Coverage Report

Created: 2025-10-28 06:29

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quickjs/dtoa.c
Line
Count
Source
1
/*
2
 * Tiny float64 printing and parsing library
3
 *
4
 * Copyright (c) 2024 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <inttypes.h>
28
#include <string.h>
29
#include <assert.h>
30
#include <ctype.h>
31
#include <sys/time.h>
32
#include <math.h>
33
#include <setjmp.h>
34
35
#include "cutils.h"
36
#include "dtoa.h"
37
38
/* 
39
   TODO:
40
   - test n_digits=101 instead of 100
41
   - simplify subnormal handling
42
   - reduce max memory usage
43
   - free format: could add shortcut if exact result
44
   - use 64 bit limb_t when possible
45
   - use another algorithm for free format dtoa in base 10 (ryu ?)
46
*/
47
48
#define USE_POW5_TABLE
49
/* use fast path to print small integers in free format */
50
#define USE_FAST_INT
51
52
572k
#define LIMB_LOG2_BITS 5
53
54
572k
#define LIMB_BITS (1 << LIMB_LOG2_BITS)
55
56
typedef int32_t slimb_t;
57
typedef uint32_t limb_t;
58
typedef uint64_t dlimb_t;
59
60
#define LIMB_DIGITS 9
61
62
#define JS_RADIX_MAX 36
63
64
1.04M
#define DBIGNUM_LEN_MAX 52 /* ~ 2^(1072+53)*36^100 (dtoa) */
65
0
#define MANT_LEN_MAX 18 /* < 36^100 */
66
67
typedef intptr_t mp_size_t;
68
69
/* the represented number is sum(i, tab[i]*2^(LIMB_BITS * i)) */
70
typedef struct {
71
    int len; /* >= 1 */
72
    limb_t tab[];
73
} mpb_t;
74
75
static limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n)
76
9
{
77
9
    size_t i;
78
9
    limb_t k, a;
79
80
9
    k=b;
81
24
    for(i=0;i<n;i++) {
82
18
        if (k == 0)
83
3
            break;
84
15
        a = tab[i] + k;
85
15
        k = (a < k);
86
15
        tab[i] = a;
87
15
    }
88
9
    return k;
89
9
}
90
91
/* tabr[] = taba[] * b + l. Return the high carry */
92
static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n, 
93
                      limb_t b, limb_t l)
94
42
{
95
42
    limb_t i;
96
42
    dlimb_t t;
97
98
146
    for(i = 0; i < n; i++) {
99
104
        t = (dlimb_t)taba[i] * (dlimb_t)b + l;
100
104
        tabr[i] = t;
101
104
        l = t >> LIMB_BITS;
102
104
    }
103
42
    return l;
104
42
}
105
106
/* WARNING: d must be >= 2^(LIMB_BITS-1) */
107
static inline limb_t udiv1norm_init(limb_t d)
108
0
{
109
0
    limb_t a0, a1;
110
0
    a1 = -d - 1;
111
0
    a0 = -1;
112
0
    return (((dlimb_t)a1 << LIMB_BITS) | a0) / d;
113
0
}
114
115
/* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0
116
   / d' with 0 <= a1 < d. */
117
static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0,
118
                                limb_t d, limb_t d_inv)
119
3
{
120
3
    limb_t n1m, n_adj, q, r, ah;
121
3
    dlimb_t a;
122
3
    n1m = ((slimb_t)a0 >> (LIMB_BITS - 1));
123
3
    n_adj = a0 + (n1m & d);
124
3
    a = (dlimb_t)d_inv * (a1 - n1m) + n_adj;
125
3
    q = (a >> LIMB_BITS) + a1;
126
    /* compute a - q * r and update q so that the remainder is between
127
       0 and d - 1 */
128
3
    a = ((dlimb_t)a1 << LIMB_BITS) | a0;
129
3
    a = a - (dlimb_t)q * d - d;
130
3
    ah = a >> LIMB_BITS;
131
3
    q += 1 + ah;
132
3
    r = (limb_t)a + (ah & d);
133
3
    *pr = r;
134
3
    return q;
135
3
}
136
137
static limb_t mp_div1(limb_t *tabr, const limb_t *taba, limb_t n,
138
                      limb_t b, limb_t r)
139
0
{
140
0
    slimb_t i;
141
0
    dlimb_t a1;
142
0
    for(i = n - 1; i >= 0; i--) {
143
0
        a1 = ((dlimb_t)r << LIMB_BITS) | taba[i];
144
0
        tabr[i] = a1 / b;
145
0
        r = a1 % b;
146
0
    }
147
0
    return r;
148
0
}
149
150
/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift). 
151
   1 <= shift <= LIMB_BITS - 1 */
152
static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n, 
153
                     int shift, limb_t high)
154
11
{
155
11
    mp_size_t i;
156
11
    limb_t l, a;
157
158
11
    assert(shift >= 1 && shift < LIMB_BITS);
159
11
    l = high;
160
33
    for(i = n - 1; i >= 0; i--) {
161
22
        a = tab[i];
162
22
        tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift));
163
22
        l = a;
164
22
    }
165
11
    return l & (((limb_t)1 << shift) - 1);
166
11
}
167
168
/* r = (a << shift) + low. 1 <= shift <= LIMB_BITS - 1, 0 <= low <
169
   2^shift. */
170
static limb_t mp_shl(limb_t *tab_r, const limb_t *tab, mp_size_t n, 
171
              int shift, limb_t low)
172
114k
{
173
114k
    mp_size_t i;
174
114k
    limb_t l, a;
175
176
114k
    assert(shift >= 1 && shift < LIMB_BITS);
177
114k
    l = low;
178
229k
    for(i = 0; i < n; i++) {
179
114k
        a = tab[i];
180
114k
        tab_r[i] = (a << shift) | l;
181
114k
        l = (a >> (LIMB_BITS - shift)); 
182
114k
    }
183
114k
    return l;
184
114k
}
185
186
static no_inline limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n,
187
                                    limb_t b, limb_t r, limb_t b_inv, int shift)
188
1
{
189
1
    slimb_t i;
190
191
1
    if (shift != 0) {
192
1
        r = (r << shift) | mp_shl(tabr, taba, n, shift, 0);
193
1
    }
194
4
    for(i = n - 1; i >= 0; i--) {
195
3
        tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
196
3
    }
197
1
    r >>= shift;
198
1
    return r;
199
1
}
200
201
static __maybe_unused void mpb_dump(const char *str, const mpb_t *a)
202
0
{
203
0
    int i;
204
0
    
205
0
    printf("%s= 0x", str);
206
0
    for(i = a->len - 1; i >= 0; i--) {
207
0
        printf("%08x", a->tab[i]);
208
0
        if (i != 0)
209
0
            printf("_");
210
0
    }
211
0
    printf("\n");
212
0
}
213
214
static void mpb_renorm(mpb_t *r)
215
114k
{
216
229k
    while (r->len > 1 && r->tab[r->len - 1] == 0)
217
114k
        r->len--;
218
114k
}
219
220
#ifdef USE_POW5_TABLE
221
static const uint32_t pow5_table[17] = {
222
    0x00000005, 0x00000019, 0x0000007d, 0x00000271, 
223
    0x00000c35, 0x00003d09, 0x0001312d, 0x0005f5e1, 
224
    0x001dcd65, 0x009502f9, 0x02e90edd, 0x0e8d4a51, 
225
    0x48c27395, 0x6bcc41e9, 0x1afd498d, 0x86f26fc1, 
226
    0xa2bc2ec5, 
227
};
228
229
static const uint8_t pow5h_table[4] = {
230
    0x00000001, 0x00000007, 0x00000023, 0x000000b1, 
231
};
232
233
static const uint32_t pow5_inv_table[13] = {
234
    0x99999999, 0x47ae147a, 0x0624dd2f, 0xa36e2eb1,
235
    0x4f8b588e, 0x0c6f7a0b, 0xad7f29ab, 0x5798ee23,
236
    0x12e0be82, 0xb7cdfd9d, 0x5fd7fe17, 0x19799812,
237
    0xc25c2684,
238
};
239
#endif
240
241
/* return a^b */
242
static uint64_t pow_ui(uint32_t a, uint32_t b)
243
114k
{
244
114k
    int i, n_bits;
245
114k
    uint64_t r;
246
114k
    if (b == 0)
247
0
        return 1;
248
114k
    if (b == 1)
249
114k
        return a;
250
19
#ifdef USE_POW5_TABLE
251
19
    if ((a == 5 || a == 10) && b <= 17) {
252
19
        r = pow5_table[b - 1];
253
19
        if (b >= 14) {
254
0
            r |= (uint64_t)pow5h_table[b - 14] << 32;
255
0
        }
256
19
        if (a == 10)
257
19
            r <<= b;
258
19
        return r;
259
19
    }
260
0
#endif
261
0
    r = a;
262
0
    n_bits = 32 - clz32(b);
263
0
    for(i = n_bits - 2; i >= 0; i--) {
264
0
        r *= r;
265
0
        if ((b >> i) & 1)
266
0
            r *= a;
267
0
    }
268
0
    return r;
269
19
}
270
271
static uint32_t pow_ui_inv(uint32_t *pr_inv, int *pshift, uint32_t a, uint32_t b)
272
1
{
273
1
    uint32_t r_inv, r;
274
1
    int shift;
275
1
#ifdef USE_POW5_TABLE
276
1
    if (a == 5 && b >= 1 && b <= 13) {
277
1
        r = pow5_table[b - 1];
278
1
        shift = clz32(r);
279
1
        r <<= shift;
280
1
        r_inv = pow5_inv_table[b - 1];
281
1
    } else
282
0
#endif
283
0
    {
284
0
        r = pow_ui(a, b);
285
0
        shift = clz32(r);
286
0
        r <<= shift;
287
0
        r_inv = udiv1norm_init(r);
288
0
    }
289
1
    *pshift = shift;
290
1
    *pr_inv = r_inv;
291
1
    return r;
292
1
}
293
294
enum {
295
    JS_RNDN, /* round to nearest, ties to even */
296
    JS_RNDNA, /* round to nearest, ties away from zero */
297
    JS_RNDZ,
298
};
299
300
static int mpb_get_bit(const mpb_t *r, int k)
301
11
{
302
11
    int l;
303
    
304
11
    l = (unsigned)k / LIMB_BITS;
305
11
    k = k & (LIMB_BITS - 1);
306
11
    if (l >= r->len)
307
0
        return 0;
308
11
    else
309
11
        return (r->tab[l] >> k) & 1;
310
11
}
311
312
/* compute round(r / 2^shift). 'shift' can be negative */
313
static void mpb_shr_round(mpb_t *r, int shift, int rnd_mode)
314
114k
{
315
114k
    int l, i;
316
317
114k
    if (shift == 0)
318
0
        return;
319
114k
    if (shift < 0) {
320
114k
        shift = -shift;
321
114k
        l = (unsigned)shift / LIMB_BITS;
322
114k
        shift = shift & (LIMB_BITS - 1);
323
114k
        if (shift != 0) {
324
114k
            r->tab[r->len] = mp_shl(r->tab, r->tab, r->len, shift, 0);
325
114k
            r->len++;
326
114k
            mpb_renorm(r);
327
114k
        }
328
114k
        if (l > 0) {
329
229k
            for(i = r->len - 1; i >= 0; i--)
330
114k
                r->tab[i + l] = r->tab[i];
331
229k
            for(i = 0; i < l; i++)
332
114k
                r->tab[i] = 0;
333
114k
            r->len += l;
334
114k
        }
335
114k
    } else {
336
11
        limb_t bit1, bit2;
337
11
        int k, add_one;
338
        
339
11
        switch(rnd_mode) {
340
0
        default:
341
0
        case JS_RNDZ:
342
0
            add_one = 0;
343
0
            break;
344
11
        case JS_RNDN:
345
11
        case JS_RNDNA:
346
11
            bit1 = mpb_get_bit(r, shift - 1);
347
11
            if (bit1) {
348
9
                if (rnd_mode == JS_RNDNA) {
349
0
                    bit2 = 1;
350
9
                } else {
351
                    /* bit2 = oring of all the bits after bit1 */
352
9
                    bit2 = 0;
353
9
                    if (shift >= 2) {
354
9
                        k = shift - 1;
355
9
                        l = (unsigned)k / LIMB_BITS;
356
9
                        k = k & (LIMB_BITS - 1);
357
26
                        for(i = 0; i < min_int(l, r->len); i++)
358
17
                            bit2 |= r->tab[i];
359
9
                        if (l < r->len)
360
9
                            bit2 |= r->tab[l] & (((limb_t)1 << k) - 1);
361
9
                    }
362
9
                }
363
9
                if (bit2) {
364
9
                    add_one = 1;
365
9
                } else {
366
                    /* round to even */
367
0
                    add_one = mpb_get_bit(r, shift);
368
0
                }
369
9
            } else {
370
2
                add_one = 0;
371
2
            }
372
11
            break;
373
11
        }
374
375
11
        l = (unsigned)shift / LIMB_BITS;
376
11
        shift = shift & (LIMB_BITS - 1);
377
11
        if (l >= r->len) {
378
0
            r->len = 1;
379
0
            r->tab[0] = add_one;
380
11
        } else {
381
11
            if (l > 0) {
382
9
                r->len -= l;
383
27
                for(i = 0; i < r->len; i++)
384
18
                    r->tab[i] = r->tab[i + l];
385
9
            }
386
11
            if (shift != 0) {
387
11
                mp_shr(r->tab, r->tab, r->len, shift, 0);
388
11
                mpb_renorm(r);
389
11
            }
390
11
            if (add_one) {
391
9
                limb_t a;
392
9
                a = mp_add_ui(r->tab, 1, r->len);
393
9
                if (a)
394
0
                    r->tab[r->len++] = a;
395
9
            }
396
11
        }
397
11
    }
398
114k
}
399
400
/* return -1, 0 or 1 */
401
static int mpb_cmp(const mpb_t *a, const mpb_t *b)
402
0
{
403
0
    mp_size_t i;
404
0
    if (a->len < b->len)
405
0
        return -1;
406
0
    else if (a->len > b->len)
407
0
        return 1;
408
0
    for(i = a->len - 1; i >= 0; i--) {
409
0
        if (a->tab[i] != b->tab[i]) {
410
0
            if (a->tab[i] < b->tab[i])
411
0
                return -1;
412
0
            else
413
0
                return 1;
414
0
        }
415
0
    }
416
0
    return 0;
417
0
}
418
419
static void mpb_set_u64(mpb_t *r, uint64_t m)
420
0
{
421
#if LIMB_BITS == 64
422
    r->tab[0] = m;
423
    r->len = 1;
424
#else
425
0
    r->tab[0] = m;
426
0
    r->tab[1] = m >> LIMB_BITS;
427
0
    if (r->tab[1] == 0)
428
0
        r->len = 1;
429
0
    else
430
0
        r->len = 2;
431
0
#endif
432
0
}
433
434
static uint64_t mpb_get_u64(mpb_t *r)
435
114k
{
436
#if LIMB_BITS == 64
437
    return r->tab[0];
438
#else
439
114k
    if (r->len == 1) {
440
0
        return r->tab[0];
441
114k
    } else {
442
114k
        return r->tab[0] | ((uint64_t)r->tab[1] << LIMB_BITS);
443
114k
    }
444
114k
#endif
445
114k
}
446
447
/* floor_log2() = position of the first non zero bit or -1 if zero. */
448
static int mpb_floor_log2(mpb_t *a)
449
114k
{
450
114k
    limb_t v;
451
114k
    v = a->tab[a->len - 1];
452
114k
    if (v == 0)
453
0
        return -1;
454
114k
    else
455
114k
        return a->len * LIMB_BITS - 1 - clz32(v);
456
114k
}
457
458
0
#define MUL_LOG2_RADIX_BASE_LOG2 24
459
460
/* round((1 << MUL_LOG2_RADIX_BASE_LOG2)/log2(i + 2)) */
461
static const uint32_t mul_log2_radix_table[JS_RADIX_MAX - 1] = {
462
    0x000000, 0xa1849d, 0x000000, 0x6e40d2, 
463
    0x6308c9, 0x5b3065, 0x000000, 0x50c24e, 
464
    0x4d104d, 0x4a0027, 0x4768ce, 0x452e54, 
465
    0x433d00, 0x418677, 0x000000, 0x3ea16b, 
466
    0x3d645a, 0x3c43c2, 0x3b3b9a, 0x3a4899, 
467
    0x39680b, 0x3897b3, 0x37d5af, 0x372069, 
468
    0x367686, 0x35d6df, 0x354072, 0x34b261, 
469
    0x342bea, 0x33ac62, 0x000000, 0x32bfd9, 
470
    0x3251dd, 0x31e8d6, 0x318465,
471
};
472
473
/* return floor(a / log2(radix)) for -2048 <= a <= 2047 */
474
static int mul_log2_radix(int a, int radix)
475
0
{
476
0
    int radix_bits, mult;
477
478
0
    if ((radix & (radix - 1)) == 0) {
479
        /* if the radix is a power of two better to do it exactly */
480
0
        radix_bits = 31 - clz32(radix);
481
0
        if (a < 0)
482
0
            a -= radix_bits - 1;
483
0
        return a / radix_bits;
484
0
    } else {
485
0
        mult = mul_log2_radix_table[radix - 2];
486
0
        return ((int64_t)a * mult) >> MUL_LOG2_RADIX_BASE_LOG2;
487
0
    }
488
0
}
489
490
#if 0
491
static void build_mul_log2_radix_table(void)
492
{
493
    int base, radix, mult, col, base_log2;
494
495
    base_log2 = 24;
496
    base = 1 << base_log2;
497
    col = 0;
498
    for(radix = 2; radix <= 36; radix++) {
499
        if ((radix & (radix - 1)) == 0)
500
            mult = 0;
501
        else
502
            mult = lrint((double)base / log2(radix));
503
        printf("0x%06x, ", mult);
504
        if (++col == 4) {
505
            printf("\n");
506
            col = 0;
507
        }
508
    }
509
    printf("\n");
510
}
511
512
static void mul_log2_radix_test(void)
513
{
514
    int radix, i, ref, r;
515
    
516
    for(radix = 2; radix <= 36; radix++) {
517
        for(i = -2048; i <= 2047; i++) {
518
            ref = (int)floor((double)i / log2(radix));
519
            r = mul_log2_radix(i, radix);
520
            if (ref != r) {
521
                printf("ERROR: radix=%d i=%d r=%d ref=%d\n",
522
                       radix, i, r, ref);
523
                exit(1);
524
            }
525
        }
526
    }
527
    if (0)
528
        build_mul_log2_radix_table();
529
}
530
#endif
531
532
static void u32toa_len(char *buf, uint32_t n, size_t len)
533
0
{
534
0
    int digit, i;
535
0
    for(i = len - 1; i >= 0; i--) {
536
0
        digit = n % 10;
537
0
        n = n / 10;
538
0
        buf[i] = digit + '0';
539
0
    }
540
0
}
541
542
/* for power of 2 radixes. len >= 1 */
543
static void u64toa_bin_len(char *buf, uint64_t n, unsigned int radix_bits, int len)
544
0
{
545
0
    int digit, i;
546
0
    unsigned int mask;
547
548
0
    mask = (1 << radix_bits) - 1;
549
0
    for(i = len - 1; i >= 0; i--) {
550
0
        digit = n & mask;
551
0
        n >>= radix_bits;
552
0
        if (digit < 10)
553
0
            digit += '0';
554
0
        else
555
0
            digit += 'a' - 10;
556
0
        buf[i] = digit;
557
0
    }
558
0
}
559
560
/* len >= 1. 2 <= radix <= 36 */
561
static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len)
562
0
{
563
0
    int digit, i;
564
565
0
    if (radix == 10) {
566
        /* specific case with constant divisor */
567
0
#if LIMB_BITS == 32
568
0
        u32toa_len(buf, n, len);
569
#else
570
        /* XXX: optimize */
571
        for(i = len - 1; i >= 0; i--) {
572
            digit = (limb_t)n % 10;
573
            n = (limb_t)n / 10;
574
            buf[i] = digit + '0';
575
        }
576
#endif
577
0
    } else {
578
0
        for(i = len - 1; i >= 0; i--) {
579
0
            digit = (limb_t)n % radix;
580
0
            n = (limb_t)n / radix;
581
0
            if (digit < 10)
582
0
                digit += '0';
583
0
            else
584
0
                digit += 'a' - 10;
585
0
            buf[i] = digit;
586
0
        }
587
0
    }
588
0
}
589
590
size_t u32toa(char *buf, uint32_t n)
591
0
{
592
0
    char buf1[10], *q;
593
0
    size_t len;
594
    
595
0
    q = buf1 + sizeof(buf1);
596
0
    do {
597
0
        *--q = n % 10 + '0';
598
0
        n /= 10;
599
0
    } while (n != 0);
600
0
    len = buf1 + sizeof(buf1) - q;
601
0
    memcpy(buf, q, len);
602
0
    return len;
603
0
}
604
605
size_t i32toa(char *buf, int32_t n)
606
0
{
607
0
    if (n >= 0) {
608
0
        return u32toa(buf, n);
609
0
    } else {
610
0
        buf[0] = '-';
611
0
        return u32toa(buf + 1, -(uint32_t)n) + 1;
612
0
    }
613
0
}
614
615
#ifdef USE_FAST_INT
616
size_t u64toa(char *buf, uint64_t n)
617
0
{
618
0
    if (n < 0x100000000) {
619
0
        return u32toa(buf, n);
620
0
    } else {
621
0
        uint64_t n1;
622
0
        char *q = buf;
623
0
        uint32_t n2;
624
        
625
0
        n1 = n / 1000000000;
626
0
        n %= 1000000000;
627
0
        if (n1 >= 0x100000000) {
628
0
            n2 = n1 / 1000000000;
629
0
            n1 = n1 % 1000000000;
630
            /* at most two digits */
631
0
            if (n2 >= 10) {
632
0
                *q++ = n2 / 10 + '0';
633
0
                n2 %= 10;
634
0
            }
635
0
            *q++ = n2 + '0';
636
0
            u32toa_len(q, n1, 9);
637
0
            q += 9;
638
0
        } else {
639
0
            q += u32toa(q, n1);
640
0
        }
641
0
        u32toa_len(q, n, 9);
642
0
        q += 9;
643
0
        return q - buf;
644
0
    }
645
0
}
646
647
size_t i64toa(char *buf, int64_t n)
648
0
{
649
0
    if (n >= 0) {
650
0
        return u64toa(buf, n);
651
0
    } else {
652
0
        buf[0] = '-';
653
0
        return u64toa(buf + 1, -(uint64_t)n) + 1;
654
0
    }
655
0
}
656
657
/* XXX: only tested for 1 <= n < 2^53 */
658
size_t u64toa_radix(char *buf, uint64_t n, unsigned int radix)
659
0
{
660
0
    int radix_bits, l;
661
0
    if (likely(radix == 10))
662
0
        return u64toa(buf, n);
663
0
    if ((radix & (radix - 1)) == 0) {
664
0
        radix_bits = 31 - clz32(radix);
665
0
        if (n == 0)
666
0
            l = 1;
667
0
        else
668
0
            l = (64 - clz64(n) + radix_bits - 1) / radix_bits;
669
0
        u64toa_bin_len(buf, n, radix_bits, l);
670
0
        return l;
671
0
    } else {
672
0
        char buf1[41], *q; /* maximum length for radix = 3 */
673
0
        size_t len;
674
0
        int digit;
675
0
        q = buf1 + sizeof(buf1);
676
0
        do {
677
0
            digit = n % radix;
678
0
            n /= radix;
679
0
            if (digit < 10)
680
0
                digit += '0';
681
0
            else
682
0
                digit += 'a' - 10;
683
0
            *--q = digit;
684
0
        } while (n != 0);
685
0
        len = buf1 + sizeof(buf1) - q;
686
0
        memcpy(buf, q, len);
687
0
        return len;
688
0
    }
689
0
}
690
691
size_t i64toa_radix(char *buf, int64_t n, unsigned int radix)
692
0
{
693
0
    if (n >= 0) {
694
0
        return u64toa_radix(buf, n, radix);
695
0
    } else {
696
0
        buf[0] = '-';
697
0
        return u64toa_radix(buf + 1, -(uint64_t)n, radix) + 1;
698
0
    }
699
0
}
700
#endif /* USE_FAST_INT */
701
702
static const uint8_t digits_per_limb_table[JS_RADIX_MAX - 1] = {
703
#if LIMB_BITS == 32
704
32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
705
#else
706
64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
707
#endif
708
};
709
710
static const uint32_t radix_base_table[JS_RADIX_MAX - 1] = {
711
 0x00000000, 0xcfd41b91, 0x00000000, 0x48c27395,
712
 0x81bf1000, 0x75db9c97, 0x40000000, 0xcfd41b91,
713
 0x3b9aca00, 0x8c8b6d2b, 0x19a10000, 0x309f1021,
714
 0x57f6c100, 0x98c29b81, 0x00000000, 0x18754571,
715
 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
716
 0x94ace180, 0xcaf18367, 0x0b640000, 0x0e8d4a51,
717
 0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899,
718
 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1,
719
 0x5c13d840, 0x6d91b519, 0x81bf1000,
720
};
721
722
/* XXX: remove the table ? */
723
static uint8_t dtoa_max_digits_table[JS_RADIX_MAX - 1] = {
724
    54, 35, 28, 24, 22, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12,
725
};
726
727
/* we limit the maximum number of significant digits for atod to about
728
   128 bits of precision for non power of two bases. The only
729
   requirement for Javascript is at least 20 digits in base 10. For
730
   power of two bases, we do an exact rounding in all the cases. */
731
static uint8_t atod_max_digits_table[JS_RADIX_MAX - 1] = {
732
     64, 80, 32, 55, 49, 45, 21, 40, 38, 37, 35, 34, 33, 32, 16, 31, 30, 30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 12, 25, 25, 24, 24,
733
};
734
735
/* if abs(d) >= B^max_exponent, it is an overflow */
736
static const int16_t max_exponent[JS_RADIX_MAX - 1] = {
737
 1024,   647,   512,   442,   397,   365,   342,   324, 
738
  309,   297,   286,   277,   269,   263,   256,   251, 
739
  246,   242,   237,   234,   230,   227,   224,   221, 
740
  218,   216,   214,   211,   209,   207,   205,   203, 
741
  202,   200,   199, 
742
};
743
744
/* if abs(d) <= B^min_exponent, it is an underflow */
745
static const int16_t min_exponent[JS_RADIX_MAX - 1] = {
746
-1075,  -679,  -538,  -463,  -416,  -383,  -359,  -340, 
747
 -324,  -311,  -300,  -291,  -283,  -276,  -269,  -263, 
748
 -258,  -254,  -249,  -245,  -242,  -238,  -235,  -232, 
749
 -229,  -227,  -224,  -222,  -220,  -217,  -215,  -214, 
750
 -212,  -210,  -208, 
751
};
752
753
#if 0
754
void build_tables(void)
755
{
756
    int r, j, radix, n, col, i;
757
    
758
    /* radix_base_table */
759
    for(radix = 2; radix <= 36; radix++) {
760
        r = 1;
761
        for(j = 0; j < digits_per_limb_table[radix - 2]; j++) {
762
            r *= radix;
763
        }
764
        printf(" 0x%08x,", r);
765
        if ((radix % 4) == 1)
766
            printf("\n");
767
    }
768
    printf("\n");
769
770
    /* dtoa_max_digits_table */
771
    for(radix = 2; radix <= 36; radix++) {
772
        /* Note: over estimated when the radix is a power of two */
773
        printf(" %d,", 1 + (int)ceil(53.0 / log2(radix)));
774
    }
775
    printf("\n");
776
777
    /* atod_max_digits_table */
778
    for(radix = 2; radix <= 36; radix++) {
779
        if ((radix & (radix - 1)) == 0) {
780
            /* 64 bits is more than enough */
781
            n = (int)floor(64.0 / log2(radix));
782
        } else {
783
            n = (int)floor(128.0 / log2(radix));
784
        }
785
        printf(" %d,", n);
786
    }
787
    printf("\n");
788
789
    printf("static const int16_t max_exponent[JS_RADIX_MAX - 1] = {\n");
790
    col = 0;
791
    for(radix = 2; radix <= 36; radix++) {
792
        printf("%5d, ", (int)ceil(1024 / log2(radix)));
793
        if (++col == 8) {
794
            col = 0;
795
            printf("\n");
796
        }
797
    }
798
    printf("\n};\n\n");
799
800
    printf("static const int16_t min_exponent[JS_RADIX_MAX - 1] = {\n");
801
    col = 0; 
802
    for(radix = 2; radix <= 36; radix++) {
803
        printf("%5d, ", (int)floor(-1075 / log2(radix)));
804
        if (++col == 8) {
805
            col = 0;
806
            printf("\n");
807
        }
808
    }
809
    printf("\n};\n\n");
810
811
    printf("static const uint32_t pow5_table[16] = {\n");
812
    col = 0; 
813
    for(i = 2; i <= 17; i++) {
814
        r = 1;
815
        for(j = 0; j < i; j++) {
816
            r *= 5;
817
        }
818
        printf("0x%08x, ", r);
819
        if (++col == 4) {
820
            col = 0;
821
            printf("\n");
822
        }
823
    }
824
    printf("\n};\n\n");
825
826
    /* high part */
827
    printf("static const uint8_t pow5h_table[4] = {\n");
828
    col = 0; 
829
    for(i = 14; i <= 17; i++) {
830
        uint64_t r1;
831
        r1 = 1;
832
        for(j = 0; j < i; j++) {
833
            r1 *= 5;
834
        }
835
        printf("0x%08x, ", (uint32_t)(r1 >> 32));
836
        if (++col == 4) {
837
            col = 0;
838
            printf("\n");
839
        }
840
    }
841
    printf("\n};\n\n");
842
}
843
#endif
844
845
/* n_digits >= 1. 0 <= dot_pos <= n_digits. If dot_pos == n_digits,
846
   the dot is not displayed. 'a' is modified. */
847
static int output_digits(char *buf,
848
                         mpb_t *a, int radix, int n_digits1,
849
                         int dot_pos)
850
0
{
851
0
    int n_digits, digits_per_limb, radix_bits, n, len;
852
853
0
    n_digits = n_digits1;
854
0
    if ((radix & (radix - 1)) == 0) {
855
        /* radix = 2^radix_bits */
856
0
        radix_bits = 31 - clz32(radix);
857
0
    } else {
858
0
        radix_bits = 0;
859
0
    }
860
0
    digits_per_limb = digits_per_limb_table[radix - 2];
861
0
    if (radix_bits != 0) {
862
0
        for(;;) {
863
0
            n = min_int(n_digits, digits_per_limb);
864
0
            n_digits -= n;
865
0
            u64toa_bin_len(buf + n_digits, a->tab[0], radix_bits, n);
866
0
            if (n_digits == 0)
867
0
                break;
868
0
            mpb_shr_round(a, digits_per_limb * radix_bits, JS_RNDZ);
869
0
        }
870
0
    } else {
871
0
        limb_t r;
872
0
        while (n_digits != 0) {
873
0
            n = min_int(n_digits, digits_per_limb);
874
0
            n_digits -= n;
875
0
            r = mp_div1(a->tab, a->tab, a->len, radix_base_table[radix - 2], 0);
876
0
            mpb_renorm(a);
877
0
            limb_to_a(buf + n_digits, r, radix, n);
878
0
        }
879
0
    }
880
881
    /* add the dot */
882
0
    len = n_digits1;
883
0
    if (dot_pos != n_digits1) {
884
0
        memmove(buf + dot_pos + 1, buf + dot_pos, n_digits1 - dot_pos);
885
0
        buf[dot_pos] = '.';
886
0
        len++;
887
0
    }
888
0
    return len;
889
0
}
890
891
/* return (a, e_offset) such that a = a * (radix1*2^radix_shift)^f *
892
   2^-e_offset. 'f' can be negative. */
893
static int mul_pow(mpb_t *a, int radix1, int radix_shift, int f, BOOL is_int, int e)
894
114k
{
895
114k
    int e_offset, d, n, n0;
896
897
114k
    e_offset = -f * radix_shift;
898
114k
    if (radix1 != 1) {
899
114k
        d = digits_per_limb_table[radix1 - 2];
900
114k
        if (f >= 0) {
901
114k
            limb_t h, b;
902
            
903
114k
            b = 0;
904
114k
            n0 = 0;
905
114k
            while (f != 0) {
906
6
                n = min_int(f, d);
907
6
                if (n != n0) {
908
6
                    b = pow_ui(radix1, n);
909
6
                    n0 = n;
910
6
                }
911
6
                h = mp_mul1(a->tab, a->tab, a->len, b, 0);
912
6
                if (h != 0) {
913
0
                    a->tab[a->len++] = h;
914
0
                }
915
6
                f -= n;
916
6
            }
917
114k
        } else {
918
1
            int extra_bits, l, shift;
919
1
            limb_t r, rem, b, b_inv;
920
            
921
1
            f = -f;
922
1
            l = (f + d - 1) / d; /* high bound for the number of limbs (XXX: make it better) */
923
1
            e_offset += l * LIMB_BITS;
924
1
            if (!is_int) {
925
                /* at least 'e' bits are needed in the final result for rounding */
926
1
                extra_bits = max_int(e - mpb_floor_log2(a), 0);
927
1
            } else {
928
                /* at least two extra bits are needed in the final result
929
                   for rounding */
930
0
                extra_bits = max_int(2 + e - e_offset, 0);
931
0
            }
932
1
            e_offset += extra_bits;
933
1
            mpb_shr_round(a, -(l * LIMB_BITS + extra_bits), JS_RNDZ);
934
            
935
1
            b = 0;
936
1
            b_inv = 0;
937
1
            shift = 0;
938
1
            n0 = 0;
939
1
            rem = 0;
940
2
            while (f != 0) {
941
1
                n = min_int(f, d);
942
1
                if (n != n0) {
943
1
                    b = pow_ui_inv(&b_inv, &shift, radix1, n);
944
1
                    n0 = n;
945
1
                }
946
1
                r = mp_div1norm(a->tab, a->tab, a->len, b, 0, b_inv, shift);
947
1
                rem |= r;
948
1
                mpb_renorm(a);
949
1
                f -= n;
950
1
            }
951
            /* if the remainder is non zero, use it for rounding */
952
1
            a->tab[0] |= (rem != 0);
953
1
        }
954
114k
    }
955
114k
    return e_offset;
956
114k
}
957
958
/* tmp1 = round(m*2^e*radix^f). 'tmp0' is a temporary storage */
959
static void mul_pow_round(mpb_t *tmp1, uint64_t m, int e, int radix1, int radix_shift, int f,
960
                          int rnd_mode)
961
0
{
962
0
    int e_offset;
963
964
0
    mpb_set_u64(tmp1, m);
965
0
    e_offset = mul_pow(tmp1, radix1, radix_shift, f, TRUE, e);
966
0
    mpb_shr_round(tmp1, -e + e_offset, rnd_mode);
967
0
}
968
969
/* return round(a*2^e_offset) rounded as a float64. 'a' is modified */
970
static uint64_t round_to_d(int *pe, mpb_t *a, int e_offset, int rnd_mode)
971
114k
{
972
114k
    int e;
973
114k
    uint64_t m;
974
975
114k
    if (a->tab[0] == 0 && a->len == 1) {
976
        /* zero result */
977
0
        m = 0;
978
0
        e = 0; /* don't care */
979
114k
    } else {
980
114k
        int prec, prec1, e_min;
981
114k
        e = mpb_floor_log2(a) + 1 - e_offset;
982
114k
        prec1 = 53;
983
114k
        e_min = -1021;
984
114k
        if (e < e_min) {
985
            /* subnormal result or zero */
986
0
            prec = prec1 - (e_min - e);
987
114k
        } else {
988
114k
            prec = prec1;
989
114k
        }
990
114k
        mpb_shr_round(a, e + e_offset - prec, rnd_mode);
991
114k
        m = mpb_get_u64(a);
992
114k
        m <<= (53 - prec);
993
        /* mantissa overflow due to rounding */
994
114k
        if (m >= (uint64_t)1 << 53) {
995
6
            m >>= 1;
996
6
            e++;
997
6
        }
998
114k
    }
999
114k
    *pe = e;
1000
114k
    return m;
1001
114k
}
1002
1003
/* return (m, e) such that m*2^(e-53) = round(a * radix^f) with 2^52
1004
   <= m < 2^53 or m = 0.
1005
   'a' is modified. */
1006
static uint64_t mul_pow_round_to_d(int *pe, mpb_t *a,
1007
                                   int radix1, int radix_shift, int f, int rnd_mode)
1008
114k
{
1009
114k
    int e_offset;
1010
1011
114k
    e_offset = mul_pow(a, radix1, radix_shift, f, FALSE, 55);
1012
114k
    return round_to_d(pe, a, e_offset, rnd_mode);
1013
114k
}
1014
1015
#ifdef JS_DTOA_DUMP_STATS
1016
static int out_len_count[17];
1017
1018
void js_dtoa_dump_stats(void)
1019
{
1020
    int i, sum;
1021
    sum = 0;
1022
    for(i = 0; i < 17; i++)
1023
        sum += out_len_count[i];
1024
    for(i = 0; i < 17; i++) {
1025
        printf("%2d %8d %5.2f%%\n",
1026
               i + 1, out_len_count[i], (double)out_len_count[i] / sum * 100);
1027
    }
1028
}
1029
#endif
1030
1031
/* return a maximum bound of the string length. The bound depends on
1032
   'd' only if format = JS_DTOA_FORMAT_FRAC or if JS_DTOA_EXP_DISABLED
1033
   is enabled. */
1034
int js_dtoa_max_len(double d, int radix, int n_digits, int flags)
1035
0
{
1036
0
    int fmt = flags & JS_DTOA_FORMAT_MASK;
1037
0
    int n, e;
1038
0
    uint64_t a;
1039
1040
0
    if (fmt != JS_DTOA_FORMAT_FRAC) {
1041
0
        if (fmt == JS_DTOA_FORMAT_FREE) {
1042
0
            n = dtoa_max_digits_table[radix - 2];
1043
0
        } else {
1044
0
            n = n_digits;
1045
0
        }
1046
0
        if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_DISABLED) {
1047
            /* no exponential */
1048
0
            a = float64_as_uint64(d);
1049
0
            e = (a >> 52) & 0x7ff;
1050
0
            if (e == 0x7ff) {
1051
                /* NaN, Infinity */
1052
0
                n = 0;
1053
0
            } else {
1054
0
                e -= 1023;
1055
                /* XXX: adjust */
1056
0
                n += 10 + abs(mul_log2_radix(e - 1, radix));
1057
0
            }
1058
0
        } else {
1059
            /* extra: sign, 1 dot and exponent "e-1000" */
1060
0
            n += 1 + 1 + 6;
1061
0
        }
1062
0
    } else {
1063
0
        a = float64_as_uint64(d);
1064
0
        e = (a >> 52) & 0x7ff;
1065
0
        if (e == 0x7ff) {
1066
            /* NaN, Infinity */
1067
0
            n = 0;
1068
0
        } else {
1069
            /* high bound for the integer part */
1070
0
            e -= 1023;
1071
            /* x < 2^(e + 1) */
1072
0
            if (e < 0) {
1073
0
                n = 1;
1074
0
            } else {
1075
0
                n = 2 + mul_log2_radix(e - 1, radix);
1076
0
            }
1077
            /* sign, extra digit, 1 dot */
1078
0
            n += 1 + 1 + 1 + n_digits;
1079
0
        }
1080
0
    }
1081
0
    return max_int(n, 9); /* also include NaN and [-]Infinity */
1082
0
}
1083
1084
#if defined(__SANITIZE_ADDRESS__) && 0
1085
static void *dtoa_malloc(uint64_t **pptr, size_t size)
1086
{
1087
    return malloc(size);
1088
}
1089
static void dtoa_free(void *ptr)
1090
{
1091
    free(ptr);
1092
}
1093
#else
1094
static void *dtoa_malloc(uint64_t **pptr, size_t size)
1095
1.04M
{
1096
1.04M
    void *ret;
1097
1.04M
    ret = *pptr;
1098
1.04M
    *pptr += (size + 7) / 8;
1099
1.04M
    return ret;
1100
1.04M
}
1101
1102
static void dtoa_free(void *ptr)
1103
1.04M
{
1104
1.04M
}
1105
#endif
1106
1107
/* return the length */
1108
int js_dtoa(char *buf, double d, int radix, int n_digits, int flags,
1109
            JSDTOATempMem *tmp_mem)
1110
0
{
1111
0
    uint64_t a, m, *mptr = tmp_mem->mem;
1112
0
    int e, sgn, l, E, P, i, E_max, radix1, radix_shift;
1113
0
    char *q;
1114
0
    mpb_t *tmp1, *mant_max;
1115
0
    int fmt = flags & JS_DTOA_FORMAT_MASK;
1116
1117
0
    tmp1 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
1118
0
    mant_max = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * MANT_LEN_MAX);
1119
0
    assert((mptr - tmp_mem->mem) <= sizeof(JSDTOATempMem) / sizeof(mptr[0]));
1120
1121
0
    radix_shift = ctz32(radix);
1122
0
    radix1 = radix >> radix_shift;
1123
0
    a = float64_as_uint64(d);
1124
0
    sgn = a >> 63;
1125
0
    e = (a >> 52) & 0x7ff;
1126
0
    m = a & (((uint64_t)1 << 52) - 1);
1127
0
    q = buf;
1128
0
    if (e == 0x7ff) {
1129
0
        if (m == 0) {
1130
0
            if (sgn)
1131
0
                *q++ = '-';
1132
0
            memcpy(q, "Infinity", 8);
1133
0
            q += 8;
1134
0
        } else {
1135
0
            memcpy(q, "NaN", 3);
1136
0
            q += 3;
1137
0
        }
1138
0
        goto done;
1139
0
    } else if (e == 0) {
1140
0
        if (m == 0) {
1141
0
            tmp1->len = 1;
1142
0
            tmp1->tab[0] = 0;
1143
0
            E = 1;
1144
0
            if (fmt == JS_DTOA_FORMAT_FREE)
1145
0
                P = 1;
1146
0
            else if (fmt == JS_DTOA_FORMAT_FRAC)
1147
0
                P = n_digits + 1;
1148
0
            else
1149
0
                P = n_digits;
1150
            /* "-0" is displayed as "0" if JS_DTOA_MINUS_ZERO is not present */
1151
0
            if (sgn && (flags & JS_DTOA_MINUS_ZERO))
1152
0
                *q++ = '-';
1153
0
            goto output;
1154
0
        }
1155
        /* denormal number: convert to a normal number */
1156
0
        l = clz64(m) - 11;
1157
0
        e -= l - 1;
1158
0
        m <<= l;
1159
0
    } else {
1160
0
        m |= (uint64_t)1 << 52;
1161
0
    }
1162
0
    if (sgn)
1163
0
        *q++ = '-';
1164
    /* remove the bias */
1165
0
    e -= 1022;
1166
    /* d = 2^(e-53)*m */
1167
    //    printf("m=0x%016" PRIx64 " e=%d\n", m, e);
1168
0
#ifdef USE_FAST_INT
1169
0
    if (fmt == JS_DTOA_FORMAT_FREE &&
1170
0
        e >= 1 && e <= 53 &&
1171
0
        (m & (((uint64_t)1 << (53 - e)) - 1)) == 0 &&
1172
0
        (flags & JS_DTOA_EXP_MASK) != JS_DTOA_EXP_ENABLED) {
1173
0
        m >>= 53 - e;
1174
        /* 'm' is never zero */
1175
0
        q += u64toa_radix(q, m, radix);
1176
0
        goto done;
1177
0
    }
1178
0
#endif
1179
    
1180
    /* this choice of E implies F=round(x*B^(P-E) is such as: 
1181
       B^(P-1) <= F < 2.B^P. */
1182
0
    E = 1 + mul_log2_radix(e - 1, radix);
1183
    
1184
0
    if (fmt == JS_DTOA_FORMAT_FREE) {
1185
0
        int P_max, E0, e1, E_found, P_found;
1186
0
        uint64_t m1, mant_found, mant, mant_max1;
1187
        /* P_max is guarranteed to work by construction */
1188
0
        P_max = dtoa_max_digits_table[radix - 2];
1189
0
        E0 = E;
1190
0
        E_found = 0;
1191
0
        P_found = 0;
1192
0
        mant_found = 0;
1193
        /* find the minimum number of digits by successive tries */
1194
0
        P = P_max; /* P_max is guarateed to work */
1195
0
        for(;;) {
1196
            /* mant_max always fits on 64 bits */
1197
0
            mant_max1 = pow_ui(radix, P);
1198
            /* compute the mantissa in base B */
1199
0
            E = E0;
1200
0
            for(;;) {
1201
                /* XXX: add inexact flag */
1202
0
                mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDN);
1203
0
                mant = mpb_get_u64(tmp1);
1204
0
                if (mant < mant_max1)
1205
0
                    break;
1206
0
                E++; /* at most one iteration is possible */
1207
0
            }
1208
            /* remove useless trailing zero digits */
1209
0
            while ((mant % radix) == 0) {
1210
0
                mant /= radix;
1211
0
                P--;
1212
0
            }
1213
            /* garanteed to work for P = P_max */
1214
0
            if (P_found == 0)
1215
0
                goto prec_found;
1216
            /* convert back to base 2 */
1217
0
            mpb_set_u64(tmp1, mant);
1218
0
            m1 = mul_pow_round_to_d(&e1, tmp1, radix1, radix_shift, E - P, JS_RNDN);
1219
            //            printf("P=%2d: m=0x%016" PRIx64 " e=%d m1=0x%016" PRIx64 " e1=%d\n", P, m, e, m1, e1);
1220
            /* Note: (m, e) is never zero here, so the exponent for m1
1221
               = 0 does not matter */
1222
0
            if (m1 == m && e1 == e) {
1223
0
            prec_found:
1224
0
                P_found = P;
1225
0
                E_found = E;
1226
0
                mant_found = mant;
1227
0
                if (P == 1)
1228
0
                    break;
1229
0
                P--; /* try lower exponent */
1230
0
            } else {
1231
0
                break;
1232
0
            }
1233
0
        }
1234
0
        P = P_found;
1235
0
        E = E_found;
1236
0
        mpb_set_u64(tmp1, mant_found);
1237
#ifdef JS_DTOA_DUMP_STATS
1238
        if (radix == 10) {
1239
            out_len_count[P - 1]++;
1240
        }
1241
#endif        
1242
0
    } else if (fmt == JS_DTOA_FORMAT_FRAC) {
1243
0
        int len;
1244
1245
0
        assert(n_digits >= 0 && n_digits <= JS_DTOA_MAX_DIGITS);
1246
        /* P = max_int(E, 1) + n_digits; */
1247
        /* frac is rounded using RNDNA */
1248
0
        mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, n_digits, JS_RNDNA);
1249
1250
        /* we add one extra digit on the left and remove it if needed
1251
           to avoid testing if the result is < radix^P */
1252
0
        len = output_digits(q, tmp1, radix, max_int(E + 1, 1) + n_digits,
1253
0
                            max_int(E + 1, 1));
1254
0
        if (q[0] == '0' && len >= 2 && q[1] != '.') {
1255
0
            len--;
1256
0
            memmove(q, q + 1, len);
1257
0
        }
1258
0
        q += len;
1259
0
        goto done;
1260
0
    } else {
1261
0
        int pow_shift;
1262
0
        assert(n_digits >= 1 && n_digits <= JS_DTOA_MAX_DIGITS);
1263
0
        P = n_digits;
1264
        /* mant_max = radix^P */
1265
0
        mant_max->len = 1;
1266
0
        mant_max->tab[0] = 1;
1267
0
        pow_shift = mul_pow(mant_max, radix1, radix_shift, P, FALSE, 0);
1268
0
        mpb_shr_round(mant_max, pow_shift, JS_RNDZ);
1269
        
1270
0
        for(;;) {
1271
            /* fixed and frac are rounded using RNDNA */
1272
0
            mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDNA);
1273
0
            if (mpb_cmp(tmp1, mant_max) < 0)
1274
0
                break;
1275
0
            E++; /* at most one iteration is possible */
1276
0
        }
1277
0
    }
1278
0
 output:
1279
0
    if (fmt == JS_DTOA_FORMAT_FIXED)
1280
0
        E_max = n_digits;
1281
0
    else
1282
0
        E_max = dtoa_max_digits_table[radix - 2] + 4;
1283
0
    if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_ENABLED ||
1284
0
        ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_AUTO && (E <= -6 || E > E_max))) {
1285
0
        q += output_digits(q, tmp1, radix, P, 1);
1286
0
        E--;
1287
0
        if (radix == 10) {
1288
0
            *q++ = 'e';
1289
0
        } else if (radix1 == 1 && radix_shift <= 4) {
1290
0
            E *= radix_shift;
1291
0
            *q++ = 'p';
1292
0
        } else {
1293
0
            *q++ = '@';
1294
0
        }
1295
0
        if (E < 0) {
1296
0
            *q++ = '-';
1297
0
            E = -E;
1298
0
        } else {
1299
0
            *q++ = '+';
1300
0
        }
1301
0
        q += u32toa(q, E);
1302
0
    } else if (E <= 0) {
1303
0
        *q++ = '0';
1304
0
        *q++ = '.';
1305
0
        for(i = 0; i < -E; i++)
1306
0
            *q++ = '0';
1307
0
        q += output_digits(q, tmp1, radix, P, P);
1308
0
    } else {
1309
0
        q += output_digits(q, tmp1, radix, P, min_int(P, E));
1310
0
        for(i = 0; i < E - P; i++)
1311
0
            *q++ = '0';
1312
0
    }
1313
0
 done:
1314
0
    *q = '\0';
1315
0
    dtoa_free(mant_max);
1316
0
    dtoa_free(tmp1);
1317
0
    return q - buf;
1318
0
}
1319
1320
static inline int to_digit(int c)
1321
1.16M
{
1322
1.16M
    if (c >= '0' && c <= '9')
1323
114k
        return c - '0';
1324
1.04M
    else if (c >= 'A' && c <= 'Z')
1325
0
        return c - 'A' + 10;
1326
1.04M
    else if (c >= 'a' && c <= 'z')
1327
0
        return c - 'a' + 10;
1328
1.04M
    else
1329
1.04M
        return 36;
1330
1.16M
}
1331
1332
/* r = r * radix_base + a. radix_base = 0 means radix_base = 2^32 */
1333
static void mpb_mul1_base(mpb_t *r, limb_t radix_base, limb_t a)
1334
114k
{
1335
114k
    int i;
1336
114k
    if (r->tab[0] == 0 && r->len == 1) {
1337
114k
        r->tab[0] = a;
1338
114k
    } else {
1339
36
        if (radix_base == 0) {
1340
0
            for(i = r->len; i >= 0; i--) {
1341
0
                r->tab[i + 1] = r->tab[i];
1342
0
            }
1343
0
            r->tab[0] = a;
1344
36
        } else {
1345
36
            r->tab[r->len] = mp_mul1(r->tab, r->tab, r->len,
1346
36
                                     radix_base, a);
1347
36
        }
1348
36
        r->len++;
1349
36
        mpb_renorm(r);
1350
36
    }
1351
114k
}
1352
1353
/* XXX: add fast path for small integers */
1354
double js_atod(const char *str, const char **pnext, int radix, int flags,
1355
               JSATODTempMem *tmp_mem)
1356
1.04M
{
1357
1.04M
    uint64_t *mptr = tmp_mem->mem;
1358
1.04M
    const char *p, *p_start;
1359
1.04M
    limb_t cur_limb, radix_base, extra_digits;
1360
1.04M
    int is_neg, digit_count, limb_digit_count, digits_per_limb, sep, radix1, radix_shift;
1361
1.04M
    int radix_bits, expn, e, max_digits, expn_offset, dot_pos, sig_pos, pos;
1362
1.04M
    mpb_t *tmp0;
1363
1.04M
    double dval;
1364
1.04M
    BOOL is_bin_exp, is_zero, expn_overflow;
1365
1.04M
    uint64_t m, a;
1366
1367
1.04M
    tmp0 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
1368
1.04M
    assert((mptr - tmp_mem->mem) <= sizeof(JSATODTempMem) / sizeof(mptr[0]));
1369
    /* optional separator between digits */
1370
1.04M
    sep = (flags & JS_ATOD_ACCEPT_UNDERSCORES) ? '_' : 256;
1371
1372
1.04M
    p = str;
1373
1.04M
    is_neg = 0;
1374
1.04M
    if (p[0] == '+') {
1375
0
        p++;
1376
0
        p_start = p;
1377
1.04M
    } else if (p[0] == '-') {
1378
0
        is_neg = 1;
1379
0
        p++;
1380
0
        p_start = p;
1381
1.04M
    } else {
1382
1.04M
        p_start = p;
1383
1.04M
    }
1384
    
1385
1.04M
    if (p[0] == '0') {
1386
933k
        if ((p[1] == 'x' || p[1] == 'X') &&
1387
0
            (radix == 0 || radix == 16)) {
1388
0
            p += 2;
1389
0
            radix = 16;
1390
933k
        } else if ((p[1] == 'o' || p[1] == 'O') &&
1391
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
1392
0
            p += 2;
1393
0
            radix = 8;
1394
933k
        } else if ((p[1] == 'b' || p[1] == 'B') &&
1395
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
1396
0
            p += 2;
1397
0
            radix = 2;
1398
933k
        } else if ((p[1] >= '0' && p[1] <= '9') &&
1399
0
                   radix == 0 && (flags & JS_ATOD_ACCEPT_LEGACY_OCTAL)) {
1400
0
            int i;
1401
0
            sep = 256;
1402
0
            for (i = 1; (p[i] >= '0' && p[i] <= '7'); i++)
1403
0
                continue;
1404
0
            if (p[i] == '8' || p[i] == '9')
1405
0
                goto no_prefix;
1406
0
            p += 1;
1407
0
            radix = 8;
1408
933k
        } else {
1409
933k
            goto no_prefix;
1410
933k
        }
1411
        /* there must be a digit after the prefix */
1412
0
        if (to_digit((uint8_t)*p) >= radix)
1413
0
            goto fail;
1414
933k
    no_prefix: ;
1415
933k
    } else {
1416
114k
        if (!(flags & JS_ATOD_INT_ONLY) && strstart(p, "Infinity", &p))
1417
0
            goto overflow;
1418
114k
    }
1419
1.04M
    if (radix == 0)
1420
0
        radix = 10;
1421
1422
1.04M
    cur_limb = 0;
1423
1.04M
    expn_offset = 0;
1424
1.04M
    digit_count = 0;
1425
1.04M
    limb_digit_count = 0;
1426
1.04M
    max_digits = atod_max_digits_table[radix - 2];
1427
1.04M
    digits_per_limb = digits_per_limb_table[radix - 2];
1428
1.04M
    radix_base = radix_base_table[radix - 2];
1429
1.04M
    radix_shift = ctz32(radix);
1430
1.04M
    radix1 = radix >> radix_shift;
1431
1.04M
    if (radix1 == 1) {
1432
        /* radix = 2^radix_bits */
1433
0
        radix_bits = radix_shift;
1434
1.04M
    } else {
1435
1.04M
        radix_bits = 0;
1436
1.04M
    }
1437
1.04M
    tmp0->len = 1;
1438
1.04M
    tmp0->tab[0] = 0;
1439
1.04M
    extra_digits = 0;
1440
1.04M
    pos = 0;
1441
1.04M
    dot_pos = -1;
1442
    /* skip leading zeros */
1443
1.98M
    for(;;) {
1444
1.98M
        if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
1445
0
            !(flags & JS_ATOD_INT_ONLY)) {
1446
0
            if (*p == sep)
1447
0
                goto fail;
1448
0
            if (dot_pos >= 0)
1449
0
                break;
1450
0
            dot_pos = pos;
1451
0
            p++;
1452
0
        }
1453
1.98M
        if (*p == sep && p > p_start && p[1] == '0')
1454
0
            p++;
1455
1.98M
        if (*p != '0')
1456
1.04M
            break;
1457
933k
        p++;
1458
933k
        pos++;
1459
933k
    }
1460
    
1461
1.04M
    sig_pos = pos;
1462
1.16M
    for(;;) {
1463
1.16M
        limb_t c;
1464
1.16M
        if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
1465
3
            !(flags & JS_ATOD_INT_ONLY)) {
1466
3
            if (*p == sep)
1467
0
                goto fail;
1468
3
            if (dot_pos >= 0)
1469
0
                break;
1470
3
            dot_pos = pos;
1471
3
            p++;
1472
3
        }
1473
1.16M
        if (*p == sep && p > p_start && to_digit(p[1]) < radix)
1474
0
            p++;
1475
1.16M
        c = to_digit(*p);
1476
1.16M
        if (c >= radix)
1477
1.04M
            break;
1478
114k
        p++;
1479
114k
        pos++;
1480
114k
        if (digit_count < max_digits) {
1481
            /* XXX: could be faster when radix_bits != 0 */
1482
114k
            cur_limb = cur_limb * radix + c;
1483
114k
            limb_digit_count++;
1484
114k
            if (limb_digit_count == digits_per_limb) {
1485
38
                mpb_mul1_base(tmp0, radix_base, cur_limb);
1486
38
                cur_limb = 0;
1487
38
                limb_digit_count = 0;
1488
38
            }
1489
114k
            digit_count++;
1490
114k
        } else {
1491
6
            extra_digits |= c;
1492
6
        }
1493
114k
    }
1494
1.04M
    if (limb_digit_count != 0) {
1495
114k
        mpb_mul1_base(tmp0, pow_ui(radix, limb_digit_count), cur_limb);
1496
114k
    }
1497
1.04M
    if (digit_count == 0) {
1498
933k
        is_zero = TRUE;
1499
933k
        expn_offset = 0;
1500
933k
    } else {
1501
114k
        is_zero = FALSE;
1502
114k
        if (dot_pos < 0)
1503
114k
            dot_pos = pos;
1504
114k
        expn_offset = sig_pos + digit_count - dot_pos;
1505
114k
    }
1506
    
1507
    /* Use the extra digits for rounding if the base is a power of
1508
       two. Otherwise they are just truncated. */
1509
1.04M
    if (radix_bits != 0 && extra_digits != 0) {
1510
0
        tmp0->tab[0] |= 1;
1511
0
    }
1512
    
1513
    /* parse the exponent, if any */
1514
1.04M
    expn = 0;
1515
1.04M
    expn_overflow = FALSE;
1516
1.04M
    is_bin_exp = FALSE;
1517
1.04M
    if (!(flags & JS_ATOD_INT_ONLY) &&
1518
3
        ((radix == 10 && (*p == 'e' || *p == 'E')) ||
1519
3
         (radix != 10 && (*p == '@' ||
1520
0
                          (radix_bits >= 1 && radix_bits <= 4 && (*p == 'p' || *p == 'P'))))) &&
1521
0
        p > p_start) {
1522
0
        BOOL exp_is_neg;
1523
0
        int c;
1524
0
        is_bin_exp = (*p == 'p' || *p == 'P');
1525
0
        p++;
1526
0
        exp_is_neg = 0;
1527
0
        if (*p == '+') {
1528
0
            p++;
1529
0
        } else if (*p == '-') {
1530
0
            exp_is_neg = 1;
1531
0
            p++;
1532
0
        }
1533
0
        c = to_digit(*p);
1534
0
        if (c >= 10)
1535
0
            goto fail; /* XXX: could stop before the exponent part */
1536
0
        expn = c;
1537
0
        p++;
1538
0
        for(;;) {
1539
0
            if (*p == sep && to_digit(p[1]) < 10)
1540
0
                p++;
1541
0
            c = to_digit(*p);
1542
0
            if (c >= 10)
1543
0
                break;
1544
0
            if (!expn_overflow) {
1545
0
                if (unlikely(expn > ((INT32_MAX - 2 - 9) / 10))) {
1546
0
                    expn_overflow = TRUE;
1547
0
                } else {
1548
0
                    expn = expn * 10 + c;
1549
0
                }
1550
0
            }
1551
0
            p++;
1552
0
        }
1553
0
        if (exp_is_neg)
1554
0
            expn = -expn;
1555
        /* if zero result, the exponent can be arbitrarily large */
1556
0
        if (!is_zero && expn_overflow) {
1557
0
            if (exp_is_neg)
1558
0
                a = 0;
1559
0
            else
1560
0
                a = (uint64_t)0x7ff << 52; /* infinity */
1561
0
            goto done;
1562
0
        }
1563
0
    }
1564
1565
1.04M
    if (p == p_start)
1566
0
        goto fail;
1567
1568
1.04M
    if (is_zero) {
1569
933k
        a = 0;
1570
933k
    } else {
1571
114k
        int expn1;
1572
114k
        if (radix_bits != 0) {
1573
0
            if (!is_bin_exp)
1574
0
                expn *= radix_bits;
1575
0
            expn -= expn_offset * radix_bits;
1576
0
            expn1 = expn + digit_count * radix_bits;
1577
0
            if (expn1 >= 1024 + radix_bits)
1578
0
                goto overflow;
1579
0
            else if (expn1 <= -1075)
1580
0
                goto underflow;
1581
0
            m = round_to_d(&e, tmp0, -expn, JS_RNDN);
1582
114k
        } else {
1583
114k
            expn -= expn_offset;
1584
114k
            expn1 = expn + digit_count;
1585
114k
            if (expn1 >= max_exponent[radix - 2] + 1)
1586
0
                goto overflow;
1587
114k
            else if (expn1 <= min_exponent[radix - 2])
1588
0
                goto underflow;
1589
114k
            m = mul_pow_round_to_d(&e, tmp0, radix1, radix_shift, expn, JS_RNDN);
1590
114k
        }
1591
114k
        if (m == 0) {
1592
0
        underflow:
1593
0
            a = 0;
1594
114k
        } else if (e > 1024) {
1595
0
        overflow:
1596
            /* overflow */
1597
0
            a = (uint64_t)0x7ff << 52;
1598
114k
        } else if (e < -1073) {
1599
            /* underflow */
1600
            /* XXX: check rounding */
1601
0
            a = 0;
1602
114k
        } else if (e < -1021) {
1603
            /* subnormal */
1604
0
            a = m >> (-e - 1021);
1605
114k
        } else {
1606
114k
            a = ((uint64_t)(e + 1022) << 52) | (m & (((uint64_t)1 << 52) - 1));
1607
114k
        }
1608
114k
    }
1609
1.04M
 done:
1610
1.04M
    a |= (uint64_t)is_neg << 63;
1611
1.04M
    dval = uint64_as_float64(a);
1612
1.04M
 done1:
1613
1.04M
    if (pnext)
1614
0
        *pnext = p;
1615
1.04M
    dtoa_free(tmp0);
1616
1.04M
    return dval;
1617
0
 fail:
1618
    dval = NAN;
1619
0
    goto done1;
1620
1.04M
}