radix % 4) == 1)
766
            printf("\n");
767
    }
768
    printf("\n");
769
770
    /* dtoa_max_digits_table */
771
    for(radix = 2; radix <= 36; radix++) {
772
        /* Note: over estimated when the radix is a power of two */
773
        printf(" %d,", 1 + (int)ceil(53.0 / log2(radix)));
774
    }
775
    printf("\n");
776
777
    /* atod_max_digits_table */
778
    for(radix = 2; radix <= 36; radix++) {
779
        if ((radix & (radix - 1)) == 0) {
780
            /* 64 bits is more than enough */
781
            n = (int)floor(64.0 / log2(radix));
782
        } else {
783
            n = (int)floor(128.0 / log2(radix));
784
        }
785
        printf(" %d,", n);
786
    }
787
    printf("\n");
788
789
    printf("static const int16_t max_exponent[JS_RADIX_MAX - 1] = {\n");
790
    col = 0;
791
    for(radix = 2; radix <= 36; radix++) {
792
        printf("%5d, ", (int)ceil(1024 / log2(radix)));
793
        if (++col == 8) {
794
            col = 0;
795
            printf("\n");
796
        }
797
    }
798
    printf("\n};\n\n");
799
800
    printf("static const int16_t min_exponent[JS_RADIX_MAX - 1] = {\n");
801
    col = 0; 
802
    for(radix = 2; radix <= 36; radix++) {
803
        printf("%5d, ", (int)floor(-1075 / log2(radix)));
804
        if (++col == 8) {
805
            col = 0;
806
            printf("\n");
807
        }
808
    }
809
    printf("\n};\n\n");
810
811
    printf("static const uint32_t pow5_table[16] = {\n");
812
    col = 0; 
813
    for(i = 2; i <= 17; i++) {
814
        r = 1;
815
        for(j = 0; j < i; j++) {
816
            r *= 5;
817
        }
818
        printf("0x%08x, ", r);
819
        if (++col == 4) {
820
            col = 0;
821
            printf("\n");
822
        }
823
    }
824
    printf("\n};\n\n");
825
826
    /* high part */
827
    printf("static const uint8_t pow5h_table[4] = {\n");
828
    col = 0; 
829
    for(i = 14; i <= 17; i++) {
830
        uint64_t r1;
831
        r1 = 1;
832
        for(j = 0; j < i; j++) {
833
            r1 *= 5;
834
        }
835
        printf("0x%08x, ", (uint32_t)(r1 >> 32));
836
        if (++col == 4) {
837
            col = 0;
838
            printf("\n");
839
        }
840
    }
841
    printf("\n};\n\n");
842
}
843
#endif
844
845
/* n_digits >= 1. 0 <= dot_pos <= n_digits. If dot_pos == n_digits,
846
   the dot is not displayed. 'a' is modified. */
847
static int output_digits(char *buf,
848
                         mpb_t *a, int radix, int n_digits1,
849
                         int dot_pos)
850
0
{
851
0
    int n_digits, digits_per_limb, radix_bits, n, len;
852
853
0
    n_digits = n_digits1;
854
0
    if ((radix & (radix - 1)) == 0) {
855
        /* radix = 2^radix_bits */
856
0
        radix_bits = 31 - clz32(radix);
857
0
    } else {
858
0
        radix_bits = 0;
859
0
    }
860
0
    digits_per_limb = digits_per_limb_table[radix - 2];
861
0
    if (radix_bits != 0) {
862
0
        for(;;) {
863
0
            n = min_int(n_digits, digits_per_limb);
864
0
            n_digits -= n;
865
0
            u64toa_bin_len(buf + n_digits, a->tab[0], radix_bits, n);
866
0
            if (n_digits == 0)
867
0
                break;
868
0
            mpb_shr_round(a, digits_per_limb * radix_bits, JS_RNDZ);
869
0
        }
870
0
    } else {
871
0
        limb_t r;
872
0
        while (n_digits != 0) {
873
0
            n = min_int(n_digits, digits_per_limb);
874
0
            n_digits -= n;
875
0
            r = mp_div1(a->tab, a->tab, a->len, radix_base_table[radix - 2], 0);
876
0
            mpb_renorm(a);
877
0
            limb_to_a(buf + n_digits, r, radix, n);
878
0
        }
879
0
    }
880
881
    /* add the dot */
882
0
    len = n_digits1;
883
0
    if (dot_pos != n_digits1) {
884
0
        memmove(buf + dot_pos + 1, buf + dot_pos, n_digits1 - dot_pos);
885
0
        buf[dot_pos] = '.';
886
0
        len++;
887
0
    }
888
0
    return len;
889
0
}
890
891
/* return (a, e_offset) such that a = a * (radix1*2^radix_shift)^f *
892
   2^-e_offset. 'f' can be negative. */
893
static int mul_pow(mpb_t *a, int radix1, int radix_shift, int f, BOOL is_int, int e)
894
1.19M
{
895
1.19M
    int e_offset, d, n, n0;
896
897
1.19M
    e_offset = -f * radix_shift;
898
1.19M
    if (radix1 != 1) {
899
1.19M
        d = digits_per_limb_table[radix1 - 2];
900
1.19M
        if (f >= 0) {
901
1.19M
            limb_t h, b;
902
            
903
1.19M
            b = 0;
904
1.19M
            n0 = 0;
905
1.19M
            while (f != 0) {
906
404
                n = min_int(f, d);
907
404
                if (n != n0) {
908
404
                    b = pow_ui(radix1, n);
909
404
                    n0 = n;
910
404
                }
911
404
                h = mp_mul1(a->tab, a->tab, a->len, b, 0);
912
404
                if (h != 0) {
913
0
                    a->tab[a->len++] = h;
914
0
                }
915
404
                f -= n;
916
404
            }
917
1.19M
        } else {
918
895
            int extra_bits, l, shift;
919
895
            limb_t r, rem, b, b_inv;
920
            
921
895
            f = -f;
922
895
            l = (f + d - 1) / d; /* high bound for the number of limbs (XXX: make it better) */
923
895
            e_offset += l * LIMB_BITS;
924
895
            if (!is_int) {
925
                /* at least 'e' bits are needed in the final result for rounding */
926
895
                extra_bits = max_int(e - mpb_floor_log2(a), 0);
927
895
            } else {
928
                /* at least two extra bits are needed in the final result
929
                   for rounding */
930
0
                extra_bits = max_int(2 + e - e_offset, 0);
931
0
            }
932
895
            e_offset += extra_bits;
933
895
            mpb_shr_round(a, -(l * LIMB_BITS + extra_bits), JS_RNDZ);
934
            
935
895
            b = 0;
936
895
            b_inv = 0;
937
895
            shift = 0;
938
895
            n0 = 0;
939
895
            rem = 0;
940
1.79k
            while (f != 0) {
941
895
                n = min_int(f, d);
942
895
                if (n != n0) {
943
895
                    b = pow_ui_inv(&b_inv, &shift, radix1, n);
944
895
                    n0 = n;
945
895
                }
946
895
                r = mp_div1norm(a->tab, a->tab, a->len, b, 0, b_inv, shift);
947
895
                rem |= r;
948
895
                mpb_renorm(a);
949
895
                f -= n;
950
895
            }
951
            /* if the remainder is non zero, use it for rounding */
952
895
            a->tab[0] |= (rem != 0);
953
895
        }
954
1.19M
    }
955
1.19M
    return e_offset;
956
1.19M
}
957
958
/* tmp1 = round(m*2^e*radix^f). 'tmp0' is a temporary storage */
959
static void mul_pow_round(mpb_t *tmp1, uint64_t m, int e, int radix1, int radix_shift, int f,
960
                          int rnd_mode)
961
0
{
962
0
    int e_offset;
963
964
0
    mpb_set_u64(tmp1, m);
965
0
    e_offset = mul_pow(tmp1, radix1, radix_shift, f, TRUE, e);
966
0
    mpb_shr_round(tmp1, -e + e_offset, rnd_mode);
967
0
}
968
969
/* return round(a*2^e_offset) rounded as a float64. 'a' is modified */
970
static uint64_t round_to_d(int *pe, mpb_t *a, int e_offset, int rnd_mode)
971
1.19M
{
972
1.19M
    int e;
973
1.19M
    uint64_t m;
974
975
1.19M
    if (a->tab[0] == 0 && a->len == 1) {
976
        /* zero result */
977
0
        m = 0;
978
0
        e = 0; /* don't care */
979
1.19M
    } else {
980
1.19M
        int prec, prec1, e_min;
981
1.19M
        e = mpb_floor_log2(a) + 1 - e_offset;
982
1.19M
        prec1 = 53;
983
1.19M
        e_min = -1021;
984
1.19M
        if (e < e_min) {
985
            /* subnormal result or zero */
986
0
            prec = prec1 - (e_min - e);
987
1.19M
        } else {
988
1.19M
            prec = prec1;
989
1.19M
        }
990
1.19M
        mpb_shr_round(a, e + e_offset - prec, rnd_mode);
991
1.19M
        m = mpb_get_u64(a);
992
1.19M
        m <<= (53 - prec);
993
        /* mantissa overflow due to rounding */
994
1.19M
        if (m >= (uint64_t)1 << 53) {
995
75
            m >>= 1;
996
75
            e++;
997
75
        }
998
1.19M
    }
999
1.19M
    *pe = e;
1000
1.19M
    return m;
1001
1.19M
}
1002
1003
/* return (m, e) such that m*2^(e-53) = round(a * radix^f) with 2^52
1004
   <= m < 2^53 or m = 0.
1005
   'a' is modified. */
1006
static uint64_t mul_pow_round_to_d(int *pe, mpb_t *a,
1007
                                   int radix1, int radix_shift, int f, int rnd_mode)
1008
1.19M
{
1009
1.19M
    int e_offset;
1010
1011
1.19M
    e_offset = mul_pow(a, radix1, radix_shift, f, FALSE, 55);
1012
1.19M
    return round_to_d(pe, a, e_offset, rnd_mode);
1013
1.19M
}
1014
1015
#ifdef JS_DTOA_DUMP_STATS
1016
static int out_len_count[17];
1017
1018
void js_dtoa_dump_stats(void)
1019
{
1020
    int i, sum;
1021
    sum = 0;
1022
    for(i = 0; i < 17; i++)
1023
        sum += out_len_count[i];
1024
    for(i = 0; i < 17; i++) {
1025
        printf("%2d %8d %5.2f%%\n",
1026
               i + 1, out_len_count[i], (double)out_len_count[i] / sum * 100);
1027
    }
1028
}
1029
#endif
1030
1031
/* return a maximum bound of the string length. The bound depends on
1032
   'd' only if format = JS_DTOA_FORMAT_FRAC or if JS_DTOA_EXP_DISABLED
1033
   is enabled. */
1034
int js_dtoa_max_len(double d, int radix, int n_digits, int flags)
1035
0
{
1036
0
    int fmt = flags & JS_DTOA_FORMAT_MASK;
1037
0
    int n, e;
1038
0
    uint64_t a;
1039
1040
0
    if (fmt != JS_DTOA_FORMAT_FRAC) {
1041
0
        if (fmt == JS_DTOA_FORMAT_FREE) {
1042
0
            n = dtoa_max_digits_table[radix - 2];
1043
0
        } else {
1044
0
            n = n_digits;
1045
0
        }
1046
0
        if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_DISABLED) {
1047
            /* no exponential */
1048
0
            a = float64_as_uint64(d);
1049
0
            e = (a >> 52) & 0x7ff;
1050
0
            if (e == 0x7ff) {
1051
                /* NaN, Infinity */
1052
0
                n = 0;
1053
0
            } else {
1054
0
                e -= 1023;
1055
                /* XXX: adjust */
1056
0
                n += 10 + abs(mul_log2_radix(e - 1, radix));
1057
0
            }
1058
0
        } else {
1059
            /* extra: sign, 1 dot and exponent "e-1000" */
1060
0
            n += 1 + 1 + 6;
1061
0
        }
1062
0
    } else {
1063
0
        a = float64_as_uint64(d);
1064
0
        e = (a >> 52) & 0x7ff;
1065
0
        if (e == 0x7ff) {
1066
            /* NaN, Infinity */
1067
0
            n = 0;
1068
0
        } else {
1069
            /* high bound for the integer part */
1070
0
            e -= 1023;
1071
            /* x < 2^(e + 1) */
1072
0
            if (e < 0) {
1073
0
                n = 1;
1074
0
            } else {
1075
0
                n = 2 + mul_log2_radix(e - 1, radix);
1076
0
            }
1077
            /* sign, extra digit, 1 dot */
1078
0
            n += 1 + 1 + 1 + n_digits;
1079
0
        }
1080
0
    }
1081
0
    return max_int(n, 9); /* also include NaN and [-]Infinity */
1082
0
}
1083
1084
#if defined(__SANITIZE_ADDRESS__) && 0
1085
static void *dtoa_malloc(uint64_t **pptr, size_t size)
1086
{
1087
    return malloc(size);
1088
}
1089
static void dtoa_free(void *ptr)
1090
{
1091
    free(ptr);
1092
}
1093
#else
1094
static void *dtoa_malloc(uint64_t **pptr, size_t size)
1095
2.14M
{
1096
2.14M
    void *ret;
1097
2.14M
    ret = *pptr;
1098
2.14M
    *pptr += (size + 7) / 8;
1099
2.14M
    return ret;
1100
2.14M
}
1101
1102
static void dtoa_free(void *ptr)
1103
2.14M
{
1104
2.14M
}
1105
#endif
1106
1107
/* return the length */
1108
int js_dtoa(char *buf, double d, int radix, int n_digits, int flags,
1109
            JSDTOATempMem *tmp_mem)
1110
0
{
1111
0
    uint64_t a, m, *mptr = tmp_mem->mem;
1112
0
    int e, sgn, l, E, P, i, E_max, radix1, radix_shift;
1113
0
    char *q;
1114
0
    mpb_t *tmp1, *mant_max;
1115
0
    int fmt = flags & JS_DTOA_FORMAT_MASK;
1116
1117
0
    tmp1 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
1118
0
    mant_max = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * MANT_LEN_MAX);
1119
0
    assert((mptr - tmp_mem->mem) <= sizeof(JSDTOATempMem) / sizeof(mptr[0]));
1120
1121
0
    radix_shift = ctz32(radix);
1122
0
    radix1 = radix >> radix_shift;
1123
0
    a = float64_as_uint64(d);
1124
0
    sgn = a >> 63;
1125
0
    e = (a >> 52) & 0x7ff;
1126
0
    m = a & (((uint64_t)1 << 52) - 1);
1127
0
    q = buf;
1128
0
    if (e == 0x7ff) {
1129
0
        if (m == 0) {
1130
0
            if (sgn)
1131
0
                *q++ = '-';
1132
0
            memcpy(q, "Infinity", 8);
1133
0
            q += 8;
1134
0
        } else {
1135
0
            memcpy(q, "NaN", 3);
1136
0
            q += 3;
1137
0
        }
1138
0
        goto done;
1139
0
    } else if (e == 0) {
1140
0
        if (m == 0) {
1141
0
            tmp1->len = 1;
1142
0
            tmp1->tab[0] = 0;
1143
0
            E = 1;
1144
0
            if (fmt == JS_DTOA_FORMAT_FREE)
1145
0
                P = 1;
1146
0
            else if (fmt == JS_DTOA_FORMAT_FRAC)
1147
0
                P = n_digits + 1;
1148
0
            else
1149
0
                P = n_digits;
1150
            /* "-0" is displayed as "0" if JS_DTOA_MINUS_ZERO is not present */
1151
0
            if (sgn && (flags & JS_DTOA_MINUS_ZERO))
1152
0
                *q++ = '-';
1153
0
            goto output;
1154
0
        }
1155
        /* denormal number: convert to a normal number */
1156
0
        l = clz64(m) - 11;
1157
0
        e -= l - 1;
1158
0
        m <<= l;
1159
0
    } else {
1160
0
        m |= (uint64_t)1 << 52;
1161
0
    }
1162
0
    if (sgn)
1163
0
        *q++ = '-';
1164
    /* remove the bias */
1165
0
    e -= 1022;
1166
    /* d = 2^(e-53)*m */
1167
    //    printf("m=0x%016" PRIx64 " e=%d\n", m, e);
1168
0
#ifdef USE_FAST_INT
1169
0
    if (fmt == JS_DTOA_FORMAT_FREE &&
1170
0
        e >= 1 && e <= 53 &&
1171
0
        (m & (((uint64_t)1 << (53 - e)) - 1)) == 0 &&
1172
0
        (flags & JS_DTOA_EXP_MASK) != JS_DTOA_EXP_ENABLED) {
1173
0
        m >>= 53 - e;
1174
        /* 'm' is never zero */
1175
0
        q += u64toa_radix(q, m, radix);
1176
0
        goto done;
1177
0
    }
1178
0
#endif
1179
    
1180
    /* this choice of E implies F=round(x*B^(P-E) is such as: 
1181
       B^(P-1) <= F < 2.B^P. */
1182
0
    E = 1 + mul_log2_radix(e - 1, radix);
1183
    
1184
0
    if (fmt == JS_DTOA_FORMAT_FREE) {
1185
0
        int P_max, E0, e1, E_found, P_found;
1186
0
        uint64_t m1, mant_found, mant, mant_max1;
1187
        /* P_max is guarranteed to work by construction */
1188
0
        P_max = dtoa_max_digits_table[radix - 2];
1189
0
        E0 = E;
1190
0
        E_found = 0;
1191
0
        P_found = 0;
1192
0
        mant_found = 0;
1193
        /* find the minimum number of digits by successive tries */
1194
0
        P = P_max; /* P_max is guarateed to work */
1195
0
        for(;;) {
1196
            /* mant_max always fits on 64 bits */
1197
0
            mant_max1 = pow_ui(radix, P);
1198
            /* compute the mantissa in base B */
1199
0
            E = E0;
1200
0
            for(;;) {
1201
                /* XXX: add inexact flag */
1202
0
                mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDN);
1203
0
                mant = mpb_get_u64(tmp1);
1204
0
                if (mant < mant_max1)
1205
0
                    break;
1206
0
                E++; /* at most one iteration is possible */
1207
0
            }
1208
            /* remove useless trailing zero digits */
1209
0
            while ((mant % radix) == 0) {
1210
0
                mant /= radix;
1211
0
                P--;
1212
0
            }
1213
            /* garanteed to work for P = P_max */
1214
0
            if (P_found == 0)
1215
0
                goto prec_found;
1216
            /* convert back to base 2 */
1217
0
            mpb_set_u64(tmp1, mant);
1218
0
            m1 = mul_pow_round_to_d(&e1, tmp1, radix1, radix_shift, E - P, JS_RNDN);
1219
            //            printf("P=%2d: m=0x%016" PRIx64 " e=%d m1=0x%016" PRIx64 " e1=%d\n", P, m, e, m1, e1);
1220
            /* Note: (m, e) is never zero here, so the exponent for m1
1221
               = 0 does not matter */
1222
0
            if (m1 == m && e1 == e) {
1223
0
            prec_found:
1224
0
                P_found = P;
1225
0
                E_found = E;
1226
0
                mant_found = mant;
1227
0
                if (P == 1)
1228
0
                    break;
1229
0
                P--; /* try lower exponent */
1230
0
            } else {
1231
0
                break;
1232
0
            }
1233
0
        }
1234
0
        P = P_found;
1235
0
        E = E_found;
1236
0
        mpb_set_u64(tmp1, mant_found);
1237
#ifdef JS_DTOA_DUMP_STATS
1238
        if (radix == 10) {
1239
            out_len_count[P - 1]++;
1240
        }
1241
#endif        
1242
0
    } else if (fmt == JS_DTOA_FORMAT_FRAC) {
1243
0
        int len;
1244
1245
0
        assert(n_digits >= 0 && n_digits <= JS_DTOA_MAX_DIGITS);
1246
        /* P = max_int(E, 1) + n_digits; */
1247
        /* frac is rounded using RNDNA */
1248
0
        mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, n_digits, JS_RNDNA);
1249
1250
        /* we add one extra digit on the left and remove it if needed
1251
           to avoid testing if the result is < radix^P */
1252
0
        len = output_digits(q, tmp1, radix, max_int(E + 1, 1) + n_digits,
1253
0
                            max_int(E + 1, 1));
1254
0
        if (q[0] == '0' && len >= 2 && q[1] != '.') {
1255
0
            len--;
1256
0
            memmove(q, q + 1, len);
1257
0
        }
1258
0
        q += len;
1259
0
        goto done;
1260
0
    } else {
1261
0
        int pow_shift;
1262
0
        assert(n_digits >= 1 && n_digits <= JS_DTOA_MAX_DIGITS);
1263
0
        P = n_digits;
1264
        /* mant_max = radix^P */
1265
0
        mant_max->len = 1;
1266
0
        mant_max->tab[0] = 1;
1267
0
        pow_shift = mul_pow(mant_max, radix1, radix_shift, P, FALSE, 0);
1268
0
        mpb_shr_round(mant_max, pow_shift, JS_RNDZ);
1269
        
1270
0
        for(;;) {
1271
            /* fixed and frac are rounded using RNDNA */
1272
0
            mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDNA);
1273
0
            if (mpb_cmp(tmp1, mant_max) < 0)
1274
0
                break;
1275
0
            E++; /* at most one iteration is possible */
1276
0
        }
1277
0
    }
1278
0
 output:
1279
0
    if (fmt == JS_DTOA_FORMAT_FIXED)
1280
0
        E_max = n_digits;
1281
0
    else
1282
0
        E_max = dtoa_max_digits_table[radix - 2] + 4;
1283
0
    if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_ENABLED ||
1284
0
        ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_AUTO && (E <= -6 || E > E_max))) {
1285
0
        q += output_digits(q, tmp1, radix, P, 1);
1286
0
        E--;
1287
0
        if (radix == 10) {
1288
0
            *q++ = 'e';
1289
0
        } else if (radix1 == 1 && radix_shift <= 4) {
1290
0
            E *= radix_shift;
1291
0
            *q++ = 'p';
1292
0
        } else {
1293
0
            *q++ = '@';
1294
0
        }
1295
0
        if (E < 0) {
1296
0
            *q++ = '-';
1297
0
            E = -E;
1298
0
        } else {
1299
0
            *q++ = '+';
1300
0
        }
1301
0
        q += u32toa(q, E);
1302
0
    } else if (E <= 0) {
1303
0
        *q++ = '0';
1304
0
        *q++ = '.';
1305
0
        for(i = 0; i < -E; i++)
1306
0
            *q++ = '0';
1307
0
        q += output_digits(q, tmp1, radix, P, P);
1308
0
    } else {
1309
0
        q += output_digits(q, tmp1, radix, P, min_int(P, E));
1310
0
        for(i = 0; i < E - P; i++)
1311
0
            *q++ = '0';
1312
0
    }
1313
0
 done:
1314
0
    *q = '\0';
1315
0
    dtoa_free(mant_max);
1316
0
    dtoa_free(tmp1);
1317
0
    return q - buf;
1318
0
}
1319
1320
static inline int to_digit(int c)
1321
6.20M
{
1322
6.20M
    if (c >= '0' && c <= '9')
1323
4.05M
        return c - '0';
1324
2.14M
    else if (c >= 'A' && c <= 'Z')
1325
1.36k
        return c - 'A' + 10;
1326
2.14M
    else if (c >= 'a' && c <= 'z')
1327
400
        return c - 'a' + 10;
1328
2.14M
    else
1329
2.14M
        return 36;
1330
6.20M
}
1331
1332
/* r = r * radix_base + a. radix_base = 0 means radix_base = 2^32 */
1333
static void mpb_mul1_base(mpb_t *r, limb_t radix_base, limb_t a)
1334
1.20M
{
1335
1.20M
    int i;
1336
1.20M
    if (r->tab[0] == 0 && r->len == 1) {
1337
1.19M
        r->tab[0] = a;
1338
1.19M
    } else {
1339
3.60k
        if (radix_base == 0) {
1340
0
            for(i = r->len; i >= 0; i--) {
1341
0
                r->tab[i + 1] = r->tab[i];
1342
0
            }
1343
0
            r->tab[0] = a;
1344
3.60k
        } else {
1345
3.60k
            r->tab[r->len] = mp_mul1(r->tab, r->tab, r->len,
1346
3.60k
                                     radix_base, a);
1347
3.60k
        }
1348
3.60k
        r->len++;
1349
3.60k
        mpb_renorm(r);
1350
3.60k
    }
1351
1.20M
}
1352
1353
/* XXX: add fast path for small integers */
1354
double js_atod(const char *str, const char **pnext, int radix, int flags,
1355
               JSATODTempMem *tmp_mem)
1356
2.14M
{
1357
2.14M
    uint64_t *mptr = tmp_mem->mem;
1358
2.14M
    const char *p, *p_start;
1359
2.14M
    limb_t cur_limb, radix_base, extra_digits;
1360
2.14M
    int is_neg, digit_count, limb_digit_count, digits_per_limb, sep, radix1, radix_shift;
1361
2.14M
    int radix_bits, expn, e, max_digits, expn_offset, dot_pos, sig_pos, pos;
1362
2.14M
    mpb_t *tmp0;
1363
2.14M
    double dval;
1364
2.14M
    BOOL is_bin_exp, is_zero, expn_overflow;
1365
2.14M
    uint64_t m, a;
1366
1367
2.14M
    tmp0 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
1368
2.14M
    assert((mptr - tmp_mem->mem) <= sizeof(JSATODTempMem) / sizeof(mptr[0]));
1369
    /* optional separator between digits */
1370
2.14M
    sep = (flags & JS_ATOD_ACCEPT_UNDERSCORES) ? '_' : 256;
1371
1372
2.14M
    p = str;
1373
2.14M
    is_neg = 0;
1374
2.14M
    if (p[0] == '+') {
1375
0
        p++;
1376
0
        p_start = p;
1377
2.14M
    } else if (p[0] == '-') {
1378
0
        is_neg = 1;
1379
0
        p++;
1380
0
        p_start = p;
1381
2.14M
    } else {
1382
2.14M
        p_start = p;
1383
2.14M
    }
1384
    
1385
2.14M
    if (p[0] == '0') {
1386
946k
        if ((p[1] == 'x' || p[1] == 'X') &&
1387
0
            (radix == 0 || radix == 16)) {
1388
0
            p += 2;
1389
0
            radix = 16;
1390
946k
        } else if ((p[1] == 'o' || p[1] == 'O') &&
1391
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
1392
0
            p += 2;
1393
0
            radix = 8;
1394
946k
        } else if ((p[1] == 'b' || p[1] == 'B') &&
1395
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
1396
0
            p += 2;
1397
0
            radix = 2;
1398
946k
        } else if ((p[1] >= '0' && p[1] <= '9') &&
1399
1
                   radix == 0 && (flags & JS_ATOD_ACCEPT_LEGACY_OCTAL)) {
1400
0
            int i;
1401
0
            sep = 256;
1402
0
            for (i = 1; (p[i] >= '0' && p[i] <= '7'); i++)
1403
0
                continue;
1404
0
            if (p[i] == '8' || p[i] == '9')
1405
0
                goto no_prefix;
1406
0
            p += 1;
1407
0
            radix = 8;
1408
946k
        } else {
1409
946k
            goto no_prefix;
1410
946k
        }
1411
        /* there must be a digit after the prefix */
1412
0
        if (to_digit((uint8_t)*p) >= radix)
1413
0
            goto fail;
1414
946k
    no_prefix: ;
1415
1.19M
    } else {
1416
1.19M
        if (!(flags & JS_ATOD_INT_ONLY) && strstart(p, "Infinity", &p))
1417
0
            goto overflow;
1418
1.19M
    }
1419
2.14M
    if (radix == 0)
1420
0
        radix = 10;
1421
1422
2.14M
    cur_limb = 0;
1423
2.14M
    expn_offset = 0;
1424
2.14M
    digit_count = 0;
1425
2.14M
    limb_digit_count = 0;
1426
2.14M
    max_digits = atod_max_digits_table[radix - 2];
1427
2.14M
    digits_per_limb = digits_per_limb_table[radix - 2];
1428
2.14M
    radix_base = radix_base_table[radix - 2];
1429
2.14M
    radix_shift = ctz32(radix);
1430
2.14M
    radix1 = radix >> radix_shift;
1431
2.14M
    if (radix1 == 1) {
1432
        /* radix = 2^radix_bits */
1433
0
        radix_bits = radix_shift;
1434
2.14M
    } else {
1435
2.14M
        radix_bits = 0;
1436
2.14M
    }
1437
2.14M
    tmp0->len = 1;
1438
2.14M
    tmp0->tab[0] = 0;
1439
2.14M
    extra_digits = 0;
1440
2.14M
    pos = 0;
1441
2.14M
    dot_pos = -1;
1442
    /* skip leading zeros */
1443
3.43M
    for(;;) {
1444
3.43M
        if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
1445
0
            !(flags & JS_ATOD_INT_ONLY)) {
1446
0
            if (*p == sep)
1447
0
                goto fail;
1448
0
            if (dot_pos >= 0)
1449
0
                break;
1450
0
            dot_pos = pos;
1451
0
            p++;
1452
0
        }
1453
3.43M
        if (*p == sep && p > p_start && p[1] == '0')
1454
0
            p++;
1455
3.43M
        if (*p != '0')
1456
2.14M
            break;
1457
1.28M
        p++;
1458
1.28M
        pos++;
1459
1.28M
    }
1460
    
1461
2.14M
    sig_pos = pos;
1462
6.20M
    for(;;) {
1463
6.20M
        limb_t c;
1464
6.20M
        if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
1465
900
            !(flags & JS_ATOD_INT_ONLY)) {
1466
900
            if (*p == sep)
1467
0
                goto fail;
1468
900
            if (dot_pos >= 0)
1469
0
                break;
1470
900
            dot_pos = pos;
1471
900
            p++;
1472
900
        }
1473
6.20M
        if (*p == sep && p > p_start && to_digit(p[1]) < radix)
1474
0
            p++;
1475
6.20M
        c = to_digit(*p);
1476
6.20M
        if (c >= radix)
1477
2.14M
            break;
1478
4.05M
        p++;
1479
4.05M
        pos++;
1480
4.05M
        if (digit_count < max_digits) {
1481
            /* XXX: could be faster when radix_bits != 0 */
1482
1.25M
            cur_limb = cur_limb * radix + c;
1483
1.25M
            limb_digit_count++;
1484
1.25M
            if (limb_digit_count == digits_per_limb) {
1485
4.12k
                mpb_mul1_base(tmp0, radix_base, cur_limb);
1486
4.12k
                cur_limb = 0;
1487
4.12k
                limb_digit_count = 0;
1488
4.12k
            }
1489
1.25M
            digit_count++;
1490
2.80M
        } else {
1491
2.80M
            extra_digits |= c;
1492
2.80M
        }
1493
4.05M
    }
1494
2.14M
    if (limb_digit_count != 0) {
1495
1.19M
        mpb_mul1_base(tmp0, pow_ui(radix, limb_digit_count), cur_limb);
1496
1.19M
    }
1497
2.14M
    if (digit_count == 0) {
1498
946k
        is_zero = TRUE;
1499
946k
        expn_offset = 0;
1500
1.19M
    } else {
1501
1.19M
        is_zero = FALSE;
1502
1.19M
        if (dot_pos < 0)
1503
1.19M
            dot_pos = pos;
1504
1.19M
        expn_offset = sig_pos + digit_count - dot_pos;
1505
1.19M
    }
1506
    
1507
    /* Use the extra digits for rounding if the base is a power of
1508
       two. Otherwise they are just truncated. */
1509
2.14M
    if (radix_bits != 0 && extra_digits != 0) {
1510
0
        tmp0->tab[0] |= 1;
1511
0
    }
1512
    
1513
    /* parse the exponent, if any */
1514
2.14M
    expn = 0;
1515
2.14M
    expn_overflow = FALSE;
1516
2.14M
    is_bin_exp = FALSE;
1517
2.14M
    if (!(flags & JS_ATOD_INT_ONLY) &&
1518
2.66k
        ((radix == 10 && (*p == 'e' || *p == 'E')) ||
1519
897
         (radix != 10 && (*p == '@' ||
1520
0
                          (radix_bits >= 1 && radix_bits <= 4 && (*p == 'p' || *p == 'P'))))) &&
1521
1.76k
        p > p_start) {
1522
1.76k
        BOOL exp_is_neg;
1523
1.76k
        int c;
1524
1.76k
        is_bin_exp = (*p == 'p' || *p == 'P');
1525
1.76k
        p++;
1526
1.76k
        exp_is_neg = 0;
1527
1.76k
        if (*p == '+') {
1528
398
            p++;
1529
1.36k
        } else if (*p == '-') {
1530
838
            exp_is_neg = 1;
1531
838
            p++;
1532
838
        }
1533
1.76k
        c = to_digit(*p);
1534
1.76k
        if (c >= 10)
1535
0
            goto fail; /* XXX: could stop before the exponent part */
1536
1.76k
        expn = c;
1537
1.76k
        p++;
1538
3.44k
        for(;;) {
1539
3.44k
            if (*p == sep && to_digit(p[1]) < 10)
1540
0
                p++;
1541
3.44k
            c = to_digit(*p);
1542
3.44k
            if (c >= 10)
1543
1.76k
                break;
1544
1.68k
            if (!expn_overflow) {
1545
1.68k
                if (unlikely(expn > ((INT32_MAX - 2 - 9) / 10))) {
1546
0
                    expn_overflow = TRUE;
1547
1.68k
                } else {
1548
1.68k
                    expn = expn * 10 + c;
1549
1.68k
                }
1550
1.68k
            }
1551
1.68k
            p++;
1552
1.68k
        }
1553
1.76k
        if (exp_is_neg)
1554
838
            expn = -expn;
1555
        /* if zero result, the exponent can be arbitrarily large */
1556
1.76k
        if (!is_zero && expn_overflow) {
1557
0
            if (exp_is_neg)
1558
0
                a = 0;
1559
0
            else
1560
0
                a = (uint64_t)0x7ff << 52; /* infinity */
1561
0
            goto done;
1562
0
        }
1563
1.76k
    }
1564
1565
2.14M
    if (p == p_start)
1566
0
        goto fail;
1567
1568
2.14M
    if (is_zero) {
1569
946k
        a = 0;
1570
1.19M
    } else {
1571
1.19M
        int expn1;
1572
1.19M
        if (radix_bits != 0) {
1573
0
            if (!is_bin_exp)
1574
0
                expn *= radix_bits;
1575
0
            expn -= expn_offset * radix_bits;
1576
0
            expn1 = expn + digit_count * radix_bits;
1577
0
            if (expn1 >= 1024 + radix_bits)
1578
0
                goto overflow;
1579
0
            else if (expn1 <= -1075)
1580
0
                goto underflow;
1581
0
            m = round_to_d(&e, tmp0, -expn, JS_RNDN);
1582
1.19M
        } else {
1583
1.19M
            expn -= expn_offset;
1584
1.19M
            expn1 = expn + digit_count;
1585
1.19M
            if (expn1 >= max_exponent[radix - 2] + 1)
1586
2
                goto overflow;
1587
1.19M
            else if (expn1 <= min_exponent[radix - 2])
1588
838
                goto underflow;
1589
1.19M
            m = mul_pow_round_to_d(&e, tmp0, radix1, radix_shift, expn, JS_RNDN);
1590
1.19M
        }
1591
1.19M
        if (m == 0) {
1592
838
        underflow:
1593
838
            a = 0;
1594
1.19M
        } else if (e > 1024) {
1595
2
        overflow:
1596
            /* overflow */
1597
2
            a = (uint64_t)0x7ff << 52;
1598
1.19M
        } else if (e < -1073) {
1599
            /* underflow */
1600
            /* XXX: check rounding */
1601
0
            a = 0;
1602
1.19M
        } else if (e < -1021) {
1603
            /* subnormal */
1604
0
            a = m >> (-e - 1021);
1605
1.19M
        } else {
1606
1.19M
            a = ((uint64_t)(e + 1022) << 52) | (m & (((uint64_t)1 << 52) - 1));
1607
1.19M
        }
1608
1.19M
    }
1609
2.14M
 done:
1610
2.14M
    a |= (uint64_t)is_neg << 63;
1611
2.14M
    dval = uint64_as_float64(a);
1612
2.14M
 done1:
1613
2.14M
    if (pnext)
1614
0
        *pnext = p;
1615
2.14M
    dtoa_free(tmp0);
1616
2.14M
    return dval;
1617
0
 fail:
1618
    dval = NAN;
1619
0
    goto done1;
1620
2.14M
}