Coverage Report

Created: 2025-07-12 06:25

/src/rauc/subprojects/glib-2.76.5/glib/gvariant-serialiser.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2007, 2008 Ryan Lortie
3
 * Copyright © 2010 Codethink Limited
4
 * Copyright © 2020 William Manley
5
 *
6
 * SPDX-License-Identifier: LGPL-2.1-or-later
7
 *
8
 * This library is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * This library is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20
 *
21
 * Author: Ryan Lortie <desrt@desrt.ca>
22
 */
23
24
/* Prologue {{{1 */
25
#include "config.h"
26
27
#include "gvariant-serialiser.h"
28
29
#include <glib/gvariant-internal.h>
30
#include <glib/gtestutils.h>
31
#include <glib/gstrfuncs.h>
32
#include <glib/gtypes.h>
33
34
#include <string.h>
35
36
37
/* GVariantSerialiser
38
 *
39
 * After this prologue section, this file has roughly 2 parts.
40
 *
41
 * The first part is split up into sections according to various
42
 * container types.  Maybe, Array, Tuple, Variant.  The Maybe and Array
43
 * sections are subdivided for element types being fixed or
44
 * variable-sized types.
45
 *
46
 * Each section documents the format of that particular type of
47
 * container and implements 5 functions for dealing with it:
48
 *
49
 *  n_children:
50
 *    - determines (according to serialized data) how many child values
51
 *      are inside a particular container value.
52
 *
53
 *  get_child:
54
 *    - gets the type of and the serialized data corresponding to a
55
 *      given child value within the container value.
56
 *
57
 *  needed_size:
58
 *    - determines how much space would be required to serialize a
59
 *      container of this type, containing the given children so that
60
 *      buffers can be preallocated before serializing.
61
 *
62
 *  serialise:
63
 *    - write the serialized data for a container of this type,
64
 *      containing the given children, to a buffer.
65
 *
66
 *  is_normal:
67
 *    - check the given data to ensure that it is in normal form.  For a
68
 *      given set of child values, there is exactly one normal form for
69
 *      the serialized data of a container.  Other forms are possible
70
 *      while maintaining the same children (for example, by inserting
71
 *      something other than zero bytes as padding) but only one form is
72
 *      the normal form.
73
 *
74
 * The second part contains the main entry point for each of the above 5
75
 * functions and logic to dispatch it to the handler for the appropriate
76
 * container type code.
77
 *
78
 * The second part also contains a routine to byteswap serialized
79
 * values.  This code makes use of the n_children() and get_child()
80
 * functions above to do its work so no extra support is needed on a
81
 * per-container-type basis.
82
 *
83
 * There is also additional code for checking for normal form.  All
84
 * numeric types are always in normal form since the full range of
85
 * values is permitted (eg: 0 to 255 is a valid byte).  Special checks
86
 * need to be performed for booleans (only 0 or 1 allowed), strings
87
 * (properly nul-terminated) and object paths and signature strings
88
 * (meeting the D-Bus specification requirements).  Depth checks need to be
89
 * performed for nested types (arrays, tuples, and variants), to avoid massive
90
 * recursion which could exhaust our stack when handling untrusted input.
91
 */
92
93
/* < private >
94
 * GVariantSerialised:
95
 * @type_info: the #GVariantTypeInfo of this value
96
 * @data: (nullable): the serialized data of this value, or %NULL
97
 * @size: the size of this value
98
 *
99
 * A structure representing a GVariant in serialized form.  This
100
 * structure is used with #GVariantSerialisedFiller functions and as the
101
 * primary interface to the serializer.  See #GVariantSerialisedFiller
102
 * for a description of its use there.
103
 *
104
 * When used with the serializer API functions, the following invariants
105
 * apply to all #GVariantTypeSerialised structures passed to and
106
 * returned from the serializer.
107
 *
108
 * @type_info must be non-%NULL.
109
 *
110
 * @data must be properly aligned for the type described by @type_info.
111
 *
112
 * If @type_info describes a fixed-sized type then @size must always be
113
 * equal to the fixed size of that type.
114
 *
115
 * For fixed-sized types (and only fixed-sized types), @data may be
116
 * %NULL even if @size is non-zero.  This happens when a framing error
117
 * occurs while attempting to extract a fixed-sized value out of a
118
 * variable-sized container.  There is no data to return for the
119
 * fixed-sized type, yet @size must be non-zero.  The effect of this
120
 * combination should be as if @data were a pointer to an
121
 * appropriately-sized zero-filled region.
122
 *
123
 * @depth has no restrictions; the depth of a top-level serialized #GVariant is
124
 * zero, and it increases for each level of nested child.
125
 *
126
 * @checked_offsets_up_to is always ≥ @ordered_offsets_up_to
127
 */
128
129
/* < private >
130
 * g_variant_serialised_check:
131
 * @serialised: a #GVariantSerialised struct
132
 *
133
 * Checks @serialised for validity according to the invariants described
134
 * above.
135
 *
136
 * Returns: %TRUE if @serialised is valid; %FALSE otherwise
137
 */
138
gboolean
139
g_variant_serialised_check (GVariantSerialised serialised)
140
0
{
141
0
  gsize fixed_size;
142
0
  guint alignment;
143
144
0
  if (serialised.type_info == NULL)
145
0
    return FALSE;
146
0
  g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
147
148
0
  if (fixed_size != 0 && serialised.size != fixed_size)
149
0
    return FALSE;
150
0
  else if (fixed_size == 0 &&
151
0
           !(serialised.size == 0 || serialised.data != NULL))
152
0
    return FALSE;
153
154
0
  if (serialised.ordered_offsets_up_to > serialised.checked_offsets_up_to)
155
0
    return FALSE;
156
157
  /* Depending on the native alignment requirements of the machine, the
158
   * compiler will insert either 3 or 7 padding bytes after the char.
159
   * This will result in the sizeof() the struct being 12 or 16.
160
   * Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get
161
   * the alignment bits that we "care about" being zero: in the
162
   * 4-aligned case, we care about 2 bits, and in the 8-aligned case, we
163
   * care about 3 bits.
164
   */
165
0
  alignment &= sizeof (struct {
166
0
                         char a;
167
0
                         union {
168
0
                           guint64 x;
169
0
                           void *y;
170
0
                           gdouble z;
171
0
                         } b;
172
0
                       }
173
0
                      ) - 9;
174
175
  /* Some OSes (FreeBSD is a known example) have a malloc() that returns
176
   * unaligned memory if you request small sizes.  'malloc (1);', for
177
   * example, has been seen to return pointers aligned to 6 mod 16.
178
   *
179
   * Check if this is a small allocation and return without enforcing
180
   * the alignment assertion if this is the case.
181
   */
182
0
  return (serialised.size <= alignment ||
183
0
          (alignment & (gsize) serialised.data) == 0);
184
0
}
185
186
/* < private >
187
 * GVariantSerialisedFiller:
188
 * @serialised: a #GVariantSerialised instance to fill
189
 * @data: data from the children array
190
 *
191
 * This function is called back from g_variant_serialiser_needed_size()
192
 * and g_variant_serialiser_serialise().  It fills in missing details
193
 * from a partially-complete #GVariantSerialised.
194
 *
195
 * The @data parameter passed back to the function is one of the items
196
 * that was passed to the serializer in the @children array.  It
197
 * represents a single child item of the container that is being
198
 * serialized.  The information filled in to @serialised is the
199
 * information for this child.
200
 *
201
 * If the @type_info field of @serialised is %NULL then the callback
202
 * function must set it to the type information corresponding to the
203
 * type of the child.  No reference should be added.  If it is non-%NULL
204
 * then the callback should assert that it is equal to the actual type
205
 * of the child.
206
 *
207
 * If the @size field is zero then the callback must fill it in with the
208
 * required amount of space to store the serialized form of the child.
209
 * If it is non-zero then the callback should assert that it is equal to
210
 * the needed size of the child.
211
 *
212
 * If @data is non-%NULL then it points to a space that is properly
213
 * aligned for and large enough to store the serialized data of the
214
 * child.  The callback must store the serialized form of the child at
215
 * @data.
216
 *
217
 * If the child value is another container then the callback will likely
218
 * recurse back into the serializer by calling
219
 * g_variant_serialiser_needed_size() to determine @size and
220
 * g_variant_serialiser_serialise() to write to @data.
221
 */
222
223
/* PART 1: Container types {{{1
224
 *
225
 * This section contains the serializer implementation functions for
226
 * each container type.
227
 */
228
229
/* Maybe {{{2
230
 *
231
 * Maybe types are handled depending on if the element type of the maybe
232
 * type is a fixed-sized or variable-sized type.  Although all maybe
233
 * types themselves are variable-sized types, herein, a maybe value with
234
 * a fixed-sized element type is called a "fixed-sized maybe" for
235
 * convenience and a maybe value with a variable-sized element type is
236
 * called a "variable-sized maybe".
237
 */
238
239
/* Fixed-sized Maybe {{{3
240
 *
241
 * The size of a maybe value with a fixed-sized element type is either 0
242
 * or equal to the fixed size of its element type.  The case where the
243
 * size of the maybe value is zero corresponds to the "Nothing" case and
244
 * the case where the size of the maybe value is equal to the fixed size
245
 * of the element type corresponds to the "Just" case; in that case, the
246
 * serialized data of the child value forms the entire serialized data
247
 * of the maybe value.
248
 *
249
 * In the event that a fixed-sized maybe value is presented with a size
250
 * that is not equal to the fixed size of the element type then the
251
 * value must be taken to be "Nothing".
252
 */
253
254
static gsize
255
gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
256
0
{
257
0
  gsize element_fixed_size;
258
259
0
  g_variant_type_info_query_element (value.type_info, NULL,
260
0
                                     &element_fixed_size);
261
262
0
  return (element_fixed_size == value.size) ? 1 : 0;
263
0
}
264
265
static GVariantSerialised
266
gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
267
                                 gsize              index_)
268
0
{
269
  /* the child has the same bounds as the
270
   * container, so just update the type.
271
   */
272
0
  value.type_info = g_variant_type_info_element (value.type_info);
273
0
  g_variant_type_info_ref (value.type_info);
274
0
  value.depth++;
275
0
  value.ordered_offsets_up_to = 0;
276
0
  value.checked_offsets_up_to = 0;
277
278
0
  return value;
279
0
}
280
281
static gsize
282
gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo         *type_info,
283
                                   GVariantSerialisedFiller  gvs_filler,
284
                                   const gpointer           *children,
285
                                   gsize                     n_children)
286
0
{
287
0
  if (n_children)
288
0
    {
289
0
      gsize element_fixed_size;
290
291
0
      g_variant_type_info_query_element (type_info, NULL,
292
0
                                         &element_fixed_size);
293
294
0
      return element_fixed_size;
295
0
    }
296
0
  else
297
0
    return 0;
298
0
}
299
300
static void
301
gvs_fixed_sized_maybe_serialise (GVariantSerialised        value,
302
                                 GVariantSerialisedFiller  gvs_filler,
303
                                 const gpointer           *children,
304
                                 gsize                     n_children)
305
0
{
306
0
  if (n_children)
307
0
    {
308
0
      GVariantSerialised child = { NULL, value.data, value.size, value.depth + 1, 0, 0 };
309
310
0
      gvs_filler (&child, children[0]);
311
0
    }
312
0
}
313
314
static gboolean
315
gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
316
0
{
317
0
  if (value.size > 0)
318
0
    {
319
0
      gsize element_fixed_size;
320
321
0
      g_variant_type_info_query_element (value.type_info,
322
0
                                         NULL, &element_fixed_size);
323
324
0
      if (value.size != element_fixed_size)
325
0
        return FALSE;
326
327
      /* proper element size: "Just".  recurse to the child. */
328
0
      value.type_info = g_variant_type_info_element (value.type_info);
329
0
      value.depth++;
330
0
      value.ordered_offsets_up_to = 0;
331
0
      value.checked_offsets_up_to = 0;
332
333
0
      return g_variant_serialised_is_normal (value);
334
0
    }
335
336
  /* size of 0: "Nothing" */
337
0
  return TRUE;
338
0
}
339
340
/* Variable-sized Maybe
341
 *
342
 * The size of a maybe value with a variable-sized element type is
343
 * either 0 or strictly greater than 0.  The case where the size of the
344
 * maybe value is zero corresponds to the "Nothing" case and the case
345
 * where the size of the maybe value is greater than zero corresponds to
346
 * the "Just" case; in that case, the serialized data of the child value
347
 * forms the first part of the serialized data of the maybe value and is
348
 * followed by a single zero byte.  This zero byte is always appended,
349
 * regardless of any zero bytes that may already be at the end of the
350
 * serialized ata of the child value.
351
 */
352
353
static gsize
354
gvs_variable_sized_maybe_n_children (GVariantSerialised value)
355
0
{
356
0
  return (value.size > 0) ? 1 : 0;
357
0
}
358
359
static GVariantSerialised
360
gvs_variable_sized_maybe_get_child (GVariantSerialised value,
361
                                    gsize              index_)
362
0
{
363
  /* remove the padding byte and update the type. */
364
0
  value.type_info = g_variant_type_info_element (value.type_info);
365
0
  g_variant_type_info_ref (value.type_info);
366
0
  value.size--;
367
368
  /* if it's zero-sized then it may as well be NULL */
369
0
  if (value.size == 0)
370
0
    value.data = NULL;
371
372
0
  value.depth++;
373
0
  value.ordered_offsets_up_to = 0;
374
0
  value.checked_offsets_up_to = 0;
375
376
0
  return value;
377
0
}
378
379
static gsize
380
gvs_variable_sized_maybe_needed_size (GVariantTypeInfo         *type_info,
381
                                      GVariantSerialisedFiller  gvs_filler,
382
                                      const gpointer           *children,
383
                                      gsize                     n_children)
384
0
{
385
0
  if (n_children)
386
0
    {
387
0
      GVariantSerialised child = { 0, };
388
389
0
      gvs_filler (&child, children[0]);
390
391
0
      return child.size + 1;
392
0
    }
393
0
  else
394
0
    return 0;
395
0
}
396
397
static void
398
gvs_variable_sized_maybe_serialise (GVariantSerialised        value,
399
                                    GVariantSerialisedFiller  gvs_filler,
400
                                    const gpointer           *children,
401
                                    gsize                     n_children)
402
0
{
403
0
  if (n_children)
404
0
    {
405
0
      GVariantSerialised child = { NULL, value.data, value.size - 1, value.depth + 1, 0, 0 };
406
407
      /* write the data for the child.  */
408
0
      gvs_filler (&child, children[0]);
409
0
      value.data[child.size] = '\0';
410
0
    }
411
0
}
412
413
static gboolean
414
gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
415
0
{
416
0
  if (value.size == 0)
417
0
    return TRUE;
418
419
0
  if (value.data[value.size - 1] != '\0')
420
0
    return FALSE;
421
422
0
  value.type_info = g_variant_type_info_element (value.type_info);
423
0
  value.size--;
424
0
  value.depth++;
425
0
  value.ordered_offsets_up_to = 0;
426
0
  value.checked_offsets_up_to = 0;
427
428
0
  return g_variant_serialised_is_normal (value);
429
0
}
430
431
/* Arrays {{{2
432
 *
433
 * Just as with maybe types, array types are handled depending on if the
434
 * element type of the array type is a fixed-sized or variable-sized
435
 * type.  Similar to maybe types, for convenience, an array value with a
436
 * fixed-sized element type is called a "fixed-sized array" and an array
437
 * value with a variable-sized element type is called a "variable sized
438
 * array".
439
 */
440
441
/* Fixed-sized Array {{{3
442
 *
443
 * For fixed sized arrays, the serialized data is simply a concatenation
444
 * of the serialized data of each element, in order.  Since fixed-sized
445
 * values always have a fixed size that is a multiple of their alignment
446
 * requirement no extra padding is required.
447
 *
448
 * In the event that a fixed-sized array is presented with a size that
449
 * is not an integer multiple of the element size then the value of the
450
 * array must be taken as being empty.
451
 */
452
453
static gsize
454
gvs_fixed_sized_array_n_children (GVariantSerialised value)
455
0
{
456
0
  gsize element_fixed_size;
457
458
0
  g_variant_type_info_query_element (value.type_info, NULL,
459
0
                                     &element_fixed_size);
460
461
0
  if (value.size % element_fixed_size == 0)
462
0
    return value.size / element_fixed_size;
463
464
0
  return 0;
465
0
}
466
467
static GVariantSerialised
468
gvs_fixed_sized_array_get_child (GVariantSerialised value,
469
                                 gsize              index_)
470
0
{
471
0
  GVariantSerialised child = { 0, };
472
473
0
  child.type_info = g_variant_type_info_element (value.type_info);
474
0
  g_variant_type_info_query (child.type_info, NULL, &child.size);
475
0
  child.data = value.data + (child.size * index_);
476
0
  g_variant_type_info_ref (child.type_info);
477
0
  child.depth = value.depth + 1;
478
479
0
  return child;
480
0
}
481
482
static gsize
483
gvs_fixed_sized_array_needed_size (GVariantTypeInfo         *type_info,
484
                                   GVariantSerialisedFiller  gvs_filler,
485
                                   const gpointer           *children,
486
                                   gsize                     n_children)
487
0
{
488
0
  gsize element_fixed_size;
489
490
0
  g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
491
492
0
  return element_fixed_size * n_children;
493
0
}
494
495
static void
496
gvs_fixed_sized_array_serialise (GVariantSerialised        value,
497
                                 GVariantSerialisedFiller  gvs_filler,
498
                                 const gpointer           *children,
499
                                 gsize                     n_children)
500
0
{
501
0
  GVariantSerialised child = { 0, };
502
0
  gsize i;
503
504
0
  child.type_info = g_variant_type_info_element (value.type_info);
505
0
  g_variant_type_info_query (child.type_info, NULL, &child.size);
506
0
  child.data = value.data;
507
0
  child.depth = value.depth + 1;
508
509
0
  for (i = 0; i < n_children; i++)
510
0
    {
511
0
      gvs_filler (&child, children[i]);
512
0
      child.data += child.size;
513
0
    }
514
0
}
515
516
static gboolean
517
gvs_fixed_sized_array_is_normal (GVariantSerialised value)
518
0
{
519
0
  GVariantSerialised child = { 0, };
520
521
0
  child.type_info = g_variant_type_info_element (value.type_info);
522
0
  g_variant_type_info_query (child.type_info, NULL, &child.size);
523
0
  child.depth = value.depth + 1;
524
525
0
  if (value.size % child.size != 0)
526
0
    return FALSE;
527
528
0
  for (child.data = value.data;
529
0
       child.data < value.data + value.size;
530
0
       child.data += child.size)
531
0
    {
532
0
      if (!g_variant_serialised_is_normal (child))
533
0
        return FALSE;
534
0
    }
535
536
0
  return TRUE;
537
0
}
538
539
/* Variable-sized Array {{{3
540
 *
541
 * Variable sized arrays, containing variable-sized elements, must be
542
 * able to determine the boundaries between the elements.  The items
543
 * cannot simply be concatenated.  Additionally, we are faced with the
544
 * fact that non-fixed-sized values do not necessarily have a size that
545
 * is a multiple of their alignment requirement, so we may need to
546
 * insert zero-filled padding.
547
 *
548
 * While it is possible to find the start of an item by starting from
549
 * the end of the item before it and padding for alignment, it is not
550
 * generally possible to do the reverse operation.  For this reason, we
551
 * record the end point of each element in the array.
552
 *
553
 * GVariant works in terms of "offsets".  An offset is a pointer to a
554
 * boundary between two bytes.  In 4 bytes of serialized data, there
555
 * would be 5 possible offsets: one at the start ('0'), one between each
556
 * pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
557
 *
558
 * The numeric value of an offset is an unsigned integer given relative
559
 * to the start of the serialized data of the array.  Offsets are always
560
 * stored in little endian byte order and are always only as big as they
561
 * need to be.  For example, in 255 bytes of serialized data, there are
562
 * 256 offsets.  All possibilities can be stored in an 8 bit unsigned
563
 * integer.  In 256 bytes of serialized data, however, there are 257
564
 * possible offsets so 16 bit integers must be used.  The size of an
565
 * offset is always a power of 2.
566
 *
567
 * The offsets are stored at the end of the serialized data of the
568
 * array.  They are simply concatenated on without any particular
569
 * alignment.  The size of the offsets is included in the size of the
570
 * serialized data for purposes of determining the size of the offsets.
571
 * This presents a possibly ambiguity; in certain cases, a particular
572
 * value of array could have two different serialized forms.
573
 *
574
 * Imagine an array containing a single string of 253 bytes in length
575
 * (so, 254 bytes including the nul terminator).  Now the offset must be
576
 * written.  If an 8 bit offset is written, it will bring the size of
577
 * the array's serialized data to 255 -- which means that the use of an
578
 * 8 bit offset was valid.  If a 16 bit offset is used then the total
579
 * size of the array will be 256 -- which means that the use of a 16 bit
580
 * offset was valid.  Although both of these will be accepted by the
581
 * deserializer, only the smaller of the two is considered to be in
582
 * normal form and that is the one that the serializer must produce.
583
 */
584
585
/* bytes may be NULL if (size == 0). */
586
static inline gsize
587
gvs_read_unaligned_le (guchar *bytes,
588
                       guint   size)
589
0
{
590
0
  union
591
0
  {
592
0
    guchar bytes[GLIB_SIZEOF_SIZE_T];
593
0
    gsize integer;
594
0
  } tmpvalue;
595
596
0
  tmpvalue.integer = 0;
597
0
  if (bytes != NULL)
598
0
    memcpy (&tmpvalue.bytes, bytes, size);
599
600
0
  return GSIZE_FROM_LE (tmpvalue.integer);
601
0
}
602
603
static inline void
604
gvs_write_unaligned_le (guchar *bytes,
605
                        gsize   value,
606
                        guint   size)
607
0
{
608
0
  union
609
0
  {
610
0
    guchar bytes[GLIB_SIZEOF_SIZE_T];
611
0
    gsize integer;
612
0
  } tmpvalue;
613
614
0
  tmpvalue.integer = GSIZE_TO_LE (value);
615
0
  memcpy (bytes, &tmpvalue.bytes, size);
616
0
}
617
618
static guint
619
gvs_get_offset_size (gsize size)
620
0
{
621
0
  if (size > G_MAXUINT32)
622
0
    return 8;
623
624
0
  else if (size > G_MAXUINT16)
625
0
    return 4;
626
627
0
  else if (size > G_MAXUINT8)
628
0
    return 2;
629
630
0
  else if (size > 0)
631
0
    return 1;
632
633
0
  return 0;
634
0
}
635
636
static gsize
637
gvs_calculate_total_size (gsize body_size,
638
                          gsize offsets)
639
0
{
640
0
  if (body_size + 1 * offsets <= G_MAXUINT8)
641
0
    return body_size + 1 * offsets;
642
643
0
  if (body_size + 2 * offsets <= G_MAXUINT16)
644
0
    return body_size + 2 * offsets;
645
646
0
  if (body_size + 4 * offsets <= G_MAXUINT32)
647
0
    return body_size + 4 * offsets;
648
649
0
  return body_size + 8 * offsets;
650
0
}
651
652
struct Offsets
653
{
654
  gsize     data_size;
655
656
  guchar   *array;
657
  gsize     length;
658
  guint     offset_size;
659
660
  gboolean  is_normal;
661
};
662
663
static gsize
664
gvs_offsets_get_offset_n (struct Offsets *offsets,
665
                          gsize           n)
666
0
{
667
0
  return gvs_read_unaligned_le (
668
0
      offsets->array + (offsets->offset_size * n), offsets->offset_size);
669
0
}
670
671
static struct Offsets
672
gvs_variable_sized_array_get_frame_offsets (GVariantSerialised value)
673
0
{
674
0
  struct Offsets out = { 0, };
675
0
  gsize offsets_array_size;
676
0
  gsize last_end;
677
678
0
  if (value.size == 0)
679
0
    {
680
0
      out.is_normal = TRUE;
681
0
      return out;
682
0
    }
683
684
0
  out.offset_size = gvs_get_offset_size (value.size);
685
0
  last_end = gvs_read_unaligned_le (value.data + value.size - out.offset_size,
686
0
                                    out.offset_size);
687
688
0
  if (last_end > value.size)
689
0
    return out;  /* offsets not normal */
690
691
0
  offsets_array_size = value.size - last_end;
692
693
0
  if (offsets_array_size % out.offset_size)
694
0
    return out;  /* offsets not normal */
695
696
0
  out.data_size = last_end;
697
0
  out.array = value.data + last_end;
698
0
  out.length = offsets_array_size / out.offset_size;
699
700
0
  if (out.length > 0 && gvs_calculate_total_size (last_end, out.length) != value.size)
701
0
    return out;  /* offset size not minimal */
702
703
0
  out.is_normal = TRUE;
704
705
0
  return out;
706
0
}
707
708
static gsize
709
gvs_variable_sized_array_n_children (GVariantSerialised value)
710
0
{
711
0
  return gvs_variable_sized_array_get_frame_offsets (value).length;
712
0
}
713
714
/* Find the index of the first out-of-order element in @data, assuming that
715
 * @data is an array of elements of given @type, starting at index @start and
716
 * containing a further @len-@start elements. */
717
#define DEFINE_FIND_UNORDERED(type, le_to_native) \
718
  static gsize \
719
  find_unordered_##type (const guint8 *data, gsize start, gsize len) \
720
0
  { \
721
0
    gsize off; \
722
0
    type current_le, previous_le, current, previous; \
723
0
    \
724
0
    memcpy (&previous_le, data + start * sizeof (current), sizeof (current)); \
725
0
    previous = le_to_native (previous_le); \
726
0
    for (off = (start + 1) * sizeof (current); off < len * sizeof (current); off += sizeof (current)) \
727
0
      { \
728
0
        memcpy (&current_le, data + off, sizeof (current)); \
729
0
        current = le_to_native (current_le); \
730
0
        if (current < previous) \
731
0
          break; \
732
0
        previous = current; \
733
0
      } \
734
0
    return off / sizeof (current) - 1; \
735
0
  }
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint8
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint16
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint32
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint64
736
737
0
#define NO_CONVERSION(x) (x)
738
0
DEFINE_FIND_UNORDERED (guint8, NO_CONVERSION);
739
0
DEFINE_FIND_UNORDERED (guint16, GUINT16_FROM_LE);
740
0
DEFINE_FIND_UNORDERED (guint32, GUINT32_FROM_LE);
741
0
DEFINE_FIND_UNORDERED (guint64, GUINT64_FROM_LE);
742
743
static GVariantSerialised
744
gvs_variable_sized_array_get_child (GVariantSerialised value,
745
                                    gsize              index_)
746
0
{
747
0
  GVariantSerialised child = { 0, };
748
749
0
  struct Offsets offsets = gvs_variable_sized_array_get_frame_offsets (value);
750
751
0
  gsize start;
752
0
  gsize end;
753
754
0
  child.type_info = g_variant_type_info_element (value.type_info);
755
0
  g_variant_type_info_ref (child.type_info);
756
0
  child.depth = value.depth + 1;
757
758
  /* If the requested @index_ is beyond the set of indices whose framing offsets
759
   * have been checked, check the remaining offsets to see whether they’re
760
   * normal (in order, no overlapping array elements).
761
   *
762
   * Don’t bother checking if the highest known-good offset is lower than the
763
   * highest checked offset, as that means there’s an invalid element at that
764
   * index, so there’s no need to check further. */
765
0
  if (index_ > value.checked_offsets_up_to &&
766
0
      value.ordered_offsets_up_to == value.checked_offsets_up_to)
767
0
    {
768
0
      switch (offsets.offset_size)
769
0
        {
770
0
        case 1:
771
0
          {
772
0
            value.ordered_offsets_up_to = find_unordered_guint8 (
773
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
774
0
            break;
775
0
          }
776
0
        case 2:
777
0
          {
778
0
            value.ordered_offsets_up_to = find_unordered_guint16 (
779
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
780
0
            break;
781
0
          }
782
0
        case 4:
783
0
          {
784
0
            value.ordered_offsets_up_to = find_unordered_guint32 (
785
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
786
0
            break;
787
0
          }
788
0
        case 8:
789
0
          {
790
0
            value.ordered_offsets_up_to = find_unordered_guint64 (
791
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
792
0
            break;
793
0
          }
794
0
        default:
795
          /* gvs_get_offset_size() only returns maximum 8 */
796
0
          g_assert_not_reached ();
797
0
        }
798
799
0
      value.checked_offsets_up_to = index_;
800
0
    }
801
802
0
  if (index_ > value.ordered_offsets_up_to)
803
0
    {
804
      /* Offsets are invalid somewhere, so return an empty child. */
805
0
      return child;
806
0
    }
807
808
0
  if (index_ > 0)
809
0
    {
810
0
      guint alignment;
811
812
0
      start = gvs_offsets_get_offset_n (&offsets, index_ - 1);
813
814
0
      g_variant_type_info_query (child.type_info, &alignment, NULL);
815
0
      start += (-start) & alignment;
816
0
    }
817
0
  else
818
0
    start = 0;
819
820
0
  end = gvs_offsets_get_offset_n (&offsets, index_);
821
822
0
  if (start < end && end <= value.size && end <= offsets.data_size)
823
0
    {
824
0
      child.data = value.data + start;
825
0
      child.size = end - start;
826
0
    }
827
828
0
  return child;
829
0
}
830
831
static gsize
832
gvs_variable_sized_array_needed_size (GVariantTypeInfo         *type_info,
833
                                      GVariantSerialisedFiller  gvs_filler,
834
                                      const gpointer           *children,
835
                                      gsize                     n_children)
836
0
{
837
0
  guint alignment;
838
0
  gsize offset;
839
0
  gsize i;
840
841
0
  g_variant_type_info_query (type_info, &alignment, NULL);
842
0
  offset = 0;
843
844
0
  for (i = 0; i < n_children; i++)
845
0
    {
846
0
      GVariantSerialised child = { 0, };
847
848
0
      offset += (-offset) & alignment;
849
0
      gvs_filler (&child, children[i]);
850
0
      offset += child.size;
851
0
    }
852
853
0
  return gvs_calculate_total_size (offset, n_children);
854
0
}
855
856
static void
857
gvs_variable_sized_array_serialise (GVariantSerialised        value,
858
                                    GVariantSerialisedFiller  gvs_filler,
859
                                    const gpointer           *children,
860
                                    gsize                     n_children)
861
0
{
862
0
  guchar *offset_ptr;
863
0
  gsize offset_size;
864
0
  guint alignment;
865
0
  gsize offset;
866
0
  gsize i;
867
868
0
  g_variant_type_info_query (value.type_info, &alignment, NULL);
869
0
  offset_size = gvs_get_offset_size (value.size);
870
0
  offset = 0;
871
872
0
  offset_ptr = value.data + value.size - offset_size * n_children;
873
874
0
  for (i = 0; i < n_children; i++)
875
0
    {
876
0
      GVariantSerialised child = { 0, };
877
878
0
      while (offset & alignment)
879
0
        value.data[offset++] = '\0';
880
881
0
      child.data = value.data + offset;
882
0
      gvs_filler (&child, children[i]);
883
0
      offset += child.size;
884
885
0
      gvs_write_unaligned_le (offset_ptr, offset, offset_size);
886
0
      offset_ptr += offset_size;
887
0
    }
888
0
}
889
890
static gboolean
891
gvs_variable_sized_array_is_normal (GVariantSerialised value)
892
0
{
893
0
  GVariantSerialised child = { 0, };
894
0
  guint alignment;
895
0
  gsize offset;
896
0
  gsize i;
897
898
0
  struct Offsets offsets = gvs_variable_sized_array_get_frame_offsets (value);
899
900
0
  if (!offsets.is_normal)
901
0
    return FALSE;
902
903
0
  if (value.size != 0 && offsets.length == 0)
904
0
    return FALSE;
905
906
0
  child.type_info = g_variant_type_info_element (value.type_info);
907
0
  g_variant_type_info_query (child.type_info, &alignment, NULL);
908
0
  child.depth = value.depth + 1;
909
0
  offset = 0;
910
911
0
  for (i = 0; i < offsets.length; i++)
912
0
    {
913
0
      gsize this_end;
914
915
0
      this_end = gvs_read_unaligned_le (offsets.array + offsets.offset_size * i,
916
0
                                        offsets.offset_size);
917
918
0
      if (this_end < offset || this_end > offsets.data_size)
919
0
        return FALSE;
920
921
0
      while (offset & alignment)
922
0
        {
923
0
          if (!(offset < this_end && value.data[offset] == '\0'))
924
0
            return FALSE;
925
0
          offset++;
926
0
        }
927
928
0
      child.data = value.data + offset;
929
0
      child.size = this_end - offset;
930
931
0
      if (child.size == 0)
932
0
        child.data = NULL;
933
934
0
      if (!g_variant_serialised_is_normal (child))
935
0
        return FALSE;
936
937
0
      offset = this_end;
938
0
    }
939
940
0
  g_assert (offset == offsets.data_size);
941
942
  /* All offsets have now been checked. */
943
0
  value.ordered_offsets_up_to = G_MAXSIZE;
944
0
  value.checked_offsets_up_to = G_MAXSIZE;
945
946
0
  return TRUE;
947
0
}
948
949
/* Tuples {{{2
950
 *
951
 * Since tuples can contain a mix of variable- and fixed-sized items,
952
 * they are, in terms of serialization, a hybrid of variable-sized and
953
 * fixed-sized arrays.
954
 *
955
 * Offsets are only stored for variable-sized items.  Also, since the
956
 * number of items in a tuple is known from its type, we are able to
957
 * know exactly how many offsets to expect in the serialized data (and
958
 * therefore how much space is taken up by the offset array).  This
959
 * means that we know where the end of the serialized data for the last
960
 * item is -- we can just subtract the size of the offset array from the
961
 * total size of the tuple.  For this reason, the last item in the tuple
962
 * doesn't need an offset stored.
963
 *
964
 * Tuple offsets are stored in reverse.  This design choice allows
965
 * iterator-based deserializers to be more efficient.
966
 *
967
 * Most of the "heavy lifting" here is handled by the GVariantTypeInfo
968
 * for the tuple.  See the notes in gvarianttypeinfo.h.
969
 */
970
971
/* Note: This doesn’t guarantee that @out_member_end >= @out_member_start; that
972
 * condition may not hold true for invalid serialised variants. The caller is
973
 * responsible for checking the returned values and handling invalid ones
974
 * appropriately. */
975
static void
976
gvs_tuple_get_member_bounds (GVariantSerialised  value,
977
                             gsize               index_,
978
                             gsize               offset_size,
979
                             gsize              *out_member_start,
980
                             gsize              *out_member_end)
981
0
{
982
0
  const GVariantMemberInfo *member_info;
983
0
  gsize member_start, member_end;
984
985
0
  member_info = g_variant_type_info_member_info (value.type_info, index_);
986
987
0
  if (member_info->i + 1 &&
988
0
      offset_size * (member_info->i + 1) <= value.size)
989
0
    member_start = gvs_read_unaligned_le (value.data + value.size -
990
0
                                          offset_size * (member_info->i + 1),
991
0
                                          offset_size);
992
0
  else
993
0
    member_start = 0;
994
995
0
  member_start += member_info->a;
996
0
  member_start &= member_info->b;
997
0
  member_start |= member_info->c;
998
999
0
  if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST &&
1000
0
      offset_size * (member_info->i + 1) <= value.size)
1001
0
    member_end = value.size - offset_size * (member_info->i + 1);
1002
1003
0
  else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
1004
0
    {
1005
0
      gsize fixed_size;
1006
1007
0
      g_variant_type_info_query (member_info->type_info, NULL, &fixed_size);
1008
0
      member_end = member_start + fixed_size;
1009
0
    }
1010
1011
0
  else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET &&
1012
0
           offset_size * (member_info->i + 2) <= value.size)
1013
0
    member_end = gvs_read_unaligned_le (value.data + value.size -
1014
0
                                        offset_size * (member_info->i + 2),
1015
0
                                        offset_size);
1016
1017
0
  else  /* invalid */
1018
0
    member_end = G_MAXSIZE;
1019
1020
0
  if (out_member_start != NULL)
1021
0
    *out_member_start = member_start;
1022
0
  if (out_member_end != NULL)
1023
0
    *out_member_end = member_end;
1024
0
}
1025
1026
static gsize
1027
gvs_tuple_n_children (GVariantSerialised value)
1028
0
{
1029
0
  return g_variant_type_info_n_members (value.type_info);
1030
0
}
1031
1032
static GVariantSerialised
1033
gvs_tuple_get_child (GVariantSerialised value,
1034
                     gsize              index_)
1035
0
{
1036
0
  const GVariantMemberInfo *member_info;
1037
0
  GVariantSerialised child = { 0, };
1038
0
  gsize offset_size;
1039
0
  gsize start, end, last_end;
1040
1041
0
  member_info = g_variant_type_info_member_info (value.type_info, index_);
1042
0
  child.type_info = g_variant_type_info_ref (member_info->type_info);
1043
0
  child.depth = value.depth + 1;
1044
0
  offset_size = gvs_get_offset_size (value.size);
1045
1046
  /* Ensure the size is set for fixed-sized children, or
1047
   * g_variant_serialised_check() will fail, even if we return
1048
   * (child.data == NULL) to indicate an error. */
1049
0
  if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
1050
0
    g_variant_type_info_query (child.type_info, NULL, &child.size);
1051
1052
  /* tuples are the only (potentially) fixed-sized containers, so the
1053
   * only ones that have to deal with the possibility of having %NULL
1054
   * data with a non-zero %size if errors occurred elsewhere.
1055
   */
1056
0
  if G_UNLIKELY (value.data == NULL && value.size != 0)
1057
0
    {
1058
      /* this can only happen in fixed-sized tuples,
1059
       * so the child must also be fixed sized.
1060
       */
1061
0
      g_assert (child.size != 0);
1062
0
      child.data = NULL;
1063
1064
0
      return child;
1065
0
    }
1066
1067
  /* If the requested @index_ is beyond the set of indices whose framing offsets
1068
   * have been checked, check the remaining offsets to see whether they’re
1069
   * normal (in order, no overlapping tuple elements).
1070
   *
1071
   * Unlike the checks in gvs_variable_sized_array_get_child(), we have to check
1072
   * all the tuple *elements* here, not just all the framing offsets, since
1073
   * tuples contain a mix of elements which use framing offsets and ones which
1074
   * don’t. None of them are allowed to overlap. */
1075
0
  if (index_ > value.checked_offsets_up_to &&
1076
0
      value.ordered_offsets_up_to == value.checked_offsets_up_to)
1077
0
    {
1078
0
      gsize i, prev_i_end = 0;
1079
1080
0
      if (value.checked_offsets_up_to > 0)
1081
0
        gvs_tuple_get_member_bounds (value, value.checked_offsets_up_to - 1, offset_size, NULL, &prev_i_end);
1082
1083
0
      for (i = value.checked_offsets_up_to; i <= index_; i++)
1084
0
        {
1085
0
          gsize i_start, i_end;
1086
1087
0
          gvs_tuple_get_member_bounds (value, i, offset_size, &i_start, &i_end);
1088
1089
0
          if (i_start > i_end || i_start < prev_i_end || i_end > value.size)
1090
0
            break;
1091
1092
0
          prev_i_end = i_end;
1093
0
        }
1094
1095
0
      value.ordered_offsets_up_to = i - 1;
1096
0
      value.checked_offsets_up_to = index_;
1097
0
    }
1098
1099
0
  if (index_ > value.ordered_offsets_up_to)
1100
0
    {
1101
      /* Offsets are invalid somewhere, so return an empty child. */
1102
0
      return child;
1103
0
    }
1104
1105
0
  if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
1106
0
    {
1107
0
      if (offset_size * (member_info->i + 2) > value.size)
1108
0
        return child;
1109
0
    }
1110
0
  else
1111
0
    {
1112
0
      if (offset_size * (member_info->i + 1) > value.size)
1113
0
        return child;
1114
0
    }
1115
1116
  /* The child should not extend into the offset table. */
1117
0
  gvs_tuple_get_member_bounds (value, index_, offset_size, &start, &end);
1118
0
  gvs_tuple_get_member_bounds (value, g_variant_type_info_n_members (value.type_info) - 1, offset_size, NULL, &last_end);
1119
1120
0
  if (start < end && end <= value.size && end <= last_end)
1121
0
    {
1122
0
      child.data = value.data + start;
1123
0
      child.size = end - start;
1124
0
    }
1125
1126
0
  return child;
1127
0
}
1128
1129
static gsize
1130
gvs_tuple_needed_size (GVariantTypeInfo         *type_info,
1131
                       GVariantSerialisedFiller  gvs_filler,
1132
                       const gpointer           *children,
1133
                       gsize                     n_children)
1134
0
{
1135
0
  const GVariantMemberInfo *member_info = NULL;
1136
0
  gsize fixed_size;
1137
0
  gsize offset;
1138
0
  gsize i;
1139
1140
0
  g_variant_type_info_query (type_info, NULL, &fixed_size);
1141
1142
0
  if (fixed_size)
1143
0
    return fixed_size;
1144
1145
0
  offset = 0;
1146
1147
  /* We must go through at least one iteration below. If the tuple had no
1148
   * children, it would have a fixed size. */
1149
0
  g_assert (n_children > 0);
1150
1151
0
  for (i = 0; i < n_children; i++)
1152
0
    {
1153
0
      guint alignment;
1154
1155
0
      member_info = g_variant_type_info_member_info (type_info, i);
1156
0
      g_variant_type_info_query (member_info->type_info,
1157
0
                                 &alignment, &fixed_size);
1158
0
      offset += (-offset) & alignment;
1159
1160
0
      if (fixed_size)
1161
0
        offset += fixed_size;
1162
0
      else
1163
0
        {
1164
0
          GVariantSerialised child = { 0, };
1165
1166
0
          gvs_filler (&child, children[i]);
1167
0
          offset += child.size;
1168
0
        }
1169
0
    }
1170
1171
0
  return gvs_calculate_total_size (offset, member_info->i + 1);
1172
0
}
1173
1174
static void
1175
gvs_tuple_serialise (GVariantSerialised        value,
1176
                     GVariantSerialisedFiller  gvs_filler,
1177
                     const gpointer           *children,
1178
                     gsize                     n_children)
1179
0
{
1180
0
  gsize offset_size;
1181
0
  gsize offset;
1182
0
  gsize i;
1183
1184
0
  offset_size = gvs_get_offset_size (value.size);
1185
0
  offset = 0;
1186
1187
0
  for (i = 0; i < n_children; i++)
1188
0
    {
1189
0
      const GVariantMemberInfo *member_info;
1190
0
      GVariantSerialised child = { 0, };
1191
0
      guint alignment;
1192
1193
0
      member_info = g_variant_type_info_member_info (value.type_info, i);
1194
0
      g_variant_type_info_query (member_info->type_info, &alignment, NULL);
1195
1196
0
      while (offset & alignment)
1197
0
        value.data[offset++] = '\0';
1198
1199
0
      child.data = value.data + offset;
1200
0
      gvs_filler (&child, children[i]);
1201
0
      offset += child.size;
1202
1203
0
      if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
1204
0
        {
1205
0
          value.size -= offset_size;
1206
0
          gvs_write_unaligned_le (value.data + value.size,
1207
0
                                  offset, offset_size);
1208
0
        }
1209
0
    }
1210
1211
0
  while (offset < value.size)
1212
0
    value.data[offset++] = '\0';
1213
0
}
1214
1215
static gboolean
1216
gvs_tuple_is_normal (GVariantSerialised value)
1217
0
{
1218
0
  guint offset_size;
1219
0
  gsize offset_ptr;
1220
0
  gsize length;
1221
0
  gsize offset;
1222
0
  gsize i;
1223
0
  gsize offset_table_size;
1224
1225
  /* as per the comment in gvs_tuple_get_child() */
1226
0
  if G_UNLIKELY (value.data == NULL && value.size != 0)
1227
0
    return FALSE;
1228
1229
0
  offset_size = gvs_get_offset_size (value.size);
1230
0
  length = g_variant_type_info_n_members (value.type_info);
1231
0
  offset_ptr = value.size;
1232
0
  offset = 0;
1233
1234
0
  for (i = 0; i < length; i++)
1235
0
    {
1236
0
      const GVariantMemberInfo *member_info;
1237
0
      GVariantSerialised child = { 0, };
1238
0
      gsize fixed_size;
1239
0
      guint alignment;
1240
0
      gsize end;
1241
1242
0
      member_info = g_variant_type_info_member_info (value.type_info, i);
1243
0
      child.type_info = member_info->type_info;
1244
0
      child.depth = value.depth + 1;
1245
1246
0
      g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
1247
1248
0
      while (offset & alignment)
1249
0
        {
1250
0
          if (offset > value.size || value.data[offset] != '\0')
1251
0
            return FALSE;
1252
0
          offset++;
1253
0
        }
1254
1255
0
      child.data = value.data + offset;
1256
1257
0
      switch (member_info->ending_type)
1258
0
        {
1259
0
        case G_VARIANT_MEMBER_ENDING_FIXED:
1260
0
          end = offset + fixed_size;
1261
0
          break;
1262
1263
0
        case G_VARIANT_MEMBER_ENDING_LAST:
1264
0
          end = offset_ptr;
1265
0
          break;
1266
1267
0
        case G_VARIANT_MEMBER_ENDING_OFFSET:
1268
0
          if (offset_ptr < offset_size)
1269
0
            return FALSE;
1270
1271
0
          offset_ptr -= offset_size;
1272
1273
0
          if (offset_ptr < offset)
1274
0
            return FALSE;
1275
1276
0
          end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
1277
0
          break;
1278
1279
0
        default:
1280
0
          g_assert_not_reached ();
1281
0
        }
1282
1283
0
      if (end < offset || end > offset_ptr)
1284
0
        return FALSE;
1285
1286
0
      child.size = end - offset;
1287
1288
0
      if (child.size == 0)
1289
0
        child.data = NULL;
1290
1291
0
      if (!g_variant_serialised_is_normal (child))
1292
0
        return FALSE;
1293
1294
0
      offset = end;
1295
0
    }
1296
1297
  /* All element bounds have been checked above. */
1298
0
  value.ordered_offsets_up_to = G_MAXSIZE;
1299
0
  value.checked_offsets_up_to = G_MAXSIZE;
1300
1301
0
  {
1302
0
    gsize fixed_size;
1303
0
    guint alignment;
1304
1305
0
    g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
1306
1307
0
    if (fixed_size)
1308
0
      {
1309
0
        g_assert (fixed_size == value.size);
1310
0
        g_assert (offset_ptr == value.size);
1311
1312
0
        if (i == 0)
1313
0
          {
1314
0
            if (value.data[offset++] != '\0')
1315
0
              return FALSE;
1316
0
          }
1317
0
        else
1318
0
          {
1319
0
            while (offset & alignment)
1320
0
              if (value.data[offset++] != '\0')
1321
0
                return FALSE;
1322
0
          }
1323
1324
0
        g_assert (offset == value.size);
1325
0
      }
1326
0
  }
1327
1328
  /* @offset_ptr has been counting backwards from the end of the variant, to
1329
   * find the beginning of the offset table. @offset has been counting forwards
1330
   * from the beginning of the variant to find the end of the data. They should
1331
   * have met in the middle. */
1332
0
  if (offset_ptr != offset)
1333
0
    return FALSE;
1334
1335
0
  offset_table_size = value.size - offset_ptr;
1336
0
  if (value.size > 0 &&
1337
0
      gvs_calculate_total_size (offset, offset_table_size / offset_size) != value.size)
1338
0
    return FALSE;  /* offset size not minimal */
1339
1340
0
  return TRUE;
1341
0
}
1342
1343
/* Variants {{{2
1344
 *
1345
 * Variants are stored by storing the serialized data of the child,
1346
 * followed by a '\0' character, followed by the type string of the
1347
 * child.
1348
 *
1349
 * In the case that a value is presented that contains no '\0'
1350
 * character, or doesn't have a single well-formed definite type string
1351
 * following that character, the variant must be taken as containing the
1352
 * unit tuple: ().
1353
 */
1354
1355
static inline gsize
1356
gvs_variant_n_children (GVariantSerialised value)
1357
0
{
1358
0
  return 1;
1359
0
}
1360
1361
static inline GVariantSerialised
1362
gvs_variant_get_child (GVariantSerialised value,
1363
                       gsize              index_)
1364
0
{
1365
0
  GVariantSerialised child = { 0, };
1366
1367
  /* NOTE: not O(1) and impossible for it to be... */
1368
0
  if (value.size)
1369
0
    {
1370
      /* find '\0' character */
1371
0
      for (child.size = value.size - 1; child.size; child.size--)
1372
0
        if (value.data[child.size] == '\0')
1373
0
          break;
1374
1375
      /* ensure we didn't just hit the start of the string */
1376
0
      if (value.data[child.size] == '\0')
1377
0
        {
1378
0
          const gchar *type_string = (gchar *) &value.data[child.size + 1];
1379
0
          const gchar *limit = (gchar *) &value.data[value.size];
1380
0
          const gchar *end;
1381
1382
0
          if (g_variant_type_string_scan (type_string, limit, &end) &&
1383
0
              end == limit)
1384
0
            {
1385
0
              const GVariantType *type = (GVariantType *) type_string;
1386
1387
0
              if (g_variant_type_is_definite (type))
1388
0
                {
1389
0
                  gsize fixed_size;
1390
0
                  gsize child_type_depth;
1391
1392
0
                  child.type_info = g_variant_type_info_get (type);
1393
0
                  child.depth = value.depth + 1;
1394
1395
0
                  if (child.size != 0)
1396
                    /* only set to non-%NULL if size > 0 */
1397
0
                    child.data = value.data;
1398
1399
0
                  g_variant_type_info_query (child.type_info,
1400
0
                                             NULL, &fixed_size);
1401
0
                  child_type_depth = g_variant_type_info_query_depth (child.type_info);
1402
1403
0
                  if ((!fixed_size || fixed_size == child.size) &&
1404
0
                      value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth)
1405
0
                    return child;
1406
1407
0
                  g_variant_type_info_unref (child.type_info);
1408
0
                }
1409
0
            }
1410
0
        }
1411
0
    }
1412
1413
0
  child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
1414
0
  child.data = NULL;
1415
0
  child.size = 1;
1416
0
  child.depth = value.depth + 1;
1417
1418
0
  return child;
1419
0
}
1420
1421
static inline gsize
1422
gvs_variant_needed_size (GVariantTypeInfo         *type_info,
1423
                         GVariantSerialisedFiller  gvs_filler,
1424
                         const gpointer           *children,
1425
                         gsize                     n_children)
1426
0
{
1427
0
  GVariantSerialised child = { 0, };
1428
0
  const gchar *type_string;
1429
1430
0
  gvs_filler (&child, children[0]);
1431
0
  type_string = g_variant_type_info_get_type_string (child.type_info);
1432
1433
0
  return child.size + 1 + strlen (type_string);
1434
0
}
1435
1436
static inline void
1437
gvs_variant_serialise (GVariantSerialised        value,
1438
                       GVariantSerialisedFiller  gvs_filler,
1439
                       const gpointer           *children,
1440
                       gsize                     n_children)
1441
0
{
1442
0
  GVariantSerialised child = { 0, };
1443
0
  const gchar *type_string;
1444
1445
0
  child.data = value.data;
1446
1447
0
  gvs_filler (&child, children[0]);
1448
0
  type_string = g_variant_type_info_get_type_string (child.type_info);
1449
0
  value.data[child.size] = '\0';
1450
0
  memcpy (value.data + child.size + 1, type_string, strlen (type_string));
1451
0
}
1452
1453
static inline gboolean
1454
gvs_variant_is_normal (GVariantSerialised value)
1455
0
{
1456
0
  GVariantSerialised child;
1457
0
  gboolean normal;
1458
0
  gsize child_type_depth;
1459
1460
0
  child = gvs_variant_get_child (value, 0);
1461
0
  child_type_depth = g_variant_type_info_query_depth (child.type_info);
1462
1463
0
  normal = (value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth) &&
1464
0
           (child.data != NULL || child.size == 0) &&
1465
0
           g_variant_serialised_is_normal (child);
1466
1467
0
  g_variant_type_info_unref (child.type_info);
1468
1469
0
  return normal;
1470
0
}
1471
1472
1473
1474
/* PART 2: Serializer API {{{1
1475
 *
1476
 * This is the implementation of the API of the serializer as advertised
1477
 * in gvariant-serialiser.h.
1478
 */
1479
1480
/* Dispatch Utilities {{{2
1481
 *
1482
 * These macros allow a given function (for example,
1483
 * g_variant_serialiser_serialise) to be dispatched to the appropriate
1484
 * type-specific function above (fixed/variable-sized maybe,
1485
 * fixed/variable-sized array, tuple or variant).
1486
 */
1487
#define DISPATCH_FIXED(type_info, before, after) \
1488
0
  {                                                     \
1489
0
    gsize fixed_size;                                   \
1490
0
                                                        \
1491
0
    g_variant_type_info_query_element (type_info, NULL, \
1492
0
                                       &fixed_size);    \
1493
0
                                                        \
1494
0
    if (fixed_size)                                     \
1495
0
      {                                                 \
1496
0
        before ## fixed_sized ## after                  \
1497
0
      }                                                 \
1498
0
    else                                                \
1499
0
      {                                                 \
1500
0
        before ## variable_sized ## after               \
1501
0
      }                                                 \
1502
0
  }
1503
1504
#define DISPATCH_CASES(type_info, before, after) \
1505
0
  switch (g_variant_type_info_get_type_char (type_info))        \
1506
0
    {                                                           \
1507
0
      case G_VARIANT_TYPE_INFO_CHAR_MAYBE:                      \
1508
0
        DISPATCH_FIXED (type_info, before, _maybe ## after)     \
1509
0
                                                                \
1510
0
      case G_VARIANT_TYPE_INFO_CHAR_ARRAY:                      \
1511
0
        DISPATCH_FIXED (type_info, before, _array ## after)     \
1512
0
                                                                \
1513
0
      case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY:                 \
1514
0
      case G_VARIANT_TYPE_INFO_CHAR_TUPLE:                      \
1515
0
        {                                                       \
1516
0
          before ## tuple ## after                              \
1517
0
        }                                                       \
1518
0
                                                                \
1519
0
      case G_VARIANT_TYPE_INFO_CHAR_VARIANT:                    \
1520
0
        {                                                       \
1521
0
          before ## variant ## after                            \
1522
0
        }                                                       \
1523
0
    }
1524
1525
/* Serializer entry points {{{2
1526
 *
1527
 * These are the functions that are called in order for the serializer
1528
 * to do its thing.
1529
 */
1530
1531
/* < private >
1532
 * g_variant_serialised_n_children:
1533
 * @serialised: a #GVariantSerialised
1534
 *
1535
 * For serialized data that represents a container value (maybes,
1536
 * tuples, arrays, variants), determine how many child items are inside
1537
 * that container.
1538
 *
1539
 * Returns: the number of children
1540
 */
1541
gsize
1542
g_variant_serialised_n_children (GVariantSerialised serialised)
1543
0
{
1544
0
  g_assert (g_variant_serialised_check (serialised));
1545
1546
0
  DISPATCH_CASES (serialised.type_info,
1547
1548
0
                  return gvs_/**/,/**/_n_children (serialised);
1549
1550
0
                 )
1551
0
  g_assert_not_reached ();
1552
0
}
1553
1554
/* < private >
1555
 * g_variant_serialised_get_child:
1556
 * @serialised: a #GVariantSerialised
1557
 * @index_: the index of the child to fetch
1558
 *
1559
 * Extracts a child from a serialized data representing a container
1560
 * value.
1561
 *
1562
 * It is an error to call this function with an index out of bounds.
1563
 *
1564
 * If the result .data == %NULL and .size > 0 then there has been an
1565
 * error extracting the requested fixed-sized value.  This number of
1566
 * zero bytes needs to be allocated instead.
1567
 *
1568
 * In the case that .data == %NULL and .size == 0 then a zero-sized
1569
 * item of a variable-sized type is being returned.
1570
 *
1571
 * .data is never non-%NULL if size is 0.
1572
 *
1573
 * Returns: a #GVariantSerialised for the child
1574
 */
1575
GVariantSerialised
1576
g_variant_serialised_get_child (GVariantSerialised serialised,
1577
                                gsize              index_)
1578
0
{
1579
0
  GVariantSerialised child;
1580
1581
0
  g_assert (g_variant_serialised_check (serialised));
1582
1583
0
  if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
1584
0
    {
1585
0
      DISPATCH_CASES (serialised.type_info,
1586
1587
0
                      child = gvs_/**/,/**/_get_child (serialised, index_);
1588
0
                      g_assert (child.size || child.data == NULL);
1589
0
                      g_assert (g_variant_serialised_check (child));
1590
0
                      return child;
1591
1592
0
                     )
1593
0
      g_assert_not_reached ();
1594
0
    }
1595
1596
0
  g_error ("Attempt to access item %"G_GSIZE_FORMAT
1597
0
           " in a container with only %"G_GSIZE_FORMAT" items",
1598
0
           index_, g_variant_serialised_n_children (serialised));
1599
0
}
1600
1601
/* < private >
1602
 * g_variant_serialiser_serialise:
1603
 * @serialised: a #GVariantSerialised, properly set up
1604
 * @gvs_filler: the filler function
1605
 * @children: an array of child items
1606
 * @n_children: the size of @children
1607
 *
1608
 * Writes data in serialized form.
1609
 *
1610
 * The type_info field of @serialised must be filled in to type info for
1611
 * the type that we are serializing.
1612
 *
1613
 * The size field of @serialised must be filled in with the value
1614
 * returned by a previous call to g_variant_serialiser_needed_size().
1615
 *
1616
 * The data field of @serialised must be a pointer to a properly-aligned
1617
 * memory region large enough to serialize into (ie: at least as big as
1618
 * the size field).
1619
 *
1620
 * This function is only resonsible for serializing the top-level
1621
 * container.  @gvs_filler is called on each child of the container in
1622
 * order for all of the data of that child to be filled in.
1623
 */
1624
void
1625
g_variant_serialiser_serialise (GVariantSerialised        serialised,
1626
                                GVariantSerialisedFiller  gvs_filler,
1627
                                const gpointer           *children,
1628
                                gsize                     n_children)
1629
0
{
1630
0
  g_assert (g_variant_serialised_check (serialised));
1631
1632
0
  DISPATCH_CASES (serialised.type_info,
1633
1634
0
                  gvs_/**/,/**/_serialise (serialised, gvs_filler,
1635
0
                                           children, n_children);
1636
0
                  return;
1637
1638
0
                 )
1639
0
  g_assert_not_reached ();
1640
0
}
1641
1642
/* < private >
1643
 * g_variant_serialiser_needed_size:
1644
 * @type_info: the type to serialize for
1645
 * @gvs_filler: the filler function
1646
 * @children: an array of child items
1647
 * @n_children: the size of @children
1648
 *
1649
 * Determines how much memory would be needed to serialize this value.
1650
 *
1651
 * This function is only responsible for performing calculations for the
1652
 * top-level container.  @gvs_filler is called on each child of the
1653
 * container in order to determine its size.
1654
 */
1655
gsize
1656
g_variant_serialiser_needed_size (GVariantTypeInfo         *type_info,
1657
                                  GVariantSerialisedFiller  gvs_filler,
1658
                                  const gpointer           *children,
1659
                                  gsize                     n_children)
1660
0
{
1661
0
  DISPATCH_CASES (type_info,
1662
1663
0
                  return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
1664
0
                                                    children, n_children);
1665
1666
0
                 )
1667
0
  g_assert_not_reached ();
1668
0
}
1669
1670
/* Byteswapping {{{2 */
1671
1672
/* < private >
1673
 * g_variant_serialised_byteswap:
1674
 * @value: a #GVariantSerialised
1675
 *
1676
 * Byte-swap serialized data.  The result of this function is only
1677
 * well-defined if the data is in normal form.
1678
 */
1679
void
1680
g_variant_serialised_byteswap (GVariantSerialised serialised)
1681
0
{
1682
0
  gsize fixed_size;
1683
0
  guint alignment;
1684
1685
0
  g_assert (g_variant_serialised_check (serialised));
1686
1687
0
  if (!serialised.data)
1688
0
    return;
1689
1690
  /* the types we potentially need to byteswap are
1691
   * exactly those with alignment requirements.
1692
   */
1693
0
  g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
1694
0
  if (!alignment)
1695
0
    return;
1696
1697
  /* if fixed size and alignment are equal then we are down
1698
   * to the base integer type and we should swap it.  the
1699
   * only exception to this is if we have a tuple with a
1700
   * single item, and then swapping it will be OK anyway.
1701
   */
1702
0
  if (alignment + 1 == fixed_size)
1703
0
    {
1704
0
      switch (fixed_size)
1705
0
      {
1706
0
        case 2:
1707
0
          {
1708
0
            guint16 *ptr = (guint16 *) serialised.data;
1709
1710
0
            g_assert_cmpint (serialised.size, ==, 2);
1711
0
            *ptr = GUINT16_SWAP_LE_BE (*ptr);
1712
0
          }
1713
0
          return;
1714
1715
0
        case 4:
1716
0
          {
1717
0
            guint32 *ptr = (guint32 *) serialised.data;
1718
1719
0
            g_assert_cmpint (serialised.size, ==, 4);
1720
0
            *ptr = GUINT32_SWAP_LE_BE (*ptr);
1721
0
          }
1722
0
          return;
1723
1724
0
        case 8:
1725
0
          {
1726
0
            guint64 *ptr = (guint64 *) serialised.data;
1727
1728
0
            g_assert_cmpint (serialised.size, ==, 8);
1729
0
            *ptr = GUINT64_SWAP_LE_BE (*ptr);
1730
0
          }
1731
0
          return;
1732
1733
0
        default:
1734
0
          g_assert_not_reached ();
1735
0
      }
1736
0
    }
1737
1738
  /* else, we have a container that potentially contains
1739
   * some children that need to be byteswapped.
1740
   */
1741
0
  else
1742
0
    {
1743
0
      gsize children, i;
1744
1745
0
      children = g_variant_serialised_n_children (serialised);
1746
0
      for (i = 0; i < children; i++)
1747
0
        {
1748
0
          GVariantSerialised child;
1749
1750
0
          child = g_variant_serialised_get_child (serialised, i);
1751
0
          g_variant_serialised_byteswap (child);
1752
0
          g_variant_type_info_unref (child.type_info);
1753
0
        }
1754
0
    }
1755
0
}
1756
1757
/* Normal form checking {{{2 */
1758
1759
/* < private >
1760
 * g_variant_serialised_is_normal:
1761
 * @serialised: a #GVariantSerialised
1762
 *
1763
 * Determines, recursively if @serialised is in normal form.  There is
1764
 * precisely one normal form of serialized data for each possible value.
1765
 *
1766
 * It is possible that multiple byte sequences form the serialized data
1767
 * for a given value if, for example, the padding bytes are filled in
1768
 * with something other than zeros, but only one form is the normal
1769
 * form.
1770
 */
1771
gboolean
1772
g_variant_serialised_is_normal (GVariantSerialised serialised)
1773
0
{
1774
0
  if (serialised.depth >= G_VARIANT_MAX_RECURSION_DEPTH)
1775
0
    return FALSE;
1776
1777
0
  DISPATCH_CASES (serialised.type_info,
1778
1779
0
                  return gvs_/**/,/**/_is_normal (serialised);
1780
1781
0
                 )
1782
1783
0
  if (serialised.data == NULL)
1784
0
    return FALSE;
1785
1786
  /* some hard-coded terminal cases */
1787
0
  switch (g_variant_type_info_get_type_char (serialised.type_info))
1788
0
    {
1789
0
    case 'b': /* boolean */
1790
0
      return serialised.data[0] < 2;
1791
1792
0
    case 's': /* string */
1793
0
      return g_variant_serialiser_is_string (serialised.data,
1794
0
                                             serialised.size);
1795
1796
0
    case 'o':
1797
0
      return g_variant_serialiser_is_object_path (serialised.data,
1798
0
                                                  serialised.size);
1799
1800
0
    case 'g':
1801
0
      return g_variant_serialiser_is_signature (serialised.data,
1802
0
                                                serialised.size);
1803
1804
0
    default:
1805
      /* all of the other types are fixed-sized numerical types for
1806
       * which all possible values are valid (including various NaN
1807
       * representations for floating point values).
1808
       */
1809
0
      return TRUE;
1810
0
    }
1811
0
}
1812
1813
/* Validity-checking functions {{{2
1814
 *
1815
 * Checks if strings, object paths and signature strings are valid.
1816
 */
1817
1818
/* < private >
1819
 * g_variant_serialiser_is_string:
1820
 * @data: a possible string
1821
 * @size: the size of @data
1822
 *
1823
 * Ensures that @data is a valid string with a nul terminator at the end
1824
 * and no nul bytes embedded.
1825
 */
1826
gboolean
1827
g_variant_serialiser_is_string (gconstpointer data,
1828
                                gsize         size)
1829
0
{
1830
0
  const gchar *expected_end;
1831
0
  const gchar *end;
1832
1833
  /* Strings must end with a nul terminator. */
1834
0
  if (size == 0)
1835
0
    return FALSE;
1836
1837
0
  expected_end = ((gchar *) data) + size - 1;
1838
1839
0
  if (*expected_end != '\0')
1840
0
    return FALSE;
1841
1842
0
  g_utf8_validate_len (data, size, &end);
1843
1844
0
  return end == expected_end;
1845
0
}
1846
1847
/* < private >
1848
 * g_variant_serialiser_is_object_path:
1849
 * @data: a possible D-Bus object path
1850
 * @size: the size of @data
1851
 *
1852
 * Performs the checks for being a valid string.
1853
 *
1854
 * Also, ensures that @data is a valid D-Bus object path, as per the D-Bus
1855
 * specification.
1856
 */
1857
gboolean
1858
g_variant_serialiser_is_object_path (gconstpointer data,
1859
                                     gsize         size)
1860
0
{
1861
0
  const gchar *string = data;
1862
0
  gsize i;
1863
1864
0
  if (!g_variant_serialiser_is_string (data, size))
1865
0
    return FALSE;
1866
1867
  /* The path must begin with an ASCII '/' (integer 47) character */
1868
0
  if (string[0] != '/')
1869
0
    return FALSE;
1870
1871
0
  for (i = 1; string[i]; i++)
1872
    /* Each element must only contain the ASCII characters
1873
     * "[A-Z][a-z][0-9]_"
1874
     */
1875
0
    if (g_ascii_isalnum (string[i]) || string[i] == '_')
1876
0
      ;
1877
1878
    /* must consist of elements separated by slash characters. */
1879
0
    else if (string[i] == '/')
1880
0
      {
1881
        /* No element may be the empty string. */
1882
        /* Multiple '/' characters cannot occur in sequence. */
1883
0
        if (string[i - 1] == '/')
1884
0
          return FALSE;
1885
0
      }
1886
1887
0
    else
1888
0
      return FALSE;
1889
1890
  /* A trailing '/' character is not allowed unless the path is the
1891
   * root path (a single '/' character).
1892
   */
1893
0
  if (i > 1 && string[i - 1] == '/')
1894
0
    return FALSE;
1895
1896
0
  return TRUE;
1897
0
}
1898
1899
/* < private >
1900
 * g_variant_serialiser_is_signature:
1901
 * @data: a possible D-Bus signature
1902
 * @size: the size of @data
1903
 *
1904
 * Performs the checks for being a valid string.
1905
 *
1906
 * Also, ensures that @data is a valid D-Bus type signature, as per the
1907
 * D-Bus specification. Note that this means the empty string is valid, as the
1908
 * D-Bus specification defines a signature as “zero or more single complete
1909
 * types”.
1910
 */
1911
gboolean
1912
g_variant_serialiser_is_signature (gconstpointer data,
1913
                                   gsize         size)
1914
0
{
1915
0
  const gchar *string = data;
1916
0
  gsize first_invalid;
1917
1918
0
  if (!g_variant_serialiser_is_string (data, size))
1919
0
    return FALSE;
1920
1921
  /* make sure no non-definite characters appear */
1922
0
  first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
1923
0
  if (string[first_invalid])
1924
0
    return FALSE;
1925
1926
  /* make sure each type string is well-formed */
1927
0
  while (*string)
1928
0
    if (!g_variant_type_string_scan (string, NULL, &string))
1929
0
      return FALSE;
1930
1931
0
  return TRUE;
1932
0
}
1933
1934
/* Epilogue {{{1 */
1935
/* vim:set foldmethod=marker: */