Coverage Report

Created: 2025-07-23 06:49

/src/rauc/subprojects/glib-2.76.5/glib/gvariant.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2007, 2008 Ryan Lortie
3
 * Copyright © 2010 Codethink Limited
4
 *
5
 * SPDX-License-Identifier: LGPL-2.1-or-later
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 *
20
 * Author: Ryan Lortie <desrt@desrt.ca>
21
 */
22
23
/* Prologue {{{1 */
24
25
#include "config.h"
26
27
#include <glib/gvariant-serialiser.h>
28
#include "gvariant-internal.h"
29
#include <glib/gvariant-core.h>
30
#include <glib/gtestutils.h>
31
#include <glib/gstrfuncs.h>
32
#include <glib/gslice.h>
33
#include <glib/ghash.h>
34
#include <glib/gmem.h>
35
36
#include <string.h>
37
38
/**
39
 * SECTION:gvariant
40
 * @title: GVariant
41
 * @short_description: strongly typed value datatype
42
 * @see_also: GVariantType
43
 *
44
 * #GVariant is a variant datatype; it can contain one or more values
45
 * along with information about the type of the values.
46
 *
47
 * A #GVariant may contain simple types, like an integer, or a boolean value;
48
 * or complex types, like an array of two strings, or a dictionary of key
49
 * value pairs. A #GVariant is also immutable: once it's been created neither
50
 * its type nor its content can be modified further.
51
 *
52
 * GVariant is useful whenever data needs to be serialized, for example when
53
 * sending method parameters in D-Bus, or when saving settings using GSettings.
54
 *
55
 * When creating a new #GVariant, you pass the data you want to store in it
56
 * along with a string representing the type of data you wish to pass to it.
57
 *
58
 * For instance, if you want to create a #GVariant holding an integer value you
59
 * can use:
60
 *
61
 * |[<!-- language="C" -->
62
 *   GVariant *v = g_variant_new ("u", 40);
63
 * ]|
64
 *
65
 * The string "u" in the first argument tells #GVariant that the data passed to
66
 * the constructor (40) is going to be an unsigned integer.
67
 *
68
 * More advanced examples of #GVariant in use can be found in documentation for
69
 * [GVariant format strings][gvariant-format-strings-pointers].
70
 *
71
 * The range of possible values is determined by the type.
72
 *
73
 * The type system used by #GVariant is #GVariantType. 
74
 *
75
 * #GVariant instances always have a type and a value (which are given
76
 * at construction time).  The type and value of a #GVariant instance
77
 * can never change other than by the #GVariant itself being
78
 * destroyed.  A #GVariant cannot contain a pointer.
79
 *
80
 * #GVariant is reference counted using g_variant_ref() and
81
 * g_variant_unref().  #GVariant also has floating reference counts --
82
 * see g_variant_ref_sink().
83
 *
84
 * #GVariant is completely threadsafe.  A #GVariant instance can be
85
 * concurrently accessed in any way from any number of threads without
86
 * problems.
87
 *
88
 * #GVariant is heavily optimised for dealing with data in serialized
89
 * form.  It works particularly well with data located in memory-mapped
90
 * files.  It can perform nearly all deserialization operations in a
91
 * small constant time, usually touching only a single memory page.
92
 * Serialized #GVariant data can also be sent over the network.
93
 *
94
 * #GVariant is largely compatible with D-Bus.  Almost all types of
95
 * #GVariant instances can be sent over D-Bus.  See #GVariantType for
96
 * exceptions.  (However, #GVariant's serialization format is not the same
97
 * as the serialization format of a D-Bus message body: use #GDBusMessage,
98
 * in the gio library, for those.)
99
 *
100
 * For space-efficiency, the #GVariant serialization format does not
101
 * automatically include the variant's length, type or endianness,
102
 * which must either be implied from context (such as knowledge that a
103
 * particular file format always contains a little-endian
104
 * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
105
 * or supplied out-of-band (for instance, a length, type and/or endianness
106
 * indicator could be placed at the beginning of a file, network message
107
 * or network stream).
108
 *
109
 * A #GVariant's size is limited mainly by any lower level operating
110
 * system constraints, such as the number of bits in #gsize.  For
111
 * example, it is reasonable to have a 2GB file mapped into memory
112
 * with #GMappedFile, and call g_variant_new_from_data() on it.
113
 *
114
 * For convenience to C programmers, #GVariant features powerful
115
 * varargs-based value construction and destruction.  This feature is
116
 * designed to be embedded in other libraries.
117
 *
118
 * There is a Python-inspired text language for describing #GVariant
119
 * values.  #GVariant includes a printer for this language and a parser
120
 * with type inferencing.
121
 *
122
 * ## Memory Use
123
 *
124
 * #GVariant tries to be quite efficient with respect to memory use.
125
 * This section gives a rough idea of how much memory is used by the
126
 * current implementation.  The information here is subject to change
127
 * in the future.
128
 *
129
 * The memory allocated by #GVariant can be grouped into 4 broad
130
 * purposes: memory for serialized data, memory for the type
131
 * information cache, buffer management memory and memory for the
132
 * #GVariant structure itself.
133
 *
134
 * ## Serialized Data Memory
135
 *
136
 * This is the memory that is used for storing GVariant data in
137
 * serialized form.  This is what would be sent over the network or
138
 * what would end up on disk, not counting any indicator of the
139
 * endianness, or of the length or type of the top-level variant.
140
 *
141
 * The amount of memory required to store a boolean is 1 byte. 16,
142
 * 32 and 64 bit integers and double precision floating point numbers
143
 * use their "natural" size.  Strings (including object path and
144
 * signature strings) are stored with a nul terminator, and as such
145
 * use the length of the string plus 1 byte.
146
 *
147
 * Maybe types use no space at all to represent the null value and
148
 * use the same amount of space (sometimes plus one byte) as the
149
 * equivalent non-maybe-typed value to represent the non-null case.
150
 *
151
 * Arrays use the amount of space required to store each of their
152
 * members, concatenated.  Additionally, if the items stored in an
153
 * array are not of a fixed-size (ie: strings, other arrays, etc)
154
 * then an additional framing offset is stored for each item.  The
155
 * size of this offset is either 1, 2 or 4 bytes depending on the
156
 * overall size of the container.  Additionally, extra padding bytes
157
 * are added as required for alignment of child values.
158
 *
159
 * Tuples (including dictionary entries) use the amount of space
160
 * required to store each of their members, concatenated, plus one
161
 * framing offset (as per arrays) for each non-fixed-sized item in
162
 * the tuple, except for the last one.  Additionally, extra padding
163
 * bytes are added as required for alignment of child values.
164
 *
165
 * Variants use the same amount of space as the item inside of the
166
 * variant, plus 1 byte, plus the length of the type string for the
167
 * item inside the variant.
168
 *
169
 * As an example, consider a dictionary mapping strings to variants.
170
 * In the case that the dictionary is empty, 0 bytes are required for
171
 * the serialization.
172
 *
173
 * If we add an item "width" that maps to the int32 value of 500 then
174
 * we will use 4 byte to store the int32 (so 6 for the variant
175
 * containing it) and 6 bytes for the string.  The variant must be
176
 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
177
 * bytes.  6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
178
 * for the dictionary entry.  An additional 1 byte is added to the
179
 * array as a framing offset making a total of 15 bytes.
180
 *
181
 * If we add another entry, "title" that maps to a nullable string
182
 * that happens to have a value of null, then we use 0 bytes for the
183
 * null value (and 3 bytes for the variant to contain it along with
184
 * its type string) plus 6 bytes for the string.  Again, we need 2
185
 * padding bytes.  That makes a total of 6 + 2 + 3 = 11 bytes.
186
 *
187
 * We now require extra padding between the two items in the array.
188
 * After the 14 bytes of the first item, that's 2 bytes required.
189
 * We now require 2 framing offsets for an extra two
190
 * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
191
 * dictionary.
192
 *
193
 * ## Type Information Cache
194
 *
195
 * For each GVariant type that currently exists in the program a type
196
 * information structure is kept in the type information cache.  The
197
 * type information structure is required for rapid deserialization.
198
 *
199
 * Continuing with the above example, if a #GVariant exists with the
200
 * type "a{sv}" then a type information struct will exist for
201
 * "a{sv}", "{sv}", "s", and "v".  Multiple uses of the same type
202
 * will share the same type information.  Additionally, all
203
 * single-digit types are stored in read-only static memory and do
204
 * not contribute to the writable memory footprint of a program using
205
 * #GVariant.
206
 *
207
 * Aside from the type information structures stored in read-only
208
 * memory, there are two forms of type information.  One is used for
209
 * container types where there is a single element type: arrays and
210
 * maybe types.  The other is used for container types where there
211
 * are multiple element types: tuples and dictionary entries.
212
 *
213
 * Array type info structures are 6 * sizeof (void *), plus the
214
 * memory required to store the type string itself.  This means that
215
 * on 32-bit systems, the cache entry for "a{sv}" would require 30
216
 * bytes of memory (plus malloc overhead).
217
 *
218
 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
219
 * sizeof (void *) for each item in the tuple, plus the memory
220
 * required to store the type string itself.  A 2-item tuple, for
221
 * example, would have a type information structure that consumed
222
 * writable memory in the size of 14 * sizeof (void *) (plus type
223
 * string)  This means that on 32-bit systems, the cache entry for
224
 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
225
 *
226
 * This means that in total, for our "a{sv}" example, 91 bytes of
227
 * type information would be allocated.
228
 * 
229
 * The type information cache, additionally, uses a #GHashTable to
230
 * store and look up the cached items and stores a pointer to this
231
 * hash table in static storage.  The hash table is freed when there
232
 * are zero items in the type cache.
233
 *
234
 * Although these sizes may seem large it is important to remember
235
 * that a program will probably only have a very small number of
236
 * different types of values in it and that only one type information
237
 * structure is required for many different values of the same type.
238
 *
239
 * ## Buffer Management Memory
240
 *
241
 * #GVariant uses an internal buffer management structure to deal
242
 * with the various different possible sources of serialized data
243
 * that it uses.  The buffer is responsible for ensuring that the
244
 * correct call is made when the data is no longer in use by
245
 * #GVariant.  This may involve a g_free() or a g_slice_free() or
246
 * even g_mapped_file_unref().
247
 *
248
 * One buffer management structure is used for each chunk of
249
 * serialized data.  The size of the buffer management structure
250
 * is 4 * (void *).  On 32-bit systems, that's 16 bytes.
251
 *
252
 * ## GVariant structure
253
 *
254
 * The size of a #GVariant structure is 6 * (void *).  On 32-bit
255
 * systems, that's 24 bytes.
256
 *
257
 * #GVariant structures only exist if they are explicitly created
258
 * with API calls.  For example, if a #GVariant is constructed out of
259
 * serialized data for the example given above (with the dictionary)
260
 * then although there are 9 individual values that comprise the
261
 * entire dictionary (two keys, two values, two variants containing
262
 * the values, two dictionary entries, plus the dictionary itself),
263
 * only 1 #GVariant instance exists -- the one referring to the
264
 * dictionary.
265
 *
266
 * If calls are made to start accessing the other values then
267
 * #GVariant instances will exist for those values only for as long
268
 * as they are in use (ie: until you call g_variant_unref()).  The
269
 * type information is shared.  The serialized data and the buffer
270
 * management structure for that serialized data is shared by the
271
 * child.
272
 *
273
 * ## Summary
274
 *
275
 * To put the entire example together, for our dictionary mapping
276
 * strings to variants (with two entries, as given above), we are
277
 * using 91 bytes of memory for type information, 29 bytes of memory
278
 * for the serialized data, 16 bytes for buffer management and 24
279
 * bytes for the #GVariant instance, or a total of 160 bytes, plus
280
 * malloc overhead.  If we were to use g_variant_get_child_value() to
281
 * access the two dictionary entries, we would use an additional 48
282
 * bytes.  If we were to have other dictionaries of the same type, we
283
 * would use more memory for the serialized data and buffer
284
 * management for those dictionaries, but the type information would
285
 * be shared.
286
 */
287
288
/* definition of GVariant structure is in gvariant-core.c */
289
290
/* this is a g_return_val_if_fail() for making
291
 * sure a (GVariant *) has the required type.
292
 */
293
#define TYPE_CHECK(value, TYPE, val) \
294
0
  if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) {           \
295
0
    g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC,            \
296
0
                              "g_variant_is_of_type (" #value     \
297
0
                              ", " #TYPE ")");                    \
298
0
    return val;                                                   \
299
0
  }
300
301
/* Numeric Type Constructor/Getters {{{1 */
302
/* < private >
303
 * g_variant_new_from_trusted:
304
 * @type: the #GVariantType
305
 * @data: the data to use
306
 * @size: the size of @data
307
 *
308
 * Constructs a new trusted #GVariant instance from the provided data.
309
 * This is used to implement g_variant_new_* for all the basic types.
310
 *
311
 * Note: @data must be backed by memory that is aligned appropriately for the
312
 * @type being loaded. Otherwise this function will internally create a copy of
313
 * the memory (since GLib 2.60) or (in older versions) fail and exit the
314
 * process.
315
 *
316
 * Returns: a new floating #GVariant
317
 */
318
static GVariant *
319
g_variant_new_from_trusted (const GVariantType *type,
320
                            gconstpointer       data,
321
                            gsize               size)
322
0
{
323
0
  GVariant *value;
324
0
  GBytes *bytes;
325
326
0
  bytes = g_bytes_new (data, size);
327
0
  value = g_variant_new_from_bytes (type, bytes, TRUE);
328
0
  g_bytes_unref (bytes);
329
330
0
  return value;
331
0
}
332
333
/**
334
 * g_variant_new_boolean:
335
 * @value: a #gboolean value
336
 *
337
 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
338
 *
339
 * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
340
 *
341
 * Since: 2.24
342
 **/
343
GVariant *
344
g_variant_new_boolean (gboolean value)
345
0
{
346
0
  guchar v = value;
347
348
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
349
0
}
350
351
/**
352
 * g_variant_get_boolean:
353
 * @value: a boolean #GVariant instance
354
 *
355
 * Returns the boolean value of @value.
356
 *
357
 * It is an error to call this function with a @value of any type
358
 * other than %G_VARIANT_TYPE_BOOLEAN.
359
 *
360
 * Returns: %TRUE or %FALSE
361
 *
362
 * Since: 2.24
363
 **/
364
gboolean
365
g_variant_get_boolean (GVariant *value)
366
0
{
367
0
  const guchar *data;
368
369
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
370
371
0
  data = g_variant_get_data (value);
372
373
0
  return data != NULL ? *data != 0 : FALSE;
374
0
}
375
376
/* the constructors and accessors for byte, int{16,32,64}, handles and
377
 * doubles all look pretty much exactly the same, so we reduce
378
 * copy/pasting here.
379
 */
380
#define NUMERIC_TYPE(TYPE, type, ctype) \
381
0
  GVariant *g_variant_new_##type (ctype value) {                \
382
0
    return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE,   \
383
0
                                       &value, sizeof value);   \
384
0
  }                                                             \
Unexecuted instantiation: g_variant_new_byte
Unexecuted instantiation: g_variant_new_int16
Unexecuted instantiation: g_variant_new_uint16
Unexecuted instantiation: g_variant_new_int32
Unexecuted instantiation: g_variant_new_uint32
Unexecuted instantiation: g_variant_new_int64
Unexecuted instantiation: g_variant_new_uint64
Unexecuted instantiation: g_variant_new_handle
Unexecuted instantiation: g_variant_new_double
385
0
  ctype g_variant_get_##type (GVariant *value) {                \
386
0
    const ctype *data;                                          \
387
0
    TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0);             \
388
0
    data = g_variant_get_data (value);                          \
389
0
    return data != NULL ? *data : 0;                            \
390
0
  }
Unexecuted instantiation: g_variant_get_byte
Unexecuted instantiation: g_variant_get_int16
Unexecuted instantiation: g_variant_get_uint16
Unexecuted instantiation: g_variant_get_int32
Unexecuted instantiation: g_variant_get_uint32
Unexecuted instantiation: g_variant_get_int64
Unexecuted instantiation: g_variant_get_uint64
Unexecuted instantiation: g_variant_get_handle
Unexecuted instantiation: g_variant_get_double
391
392
393
/**
394
 * g_variant_new_byte:
395
 * @value: a #guint8 value
396
 *
397
 * Creates a new byte #GVariant instance.
398
 *
399
 * Returns: (transfer none): a floating reference to a new byte #GVariant instance
400
 *
401
 * Since: 2.24
402
 **/
403
/**
404
 * g_variant_get_byte:
405
 * @value: a byte #GVariant instance
406
 *
407
 * Returns the byte value of @value.
408
 *
409
 * It is an error to call this function with a @value of any type
410
 * other than %G_VARIANT_TYPE_BYTE.
411
 *
412
 * Returns: a #guint8
413
 *
414
 * Since: 2.24
415
 **/
416
NUMERIC_TYPE (BYTE, byte, guint8)
417
418
/**
419
 * g_variant_new_int16:
420
 * @value: a #gint16 value
421
 *
422
 * Creates a new int16 #GVariant instance.
423
 *
424
 * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
425
 *
426
 * Since: 2.24
427
 **/
428
/**
429
 * g_variant_get_int16:
430
 * @value: an int16 #GVariant instance
431
 *
432
 * Returns the 16-bit signed integer value of @value.
433
 *
434
 * It is an error to call this function with a @value of any type
435
 * other than %G_VARIANT_TYPE_INT16.
436
 *
437
 * Returns: a #gint16
438
 *
439
 * Since: 2.24
440
 **/
441
NUMERIC_TYPE (INT16, int16, gint16)
442
443
/**
444
 * g_variant_new_uint16:
445
 * @value: a #guint16 value
446
 *
447
 * Creates a new uint16 #GVariant instance.
448
 *
449
 * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
450
 *
451
 * Since: 2.24
452
 **/
453
/**
454
 * g_variant_get_uint16:
455
 * @value: a uint16 #GVariant instance
456
 *
457
 * Returns the 16-bit unsigned integer value of @value.
458
 *
459
 * It is an error to call this function with a @value of any type
460
 * other than %G_VARIANT_TYPE_UINT16.
461
 *
462
 * Returns: a #guint16
463
 *
464
 * Since: 2.24
465
 **/
466
NUMERIC_TYPE (UINT16, uint16, guint16)
467
468
/**
469
 * g_variant_new_int32:
470
 * @value: a #gint32 value
471
 *
472
 * Creates a new int32 #GVariant instance.
473
 *
474
 * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
475
 *
476
 * Since: 2.24
477
 **/
478
/**
479
 * g_variant_get_int32:
480
 * @value: an int32 #GVariant instance
481
 *
482
 * Returns the 32-bit signed integer value of @value.
483
 *
484
 * It is an error to call this function with a @value of any type
485
 * other than %G_VARIANT_TYPE_INT32.
486
 *
487
 * Returns: a #gint32
488
 *
489
 * Since: 2.24
490
 **/
491
NUMERIC_TYPE (INT32, int32, gint32)
492
493
/**
494
 * g_variant_new_uint32:
495
 * @value: a #guint32 value
496
 *
497
 * Creates a new uint32 #GVariant instance.
498
 *
499
 * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
500
 *
501
 * Since: 2.24
502
 **/
503
/**
504
 * g_variant_get_uint32:
505
 * @value: a uint32 #GVariant instance
506
 *
507
 * Returns the 32-bit unsigned integer value of @value.
508
 *
509
 * It is an error to call this function with a @value of any type
510
 * other than %G_VARIANT_TYPE_UINT32.
511
 *
512
 * Returns: a #guint32
513
 *
514
 * Since: 2.24
515
 **/
516
NUMERIC_TYPE (UINT32, uint32, guint32)
517
518
/**
519
 * g_variant_new_int64:
520
 * @value: a #gint64 value
521
 *
522
 * Creates a new int64 #GVariant instance.
523
 *
524
 * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
525
 *
526
 * Since: 2.24
527
 **/
528
/**
529
 * g_variant_get_int64:
530
 * @value: an int64 #GVariant instance
531
 *
532
 * Returns the 64-bit signed integer value of @value.
533
 *
534
 * It is an error to call this function with a @value of any type
535
 * other than %G_VARIANT_TYPE_INT64.
536
 *
537
 * Returns: a #gint64
538
 *
539
 * Since: 2.24
540
 **/
541
NUMERIC_TYPE (INT64, int64, gint64)
542
543
/**
544
 * g_variant_new_uint64:
545
 * @value: a #guint64 value
546
 *
547
 * Creates a new uint64 #GVariant instance.
548
 *
549
 * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
550
 *
551
 * Since: 2.24
552
 **/
553
/**
554
 * g_variant_get_uint64:
555
 * @value: a uint64 #GVariant instance
556
 *
557
 * Returns the 64-bit unsigned integer value of @value.
558
 *
559
 * It is an error to call this function with a @value of any type
560
 * other than %G_VARIANT_TYPE_UINT64.
561
 *
562
 * Returns: a #guint64
563
 *
564
 * Since: 2.24
565
 **/
566
NUMERIC_TYPE (UINT64, uint64, guint64)
567
568
/**
569
 * g_variant_new_handle:
570
 * @value: a #gint32 value
571
 *
572
 * Creates a new handle #GVariant instance.
573
 *
574
 * By convention, handles are indexes into an array of file descriptors
575
 * that are sent alongside a D-Bus message.  If you're not interacting
576
 * with D-Bus, you probably don't need them.
577
 *
578
 * Returns: (transfer none): a floating reference to a new handle #GVariant instance
579
 *
580
 * Since: 2.24
581
 **/
582
/**
583
 * g_variant_get_handle:
584
 * @value: a handle #GVariant instance
585
 *
586
 * Returns the 32-bit signed integer value of @value.
587
 *
588
 * It is an error to call this function with a @value of any type other
589
 * than %G_VARIANT_TYPE_HANDLE.
590
 *
591
 * By convention, handles are indexes into an array of file descriptors
592
 * that are sent alongside a D-Bus message.  If you're not interacting
593
 * with D-Bus, you probably don't need them.
594
 *
595
 * Returns: a #gint32
596
 *
597
 * Since: 2.24
598
 **/
599
NUMERIC_TYPE (HANDLE, handle, gint32)
600
601
/**
602
 * g_variant_new_double:
603
 * @value: a #gdouble floating point value
604
 *
605
 * Creates a new double #GVariant instance.
606
 *
607
 * Returns: (transfer none): a floating reference to a new double #GVariant instance
608
 *
609
 * Since: 2.24
610
 **/
611
/**
612
 * g_variant_get_double:
613
 * @value: a double #GVariant instance
614
 *
615
 * Returns the double precision floating point value of @value.
616
 *
617
 * It is an error to call this function with a @value of any type
618
 * other than %G_VARIANT_TYPE_DOUBLE.
619
 *
620
 * Returns: a #gdouble
621
 *
622
 * Since: 2.24
623
 **/
624
NUMERIC_TYPE (DOUBLE, double, gdouble)
625
626
/* Container type Constructor / Deconstructors {{{1 */
627
/**
628
 * g_variant_new_maybe:
629
 * @child_type: (nullable): the #GVariantType of the child, or %NULL
630
 * @child: (nullable): the child value, or %NULL
631
 *
632
 * Depending on if @child is %NULL, either wraps @child inside of a
633
 * maybe container or creates a Nothing instance for the given @type.
634
 *
635
 * At least one of @child_type and @child must be non-%NULL.
636
 * If @child_type is non-%NULL then it must be a definite type.
637
 * If they are both non-%NULL then @child_type must be the type
638
 * of @child.
639
 *
640
 * If @child is a floating reference (see g_variant_ref_sink()), the new
641
 * instance takes ownership of @child.
642
 *
643
 * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
644
 *
645
 * Since: 2.24
646
 **/
647
GVariant *
648
g_variant_new_maybe (const GVariantType *child_type,
649
                     GVariant           *child)
650
0
{
651
0
  GVariantType *maybe_type;
652
0
  GVariant *value;
653
654
0
  g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
655
0
                        (child_type), 0);
656
0
  g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
657
0
  g_return_val_if_fail (child_type == NULL || child == NULL ||
658
0
                        g_variant_is_of_type (child, child_type),
659
0
                        NULL);
660
661
0
  if (child_type == NULL)
662
0
    child_type = g_variant_get_type (child);
663
664
0
  maybe_type = g_variant_type_new_maybe (child_type);
665
666
0
  if (child != NULL)
667
0
    {
668
0
      GVariant **children;
669
0
      gboolean trusted;
670
671
0
      children = g_new (GVariant *, 1);
672
0
      children[0] = g_variant_ref_sink (child);
673
0
      trusted = g_variant_is_trusted (children[0]);
674
675
0
      value = g_variant_new_from_children (maybe_type, children, 1, trusted);
676
0
    }
677
0
  else
678
0
    value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
679
680
0
  g_variant_type_free (maybe_type);
681
682
0
  return value;
683
0
}
684
685
/**
686
 * g_variant_get_maybe:
687
 * @value: a maybe-typed value
688
 *
689
 * Given a maybe-typed #GVariant instance, extract its value.  If the
690
 * value is Nothing, then this function returns %NULL.
691
 *
692
 * Returns: (nullable) (transfer full): the contents of @value, or %NULL
693
 *
694
 * Since: 2.24
695
 **/
696
GVariant *
697
g_variant_get_maybe (GVariant *value)
698
0
{
699
0
  TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
700
701
0
  if (g_variant_n_children (value))
702
0
    return g_variant_get_child_value (value, 0);
703
704
0
  return NULL;
705
0
}
706
707
/**
708
 * g_variant_new_variant: (constructor)
709
 * @value: a #GVariant instance
710
 *
711
 * Boxes @value.  The result is a #GVariant instance representing a
712
 * variant containing the original value.
713
 *
714
 * If @child is a floating reference (see g_variant_ref_sink()), the new
715
 * instance takes ownership of @child.
716
 *
717
 * Returns: (transfer none): a floating reference to a new variant #GVariant instance
718
 *
719
 * Since: 2.24
720
 **/
721
GVariant *
722
g_variant_new_variant (GVariant *value)
723
0
{
724
0
  g_return_val_if_fail (value != NULL, NULL);
725
726
0
  g_variant_ref_sink (value);
727
728
0
  return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
729
0
                                      g_memdup2 (&value, sizeof value),
730
0
                                      1, g_variant_is_trusted (value));
731
0
}
732
733
/**
734
 * g_variant_get_variant:
735
 * @value: a variant #GVariant instance
736
 *
737
 * Unboxes @value.  The result is the #GVariant instance that was
738
 * contained in @value.
739
 *
740
 * Returns: (transfer full): the item contained in the variant
741
 *
742
 * Since: 2.24
743
 **/
744
GVariant *
745
g_variant_get_variant (GVariant *value)
746
0
{
747
0
  TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
748
749
0
  return g_variant_get_child_value (value, 0);
750
0
}
751
752
/**
753
 * g_variant_new_array:
754
 * @child_type: (nullable): the element type of the new array
755
 * @children: (nullable) (array length=n_children): an array of
756
 *            #GVariant pointers, the children
757
 * @n_children: the length of @children
758
 *
759
 * Creates a new #GVariant array from @children.
760
 *
761
 * @child_type must be non-%NULL if @n_children is zero.  Otherwise, the
762
 * child type is determined by inspecting the first element of the
763
 * @children array.  If @child_type is non-%NULL then it must be a
764
 * definite type.
765
 *
766
 * The items of the array are taken from the @children array.  No entry
767
 * in the @children array may be %NULL.
768
 *
769
 * All items in the array must have the same type, which must be the
770
 * same as @child_type, if given.
771
 *
772
 * If the @children are floating references (see g_variant_ref_sink()), the
773
 * new instance takes ownership of them as if via g_variant_ref_sink().
774
 *
775
 * Returns: (transfer none): a floating reference to a new #GVariant array
776
 *
777
 * Since: 2.24
778
 **/
779
GVariant *
780
g_variant_new_array (const GVariantType *child_type,
781
                     GVariant * const   *children,
782
                     gsize               n_children)
783
0
{
784
0
  GVariantType *array_type;
785
0
  GVariant **my_children;
786
0
  gboolean trusted;
787
0
  GVariant *value;
788
0
  gsize i;
789
790
0
  g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
791
0
  g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
792
0
  g_return_val_if_fail (child_type == NULL ||
793
0
                        g_variant_type_is_definite (child_type), NULL);
794
795
0
  my_children = g_new (GVariant *, n_children);
796
0
  trusted = TRUE;
797
798
0
  if (child_type == NULL)
799
0
    child_type = g_variant_get_type (children[0]);
800
0
  array_type = g_variant_type_new_array (child_type);
801
802
0
  for (i = 0; i < n_children; i++)
803
0
    {
804
0
      gboolean is_of_child_type = g_variant_is_of_type (children[i], child_type);
805
0
      if G_UNLIKELY (!is_of_child_type)
806
0
        {
807
0
          while (i != 0)
808
0
            g_variant_unref (my_children[--i]);
809
0
          g_free (my_children);
810
0
          g_return_val_if_fail (is_of_child_type, NULL);
811
0
        }
812
0
      my_children[i] = g_variant_ref_sink (children[i]);
813
0
      trusted &= g_variant_is_trusted (children[i]);
814
0
    }
815
816
0
  value = g_variant_new_from_children (array_type, my_children,
817
0
                                       n_children, trusted);
818
0
  g_variant_type_free (array_type);
819
820
0
  return value;
821
0
}
822
823
/*< private >
824
 * g_variant_make_tuple_type:
825
 * @children: (array length=n_children): an array of GVariant *
826
 * @n_children: the length of @children
827
 *
828
 * Return the type of a tuple containing @children as its items.
829
 **/
830
static GVariantType *
831
g_variant_make_tuple_type (GVariant * const *children,
832
                           gsize             n_children)
833
0
{
834
0
  const GVariantType **types;
835
0
  GVariantType *type;
836
0
  gsize i;
837
838
0
  types = g_new (const GVariantType *, n_children);
839
840
0
  for (i = 0; i < n_children; i++)
841
0
    types[i] = g_variant_get_type (children[i]);
842
843
0
  type = g_variant_type_new_tuple (types, n_children);
844
0
  g_free (types);
845
846
0
  return type;
847
0
}
848
849
/**
850
 * g_variant_new_tuple:
851
 * @children: (array length=n_children): the items to make the tuple out of
852
 * @n_children: the length of @children
853
 *
854
 * Creates a new tuple #GVariant out of the items in @children.  The
855
 * type is determined from the types of @children.  No entry in the
856
 * @children array may be %NULL.
857
 *
858
 * If @n_children is 0 then the unit tuple is constructed.
859
 *
860
 * If the @children are floating references (see g_variant_ref_sink()), the
861
 * new instance takes ownership of them as if via g_variant_ref_sink().
862
 *
863
 * Returns: (transfer none): a floating reference to a new #GVariant tuple
864
 *
865
 * Since: 2.24
866
 **/
867
GVariant *
868
g_variant_new_tuple (GVariant * const *children,
869
                     gsize             n_children)
870
0
{
871
0
  GVariantType *tuple_type;
872
0
  GVariant **my_children;
873
0
  gboolean trusted;
874
0
  GVariant *value;
875
0
  gsize i;
876
877
0
  g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
878
879
0
  my_children = g_new (GVariant *, n_children);
880
0
  trusted = TRUE;
881
882
0
  for (i = 0; i < n_children; i++)
883
0
    {
884
0
      my_children[i] = g_variant_ref_sink (children[i]);
885
0
      trusted &= g_variant_is_trusted (children[i]);
886
0
    }
887
888
0
  tuple_type = g_variant_make_tuple_type (children, n_children);
889
0
  value = g_variant_new_from_children (tuple_type, my_children,
890
0
                                       n_children, trusted);
891
0
  g_variant_type_free (tuple_type);
892
893
0
  return value;
894
0
}
895
896
/*< private >
897
 * g_variant_make_dict_entry_type:
898
 * @key: a #GVariant, the key
899
 * @val: a #GVariant, the value
900
 *
901
 * Return the type of a dictionary entry containing @key and @val as its
902
 * children.
903
 **/
904
static GVariantType *
905
g_variant_make_dict_entry_type (GVariant *key,
906
                                GVariant *val)
907
0
{
908
0
  return g_variant_type_new_dict_entry (g_variant_get_type (key),
909
0
                                        g_variant_get_type (val));
910
0
}
911
912
/**
913
 * g_variant_new_dict_entry: (constructor)
914
 * @key: a basic #GVariant, the key
915
 * @value: a #GVariant, the value
916
 *
917
 * Creates a new dictionary entry #GVariant. @key and @value must be
918
 * non-%NULL. @key must be a value of a basic type (ie: not a container).
919
 *
920
 * If the @key or @value are floating references (see g_variant_ref_sink()),
921
 * the new instance takes ownership of them as if via g_variant_ref_sink().
922
 *
923
 * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
924
 *
925
 * Since: 2.24
926
 **/
927
GVariant *
928
g_variant_new_dict_entry (GVariant *key,
929
                          GVariant *value)
930
0
{
931
0
  GVariantType *dict_type;
932
0
  GVariant **children;
933
0
  gboolean trusted;
934
935
0
  g_return_val_if_fail (key != NULL && value != NULL, NULL);
936
0
  g_return_val_if_fail (!g_variant_is_container (key), NULL);
937
938
0
  children = g_new (GVariant *, 2);
939
0
  children[0] = g_variant_ref_sink (key);
940
0
  children[1] = g_variant_ref_sink (value);
941
0
  trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
942
943
0
  dict_type = g_variant_make_dict_entry_type (key, value);
944
0
  value = g_variant_new_from_children (dict_type, children, 2, trusted);
945
0
  g_variant_type_free (dict_type);
946
947
0
  return value;
948
0
}
949
950
/**
951
 * g_variant_lookup: (skip)
952
 * @dictionary: a dictionary #GVariant
953
 * @key: the key to look up in the dictionary
954
 * @format_string: a GVariant format string
955
 * @...: the arguments to unpack the value into
956
 *
957
 * Looks up a value in a dictionary #GVariant.
958
 *
959
 * This function is a wrapper around g_variant_lookup_value() and
960
 * g_variant_get().  In the case that %NULL would have been returned,
961
 * this function returns %FALSE.  Otherwise, it unpacks the returned
962
 * value and returns %TRUE.
963
 *
964
 * @format_string determines the C types that are used for unpacking
965
 * the values and also determines if the values are copied or borrowed,
966
 * see the section on
967
 * [GVariant format strings][gvariant-format-strings-pointers].
968
 *
969
 * This function is currently implemented with a linear scan.  If you
970
 * plan to do many lookups then #GVariantDict may be more efficient.
971
 *
972
 * Returns: %TRUE if a value was unpacked
973
 *
974
 * Since: 2.28
975
 */
976
gboolean
977
g_variant_lookup (GVariant    *dictionary,
978
                  const gchar *key,
979
                  const gchar *format_string,
980
                  ...)
981
0
{
982
0
  GVariantType *type;
983
0
  GVariant *value;
984
985
  /* flatten */
986
0
  g_variant_get_data (dictionary);
987
988
0
  type = g_variant_format_string_scan_type (format_string, NULL, NULL);
989
0
  value = g_variant_lookup_value (dictionary, key, type);
990
0
  g_variant_type_free (type);
991
992
0
  if (value)
993
0
    {
994
0
      va_list ap;
995
996
0
      va_start (ap, format_string);
997
0
      g_variant_get_va (value, format_string, NULL, &ap);
998
0
      g_variant_unref (value);
999
0
      va_end (ap);
1000
1001
0
      return TRUE;
1002
0
    }
1003
1004
0
  else
1005
0
    return FALSE;
1006
0
}
1007
1008
/**
1009
 * g_variant_lookup_value:
1010
 * @dictionary: a dictionary #GVariant
1011
 * @key: the key to look up in the dictionary
1012
 * @expected_type: (nullable): a #GVariantType, or %NULL
1013
 *
1014
 * Looks up a value in a dictionary #GVariant.
1015
 *
1016
 * This function works with dictionaries of the type a{s*} (and equally
1017
 * well with type a{o*}, but we only further discuss the string case
1018
 * for sake of clarity).
1019
 *
1020
 * In the event that @dictionary has the type a{sv}, the @expected_type
1021
 * string specifies what type of value is expected to be inside of the
1022
 * variant. If the value inside the variant has a different type then
1023
 * %NULL is returned. In the event that @dictionary has a value type other
1024
 * than v then @expected_type must directly match the value type and it is
1025
 * used to unpack the value directly or an error occurs.
1026
 *
1027
 * In either case, if @key is not found in @dictionary, %NULL is returned.
1028
 *
1029
 * If the key is found and the value has the correct type, it is
1030
 * returned.  If @expected_type was specified then any non-%NULL return
1031
 * value will have this type.
1032
 *
1033
 * This function is currently implemented with a linear scan.  If you
1034
 * plan to do many lookups then #GVariantDict may be more efficient.
1035
 *
1036
 * Returns: (transfer full): the value of the dictionary key, or %NULL
1037
 *
1038
 * Since: 2.28
1039
 */
1040
GVariant *
1041
g_variant_lookup_value (GVariant           *dictionary,
1042
                        const gchar        *key,
1043
                        const GVariantType *expected_type)
1044
0
{
1045
0
  GVariantIter iter;
1046
0
  GVariant *entry;
1047
0
  GVariant *value;
1048
1049
0
  g_return_val_if_fail (g_variant_is_of_type (dictionary,
1050
0
                                              G_VARIANT_TYPE ("a{s*}")) ||
1051
0
                        g_variant_is_of_type (dictionary,
1052
0
                                              G_VARIANT_TYPE ("a{o*}")),
1053
0
                        NULL);
1054
1055
0
  g_variant_iter_init (&iter, dictionary);
1056
1057
0
  while ((entry = g_variant_iter_next_value (&iter)))
1058
0
    {
1059
0
      GVariant *entry_key;
1060
0
      gboolean matches;
1061
1062
0
      entry_key = g_variant_get_child_value (entry, 0);
1063
0
      matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1064
0
      g_variant_unref (entry_key);
1065
1066
0
      if (matches)
1067
0
        break;
1068
1069
0
      g_variant_unref (entry);
1070
0
    }
1071
1072
0
  if (entry == NULL)
1073
0
    return NULL;
1074
1075
0
  value = g_variant_get_child_value (entry, 1);
1076
0
  g_variant_unref (entry);
1077
1078
0
  if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1079
0
    {
1080
0
      GVariant *tmp;
1081
1082
0
      tmp = g_variant_get_variant (value);
1083
0
      g_variant_unref (value);
1084
1085
0
      if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1086
0
        {
1087
0
          g_variant_unref (tmp);
1088
0
          tmp = NULL;
1089
0
        }
1090
1091
0
      value = tmp;
1092
0
    }
1093
1094
0
  g_return_val_if_fail (expected_type == NULL || value == NULL ||
1095
0
                        g_variant_is_of_type (value, expected_type), NULL);
1096
1097
0
  return value;
1098
0
}
1099
1100
/**
1101
 * g_variant_get_fixed_array:
1102
 * @value: a #GVariant array with fixed-sized elements
1103
 * @n_elements: (out): a pointer to the location to store the number of items
1104
 * @element_size: the size of each element
1105
 *
1106
 * Provides access to the serialized data for an array of fixed-sized
1107
 * items.
1108
 *
1109
 * @value must be an array with fixed-sized elements.  Numeric types are
1110
 * fixed-size, as are tuples containing only other fixed-sized types.
1111
 *
1112
 * @element_size must be the size of a single element in the array,
1113
 * as given by the section on
1114
 * [serialized data memory][gvariant-serialized-data-memory].
1115
 *
1116
 * In particular, arrays of these fixed-sized types can be interpreted
1117
 * as an array of the given C type, with @element_size set to the size
1118
 * the appropriate type:
1119
 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1120
 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1121
 * - %G_VARIANT_TYPE_BYTE: #guint8
1122
 * - %G_VARIANT_TYPE_HANDLE: #guint32
1123
 * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1124
 *
1125
 * For example, if calling this function for an array of 32-bit integers,
1126
 * you might say `sizeof(gint32)`. This value isn't used except for the purpose
1127
 * of a double-check that the form of the serialized data matches the caller's
1128
 * expectation.
1129
 *
1130
 * @n_elements, which must be non-%NULL, is set equal to the number of
1131
 * items in the array.
1132
 *
1133
 * Returns: (array length=n_elements) (transfer none): a pointer to
1134
 *     the fixed array
1135
 *
1136
 * Since: 2.24
1137
 **/
1138
gconstpointer
1139
g_variant_get_fixed_array (GVariant *value,
1140
                           gsize    *n_elements,
1141
                           gsize     element_size)
1142
0
{
1143
0
  GVariantTypeInfo *array_info;
1144
0
  gsize array_element_size;
1145
0
  gconstpointer data;
1146
0
  gsize size;
1147
1148
0
  TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1149
1150
0
  g_return_val_if_fail (n_elements != NULL, NULL);
1151
0
  g_return_val_if_fail (element_size > 0, NULL);
1152
1153
0
  array_info = g_variant_get_type_info (value);
1154
0
  g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1155
1156
0
  g_return_val_if_fail (array_element_size, NULL);
1157
1158
0
  if G_UNLIKELY (array_element_size != element_size)
1159
0
    {
1160
0
      if (array_element_size)
1161
0
        g_critical ("g_variant_get_fixed_array: assertion "
1162
0
                    "'g_variant_array_has_fixed_size (value, element_size)' "
1163
0
                    "failed: array size %"G_GSIZE_FORMAT" does not match "
1164
0
                    "given element_size %"G_GSIZE_FORMAT".",
1165
0
                    array_element_size, element_size);
1166
0
      else
1167
0
        g_critical ("g_variant_get_fixed_array: assertion "
1168
0
                    "'g_variant_array_has_fixed_size (value, element_size)' "
1169
0
                    "failed: array does not have fixed size.");
1170
0
    }
1171
1172
0
  data = g_variant_get_data (value);
1173
0
  size = g_variant_get_size (value);
1174
1175
0
  if (size % element_size)
1176
0
    *n_elements = 0;
1177
0
  else
1178
0
    *n_elements = size / element_size;
1179
1180
0
  if (*n_elements)
1181
0
    return data;
1182
1183
0
  return NULL;
1184
0
}
1185
1186
/**
1187
 * g_variant_new_fixed_array:
1188
 * @element_type: the #GVariantType of each element
1189
 * @elements: a pointer to the fixed array of contiguous elements
1190
 * @n_elements: the number of elements
1191
 * @element_size: the size of each element
1192
 *
1193
 * Constructs a new array #GVariant instance, where the elements are
1194
 * of @element_type type.
1195
 *
1196
 * @elements must be an array with fixed-sized elements.  Numeric types are
1197
 * fixed-size as are tuples containing only other fixed-sized types.
1198
 *
1199
 * @element_size must be the size of a single element in the array.
1200
 * For example, if calling this function for an array of 32-bit integers,
1201
 * you might say sizeof(gint32). This value isn't used except for the purpose
1202
 * of a double-check that the form of the serialized data matches the caller's
1203
 * expectation.
1204
 *
1205
 * @n_elements must be the length of the @elements array.
1206
 *
1207
 * Returns: (transfer none): a floating reference to a new array #GVariant instance
1208
 *
1209
 * Since: 2.32
1210
 **/
1211
GVariant *
1212
g_variant_new_fixed_array (const GVariantType  *element_type,
1213
                           gconstpointer        elements,
1214
                           gsize                n_elements,
1215
                           gsize                element_size)
1216
0
{
1217
0
  GVariantType *array_type;
1218
0
  gsize array_element_size;
1219
0
  GVariantTypeInfo *array_info;
1220
0
  GVariant *value;
1221
0
  gpointer data;
1222
1223
0
  g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
1224
0
  g_return_val_if_fail (element_size > 0, NULL);
1225
1226
0
  array_type = g_variant_type_new_array (element_type);
1227
0
  array_info = g_variant_type_info_get (array_type);
1228
0
  g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1229
0
  if G_UNLIKELY (array_element_size != element_size)
1230
0
    {
1231
0
      if (array_element_size)
1232
0
        g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
1233
0
                    " does not match given element_size %" G_GSIZE_FORMAT ".",
1234
0
                    array_element_size, element_size);
1235
0
      else
1236
0
        g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
1237
0
      return NULL;
1238
0
    }
1239
1240
0
  data = g_memdup2 (elements, n_elements * element_size);
1241
0
  value = g_variant_new_from_data (array_type, data,
1242
0
                                   n_elements * element_size,
1243
0
                                   FALSE, g_free, data);
1244
1245
0
  g_variant_type_free (array_type);
1246
0
  g_variant_type_info_unref (array_info);
1247
1248
0
  return value;
1249
0
}
1250
1251
/* String type constructor/getters/validation {{{1 */
1252
/**
1253
 * g_variant_new_string:
1254
 * @string: a normal UTF-8 nul-terminated string
1255
 *
1256
 * Creates a string #GVariant with the contents of @string.
1257
 *
1258
 * @string must be valid UTF-8, and must not be %NULL. To encode
1259
 * potentially-%NULL strings, use g_variant_new() with `ms` as the
1260
 * [format string][gvariant-format-strings-maybe-types].
1261
 *
1262
 * Returns: (transfer none): a floating reference to a new string #GVariant instance
1263
 *
1264
 * Since: 2.24
1265
 **/
1266
GVariant *
1267
g_variant_new_string (const gchar *string)
1268
0
{
1269
0
  g_return_val_if_fail (string != NULL, NULL);
1270
0
  g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1271
1272
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1273
0
                                     string, strlen (string) + 1);
1274
0
}
1275
1276
/**
1277
 * g_variant_new_take_string: (skip)
1278
 * @string: a normal UTF-8 nul-terminated string
1279
 *
1280
 * Creates a string #GVariant with the contents of @string.
1281
 *
1282
 * @string must be valid UTF-8, and must not be %NULL. To encode
1283
 * potentially-%NULL strings, use this with g_variant_new_maybe().
1284
 *
1285
 * This function consumes @string.  g_free() will be called on @string
1286
 * when it is no longer required.
1287
 *
1288
 * You must not modify or access @string in any other way after passing
1289
 * it to this function.  It is even possible that @string is immediately
1290
 * freed.
1291
 *
1292
 * Returns: (transfer none): a floating reference to a new string
1293
 *   #GVariant instance
1294
 *
1295
 * Since: 2.38
1296
 **/
1297
GVariant *
1298
g_variant_new_take_string (gchar *string)
1299
0
{
1300
0
  GVariant *value;
1301
0
  GBytes *bytes;
1302
1303
0
  g_return_val_if_fail (string != NULL, NULL);
1304
0
  g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1305
1306
0
  bytes = g_bytes_new_take (string, strlen (string) + 1);
1307
0
  value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1308
0
  g_bytes_unref (bytes);
1309
1310
0
  return value;
1311
0
}
1312
1313
/**
1314
 * g_variant_new_printf: (skip)
1315
 * @format_string: a printf-style format string
1316
 * @...: arguments for @format_string
1317
 *
1318
 * Creates a string-type GVariant using printf formatting.
1319
 *
1320
 * This is similar to calling g_strdup_printf() and then
1321
 * g_variant_new_string() but it saves a temporary variable and an
1322
 * unnecessary copy.
1323
 *
1324
 * Returns: (transfer none): a floating reference to a new string
1325
 *   #GVariant instance
1326
 *
1327
 * Since: 2.38
1328
 **/
1329
GVariant *
1330
g_variant_new_printf (const gchar *format_string,
1331
                      ...)
1332
0
{
1333
0
  GVariant *value;
1334
0
  GBytes *bytes;
1335
0
  gchar *string;
1336
0
  va_list ap;
1337
1338
0
  g_return_val_if_fail (format_string != NULL, NULL);
1339
1340
0
  va_start (ap, format_string);
1341
0
  string = g_strdup_vprintf (format_string, ap);
1342
0
  va_end (ap);
1343
1344
0
  bytes = g_bytes_new_take (string, strlen (string) + 1);
1345
0
  value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1346
0
  g_bytes_unref (bytes);
1347
1348
0
  return value;
1349
0
}
1350
1351
/**
1352
 * g_variant_new_object_path:
1353
 * @object_path: a normal C nul-terminated string
1354
 *
1355
 * Creates a D-Bus object path #GVariant with the contents of @string.
1356
 * @string must be a valid D-Bus object path.  Use
1357
 * g_variant_is_object_path() if you're not sure.
1358
 *
1359
 * Returns: (transfer none): a floating reference to a new object path #GVariant instance
1360
 *
1361
 * Since: 2.24
1362
 **/
1363
GVariant *
1364
g_variant_new_object_path (const gchar *object_path)
1365
0
{
1366
0
  g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1367
1368
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1369
0
                                     object_path, strlen (object_path) + 1);
1370
0
}
1371
1372
/**
1373
 * g_variant_is_object_path:
1374
 * @string: a normal C nul-terminated string
1375
 *
1376
 * Determines if a given string is a valid D-Bus object path.  You
1377
 * should ensure that a string is a valid D-Bus object path before
1378
 * passing it to g_variant_new_object_path().
1379
 *
1380
 * A valid object path starts with `/` followed by zero or more
1381
 * sequences of characters separated by `/` characters.  Each sequence
1382
 * must contain only the characters `[A-Z][a-z][0-9]_`.  No sequence
1383
 * (including the one following the final `/` character) may be empty.
1384
 *
1385
 * Returns: %TRUE if @string is a D-Bus object path
1386
 *
1387
 * Since: 2.24
1388
 **/
1389
gboolean
1390
g_variant_is_object_path (const gchar *string)
1391
0
{
1392
0
  g_return_val_if_fail (string != NULL, FALSE);
1393
1394
0
  return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1395
0
}
1396
1397
/**
1398
 * g_variant_new_signature:
1399
 * @signature: a normal C nul-terminated string
1400
 *
1401
 * Creates a D-Bus type signature #GVariant with the contents of
1402
 * @string.  @string must be a valid D-Bus type signature.  Use
1403
 * g_variant_is_signature() if you're not sure.
1404
 *
1405
 * Returns: (transfer none): a floating reference to a new signature #GVariant instance
1406
 *
1407
 * Since: 2.24
1408
 **/
1409
GVariant *
1410
g_variant_new_signature (const gchar *signature)
1411
0
{
1412
0
  g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1413
1414
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1415
0
                                     signature, strlen (signature) + 1);
1416
0
}
1417
1418
/**
1419
 * g_variant_is_signature:
1420
 * @string: a normal C nul-terminated string
1421
 *
1422
 * Determines if a given string is a valid D-Bus type signature.  You
1423
 * should ensure that a string is a valid D-Bus type signature before
1424
 * passing it to g_variant_new_signature().
1425
 *
1426
 * D-Bus type signatures consist of zero or more definite #GVariantType
1427
 * strings in sequence.
1428
 *
1429
 * Returns: %TRUE if @string is a D-Bus type signature
1430
 *
1431
 * Since: 2.24
1432
 **/
1433
gboolean
1434
g_variant_is_signature (const gchar *string)
1435
0
{
1436
0
  g_return_val_if_fail (string != NULL, FALSE);
1437
1438
0
  return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1439
0
}
1440
1441
/**
1442
 * g_variant_get_string:
1443
 * @value: a string #GVariant instance
1444
 * @length: (optional) (default 0) (out): a pointer to a #gsize,
1445
 *          to store the length
1446
 *
1447
 * Returns the string value of a #GVariant instance with a string
1448
 * type.  This includes the types %G_VARIANT_TYPE_STRING,
1449
 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1450
 *
1451
 * The string will always be UTF-8 encoded, will never be %NULL, and will never
1452
 * contain nul bytes.
1453
 *
1454
 * If @length is non-%NULL then the length of the string (in bytes) is
1455
 * returned there.  For trusted values, this information is already
1456
 * known.  Untrusted values will be validated and, if valid, a strlen() will be
1457
 * performed. If invalid, a default value will be returned — for
1458
 * %G_VARIANT_TYPE_OBJECT_PATH, this is `"/"`, and for other types it is the
1459
 * empty string.
1460
 *
1461
 * It is an error to call this function with a @value of any type
1462
 * other than those three.
1463
 *
1464
 * The return value remains valid as long as @value exists.
1465
 *
1466
 * Returns: (transfer none): the constant string, UTF-8 encoded
1467
 *
1468
 * Since: 2.24
1469
 **/
1470
const gchar *
1471
g_variant_get_string (GVariant *value,
1472
                      gsize    *length)
1473
0
{
1474
0
  gconstpointer data;
1475
0
  gsize size;
1476
1477
0
  g_return_val_if_fail (value != NULL, NULL);
1478
0
  g_return_val_if_fail (
1479
0
    g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1480
0
    g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1481
0
    g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1482
1483
0
  data = g_variant_get_data (value);
1484
0
  size = g_variant_get_size (value);
1485
1486
0
  if (!g_variant_is_trusted (value))
1487
0
    {
1488
0
      switch (g_variant_classify (value))
1489
0
        {
1490
0
        case G_VARIANT_CLASS_STRING:
1491
0
          if (g_variant_serialiser_is_string (data, size))
1492
0
            break;
1493
1494
0
          data = "";
1495
0
          size = 1;
1496
0
          break;
1497
1498
0
        case G_VARIANT_CLASS_OBJECT_PATH:
1499
0
          if (g_variant_serialiser_is_object_path (data, size))
1500
0
            break;
1501
1502
0
          data = "/";
1503
0
          size = 2;
1504
0
          break;
1505
1506
0
        case G_VARIANT_CLASS_SIGNATURE:
1507
0
          if (g_variant_serialiser_is_signature (data, size))
1508
0
            break;
1509
1510
0
          data = "";
1511
0
          size = 1;
1512
0
          break;
1513
1514
0
        default:
1515
0
          g_assert_not_reached ();
1516
0
        }
1517
0
    }
1518
1519
0
  if (length)
1520
0
    *length = size - 1;
1521
1522
0
  return data;
1523
0
}
1524
1525
/**
1526
 * g_variant_dup_string:
1527
 * @value: a string #GVariant instance
1528
 * @length: (out): a pointer to a #gsize, to store the length
1529
 *
1530
 * Similar to g_variant_get_string() except that instead of returning
1531
 * a constant string, the string is duplicated.
1532
 *
1533
 * The string will always be UTF-8 encoded.
1534
 *
1535
 * The return value must be freed using g_free().
1536
 *
1537
 * Returns: (transfer full): a newly allocated string, UTF-8 encoded
1538
 *
1539
 * Since: 2.24
1540
 **/
1541
gchar *
1542
g_variant_dup_string (GVariant *value,
1543
                      gsize    *length)
1544
0
{
1545
0
  return g_strdup (g_variant_get_string (value, length));
1546
0
}
1547
1548
/**
1549
 * g_variant_new_strv:
1550
 * @strv: (array length=length) (element-type utf8): an array of strings
1551
 * @length: the length of @strv, or -1
1552
 *
1553
 * Constructs an array of strings #GVariant from the given array of
1554
 * strings.
1555
 *
1556
 * If @length is -1 then @strv is %NULL-terminated.
1557
 *
1558
 * Returns: (transfer none): a new floating #GVariant instance
1559
 *
1560
 * Since: 2.24
1561
 **/
1562
GVariant *
1563
g_variant_new_strv (const gchar * const *strv,
1564
                    gssize               length)
1565
0
{
1566
0
  GVariant **strings;
1567
0
  gsize i, length_unsigned;
1568
1569
0
  g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1570
1571
0
  if (length < 0)
1572
0
    length = g_strv_length ((gchar **) strv);
1573
0
  length_unsigned = length;
1574
1575
0
  strings = g_new (GVariant *, length_unsigned);
1576
0
  for (i = 0; i < length_unsigned; i++)
1577
0
    strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1578
1579
0
  return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1580
0
                                      strings, length_unsigned, TRUE);
1581
0
}
1582
1583
/**
1584
 * g_variant_get_strv:
1585
 * @value: an array of strings #GVariant
1586
 * @length: (out) (optional): the length of the result, or %NULL
1587
 *
1588
 * Gets the contents of an array of strings #GVariant.  This call
1589
 * makes a shallow copy; the return result should be released with
1590
 * g_free(), but the individual strings must not be modified.
1591
 *
1592
 * If @length is non-%NULL then the number of elements in the result
1593
 * is stored there.  In any case, the resulting array will be
1594
 * %NULL-terminated.
1595
 *
1596
 * For an empty array, @length will be set to 0 and a pointer to a
1597
 * %NULL pointer will be returned.
1598
 *
1599
 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1600
 *
1601
 * Since: 2.24
1602
 **/
1603
const gchar **
1604
g_variant_get_strv (GVariant *value,
1605
                    gsize    *length)
1606
0
{
1607
0
  const gchar **strv;
1608
0
  gsize n;
1609
0
  gsize i;
1610
1611
0
  TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1612
1613
0
  g_variant_get_data (value);
1614
0
  n = g_variant_n_children (value);
1615
0
  strv = g_new (const gchar *, n + 1);
1616
1617
0
  for (i = 0; i < n; i++)
1618
0
    {
1619
0
      GVariant *string;
1620
1621
0
      string = g_variant_get_child_value (value, i);
1622
0
      strv[i] = g_variant_get_string (string, NULL);
1623
0
      g_variant_unref (string);
1624
0
    }
1625
0
  strv[i] = NULL;
1626
1627
0
  if (length)
1628
0
    *length = n;
1629
1630
0
  return strv;
1631
0
}
1632
1633
/**
1634
 * g_variant_dup_strv:
1635
 * @value: an array of strings #GVariant
1636
 * @length: (out) (optional): the length of the result, or %NULL
1637
 *
1638
 * Gets the contents of an array of strings #GVariant.  This call
1639
 * makes a deep copy; the return result should be released with
1640
 * g_strfreev().
1641
 *
1642
 * If @length is non-%NULL then the number of elements in the result
1643
 * is stored there.  In any case, the resulting array will be
1644
 * %NULL-terminated.
1645
 *
1646
 * For an empty array, @length will be set to 0 and a pointer to a
1647
 * %NULL pointer will be returned.
1648
 *
1649
 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1650
 *
1651
 * Since: 2.24
1652
 **/
1653
gchar **
1654
g_variant_dup_strv (GVariant *value,
1655
                    gsize    *length)
1656
0
{
1657
0
  gchar **strv;
1658
0
  gsize n;
1659
0
  gsize i;
1660
1661
0
  TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1662
1663
0
  n = g_variant_n_children (value);
1664
0
  strv = g_new (gchar *, n + 1);
1665
1666
0
  for (i = 0; i < n; i++)
1667
0
    {
1668
0
      GVariant *string;
1669
1670
0
      string = g_variant_get_child_value (value, i);
1671
0
      strv[i] = g_variant_dup_string (string, NULL);
1672
0
      g_variant_unref (string);
1673
0
    }
1674
0
  strv[i] = NULL;
1675
1676
0
  if (length)
1677
0
    *length = n;
1678
1679
0
  return strv;
1680
0
}
1681
1682
/**
1683
 * g_variant_new_objv:
1684
 * @strv: (array length=length) (element-type utf8): an array of strings
1685
 * @length: the length of @strv, or -1
1686
 *
1687
 * Constructs an array of object paths #GVariant from the given array of
1688
 * strings.
1689
 *
1690
 * Each string must be a valid #GVariant object path; see
1691
 * g_variant_is_object_path().
1692
 *
1693
 * If @length is -1 then @strv is %NULL-terminated.
1694
 *
1695
 * Returns: (transfer none): a new floating #GVariant instance
1696
 *
1697
 * Since: 2.30
1698
 **/
1699
GVariant *
1700
g_variant_new_objv (const gchar * const *strv,
1701
                    gssize               length)
1702
0
{
1703
0
  GVariant **strings;
1704
0
  gsize i, length_unsigned;
1705
1706
0
  g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1707
1708
0
  if (length < 0)
1709
0
    length = g_strv_length ((gchar **) strv);
1710
0
  length_unsigned = length;
1711
1712
0
  strings = g_new (GVariant *, length_unsigned);
1713
0
  for (i = 0; i < length_unsigned; i++)
1714
0
    strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1715
1716
0
  return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1717
0
                                      strings, length_unsigned, TRUE);
1718
0
}
1719
1720
/**
1721
 * g_variant_get_objv:
1722
 * @value: an array of object paths #GVariant
1723
 * @length: (out) (optional): the length of the result, or %NULL
1724
 *
1725
 * Gets the contents of an array of object paths #GVariant.  This call
1726
 * makes a shallow copy; the return result should be released with
1727
 * g_free(), but the individual strings must not be modified.
1728
 *
1729
 * If @length is non-%NULL then the number of elements in the result
1730
 * is stored there.  In any case, the resulting array will be
1731
 * %NULL-terminated.
1732
 *
1733
 * For an empty array, @length will be set to 0 and a pointer to a
1734
 * %NULL pointer will be returned.
1735
 *
1736
 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1737
 *
1738
 * Since: 2.30
1739
 **/
1740
const gchar **
1741
g_variant_get_objv (GVariant *value,
1742
                    gsize    *length)
1743
0
{
1744
0
  const gchar **strv;
1745
0
  gsize n;
1746
0
  gsize i;
1747
1748
0
  TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1749
1750
0
  g_variant_get_data (value);
1751
0
  n = g_variant_n_children (value);
1752
0
  strv = g_new (const gchar *, n + 1);
1753
1754
0
  for (i = 0; i < n; i++)
1755
0
    {
1756
0
      GVariant *string;
1757
1758
0
      string = g_variant_get_child_value (value, i);
1759
0
      strv[i] = g_variant_get_string (string, NULL);
1760
0
      g_variant_unref (string);
1761
0
    }
1762
0
  strv[i] = NULL;
1763
1764
0
  if (length)
1765
0
    *length = n;
1766
1767
0
  return strv;
1768
0
}
1769
1770
/**
1771
 * g_variant_dup_objv:
1772
 * @value: an array of object paths #GVariant
1773
 * @length: (out) (optional): the length of the result, or %NULL
1774
 *
1775
 * Gets the contents of an array of object paths #GVariant.  This call
1776
 * makes a deep copy; the return result should be released with
1777
 * g_strfreev().
1778
 *
1779
 * If @length is non-%NULL then the number of elements in the result
1780
 * is stored there.  In any case, the resulting array will be
1781
 * %NULL-terminated.
1782
 *
1783
 * For an empty array, @length will be set to 0 and a pointer to a
1784
 * %NULL pointer will be returned.
1785
 *
1786
 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1787
 *
1788
 * Since: 2.30
1789
 **/
1790
gchar **
1791
g_variant_dup_objv (GVariant *value,
1792
                    gsize    *length)
1793
0
{
1794
0
  gchar **strv;
1795
0
  gsize n;
1796
0
  gsize i;
1797
1798
0
  TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1799
1800
0
  n = g_variant_n_children (value);
1801
0
  strv = g_new (gchar *, n + 1);
1802
1803
0
  for (i = 0; i < n; i++)
1804
0
    {
1805
0
      GVariant *string;
1806
1807
0
      string = g_variant_get_child_value (value, i);
1808
0
      strv[i] = g_variant_dup_string (string, NULL);
1809
0
      g_variant_unref (string);
1810
0
    }
1811
0
  strv[i] = NULL;
1812
1813
0
  if (length)
1814
0
    *length = n;
1815
1816
0
  return strv;
1817
0
}
1818
1819
1820
/**
1821
 * g_variant_new_bytestring:
1822
 * @string: (array zero-terminated=1) (element-type guint8): a normal
1823
 *          nul-terminated string in no particular encoding
1824
 *
1825
 * Creates an array-of-bytes #GVariant with the contents of @string.
1826
 * This function is just like g_variant_new_string() except that the
1827
 * string need not be valid UTF-8.
1828
 *
1829
 * The nul terminator character at the end of the string is stored in
1830
 * the array.
1831
 *
1832
 * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1833
 *
1834
 * Since: 2.26
1835
 **/
1836
GVariant *
1837
g_variant_new_bytestring (const gchar *string)
1838
0
{
1839
0
  g_return_val_if_fail (string != NULL, NULL);
1840
1841
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1842
0
                                     string, strlen (string) + 1);
1843
0
}
1844
1845
/**
1846
 * g_variant_get_bytestring:
1847
 * @value: an array-of-bytes #GVariant instance
1848
 *
1849
 * Returns the string value of a #GVariant instance with an
1850
 * array-of-bytes type.  The string has no particular encoding.
1851
 *
1852
 * If the array does not end with a nul terminator character, the empty
1853
 * string is returned.  For this reason, you can always trust that a
1854
 * non-%NULL nul-terminated string will be returned by this function.
1855
 *
1856
 * If the array contains a nul terminator character somewhere other than
1857
 * the last byte then the returned string is the string, up to the first
1858
 * such nul character.
1859
 *
1860
 * g_variant_get_fixed_array() should be used instead if the array contains
1861
 * arbitrary data that could not be nul-terminated or could contain nul bytes.
1862
 *
1863
 * It is an error to call this function with a @value that is not an
1864
 * array of bytes.
1865
 *
1866
 * The return value remains valid as long as @value exists.
1867
 *
1868
 * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
1869
 *          the constant string
1870
 *
1871
 * Since: 2.26
1872
 **/
1873
const gchar *
1874
g_variant_get_bytestring (GVariant *value)
1875
0
{
1876
0
  const gchar *string;
1877
0
  gsize size;
1878
1879
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1880
1881
  /* Won't be NULL since this is an array type */
1882
0
  string = g_variant_get_data (value);
1883
0
  size = g_variant_get_size (value);
1884
1885
0
  if (size && string[size - 1] == '\0')
1886
0
    return string;
1887
0
  else
1888
0
    return "";
1889
0
}
1890
1891
/**
1892
 * g_variant_dup_bytestring:
1893
 * @value: an array-of-bytes #GVariant instance
1894
 * @length: (out) (optional) (default NULL): a pointer to a #gsize, to store
1895
 *          the length (not including the nul terminator)
1896
 *
1897
 * Similar to g_variant_get_bytestring() except that instead of
1898
 * returning a constant string, the string is duplicated.
1899
 *
1900
 * The return value must be freed using g_free().
1901
 *
1902
 * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
1903
 *          a newly allocated string
1904
 *
1905
 * Since: 2.26
1906
 **/
1907
gchar *
1908
g_variant_dup_bytestring (GVariant *value,
1909
                          gsize    *length)
1910
0
{
1911
0
  const gchar *original = g_variant_get_bytestring (value);
1912
0
  gsize size;
1913
1914
  /* don't crash in case get_bytestring() had an assert failure */
1915
0
  if (original == NULL)
1916
0
    return NULL;
1917
1918
0
  size = strlen (original);
1919
1920
0
  if (length)
1921
0
    *length = size;
1922
1923
0
  return g_memdup2 (original, size + 1);
1924
0
}
1925
1926
/**
1927
 * g_variant_new_bytestring_array:
1928
 * @strv: (array length=length): an array of strings
1929
 * @length: the length of @strv, or -1
1930
 *
1931
 * Constructs an array of bytestring #GVariant from the given array of
1932
 * strings.
1933
 *
1934
 * If @length is -1 then @strv is %NULL-terminated.
1935
 *
1936
 * Returns: (transfer none): a new floating #GVariant instance
1937
 *
1938
 * Since: 2.26
1939
 **/
1940
GVariant *
1941
g_variant_new_bytestring_array (const gchar * const *strv,
1942
                                gssize               length)
1943
0
{
1944
0
  GVariant **strings;
1945
0
  gsize i, length_unsigned;
1946
1947
0
  g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1948
1949
0
  if (length < 0)
1950
0
    length = g_strv_length ((gchar **) strv);
1951
0
  length_unsigned = length;
1952
1953
0
  strings = g_new (GVariant *, length_unsigned);
1954
0
  for (i = 0; i < length_unsigned; i++)
1955
0
    strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1956
1957
0
  return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1958
0
                                      strings, length_unsigned, TRUE);
1959
0
}
1960
1961
/**
1962
 * g_variant_get_bytestring_array:
1963
 * @value: an array of array of bytes #GVariant ('aay')
1964
 * @length: (out) (optional): the length of the result, or %NULL
1965
 *
1966
 * Gets the contents of an array of array of bytes #GVariant.  This call
1967
 * makes a shallow copy; the return result should be released with
1968
 * g_free(), but the individual strings must not be modified.
1969
 *
1970
 * If @length is non-%NULL then the number of elements in the result is
1971
 * stored there.  In any case, the resulting array will be
1972
 * %NULL-terminated.
1973
 *
1974
 * For an empty array, @length will be set to 0 and a pointer to a
1975
 * %NULL pointer will be returned.
1976
 *
1977
 * Returns: (array length=length) (transfer container): an array of constant strings
1978
 *
1979
 * Since: 2.26
1980
 **/
1981
const gchar **
1982
g_variant_get_bytestring_array (GVariant *value,
1983
                                gsize    *length)
1984
0
{
1985
0
  const gchar **strv;
1986
0
  gsize n;
1987
0
  gsize i;
1988
1989
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1990
1991
0
  g_variant_get_data (value);
1992
0
  n = g_variant_n_children (value);
1993
0
  strv = g_new (const gchar *, n + 1);
1994
1995
0
  for (i = 0; i < n; i++)
1996
0
    {
1997
0
      GVariant *string;
1998
1999
0
      string = g_variant_get_child_value (value, i);
2000
0
      strv[i] = g_variant_get_bytestring (string);
2001
0
      g_variant_unref (string);
2002
0
    }
2003
0
  strv[i] = NULL;
2004
2005
0
  if (length)
2006
0
    *length = n;
2007
2008
0
  return strv;
2009
0
}
2010
2011
/**
2012
 * g_variant_dup_bytestring_array:
2013
 * @value: an array of array of bytes #GVariant ('aay')
2014
 * @length: (out) (optional): the length of the result, or %NULL
2015
 *
2016
 * Gets the contents of an array of array of bytes #GVariant.  This call
2017
 * makes a deep copy; the return result should be released with
2018
 * g_strfreev().
2019
 *
2020
 * If @length is non-%NULL then the number of elements in the result is
2021
 * stored there.  In any case, the resulting array will be
2022
 * %NULL-terminated.
2023
 *
2024
 * For an empty array, @length will be set to 0 and a pointer to a
2025
 * %NULL pointer will be returned.
2026
 *
2027
 * Returns: (array length=length) (transfer full): an array of strings
2028
 *
2029
 * Since: 2.26
2030
 **/
2031
gchar **
2032
g_variant_dup_bytestring_array (GVariant *value,
2033
                                gsize    *length)
2034
0
{
2035
0
  gchar **strv;
2036
0
  gsize n;
2037
0
  gsize i;
2038
2039
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
2040
2041
0
  g_variant_get_data (value);
2042
0
  n = g_variant_n_children (value);
2043
0
  strv = g_new (gchar *, n + 1);
2044
2045
0
  for (i = 0; i < n; i++)
2046
0
    {
2047
0
      GVariant *string;
2048
2049
0
      string = g_variant_get_child_value (value, i);
2050
0
      strv[i] = g_variant_dup_bytestring (string, NULL);
2051
0
      g_variant_unref (string);
2052
0
    }
2053
0
  strv[i] = NULL;
2054
2055
0
  if (length)
2056
0
    *length = n;
2057
2058
0
  return strv;
2059
0
}
2060
2061
/* Type checking and querying {{{1 */
2062
/**
2063
 * g_variant_get_type:
2064
 * @value: a #GVariant
2065
 *
2066
 * Determines the type of @value.
2067
 *
2068
 * The return value is valid for the lifetime of @value and must not
2069
 * be freed.
2070
 *
2071
 * Returns: a #GVariantType
2072
 *
2073
 * Since: 2.24
2074
 **/
2075
const GVariantType *
2076
g_variant_get_type (GVariant *value)
2077
0
{
2078
0
  GVariantTypeInfo *type_info;
2079
2080
0
  g_return_val_if_fail (value != NULL, NULL);
2081
2082
0
  type_info = g_variant_get_type_info (value);
2083
2084
0
  return (GVariantType *) g_variant_type_info_get_type_string (type_info);
2085
0
}
2086
2087
/**
2088
 * g_variant_get_type_string:
2089
 * @value: a #GVariant
2090
 *
2091
 * Returns the type string of @value.  Unlike the result of calling
2092
 * g_variant_type_peek_string(), this string is nul-terminated.  This
2093
 * string belongs to #GVariant and must not be freed.
2094
 *
2095
 * Returns: the type string for the type of @value
2096
 *
2097
 * Since: 2.24
2098
 **/
2099
const gchar *
2100
g_variant_get_type_string (GVariant *value)
2101
0
{
2102
0
  GVariantTypeInfo *type_info;
2103
2104
0
  g_return_val_if_fail (value != NULL, NULL);
2105
2106
0
  type_info = g_variant_get_type_info (value);
2107
2108
0
  return g_variant_type_info_get_type_string (type_info);
2109
0
}
2110
2111
/**
2112
 * g_variant_is_of_type:
2113
 * @value: a #GVariant instance
2114
 * @type: a #GVariantType
2115
 *
2116
 * Checks if a value has a type matching the provided type.
2117
 *
2118
 * Returns: %TRUE if the type of @value matches @type
2119
 *
2120
 * Since: 2.24
2121
 **/
2122
gboolean
2123
g_variant_is_of_type (GVariant           *value,
2124
                      const GVariantType *type)
2125
0
{
2126
0
  return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
2127
0
}
2128
2129
/**
2130
 * g_variant_is_container:
2131
 * @value: a #GVariant instance
2132
 *
2133
 * Checks if @value is a container.
2134
 *
2135
 * Returns: %TRUE if @value is a container
2136
 *
2137
 * Since: 2.24
2138
 */
2139
gboolean
2140
g_variant_is_container (GVariant *value)
2141
0
{
2142
0
  return g_variant_type_is_container (g_variant_get_type (value));
2143
0
}
2144
2145
2146
/**
2147
 * g_variant_classify:
2148
 * @value: a #GVariant
2149
 *
2150
 * Classifies @value according to its top-level type.
2151
 *
2152
 * Returns: the #GVariantClass of @value
2153
 *
2154
 * Since: 2.24
2155
 **/
2156
/**
2157
 * GVariantClass:
2158
 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
2159
 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
2160
 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
2161
 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
2162
 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
2163
 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
2164
 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
2165
 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
2166
 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
2167
 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating 
2168
 *                          point value.
2169
 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
2170
 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path 
2171
 *                               string.
2172
 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
2173
 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
2174
 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
2175
 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
2176
 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
2177
 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
2178
 *
2179
 * The range of possible top-level types of #GVariant instances.
2180
 *
2181
 * Since: 2.24
2182
 **/
2183
GVariantClass
2184
g_variant_classify (GVariant *value)
2185
0
{
2186
0
  g_return_val_if_fail (value != NULL, 0);
2187
2188
0
  return *g_variant_get_type_string (value);
2189
0
}
2190
2191
/* Pretty printer {{{1 */
2192
/* This function is not introspectable because if @string is NULL,
2193
   @returns is (transfer full), otherwise it is (transfer none), which
2194
   is not supported by GObjectIntrospection */
2195
/**
2196
 * g_variant_print_string: (skip)
2197
 * @value: a #GVariant
2198
 * @string: (nullable) (default NULL): a #GString, or %NULL
2199
 * @type_annotate: %TRUE if type information should be included in
2200
 *                 the output
2201
 *
2202
 * Behaves as g_variant_print(), but operates on a #GString.
2203
 *
2204
 * If @string is non-%NULL then it is appended to and returned.  Else,
2205
 * a new empty #GString is allocated and it is returned.
2206
 *
2207
 * Returns: a #GString containing the string
2208
 *
2209
 * Since: 2.24
2210
 **/
2211
GString *
2212
g_variant_print_string (GVariant *value,
2213
                        GString  *string,
2214
                        gboolean  type_annotate)
2215
0
{
2216
0
  const gchar *value_type_string = g_variant_get_type_string (value);
2217
2218
0
  if G_UNLIKELY (string == NULL)
2219
0
    string = g_string_new (NULL);
2220
2221
0
  switch (value_type_string[0])
2222
0
    {
2223
0
    case G_VARIANT_CLASS_MAYBE:
2224
0
      if (type_annotate)
2225
0
        g_string_append_printf (string, "@%s ", value_type_string);
2226
2227
0
      if (g_variant_n_children (value))
2228
0
        {
2229
0
          const GVariantType *base_type;
2230
0
          guint i, depth;
2231
0
          GVariant *element = NULL;
2232
2233
          /* Nested maybes:
2234
           *
2235
           * Consider the case of the type "mmi".  In this case we could
2236
           * write "just just 4", but "4" alone is totally unambiguous,
2237
           * so we try to drop "just" where possible.
2238
           *
2239
           * We have to be careful not to always drop "just", though,
2240
           * since "nothing" needs to be distinguishable from "just
2241
           * nothing".  The case where we need to ensure we keep the
2242
           * "just" is actually exactly the case where we have a nested
2243
           * Nothing.
2244
           *
2245
           * Search for the nested Nothing, to save a lot of recursion if there
2246
           * are multiple levels of maybes.
2247
           */
2248
0
          for (depth = 0, base_type = g_variant_get_type (value);
2249
0
               g_variant_type_is_maybe (base_type);
2250
0
               depth++, base_type = g_variant_type_element (base_type));
2251
2252
0
          element = g_variant_ref (value);
2253
0
          for (i = 0; i < depth && element != NULL; i++)
2254
0
            {
2255
0
              GVariant *new_element = g_variant_n_children (element) ? g_variant_get_child_value (element, 0) : NULL;
2256
0
              g_variant_unref (element);
2257
0
              element = g_steal_pointer (&new_element);
2258
0
            }
2259
2260
0
          if (element == NULL)
2261
0
            {
2262
              /* One of the maybes was Nothing, so print out the right number of
2263
               * justs. */
2264
0
              for (; i > 1; i--)
2265
0
                g_string_append (string, "just ");
2266
0
              g_string_append (string, "nothing");
2267
0
            }
2268
0
          else
2269
0
            {
2270
              /* There are no Nothings, so print out the child with no prefixes. */
2271
0
              g_variant_print_string (element, string, FALSE);
2272
0
            }
2273
2274
0
          g_clear_pointer (&element, g_variant_unref);
2275
0
        }
2276
0
      else
2277
0
        g_string_append (string, "nothing");
2278
2279
0
      break;
2280
2281
0
    case G_VARIANT_CLASS_ARRAY:
2282
      /* it's an array so the first character of the type string is 'a'
2283
       *
2284
       * if the first two characters are 'ay' then it's a bytestring.
2285
       * under certain conditions we print those as strings.
2286
       */
2287
0
      if (value_type_string[1] == 'y')
2288
0
        {
2289
0
          const gchar *str;
2290
0
          gsize size;
2291
0
          gsize i;
2292
2293
          /* first determine if it is a byte string.
2294
           * that's when there's a single nul character: at the end.
2295
           */
2296
0
          str = g_variant_get_data (value);
2297
0
          size = g_variant_get_size (value);
2298
2299
0
          for (i = 0; i < size; i++)
2300
0
            if (str[i] == '\0')
2301
0
              break;
2302
2303
          /* first nul byte is the last byte -> it's a byte string. */
2304
0
          if (i == size - 1)
2305
0
            {
2306
0
              gchar *escaped = g_strescape (str, NULL);
2307
2308
              /* use double quotes only if a ' is in the string */
2309
0
              if (strchr (str, '\''))
2310
0
                g_string_append_printf (string, "b\"%s\"", escaped);
2311
0
              else
2312
0
                g_string_append_printf (string, "b'%s'", escaped);
2313
2314
0
              g_free (escaped);
2315
0
              break;
2316
0
            }
2317
2318
0
          else
2319
0
            {
2320
              /* fall through and handle normally... */
2321
0
            }
2322
0
        }
2323
2324
      /*
2325
       * if the first two characters are 'a{' then it's an array of
2326
       * dictionary entries (ie: a dictionary) so we print that
2327
       * differently.
2328
       */
2329
0
      if (value_type_string[1] == '{')
2330
        /* dictionary */
2331
0
        {
2332
0
          const gchar *comma = "";
2333
0
          gsize n, i;
2334
2335
0
          if ((n = g_variant_n_children (value)) == 0)
2336
0
            {
2337
0
              if (type_annotate)
2338
0
                g_string_append_printf (string, "@%s ", value_type_string);
2339
0
              g_string_append (string, "{}");
2340
0
              break;
2341
0
            }
2342
2343
0
          g_string_append_c (string, '{');
2344
0
          for (i = 0; i < n; i++)
2345
0
            {
2346
0
              GVariant *entry, *key, *val;
2347
2348
0
              g_string_append (string, comma);
2349
0
              comma = ", ";
2350
2351
0
              entry = g_variant_get_child_value (value, i);
2352
0
              key = g_variant_get_child_value (entry, 0);
2353
0
              val = g_variant_get_child_value (entry, 1);
2354
0
              g_variant_unref (entry);
2355
2356
0
              g_variant_print_string (key, string, type_annotate);
2357
0
              g_variant_unref (key);
2358
0
              g_string_append (string, ": ");
2359
0
              g_variant_print_string (val, string, type_annotate);
2360
0
              g_variant_unref (val);
2361
0
              type_annotate = FALSE;
2362
0
            }
2363
0
          g_string_append_c (string, '}');
2364
0
        }
2365
0
      else
2366
        /* normal (non-dictionary) array */
2367
0
        {
2368
0
          const gchar *comma = "";
2369
0
          gsize n, i;
2370
2371
0
          if ((n = g_variant_n_children (value)) == 0)
2372
0
            {
2373
0
              if (type_annotate)
2374
0
                g_string_append_printf (string, "@%s ", value_type_string);
2375
0
              g_string_append (string, "[]");
2376
0
              break;
2377
0
            }
2378
2379
0
          g_string_append_c (string, '[');
2380
0
          for (i = 0; i < n; i++)
2381
0
            {
2382
0
              GVariant *element;
2383
2384
0
              g_string_append (string, comma);
2385
0
              comma = ", ";
2386
2387
0
              element = g_variant_get_child_value (value, i);
2388
2389
0
              g_variant_print_string (element, string, type_annotate);
2390
0
              g_variant_unref (element);
2391
0
              type_annotate = FALSE;
2392
0
            }
2393
0
          g_string_append_c (string, ']');
2394
0
        }
2395
2396
0
      break;
2397
2398
0
    case G_VARIANT_CLASS_TUPLE:
2399
0
      {
2400
0
        gsize n, i;
2401
2402
0
        n = g_variant_n_children (value);
2403
2404
0
        g_string_append_c (string, '(');
2405
0
        for (i = 0; i < n; i++)
2406
0
          {
2407
0
            GVariant *element;
2408
2409
0
            element = g_variant_get_child_value (value, i);
2410
0
            g_variant_print_string (element, string, type_annotate);
2411
0
            g_string_append (string, ", ");
2412
0
            g_variant_unref (element);
2413
0
          }
2414
2415
        /* for >1 item:  remove final ", "
2416
         * for 1 item:   remove final " ", but leave the ","
2417
         * for 0 items:  there is only "(", so remove nothing
2418
         */
2419
0
        g_string_truncate (string, string->len - (n > 0) - (n > 1));
2420
0
        g_string_append_c (string, ')');
2421
0
      }
2422
0
      break;
2423
2424
0
    case G_VARIANT_CLASS_DICT_ENTRY:
2425
0
      {
2426
0
        GVariant *element;
2427
2428
0
        g_string_append_c (string, '{');
2429
2430
0
        element = g_variant_get_child_value (value, 0);
2431
0
        g_variant_print_string (element, string, type_annotate);
2432
0
        g_variant_unref (element);
2433
2434
0
        g_string_append (string, ", ");
2435
2436
0
        element = g_variant_get_child_value (value, 1);
2437
0
        g_variant_print_string (element, string, type_annotate);
2438
0
        g_variant_unref (element);
2439
2440
0
        g_string_append_c (string, '}');
2441
0
      }
2442
0
      break;
2443
2444
0
    case G_VARIANT_CLASS_VARIANT:
2445
0
      {
2446
0
        GVariant *child = g_variant_get_variant (value);
2447
2448
        /* Always annotate types in nested variants, because they are
2449
         * (by nature) of variable type.
2450
         */
2451
0
        g_string_append_c (string, '<');
2452
0
        g_variant_print_string (child, string, TRUE);
2453
0
        g_string_append_c (string, '>');
2454
2455
0
        g_variant_unref (child);
2456
0
      }
2457
0
      break;
2458
2459
0
    case G_VARIANT_CLASS_BOOLEAN:
2460
0
      if (g_variant_get_boolean (value))
2461
0
        g_string_append (string, "true");
2462
0
      else
2463
0
        g_string_append (string, "false");
2464
0
      break;
2465
2466
0
    case G_VARIANT_CLASS_STRING:
2467
0
      {
2468
0
        const gchar *str = g_variant_get_string (value, NULL);
2469
0
        gunichar quote = strchr (str, '\'') ? '"' : '\'';
2470
2471
0
        g_string_append_c (string, quote);
2472
2473
0
        while (*str)
2474
0
          {
2475
0
            gunichar c = g_utf8_get_char (str);
2476
2477
0
            if (c == quote || c == '\\')
2478
0
              g_string_append_c (string, '\\');
2479
2480
0
            if (g_unichar_isprint (c))
2481
0
              g_string_append_unichar (string, c);
2482
2483
0
            else
2484
0
              {
2485
0
                g_string_append_c (string, '\\');
2486
0
                if (c < 0x10000)
2487
0
                  switch (c)
2488
0
                    {
2489
0
                    case '\a':
2490
0
                      g_string_append_c (string, 'a');
2491
0
                      break;
2492
2493
0
                    case '\b':
2494
0
                      g_string_append_c (string, 'b');
2495
0
                      break;
2496
2497
0
                    case '\f':
2498
0
                      g_string_append_c (string, 'f');
2499
0
                      break;
2500
2501
0
                    case '\n':
2502
0
                      g_string_append_c (string, 'n');
2503
0
                      break;
2504
2505
0
                    case '\r':
2506
0
                      g_string_append_c (string, 'r');
2507
0
                      break;
2508
2509
0
                    case '\t':
2510
0
                      g_string_append_c (string, 't');
2511
0
                      break;
2512
2513
0
                    case '\v':
2514
0
                      g_string_append_c (string, 'v');
2515
0
                      break;
2516
2517
0
                    default:
2518
0
                      g_string_append_printf (string, "u%04x", c);
2519
0
                      break;
2520
0
                    }
2521
0
                 else
2522
0
                   g_string_append_printf (string, "U%08x", c);
2523
0
              }
2524
2525
0
            str = g_utf8_next_char (str);
2526
0
          }
2527
2528
0
        g_string_append_c (string, quote);
2529
0
      }
2530
0
      break;
2531
2532
0
    case G_VARIANT_CLASS_BYTE:
2533
0
      if (type_annotate)
2534
0
        g_string_append (string, "byte ");
2535
0
      g_string_append_printf (string, "0x%02x",
2536
0
                              g_variant_get_byte (value));
2537
0
      break;
2538
2539
0
    case G_VARIANT_CLASS_INT16:
2540
0
      if (type_annotate)
2541
0
        g_string_append (string, "int16 ");
2542
0
      g_string_append_printf (string, "%"G_GINT16_FORMAT,
2543
0
                              g_variant_get_int16 (value));
2544
0
      break;
2545
2546
0
    case G_VARIANT_CLASS_UINT16:
2547
0
      if (type_annotate)
2548
0
        g_string_append (string, "uint16 ");
2549
0
      g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2550
0
                              g_variant_get_uint16 (value));
2551
0
      break;
2552
2553
0
    case G_VARIANT_CLASS_INT32:
2554
      /* Never annotate this type because it is the default for numbers
2555
       * (and this is a *pretty* printer)
2556
       */
2557
0
      g_string_append_printf (string, "%"G_GINT32_FORMAT,
2558
0
                              g_variant_get_int32 (value));
2559
0
      break;
2560
2561
0
    case G_VARIANT_CLASS_HANDLE:
2562
0
      if (type_annotate)
2563
0
        g_string_append (string, "handle ");
2564
0
      g_string_append_printf (string, "%"G_GINT32_FORMAT,
2565
0
                              g_variant_get_handle (value));
2566
0
      break;
2567
2568
0
    case G_VARIANT_CLASS_UINT32:
2569
0
      if (type_annotate)
2570
0
        g_string_append (string, "uint32 ");
2571
0
      g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2572
0
                              g_variant_get_uint32 (value));
2573
0
      break;
2574
2575
0
    case G_VARIANT_CLASS_INT64:
2576
0
      if (type_annotate)
2577
0
        g_string_append (string, "int64 ");
2578
0
      g_string_append_printf (string, "%"G_GINT64_FORMAT,
2579
0
                              g_variant_get_int64 (value));
2580
0
      break;
2581
2582
0
    case G_VARIANT_CLASS_UINT64:
2583
0
      if (type_annotate)
2584
0
        g_string_append (string, "uint64 ");
2585
0
      g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2586
0
                              g_variant_get_uint64 (value));
2587
0
      break;
2588
2589
0
    case G_VARIANT_CLASS_DOUBLE:
2590
0
      {
2591
0
        gchar buffer[100];
2592
0
        gint i;
2593
2594
0
        g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2595
2596
0
        for (i = 0; buffer[i]; i++)
2597
0
          if (buffer[i] == '.' || buffer[i] == 'e' ||
2598
0
              buffer[i] == 'n' || buffer[i] == 'N')
2599
0
            break;
2600
2601
        /* if there is no '.' or 'e' in the float then add one */
2602
0
        if (buffer[i] == '\0')
2603
0
          {
2604
0
            buffer[i++] = '.';
2605
0
            buffer[i++] = '0';
2606
0
            buffer[i++] = '\0';
2607
0
          }
2608
2609
0
        g_string_append (string, buffer);
2610
0
      }
2611
0
      break;
2612
2613
0
    case G_VARIANT_CLASS_OBJECT_PATH:
2614
0
      if (type_annotate)
2615
0
        g_string_append (string, "objectpath ");
2616
0
      g_string_append_printf (string, "\'%s\'",
2617
0
                              g_variant_get_string (value, NULL));
2618
0
      break;
2619
2620
0
    case G_VARIANT_CLASS_SIGNATURE:
2621
0
      if (type_annotate)
2622
0
        g_string_append (string, "signature ");
2623
0
      g_string_append_printf (string, "\'%s\'",
2624
0
                              g_variant_get_string (value, NULL));
2625
0
      break;
2626
2627
0
    default:
2628
0
      g_assert_not_reached ();
2629
0
  }
2630
2631
0
  return string;
2632
0
}
2633
2634
/**
2635
 * g_variant_print:
2636
 * @value: a #GVariant
2637
 * @type_annotate: %TRUE if type information should be included in
2638
 *                 the output
2639
 *
2640
 * Pretty-prints @value in the format understood by g_variant_parse().
2641
 *
2642
 * The format is described [here][gvariant-text].
2643
 *
2644
 * If @type_annotate is %TRUE, then type information is included in
2645
 * the output.
2646
 *
2647
 * Returns: (transfer full): a newly-allocated string holding the result.
2648
 *
2649
 * Since: 2.24
2650
 */
2651
gchar *
2652
g_variant_print (GVariant *value,
2653
                 gboolean  type_annotate)
2654
0
{
2655
0
  return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2656
0
                        FALSE);
2657
0
}
2658
2659
/* Hash, Equal, Compare {{{1 */
2660
/**
2661
 * g_variant_hash:
2662
 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2663
 *
2664
 * Generates a hash value for a #GVariant instance.
2665
 *
2666
 * The output of this function is guaranteed to be the same for a given
2667
 * value only per-process.  It may change between different processor
2668
 * architectures or even different versions of GLib.  Do not use this
2669
 * function as a basis for building protocols or file formats.
2670
 *
2671
 * The type of @value is #gconstpointer only to allow use of this
2672
 * function with #GHashTable.  @value must be a #GVariant.
2673
 *
2674
 * Returns: a hash value corresponding to @value
2675
 *
2676
 * Since: 2.24
2677
 **/
2678
guint
2679
g_variant_hash (gconstpointer value_)
2680
0
{
2681
0
  GVariant *value = (GVariant *) value_;
2682
2683
0
  switch (g_variant_classify (value))
2684
0
    {
2685
0
    case G_VARIANT_CLASS_STRING:
2686
0
    case G_VARIANT_CLASS_OBJECT_PATH:
2687
0
    case G_VARIANT_CLASS_SIGNATURE:
2688
0
      return g_str_hash (g_variant_get_string (value, NULL));
2689
2690
0
    case G_VARIANT_CLASS_BOOLEAN:
2691
      /* this is a very odd thing to hash... */
2692
0
      return g_variant_get_boolean (value);
2693
2694
0
    case G_VARIANT_CLASS_BYTE:
2695
0
      return g_variant_get_byte (value);
2696
2697
0
    case G_VARIANT_CLASS_INT16:
2698
0
    case G_VARIANT_CLASS_UINT16:
2699
0
      {
2700
0
        const guint16 *ptr;
2701
2702
0
        ptr = g_variant_get_data (value);
2703
2704
0
        if (ptr)
2705
0
          return *ptr;
2706
0
        else
2707
0
          return 0;
2708
0
      }
2709
2710
0
    case G_VARIANT_CLASS_INT32:
2711
0
    case G_VARIANT_CLASS_UINT32:
2712
0
    case G_VARIANT_CLASS_HANDLE:
2713
0
      {
2714
0
        const guint *ptr;
2715
2716
0
        ptr = g_variant_get_data (value);
2717
2718
0
        if (ptr)
2719
0
          return *ptr;
2720
0
        else
2721
0
          return 0;
2722
0
      }
2723
2724
0
    case G_VARIANT_CLASS_INT64:
2725
0
    case G_VARIANT_CLASS_UINT64:
2726
0
    case G_VARIANT_CLASS_DOUBLE:
2727
      /* need a separate case for these guys because otherwise
2728
       * performance could be quite bad on big endian systems
2729
       */
2730
0
      {
2731
0
        const guint *ptr;
2732
2733
0
        ptr = g_variant_get_data (value);
2734
2735
0
        if (ptr)
2736
0
          return ptr[0] + ptr[1];
2737
0
        else
2738
0
          return 0;
2739
0
      }
2740
2741
0
    default:
2742
0
      g_return_val_if_fail (!g_variant_is_container (value), 0);
2743
0
      g_assert_not_reached ();
2744
0
    }
2745
0
}
2746
2747
/**
2748
 * g_variant_equal:
2749
 * @one: (type GVariant): a #GVariant instance
2750
 * @two: (type GVariant): a #GVariant instance
2751
 *
2752
 * Checks if @one and @two have the same type and value.
2753
 *
2754
 * The types of @one and @two are #gconstpointer only to allow use of
2755
 * this function with #GHashTable.  They must each be a #GVariant.
2756
 *
2757
 * Returns: %TRUE if @one and @two are equal
2758
 *
2759
 * Since: 2.24
2760
 **/
2761
gboolean
2762
g_variant_equal (gconstpointer one,
2763
                 gconstpointer two)
2764
0
{
2765
0
  gboolean equal;
2766
2767
0
  g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2768
2769
0
  if (g_variant_get_type_info ((GVariant *) one) !=
2770
0
      g_variant_get_type_info ((GVariant *) two))
2771
0
    return FALSE;
2772
2773
  /* if both values are trusted to be in their canonical serialized form
2774
   * then a simple memcmp() of their serialized data will answer the
2775
   * question.
2776
   *
2777
   * if not, then this might generate a false negative (since it is
2778
   * possible for two different byte sequences to represent the same
2779
   * value).  for now we solve this by pretty-printing both values and
2780
   * comparing the result.
2781
   */
2782
0
  if (g_variant_is_trusted ((GVariant *) one) &&
2783
0
      g_variant_is_trusted ((GVariant *) two))
2784
0
    {
2785
0
      gconstpointer data_one, data_two;
2786
0
      gsize size_one, size_two;
2787
2788
0
      size_one = g_variant_get_size ((GVariant *) one);
2789
0
      size_two = g_variant_get_size ((GVariant *) two);
2790
2791
0
      if (size_one != size_two)
2792
0
        return FALSE;
2793
2794
0
      data_one = g_variant_get_data ((GVariant *) one);
2795
0
      data_two = g_variant_get_data ((GVariant *) two);
2796
2797
0
      if (size_one)
2798
0
        equal = memcmp (data_one, data_two, size_one) == 0;
2799
0
      else
2800
0
        equal = TRUE;
2801
0
    }
2802
0
  else
2803
0
    {
2804
0
      gchar *strone, *strtwo;
2805
2806
0
      strone = g_variant_print ((GVariant *) one, FALSE);
2807
0
      strtwo = g_variant_print ((GVariant *) two, FALSE);
2808
0
      equal = strcmp (strone, strtwo) == 0;
2809
0
      g_free (strone);
2810
0
      g_free (strtwo);
2811
0
    }
2812
2813
0
  return equal;
2814
0
}
2815
2816
/**
2817
 * g_variant_compare:
2818
 * @one: (type GVariant): a basic-typed #GVariant instance
2819
 * @two: (type GVariant): a #GVariant instance of the same type
2820
 *
2821
 * Compares @one and @two.
2822
 *
2823
 * The types of @one and @two are #gconstpointer only to allow use of
2824
 * this function with #GTree, #GPtrArray, etc.  They must each be a
2825
 * #GVariant.
2826
 *
2827
 * Comparison is only defined for basic types (ie: booleans, numbers,
2828
 * strings).  For booleans, %FALSE is less than %TRUE.  Numbers are
2829
 * ordered in the usual way.  Strings are in ASCII lexographical order.
2830
 *
2831
 * It is a programmer error to attempt to compare container values or
2832
 * two values that have types that are not exactly equal.  For example,
2833
 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2834
 * integer.  Also note that this function is not particularly
2835
 * well-behaved when it comes to comparison of doubles; in particular,
2836
 * the handling of incomparable values (ie: NaN) is undefined.
2837
 *
2838
 * If you only require an equality comparison, g_variant_equal() is more
2839
 * general.
2840
 *
2841
 * Returns: negative value if a < b;
2842
 *          zero if a = b;
2843
 *          positive value if a > b.
2844
 *
2845
 * Since: 2.26
2846
 **/
2847
gint
2848
g_variant_compare (gconstpointer one,
2849
                   gconstpointer two)
2850
0
{
2851
0
  GVariant *a = (GVariant *) one;
2852
0
  GVariant *b = (GVariant *) two;
2853
2854
0
  g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2855
2856
0
  switch (g_variant_classify (a))
2857
0
    {
2858
0
    case G_VARIANT_CLASS_BOOLEAN:
2859
0
      return g_variant_get_boolean (a) -
2860
0
             g_variant_get_boolean (b);
2861
2862
0
    case G_VARIANT_CLASS_BYTE:
2863
0
      return ((gint) g_variant_get_byte (a)) -
2864
0
             ((gint) g_variant_get_byte (b));
2865
2866
0
    case G_VARIANT_CLASS_INT16:
2867
0
      return ((gint) g_variant_get_int16 (a)) -
2868
0
             ((gint) g_variant_get_int16 (b));
2869
2870
0
    case G_VARIANT_CLASS_UINT16:
2871
0
      return ((gint) g_variant_get_uint16 (a)) -
2872
0
             ((gint) g_variant_get_uint16 (b));
2873
2874
0
    case G_VARIANT_CLASS_INT32:
2875
0
      {
2876
0
        gint32 a_val = g_variant_get_int32 (a);
2877
0
        gint32 b_val = g_variant_get_int32 (b);
2878
2879
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2880
0
      }
2881
2882
0
    case G_VARIANT_CLASS_UINT32:
2883
0
      {
2884
0
        guint32 a_val = g_variant_get_uint32 (a);
2885
0
        guint32 b_val = g_variant_get_uint32 (b);
2886
2887
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2888
0
      }
2889
2890
0
    case G_VARIANT_CLASS_INT64:
2891
0
      {
2892
0
        gint64 a_val = g_variant_get_int64 (a);
2893
0
        gint64 b_val = g_variant_get_int64 (b);
2894
2895
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2896
0
      }
2897
2898
0
    case G_VARIANT_CLASS_UINT64:
2899
0
      {
2900
0
        guint64 a_val = g_variant_get_uint64 (a);
2901
0
        guint64 b_val = g_variant_get_uint64 (b);
2902
2903
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2904
0
      }
2905
2906
0
    case G_VARIANT_CLASS_DOUBLE:
2907
0
      {
2908
0
        gdouble a_val = g_variant_get_double (a);
2909
0
        gdouble b_val = g_variant_get_double (b);
2910
2911
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2912
0
      }
2913
2914
0
    case G_VARIANT_CLASS_STRING:
2915
0
    case G_VARIANT_CLASS_OBJECT_PATH:
2916
0
    case G_VARIANT_CLASS_SIGNATURE:
2917
0
      return strcmp (g_variant_get_string (a, NULL),
2918
0
                     g_variant_get_string (b, NULL));
2919
2920
0
    default:
2921
0
      g_return_val_if_fail (!g_variant_is_container (a), 0);
2922
0
      g_assert_not_reached ();
2923
0
    }
2924
0
}
2925
2926
/* GVariantIter {{{1 */
2927
/**
2928
 * GVariantIter: (skip)
2929
 *
2930
 * #GVariantIter is an opaque data structure and can only be accessed
2931
 * using the following functions.
2932
 **/
2933
struct stack_iter
2934
{
2935
  GVariant *value;
2936
  gssize n, i;
2937
2938
  const gchar *loop_format;
2939
2940
  gsize padding[3];
2941
  gsize magic;
2942
};
2943
2944
G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2945
2946
struct heap_iter
2947
{
2948
  struct stack_iter iter;
2949
2950
  GVariant *value_ref;
2951
  gsize magic;
2952
};
2953
2954
0
#define GVSI(i)                 ((struct stack_iter *) (i))
2955
0
#define GVHI(i)                 ((struct heap_iter *) (i))
2956
0
#define GVSI_MAGIC              ((gsize) 3579507750u)
2957
0
#define GVHI_MAGIC              ((gsize) 1450270775u)
2958
#define is_valid_iter(i)        (i != NULL && \
2959
                                 GVSI(i)->magic == GVSI_MAGIC)
2960
#define is_valid_heap_iter(i)   (is_valid_iter(i) && \
2961
                                 GVHI(i)->magic == GVHI_MAGIC)
2962
2963
/**
2964
 * g_variant_iter_new:
2965
 * @value: a container #GVariant
2966
 *
2967
 * Creates a heap-allocated #GVariantIter for iterating over the items
2968
 * in @value.
2969
 *
2970
 * Use g_variant_iter_free() to free the return value when you no longer
2971
 * need it.
2972
 *
2973
 * A reference is taken to @value and will be released only when
2974
 * g_variant_iter_free() is called.
2975
 *
2976
 * Returns: (transfer full): a new heap-allocated #GVariantIter
2977
 *
2978
 * Since: 2.24
2979
 **/
2980
GVariantIter *
2981
g_variant_iter_new (GVariant *value)
2982
0
{
2983
0
  GVariantIter *iter;
2984
2985
0
  iter = (GVariantIter *) g_slice_new (struct heap_iter);
2986
0
  GVHI(iter)->value_ref = g_variant_ref (value);
2987
0
  GVHI(iter)->magic = GVHI_MAGIC;
2988
2989
0
  g_variant_iter_init (iter, value);
2990
2991
0
  return iter;
2992
0
}
2993
2994
/**
2995
 * g_variant_iter_init: (skip)
2996
 * @iter: a pointer to a #GVariantIter
2997
 * @value: a container #GVariant
2998
 *
2999
 * Initialises (without allocating) a #GVariantIter.  @iter may be
3000
 * completely uninitialised prior to this call; its old value is
3001
 * ignored.
3002
 *
3003
 * The iterator remains valid for as long as @value exists, and need not
3004
 * be freed in any way.
3005
 *
3006
 * Returns: the number of items in @value
3007
 *
3008
 * Since: 2.24
3009
 **/
3010
gsize
3011
g_variant_iter_init (GVariantIter *iter,
3012
                     GVariant     *value)
3013
0
{
3014
0
  GVSI(iter)->magic = GVSI_MAGIC;
3015
0
  GVSI(iter)->value = value;
3016
0
  GVSI(iter)->n = g_variant_n_children (value);
3017
0
  GVSI(iter)->i = -1;
3018
0
  GVSI(iter)->loop_format = NULL;
3019
3020
0
  return GVSI(iter)->n;
3021
0
}
3022
3023
/**
3024
 * g_variant_iter_copy:
3025
 * @iter: a #GVariantIter
3026
 *
3027
 * Creates a new heap-allocated #GVariantIter to iterate over the
3028
 * container that was being iterated over by @iter.  Iteration begins on
3029
 * the new iterator from the current position of the old iterator but
3030
 * the two copies are independent past that point.
3031
 *
3032
 * Use g_variant_iter_free() to free the return value when you no longer
3033
 * need it.
3034
 *
3035
 * A reference is taken to the container that @iter is iterating over
3036
 * and will be related only when g_variant_iter_free() is called.
3037
 *
3038
 * Returns: (transfer full): a new heap-allocated #GVariantIter
3039
 *
3040
 * Since: 2.24
3041
 **/
3042
GVariantIter *
3043
g_variant_iter_copy (GVariantIter *iter)
3044
0
{
3045
0
  GVariantIter *copy;
3046
3047
0
  g_return_val_if_fail (is_valid_iter (iter), 0);
3048
3049
0
  copy = g_variant_iter_new (GVSI(iter)->value);
3050
0
  GVSI(copy)->i = GVSI(iter)->i;
3051
3052
0
  return copy;
3053
0
}
3054
3055
/**
3056
 * g_variant_iter_n_children:
3057
 * @iter: a #GVariantIter
3058
 *
3059
 * Queries the number of child items in the container that we are
3060
 * iterating over.  This is the total number of items -- not the number
3061
 * of items remaining.
3062
 *
3063
 * This function might be useful for preallocation of arrays.
3064
 *
3065
 * Returns: the number of children in the container
3066
 *
3067
 * Since: 2.24
3068
 **/
3069
gsize
3070
g_variant_iter_n_children (GVariantIter *iter)
3071
0
{
3072
0
  g_return_val_if_fail (is_valid_iter (iter), 0);
3073
3074
0
  return GVSI(iter)->n;
3075
0
}
3076
3077
/**
3078
 * g_variant_iter_free:
3079
 * @iter: (transfer full): a heap-allocated #GVariantIter
3080
 *
3081
 * Frees a heap-allocated #GVariantIter.  Only call this function on
3082
 * iterators that were returned by g_variant_iter_new() or
3083
 * g_variant_iter_copy().
3084
 *
3085
 * Since: 2.24
3086
 **/
3087
void
3088
g_variant_iter_free (GVariantIter *iter)
3089
0
{
3090
0
  g_return_if_fail (is_valid_heap_iter (iter));
3091
3092
0
  g_variant_unref (GVHI(iter)->value_ref);
3093
0
  GVHI(iter)->magic = 0;
3094
3095
0
  g_slice_free (struct heap_iter, GVHI(iter));
3096
0
}
3097
3098
/**
3099
 * g_variant_iter_next_value:
3100
 * @iter: a #GVariantIter
3101
 *
3102
 * Gets the next item in the container.  If no more items remain then
3103
 * %NULL is returned.
3104
 *
3105
 * Use g_variant_unref() to drop your reference on the return value when
3106
 * you no longer need it.
3107
 *
3108
 * Here is an example for iterating with g_variant_iter_next_value():
3109
 * |[<!-- language="C" --> 
3110
 *   // recursively iterate a container
3111
 *   void
3112
 *   iterate_container_recursive (GVariant *container)
3113
 *   {
3114
 *     GVariantIter iter;
3115
 *     GVariant *child;
3116
 *
3117
 *     g_variant_iter_init (&iter, container);
3118
 *     while ((child = g_variant_iter_next_value (&iter)))
3119
 *       {
3120
 *         g_print ("type '%s'\n", g_variant_get_type_string (child));
3121
 *
3122
 *         if (g_variant_is_container (child))
3123
 *           iterate_container_recursive (child);
3124
 *
3125
 *         g_variant_unref (child);
3126
 *       }
3127
 *   }
3128
 * ]|
3129
 *
3130
 * Returns: (nullable) (transfer full): a #GVariant, or %NULL
3131
 *
3132
 * Since: 2.24
3133
 **/
3134
GVariant *
3135
g_variant_iter_next_value (GVariantIter *iter)
3136
0
{
3137
0
  g_return_val_if_fail (is_valid_iter (iter), FALSE);
3138
3139
0
  if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
3140
0
    {
3141
0
      g_critical ("g_variant_iter_next_value: must not be called again "
3142
0
                  "after NULL has already been returned.");
3143
0
      return NULL;
3144
0
    }
3145
3146
0
  GVSI(iter)->i++;
3147
3148
0
  if (GVSI(iter)->i < GVSI(iter)->n)
3149
0
    return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
3150
3151
0
  return NULL;
3152
0
}
3153
3154
/* GVariantBuilder {{{1 */
3155
/**
3156
 * GVariantBuilder:
3157
 *
3158
 * A utility type for constructing container-type #GVariant instances.
3159
 *
3160
 * This is an opaque structure and may only be accessed using the
3161
 * following functions.
3162
 *
3163
 * #GVariantBuilder is not threadsafe in any way.  Do not attempt to
3164
 * access it from more than one thread.
3165
 **/
3166
3167
struct stack_builder
3168
{
3169
  GVariantBuilder *parent;
3170
  GVariantType *type;
3171
3172
  /* type constraint explicitly specified by 'type'.
3173
   * for tuple types, this moves along as we add more items.
3174
   */
3175
  const GVariantType *expected_type;
3176
3177
  /* type constraint implied by previous array item.
3178
   */
3179
  const GVariantType *prev_item_type;
3180
3181
  /* constraints on the number of children.  max = -1 for unlimited. */
3182
  gsize min_items;
3183
  gsize max_items;
3184
3185
  /* dynamically-growing pointer array */
3186
  GVariant **children;
3187
  gsize allocated_children;
3188
  gsize offset;
3189
3190
  /* set to '1' if all items in the container will have the same type
3191
   * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
3192
   */
3193
  guint uniform_item_types : 1;
3194
3195
  /* set to '1' initially and changed to '0' if an untrusted value is
3196
   * added
3197
   */
3198
  guint trusted : 1;
3199
3200
  gsize magic;
3201
};
3202
3203
G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
3204
3205
struct heap_builder
3206
{
3207
  GVariantBuilder builder;
3208
  gsize magic;
3209
3210
  gint ref_count;
3211
};
3212
3213
0
#define GVSB(b)                  ((struct stack_builder *) (b))
3214
0
#define GVHB(b)                  ((struct heap_builder *) (b))
3215
0
#define GVSB_MAGIC               ((gsize) 1033660112u)
3216
0
#define GVSB_MAGIC_PARTIAL       ((gsize) 2942751021u)
3217
0
#define GVHB_MAGIC               ((gsize) 3087242682u)
3218
0
#define is_valid_builder(b)      (GVSB(b)->magic == GVSB_MAGIC)
3219
#define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
3220
3221
/* Just to make sure that by adding a union to GVariantBuilder, we
3222
 * didn't accidentally change ABI. */
3223
G_STATIC_ASSERT (sizeof (GVariantBuilder) == sizeof (gsize[16]));
3224
3225
static gboolean
3226
ensure_valid_builder (GVariantBuilder *builder)
3227
0
{
3228
0
  if (builder == NULL)
3229
0
    return FALSE;
3230
0
  else if (is_valid_builder (builder))
3231
0
    return TRUE;
3232
0
  if (builder->u.s.partial_magic == GVSB_MAGIC_PARTIAL)
3233
0
    {
3234
0
      static GVariantBuilder cleared_builder;
3235
3236
      /* Make sure that only first two fields were set and the rest is
3237
       * zeroed to avoid messing up the builder that had parent
3238
       * address equal to GVSB_MAGIC_PARTIAL. */
3239
0
      if (memcmp (cleared_builder.u.s.y, builder->u.s.y, sizeof cleared_builder.u.s.y))
3240
0
        return FALSE;
3241
3242
0
      g_variant_builder_init (builder, builder->u.s.type);
3243
0
    }
3244
0
  return is_valid_builder (builder);
3245
0
}
3246
3247
/* return_if_invalid_builder (b) is like
3248
 * g_return_if_fail (ensure_valid_builder (b)), except that
3249
 * the side effects of ensure_valid_builder are evaluated
3250
 * regardless of whether G_DISABLE_CHECKS is defined or not. */
3251
0
#define return_if_invalid_builder(b) G_STMT_START {                \
3252
0
  gboolean valid_builder G_GNUC_UNUSED = ensure_valid_builder (b); \
3253
0
  g_return_if_fail (valid_builder);                                \
3254
0
} G_STMT_END
3255
3256
/* return_val_if_invalid_builder (b, val) is like
3257
 * g_return_val_if_fail (ensure_valid_builder (b), val), except that
3258
 * the side effects of ensure_valid_builder are evaluated
3259
 * regardless of whether G_DISABLE_CHECKS is defined or not. */
3260
0
#define return_val_if_invalid_builder(b, val) G_STMT_START {       \
3261
0
  gboolean valid_builder G_GNUC_UNUSED = ensure_valid_builder (b); \
3262
0
  g_return_val_if_fail (valid_builder, val);                       \
3263
0
} G_STMT_END
3264
3265
/**
3266
 * g_variant_builder_new:
3267
 * @type: a container type
3268
 *
3269
 * Allocates and initialises a new #GVariantBuilder.
3270
 *
3271
 * You should call g_variant_builder_unref() on the return value when it
3272
 * is no longer needed.  The memory will not be automatically freed by
3273
 * any other call.
3274
 *
3275
 * In most cases it is easier to place a #GVariantBuilder directly on
3276
 * the stack of the calling function and initialise it with
3277
 * g_variant_builder_init().
3278
 *
3279
 * Returns: (transfer full): a #GVariantBuilder
3280
 *
3281
 * Since: 2.24
3282
 **/
3283
GVariantBuilder *
3284
g_variant_builder_new (const GVariantType *type)
3285
0
{
3286
0
  GVariantBuilder *builder;
3287
3288
0
  builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
3289
0
  g_variant_builder_init (builder, type);
3290
0
  GVHB(builder)->magic = GVHB_MAGIC;
3291
0
  GVHB(builder)->ref_count = 1;
3292
3293
0
  return builder;
3294
0
}
3295
3296
/**
3297
 * g_variant_builder_unref:
3298
 * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
3299
 *
3300
 * Decreases the reference count on @builder.
3301
 *
3302
 * In the event that there are no more references, releases all memory
3303
 * associated with the #GVariantBuilder.
3304
 *
3305
 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3306
 * things will happen.
3307
 *
3308
 * Since: 2.24
3309
 **/
3310
void
3311
g_variant_builder_unref (GVariantBuilder *builder)
3312
0
{
3313
0
  g_return_if_fail (is_valid_heap_builder (builder));
3314
3315
0
  if (--GVHB(builder)->ref_count)
3316
0
    return;
3317
3318
0
  g_variant_builder_clear (builder);
3319
0
  GVHB(builder)->magic = 0;
3320
3321
0
  g_slice_free (struct heap_builder, GVHB(builder));
3322
0
}
3323
3324
/**
3325
 * g_variant_builder_ref:
3326
 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
3327
 *
3328
 * Increases the reference count on @builder.
3329
 *
3330
 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3331
 * things will happen.
3332
 *
3333
 * Returns: (transfer full): a new reference to @builder
3334
 *
3335
 * Since: 2.24
3336
 **/
3337
GVariantBuilder *
3338
g_variant_builder_ref (GVariantBuilder *builder)
3339
0
{
3340
0
  g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3341
3342
0
  GVHB(builder)->ref_count++;
3343
3344
0
  return builder;
3345
0
}
3346
3347
/**
3348
 * g_variant_builder_clear: (skip)
3349
 * @builder: a #GVariantBuilder
3350
 *
3351
 * Releases all memory associated with a #GVariantBuilder without
3352
 * freeing the #GVariantBuilder structure itself.
3353
 *
3354
 * It typically only makes sense to do this on a stack-allocated
3355
 * #GVariantBuilder if you want to abort building the value part-way
3356
 * through.  This function need not be called if you call
3357
 * g_variant_builder_end() and it also doesn't need to be called on
3358
 * builders allocated with g_variant_builder_new() (see
3359
 * g_variant_builder_unref() for that).
3360
 *
3361
 * This function leaves the #GVariantBuilder structure set to all-zeros.
3362
 * It is valid to call this function on either an initialised
3363
 * #GVariantBuilder or one that is set to all-zeros but it is not valid
3364
 * to call this function on uninitialised memory.
3365
 *
3366
 * Since: 2.24
3367
 **/
3368
void
3369
g_variant_builder_clear (GVariantBuilder *builder)
3370
0
{
3371
0
  gsize i;
3372
3373
0
  if (GVSB(builder)->magic == 0)
3374
    /* all-zeros or partial case */
3375
0
    return;
3376
3377
0
  return_if_invalid_builder (builder);
3378
3379
0
  g_variant_type_free (GVSB(builder)->type);
3380
3381
0
  for (i = 0; i < GVSB(builder)->offset; i++)
3382
0
    g_variant_unref (GVSB(builder)->children[i]);
3383
3384
0
  g_free (GVSB(builder)->children);
3385
3386
0
  if (GVSB(builder)->parent)
3387
0
    {
3388
0
      g_variant_builder_clear (GVSB(builder)->parent);
3389
0
      g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3390
0
    }
3391
3392
0
  memset (builder, 0, sizeof (GVariantBuilder));
3393
0
}
3394
3395
/**
3396
 * g_variant_builder_init: (skip)
3397
 * @builder: a #GVariantBuilder
3398
 * @type: a container type
3399
 *
3400
 * Initialises a #GVariantBuilder structure.
3401
 *
3402
 * @type must be non-%NULL.  It specifies the type of container to
3403
 * construct.  It can be an indefinite type such as
3404
 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3405
 * Maybe, array, tuple, dictionary entry and variant-typed values may be
3406
 * constructed.
3407
 *
3408
 * After the builder is initialised, values are added using
3409
 * g_variant_builder_add_value() or g_variant_builder_add().
3410
 *
3411
 * After all the child values are added, g_variant_builder_end() frees
3412
 * the memory associated with the builder and returns the #GVariant that
3413
 * was created.
3414
 *
3415
 * This function completely ignores the previous contents of @builder.
3416
 * On one hand this means that it is valid to pass in completely
3417
 * uninitialised memory.  On the other hand, this means that if you are
3418
 * initialising over top of an existing #GVariantBuilder you need to
3419
 * first call g_variant_builder_clear() in order to avoid leaking
3420
 * memory.
3421
 *
3422
 * You must not call g_variant_builder_ref() or
3423
 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3424
 * with this function.  If you ever pass a reference to a
3425
 * #GVariantBuilder outside of the control of your own code then you
3426
 * should assume that the person receiving that reference may try to use
3427
 * reference counting; you should use g_variant_builder_new() instead of
3428
 * this function.
3429
 *
3430
 * Since: 2.24
3431
 **/
3432
void
3433
g_variant_builder_init (GVariantBuilder    *builder,
3434
                        const GVariantType *type)
3435
0
{
3436
0
  g_return_if_fail (type != NULL);
3437
0
  g_return_if_fail (g_variant_type_is_container (type));
3438
3439
0
  memset (builder, 0, sizeof (GVariantBuilder));
3440
3441
0
  GVSB(builder)->type = g_variant_type_copy (type);
3442
0
  GVSB(builder)->magic = GVSB_MAGIC;
3443
0
  GVSB(builder)->trusted = TRUE;
3444
3445
0
  switch (*(const gchar *) type)
3446
0
    {
3447
0
    case G_VARIANT_CLASS_VARIANT:
3448
0
      GVSB(builder)->uniform_item_types = TRUE;
3449
0
      GVSB(builder)->allocated_children = 1;
3450
0
      GVSB(builder)->expected_type = NULL;
3451
0
      GVSB(builder)->min_items = 1;
3452
0
      GVSB(builder)->max_items = 1;
3453
0
      break;
3454
3455
0
    case G_VARIANT_CLASS_ARRAY:
3456
0
      GVSB(builder)->uniform_item_types = TRUE;
3457
0
      GVSB(builder)->allocated_children = 8;
3458
0
      GVSB(builder)->expected_type =
3459
0
        g_variant_type_element (GVSB(builder)->type);
3460
0
      GVSB(builder)->min_items = 0;
3461
0
      GVSB(builder)->max_items = -1;
3462
0
      break;
3463
3464
0
    case G_VARIANT_CLASS_MAYBE:
3465
0
      GVSB(builder)->uniform_item_types = TRUE;
3466
0
      GVSB(builder)->allocated_children = 1;
3467
0
      GVSB(builder)->expected_type =
3468
0
        g_variant_type_element (GVSB(builder)->type);
3469
0
      GVSB(builder)->min_items = 0;
3470
0
      GVSB(builder)->max_items = 1;
3471
0
      break;
3472
3473
0
    case G_VARIANT_CLASS_DICT_ENTRY:
3474
0
      GVSB(builder)->uniform_item_types = FALSE;
3475
0
      GVSB(builder)->allocated_children = 2;
3476
0
      GVSB(builder)->expected_type =
3477
0
        g_variant_type_key (GVSB(builder)->type);
3478
0
      GVSB(builder)->min_items = 2;
3479
0
      GVSB(builder)->max_items = 2;
3480
0
      break;
3481
3482
0
    case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3483
0
      GVSB(builder)->uniform_item_types = FALSE;
3484
0
      GVSB(builder)->allocated_children = 8;
3485
0
      GVSB(builder)->expected_type = NULL;
3486
0
      GVSB(builder)->min_items = 0;
3487
0
      GVSB(builder)->max_items = -1;
3488
0
      break;
3489
3490
0
    case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3491
0
      GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3492
0
      GVSB(builder)->expected_type =
3493
0
        g_variant_type_first (GVSB(builder)->type);
3494
0
      GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3495
0
      GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3496
0
      GVSB(builder)->uniform_item_types = FALSE;
3497
0
      break;
3498
3499
0
    default:
3500
0
      g_assert_not_reached ();
3501
0
   }
3502
3503
0
#ifdef G_ANALYZER_ANALYZING
3504
  /* Static analysers can’t couple the code in g_variant_builder_init() to the
3505
   * code in g_variant_builder_end() by GVariantType, so end up assuming that
3506
   * @offset and @children mismatch and that uninitialised memory is accessed
3507
   * from @children. At runtime, this is caught by the preconditions at the top
3508
   * of g_variant_builder_end(). Help the analyser by zero-initialising the
3509
   * memory to avoid a false positive. */
3510
0
  GVSB(builder)->children = g_new0 (GVariant *,
3511
0
                                    GVSB(builder)->allocated_children);
3512
#else
3513
  GVSB(builder)->children = g_new (GVariant *,
3514
                                   GVSB(builder)->allocated_children);
3515
#endif
3516
0
}
3517
3518
static void
3519
g_variant_builder_make_room (struct stack_builder *builder)
3520
0
{
3521
0
  if (builder->offset == builder->allocated_children)
3522
0
    {
3523
0
      builder->allocated_children *= 2;
3524
0
      builder->children = g_renew (GVariant *, builder->children,
3525
0
                                   builder->allocated_children);
3526
0
    }
3527
0
}
3528
3529
/**
3530
 * g_variant_builder_add_value:
3531
 * @builder: a #GVariantBuilder
3532
 * @value: a #GVariant
3533
 *
3534
 * Adds @value to @builder.
3535
 *
3536
 * It is an error to call this function in any way that would create an
3537
 * inconsistent value to be constructed.  Some examples of this are
3538
 * putting different types of items into an array, putting the wrong
3539
 * types or number of items in a tuple, putting more than one value into
3540
 * a variant, etc.
3541
 *
3542
 * If @value is a floating reference (see g_variant_ref_sink()),
3543
 * the @builder instance takes ownership of @value.
3544
 *
3545
 * Since: 2.24
3546
 **/
3547
void
3548
g_variant_builder_add_value (GVariantBuilder *builder,
3549
                             GVariant        *value)
3550
0
{
3551
0
  return_if_invalid_builder (builder);
3552
0
  g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3553
0
  g_return_if_fail (!GVSB(builder)->expected_type ||
3554
0
                    g_variant_is_of_type (value,
3555
0
                                          GVSB(builder)->expected_type));
3556
0
  g_return_if_fail (!GVSB(builder)->prev_item_type ||
3557
0
                    g_variant_is_of_type (value,
3558
0
                                          GVSB(builder)->prev_item_type));
3559
3560
0
  GVSB(builder)->trusted &= g_variant_is_trusted (value);
3561
3562
0
  if (!GVSB(builder)->uniform_item_types)
3563
0
    {
3564
      /* advance our expected type pointers */
3565
0
      if (GVSB(builder)->expected_type)
3566
0
        GVSB(builder)->expected_type =
3567
0
          g_variant_type_next (GVSB(builder)->expected_type);
3568
3569
0
      if (GVSB(builder)->prev_item_type)
3570
0
        GVSB(builder)->prev_item_type =
3571
0
          g_variant_type_next (GVSB(builder)->prev_item_type);
3572
0
    }
3573
0
  else
3574
0
    GVSB(builder)->prev_item_type = g_variant_get_type (value);
3575
3576
0
  g_variant_builder_make_room (GVSB(builder));
3577
3578
0
  GVSB(builder)->children[GVSB(builder)->offset++] =
3579
0
    g_variant_ref_sink (value);
3580
0
}
3581
3582
/**
3583
 * g_variant_builder_open:
3584
 * @builder: a #GVariantBuilder
3585
 * @type: the #GVariantType of the container
3586
 *
3587
 * Opens a subcontainer inside the given @builder.  When done adding
3588
 * items to the subcontainer, g_variant_builder_close() must be called. @type
3589
 * is the type of the container: so to build a tuple of several values, @type
3590
 * must include the tuple itself.
3591
 *
3592
 * It is an error to call this function in any way that would cause an
3593
 * inconsistent value to be constructed (ie: adding too many values or
3594
 * a value of an incorrect type).
3595
 *
3596
 * Example of building a nested variant:
3597
 * |[<!-- language="C" -->
3598
 * GVariantBuilder builder;
3599
 * guint32 some_number = get_number ();
3600
 * g_autoptr (GHashTable) some_dict = get_dict ();
3601
 * GHashTableIter iter;
3602
 * const gchar *key;
3603
 * const GVariant *value;
3604
 * g_autoptr (GVariant) output = NULL;
3605
 *
3606
 * g_variant_builder_init (&builder, G_VARIANT_TYPE ("(ua{sv})"));
3607
 * g_variant_builder_add (&builder, "u", some_number);
3608
 * g_variant_builder_open (&builder, G_VARIANT_TYPE ("a{sv}"));
3609
 *
3610
 * g_hash_table_iter_init (&iter, some_dict);
3611
 * while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value))
3612
 *   {
3613
 *     g_variant_builder_open (&builder, G_VARIANT_TYPE ("{sv}"));
3614
 *     g_variant_builder_add (&builder, "s", key);
3615
 *     g_variant_builder_add (&builder, "v", value);
3616
 *     g_variant_builder_close (&builder);
3617
 *   }
3618
 *
3619
 * g_variant_builder_close (&builder);
3620
 *
3621
 * output = g_variant_builder_end (&builder);
3622
 * ]|
3623
 *
3624
 * Since: 2.24
3625
 **/
3626
void
3627
g_variant_builder_open (GVariantBuilder    *builder,
3628
                        const GVariantType *type)
3629
0
{
3630
0
  GVariantBuilder *parent;
3631
3632
0
  return_if_invalid_builder (builder);
3633
0
  g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3634
0
  g_return_if_fail (!GVSB(builder)->expected_type ||
3635
0
                    g_variant_type_is_subtype_of (type,
3636
0
                                                  GVSB(builder)->expected_type));
3637
0
  g_return_if_fail (!GVSB(builder)->prev_item_type ||
3638
0
                    g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3639
0
                                                  type));
3640
3641
0
  parent = g_slice_dup (GVariantBuilder, builder);
3642
0
  g_variant_builder_init (builder, type);
3643
0
  GVSB(builder)->parent = parent;
3644
3645
  /* push the prev_item_type down into the subcontainer */
3646
0
  if (GVSB(parent)->prev_item_type)
3647
0
    {
3648
0
      if (!GVSB(builder)->uniform_item_types)
3649
        /* tuples and dict entries */
3650
0
        GVSB(builder)->prev_item_type =
3651
0
          g_variant_type_first (GVSB(parent)->prev_item_type);
3652
3653
0
      else if (!g_variant_type_is_variant (GVSB(builder)->type))
3654
        /* maybes and arrays */
3655
0
        GVSB(builder)->prev_item_type =
3656
0
          g_variant_type_element (GVSB(parent)->prev_item_type);
3657
0
    }
3658
0
}
3659
3660
/**
3661
 * g_variant_builder_close:
3662
 * @builder: a #GVariantBuilder
3663
 *
3664
 * Closes the subcontainer inside the given @builder that was opened by
3665
 * the most recent call to g_variant_builder_open().
3666
 *
3667
 * It is an error to call this function in any way that would create an
3668
 * inconsistent value to be constructed (ie: too few values added to the
3669
 * subcontainer).
3670
 *
3671
 * Since: 2.24
3672
 **/
3673
void
3674
g_variant_builder_close (GVariantBuilder *builder)
3675
0
{
3676
0
  GVariantBuilder *parent;
3677
3678
0
  return_if_invalid_builder (builder);
3679
0
  g_return_if_fail (GVSB(builder)->parent != NULL);
3680
3681
0
  parent = GVSB(builder)->parent;
3682
0
  GVSB(builder)->parent = NULL;
3683
3684
0
  g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3685
0
  *builder = *parent;
3686
3687
0
  g_slice_free (GVariantBuilder, parent);
3688
0
}
3689
3690
/*< private >
3691
 * g_variant_make_maybe_type:
3692
 * @element: a #GVariant
3693
 *
3694
 * Return the type of a maybe containing @element.
3695
 */
3696
static GVariantType *
3697
g_variant_make_maybe_type (GVariant *element)
3698
0
{
3699
0
  return g_variant_type_new_maybe (g_variant_get_type (element));
3700
0
}
3701
3702
/*< private >
3703
 * g_variant_make_array_type:
3704
 * @element: a #GVariant
3705
 *
3706
 * Return the type of an array containing @element.
3707
 */
3708
static GVariantType *
3709
g_variant_make_array_type (GVariant *element)
3710
0
{
3711
0
  return g_variant_type_new_array (g_variant_get_type (element));
3712
0
}
3713
3714
/**
3715
 * g_variant_builder_end:
3716
 * @builder: a #GVariantBuilder
3717
 *
3718
 * Ends the builder process and returns the constructed value.
3719
 *
3720
 * It is not permissible to use @builder in any way after this call
3721
 * except for reference counting operations (in the case of a
3722
 * heap-allocated #GVariantBuilder) or by reinitialising it with
3723
 * g_variant_builder_init() (in the case of stack-allocated). This
3724
 * means that for the stack-allocated builders there is no need to
3725
 * call g_variant_builder_clear() after the call to
3726
 * g_variant_builder_end().
3727
 *
3728
 * It is an error to call this function in any way that would create an
3729
 * inconsistent value to be constructed (ie: insufficient number of
3730
 * items added to a container with a specific number of children
3731
 * required).  It is also an error to call this function if the builder
3732
 * was created with an indefinite array or maybe type and no children
3733
 * have been added; in this case it is impossible to infer the type of
3734
 * the empty array.
3735
 *
3736
 * Returns: (transfer none): a new, floating, #GVariant
3737
 *
3738
 * Since: 2.24
3739
 **/
3740
GVariant *
3741
g_variant_builder_end (GVariantBuilder *builder)
3742
0
{
3743
0
  GVariantType *my_type;
3744
0
  GVariant *value;
3745
3746
0
  return_val_if_invalid_builder (builder, NULL);
3747
0
  g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3748
0
                        NULL);
3749
0
  g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3750
0
                        GVSB(builder)->prev_item_type != NULL ||
3751
0
                        g_variant_type_is_definite (GVSB(builder)->type),
3752
0
                        NULL);
3753
3754
0
  if (g_variant_type_is_definite (GVSB(builder)->type))
3755
0
    my_type = g_variant_type_copy (GVSB(builder)->type);
3756
3757
0
  else if (g_variant_type_is_maybe (GVSB(builder)->type))
3758
0
    my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3759
3760
0
  else if (g_variant_type_is_array (GVSB(builder)->type))
3761
0
    my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3762
3763
0
  else if (g_variant_type_is_tuple (GVSB(builder)->type))
3764
0
    my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3765
0
                                         GVSB(builder)->offset);
3766
3767
0
  else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3768
0
    my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3769
0
                                              GVSB(builder)->children[1]);
3770
0
  else
3771
0
    g_assert_not_reached ();
3772
3773
0
  value = g_variant_new_from_children (my_type,
3774
0
                                       g_renew (GVariant *,
3775
0
                                                GVSB(builder)->children,
3776
0
                                                GVSB(builder)->offset),
3777
0
                                       GVSB(builder)->offset,
3778
0
                                       GVSB(builder)->trusted);
3779
0
  GVSB(builder)->children = NULL;
3780
0
  GVSB(builder)->offset = 0;
3781
3782
0
  g_variant_builder_clear (builder);
3783
0
  g_variant_type_free (my_type);
3784
3785
0
  return value;
3786
0
}
3787
3788
/* GVariantDict {{{1 */
3789
3790
/**
3791
 * GVariantDict:
3792
 *
3793
 * #GVariantDict is a mutable interface to #GVariant dictionaries.
3794
 *
3795
 * It can be used for doing a sequence of dictionary lookups in an
3796
 * efficient way on an existing #GVariant dictionary or it can be used
3797
 * to construct new dictionaries with a hashtable-like interface.  It
3798
 * can also be used for taking existing dictionaries and modifying them
3799
 * in order to create new ones.
3800
 *
3801
 * #GVariantDict can only be used with %G_VARIANT_TYPE_VARDICT
3802
 * dictionaries.
3803
 *
3804
 * It is possible to use #GVariantDict allocated on the stack or on the
3805
 * heap.  When using a stack-allocated #GVariantDict, you begin with a
3806
 * call to g_variant_dict_init() and free the resources with a call to
3807
 * g_variant_dict_clear().
3808
 *
3809
 * Heap-allocated #GVariantDict follows normal refcounting rules: you
3810
 * allocate it with g_variant_dict_new() and use g_variant_dict_ref()
3811
 * and g_variant_dict_unref().
3812
 *
3813
 * g_variant_dict_end() is used to convert the #GVariantDict back into a
3814
 * dictionary-type #GVariant.  When used with stack-allocated instances,
3815
 * this also implicitly frees all associated memory, but for
3816
 * heap-allocated instances, you must still call g_variant_dict_unref()
3817
 * afterwards.
3818
 *
3819
 * You will typically want to use a heap-allocated #GVariantDict when
3820
 * you expose it as part of an API.  For most other uses, the
3821
 * stack-allocated form will be more convenient.
3822
 *
3823
 * Consider the following two examples that do the same thing in each
3824
 * style: take an existing dictionary and look up the "count" uint32
3825
 * key, adding 1 to it if it is found, or returning an error if the
3826
 * key is not found.  Each returns the new dictionary as a floating
3827
 * #GVariant.
3828
 *
3829
 * ## Using a stack-allocated GVariantDict
3830
 *
3831
 * |[<!-- language="C" -->
3832
 *   GVariant *
3833
 *   add_to_count (GVariant  *orig,
3834
 *                 GError   **error)
3835
 *   {
3836
 *     GVariantDict dict;
3837
 *     guint32 count;
3838
 *
3839
 *     g_variant_dict_init (&dict, orig);
3840
 *     if (!g_variant_dict_lookup (&dict, "count", "u", &count))
3841
 *       {
3842
 *         g_set_error (...);
3843
 *         g_variant_dict_clear (&dict);
3844
 *         return NULL;
3845
 *       }
3846
 *
3847
 *     g_variant_dict_insert (&dict, "count", "u", count + 1);
3848
 *
3849
 *     return g_variant_dict_end (&dict);
3850
 *   }
3851
 * ]|
3852
 *
3853
 * ## Using heap-allocated GVariantDict
3854
 *
3855
 * |[<!-- language="C" -->
3856
 *   GVariant *
3857
 *   add_to_count (GVariant  *orig,
3858
 *                 GError   **error)
3859
 *   {
3860
 *     GVariantDict *dict;
3861
 *     GVariant *result;
3862
 *     guint32 count;
3863
 *
3864
 *     dict = g_variant_dict_new (orig);
3865
 *
3866
 *     if (g_variant_dict_lookup (dict, "count", "u", &count))
3867
 *       {
3868
 *         g_variant_dict_insert (dict, "count", "u", count + 1);
3869
 *         result = g_variant_dict_end (dict);
3870
 *       }
3871
 *     else
3872
 *       {
3873
 *         g_set_error (...);
3874
 *         result = NULL;
3875
 *       }
3876
 *
3877
 *     g_variant_dict_unref (dict);
3878
 *
3879
 *     return result;
3880
 *   }
3881
 * ]|
3882
 *
3883
 * Since: 2.40
3884
 **/
3885
struct stack_dict
3886
{
3887
  GHashTable *values;
3888
  gsize magic;
3889
};
3890
3891
G_STATIC_ASSERT (sizeof (struct stack_dict) <= sizeof (GVariantDict));
3892
3893
struct heap_dict
3894
{
3895
  struct stack_dict dict;
3896
  gint ref_count;
3897
  gsize magic;
3898
};
3899
3900
0
#define GVSD(d)                 ((struct stack_dict *) (d))
3901
0
#define GVHD(d)                 ((struct heap_dict *) (d))
3902
0
#define GVSD_MAGIC              ((gsize) 2579507750u)
3903
0
#define GVSD_MAGIC_PARTIAL      ((gsize) 3488698669u)
3904
0
#define GVHD_MAGIC              ((gsize) 2450270775u)
3905
0
#define is_valid_dict(d)        (GVSD(d)->magic == GVSD_MAGIC)
3906
#define is_valid_heap_dict(d)   (GVHD(d)->magic == GVHD_MAGIC)
3907
3908
/* Just to make sure that by adding a union to GVariantDict, we didn't
3909
 * accidentally change ABI. */
3910
G_STATIC_ASSERT (sizeof (GVariantDict) == sizeof (gsize[16]));
3911
3912
static gboolean
3913
ensure_valid_dict (GVariantDict *dict)
3914
0
{
3915
0
  if (dict == NULL)
3916
0
    return FALSE;
3917
0
  else if (is_valid_dict (dict))
3918
0
    return TRUE;
3919
0
  if (dict->u.s.partial_magic == GVSD_MAGIC_PARTIAL)
3920
0
    {
3921
0
      static GVariantDict cleared_dict;
3922
3923
      /* Make sure that only first two fields were set and the rest is
3924
       * zeroed to avoid messing up the builder that had parent
3925
       * address equal to GVSB_MAGIC_PARTIAL. */
3926
0
      if (memcmp (cleared_dict.u.s.y, dict->u.s.y, sizeof cleared_dict.u.s.y))
3927
0
        return FALSE;
3928
3929
0
      g_variant_dict_init (dict, dict->u.s.asv);
3930
0
    }
3931
0
  return is_valid_dict (dict);
3932
0
}
3933
3934
/* return_if_invalid_dict (d) is like
3935
 * g_return_if_fail (ensure_valid_dict (d)), except that
3936
 * the side effects of ensure_valid_dict are evaluated
3937
 * regardless of whether G_DISABLE_CHECKS is defined or not. */
3938
0
#define return_if_invalid_dict(d) G_STMT_START {                \
3939
0
  gboolean valid_dict G_GNUC_UNUSED = ensure_valid_dict (d);    \
3940
0
  g_return_if_fail (valid_dict);                                \
3941
0
} G_STMT_END
3942
3943
/* return_val_if_invalid_dict (d, val) is like
3944
 * g_return_val_if_fail (ensure_valid_dict (d), val), except that
3945
 * the side effects of ensure_valid_dict are evaluated
3946
 * regardless of whether G_DISABLE_CHECKS is defined or not. */
3947
0
#define return_val_if_invalid_dict(d, val) G_STMT_START {       \
3948
0
  gboolean valid_dict G_GNUC_UNUSED = ensure_valid_dict (d);    \
3949
0
  g_return_val_if_fail (valid_dict, val);                       \
3950
0
} G_STMT_END
3951
3952
/**
3953
 * g_variant_dict_new:
3954
 * @from_asv: (nullable): the #GVariant with which to initialise the
3955
 *   dictionary
3956
 *
3957
 * Allocates and initialises a new #GVariantDict.
3958
 *
3959
 * You should call g_variant_dict_unref() on the return value when it
3960
 * is no longer needed.  The memory will not be automatically freed by
3961
 * any other call.
3962
 *
3963
 * In some cases it may be easier to place a #GVariantDict directly on
3964
 * the stack of the calling function and initialise it with
3965
 * g_variant_dict_init().  This is particularly useful when you are
3966
 * using #GVariantDict to construct a #GVariant.
3967
 *
3968
 * Returns: (transfer full): a #GVariantDict
3969
 *
3970
 * Since: 2.40
3971
 **/
3972
GVariantDict *
3973
g_variant_dict_new (GVariant *from_asv)
3974
0
{
3975
0
  GVariantDict *dict;
3976
3977
0
  dict = g_slice_alloc (sizeof (struct heap_dict));
3978
0
  g_variant_dict_init (dict, from_asv);
3979
0
  GVHD(dict)->magic = GVHD_MAGIC;
3980
0
  GVHD(dict)->ref_count = 1;
3981
3982
0
  return dict;
3983
0
}
3984
3985
/**
3986
 * g_variant_dict_init: (skip)
3987
 * @dict: a #GVariantDict
3988
 * @from_asv: (nullable): the initial value for @dict
3989
 *
3990
 * Initialises a #GVariantDict structure.
3991
 *
3992
 * If @from_asv is given, it is used to initialise the dictionary.
3993
 *
3994
 * This function completely ignores the previous contents of @dict.  On
3995
 * one hand this means that it is valid to pass in completely
3996
 * uninitialised memory.  On the other hand, this means that if you are
3997
 * initialising over top of an existing #GVariantDict you need to first
3998
 * call g_variant_dict_clear() in order to avoid leaking memory.
3999
 *
4000
 * You must not call g_variant_dict_ref() or g_variant_dict_unref() on a
4001
 * #GVariantDict that was initialised with this function.  If you ever
4002
 * pass a reference to a #GVariantDict outside of the control of your
4003
 * own code then you should assume that the person receiving that
4004
 * reference may try to use reference counting; you should use
4005
 * g_variant_dict_new() instead of this function.
4006
 *
4007
 * Since: 2.40
4008
 **/
4009
void
4010
g_variant_dict_init (GVariantDict *dict,
4011
                     GVariant     *from_asv)
4012
0
{
4013
0
  GVariantIter iter;
4014
0
  gchar *key;
4015
0
  GVariant *value;
4016
4017
0
  GVSD(dict)->values = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
4018
0
  GVSD(dict)->magic = GVSD_MAGIC;
4019
4020
0
  if (from_asv)
4021
0
    {
4022
0
      g_variant_iter_init (&iter, from_asv);
4023
0
      while (g_variant_iter_next (&iter, "{sv}", &key, &value))
4024
0
        g_hash_table_insert (GVSD(dict)->values, key, value);
4025
0
    }
4026
0
}
4027
4028
/**
4029
 * g_variant_dict_lookup:
4030
 * @dict: a #GVariantDict
4031
 * @key: the key to look up in the dictionary
4032
 * @format_string: a GVariant format string
4033
 * @...: the arguments to unpack the value into
4034
 *
4035
 * Looks up a value in a #GVariantDict.
4036
 *
4037
 * This function is a wrapper around g_variant_dict_lookup_value() and
4038
 * g_variant_get().  In the case that %NULL would have been returned,
4039
 * this function returns %FALSE and does not modify the values of the arguments
4040
 * passed in to @....  Otherwise, it unpacks the returned
4041
 * value and returns %TRUE.
4042
 *
4043
 * @format_string determines the C types that are used for unpacking the
4044
 * values and also determines if the values are copied or borrowed, see the
4045
 * section on [GVariant format strings][gvariant-format-strings-pointers].
4046
 *
4047
 * Returns: %TRUE if a value was unpacked
4048
 *
4049
 * Since: 2.40
4050
 **/
4051
gboolean
4052
g_variant_dict_lookup (GVariantDict *dict,
4053
                       const gchar  *key,
4054
                       const gchar  *format_string,
4055
                       ...)
4056
0
{
4057
0
  GVariant *value;
4058
0
  va_list ap;
4059
4060
0
  return_val_if_invalid_dict (dict, FALSE);
4061
0
  g_return_val_if_fail (key != NULL, FALSE);
4062
0
  g_return_val_if_fail (format_string != NULL, FALSE);
4063
4064
0
  value = g_hash_table_lookup (GVSD(dict)->values, key);
4065
4066
0
  if (value == NULL || !g_variant_check_format_string (value, format_string, FALSE))
4067
0
    return FALSE;
4068
4069
0
  va_start (ap, format_string);
4070
0
  g_variant_get_va (value, format_string, NULL, &ap);
4071
0
  va_end (ap);
4072
4073
0
  return TRUE;
4074
0
}
4075
4076
/**
4077
 * g_variant_dict_lookup_value:
4078
 * @dict: a #GVariantDict
4079
 * @key: the key to look up in the dictionary
4080
 * @expected_type: (nullable): a #GVariantType, or %NULL
4081
 *
4082
 * Looks up a value in a #GVariantDict.
4083
 *
4084
 * If @key is not found in @dictionary, %NULL is returned.
4085
 *
4086
 * The @expected_type string specifies what type of value is expected.
4087
 * If the value associated with @key has a different type then %NULL is
4088
 * returned.
4089
 *
4090
 * If the key is found and the value has the correct type, it is
4091
 * returned.  If @expected_type was specified then any non-%NULL return
4092
 * value will have this type.
4093
 *
4094
 * Returns: (transfer full) (nullable): the value of the dictionary key, or %NULL
4095
 *
4096
 * Since: 2.40
4097
 **/
4098
GVariant *
4099
g_variant_dict_lookup_value (GVariantDict       *dict,
4100
                             const gchar        *key,
4101
                             const GVariantType *expected_type)
4102
0
{
4103
0
  GVariant *result;
4104
4105
0
  return_val_if_invalid_dict (dict, NULL);
4106
0
  g_return_val_if_fail (key != NULL, NULL);
4107
4108
0
  result = g_hash_table_lookup (GVSD(dict)->values, key);
4109
4110
0
  if (result && (!expected_type || g_variant_is_of_type (result, expected_type)))
4111
0
    return g_variant_ref (result);
4112
4113
0
  return NULL;
4114
0
}
4115
4116
/**
4117
 * g_variant_dict_contains:
4118
 * @dict: a #GVariantDict
4119
 * @key: the key to look up in the dictionary
4120
 *
4121
 * Checks if @key exists in @dict.
4122
 *
4123
 * Returns: %TRUE if @key is in @dict
4124
 *
4125
 * Since: 2.40
4126
 **/
4127
gboolean
4128
g_variant_dict_contains (GVariantDict *dict,
4129
                         const gchar  *key)
4130
0
{
4131
0
  return_val_if_invalid_dict (dict, FALSE);
4132
0
  g_return_val_if_fail (key != NULL, FALSE);
4133
4134
0
  return g_hash_table_contains (GVSD(dict)->values, key);
4135
0
}
4136
4137
/**
4138
 * g_variant_dict_insert:
4139
 * @dict: a #GVariantDict
4140
 * @key: the key to insert a value for
4141
 * @format_string: a #GVariant varargs format string
4142
 * @...: arguments, as per @format_string
4143
 *
4144
 * Inserts a value into a #GVariantDict.
4145
 *
4146
 * This call is a convenience wrapper that is exactly equivalent to
4147
 * calling g_variant_new() followed by g_variant_dict_insert_value().
4148
 *
4149
 * Since: 2.40
4150
 **/
4151
void
4152
g_variant_dict_insert (GVariantDict *dict,
4153
                       const gchar  *key,
4154
                       const gchar  *format_string,
4155
                       ...)
4156
0
{
4157
0
  va_list ap;
4158
4159
0
  return_if_invalid_dict (dict);
4160
0
  g_return_if_fail (key != NULL);
4161
0
  g_return_if_fail (format_string != NULL);
4162
4163
0
  va_start (ap, format_string);
4164
0
  g_variant_dict_insert_value (dict, key, g_variant_new_va (format_string, NULL, &ap));
4165
0
  va_end (ap);
4166
0
}
4167
4168
/**
4169
 * g_variant_dict_insert_value:
4170
 * @dict: a #GVariantDict
4171
 * @key: the key to insert a value for
4172
 * @value: the value to insert
4173
 *
4174
 * Inserts (or replaces) a key in a #GVariantDict.
4175
 *
4176
 * @value is consumed if it is floating.
4177
 *
4178
 * Since: 2.40
4179
 **/
4180
void
4181
g_variant_dict_insert_value (GVariantDict *dict,
4182
                             const gchar  *key,
4183
                             GVariant     *value)
4184
0
{
4185
0
  return_if_invalid_dict (dict);
4186
0
  g_return_if_fail (key != NULL);
4187
0
  g_return_if_fail (value != NULL);
4188
4189
0
  g_hash_table_insert (GVSD(dict)->values, g_strdup (key), g_variant_ref_sink (value));
4190
0
}
4191
4192
/**
4193
 * g_variant_dict_remove:
4194
 * @dict: a #GVariantDict
4195
 * @key: the key to remove
4196
 *
4197
 * Removes a key and its associated value from a #GVariantDict.
4198
 *
4199
 * Returns: %TRUE if the key was found and removed
4200
 *
4201
 * Since: 2.40
4202
 **/
4203
gboolean
4204
g_variant_dict_remove (GVariantDict *dict,
4205
                       const gchar  *key)
4206
0
{
4207
0
  return_val_if_invalid_dict (dict, FALSE);
4208
0
  g_return_val_if_fail (key != NULL, FALSE);
4209
4210
0
  return g_hash_table_remove (GVSD(dict)->values, key);
4211
0
}
4212
4213
/**
4214
 * g_variant_dict_clear:
4215
 * @dict: a #GVariantDict
4216
 *
4217
 * Releases all memory associated with a #GVariantDict without freeing
4218
 * the #GVariantDict structure itself.
4219
 *
4220
 * It typically only makes sense to do this on a stack-allocated
4221
 * #GVariantDict if you want to abort building the value part-way
4222
 * through.  This function need not be called if you call
4223
 * g_variant_dict_end() and it also doesn't need to be called on dicts
4224
 * allocated with g_variant_dict_new (see g_variant_dict_unref() for
4225
 * that).
4226
 *
4227
 * It is valid to call this function on either an initialised
4228
 * #GVariantDict or one that was previously cleared by an earlier call
4229
 * to g_variant_dict_clear() but it is not valid to call this function
4230
 * on uninitialised memory.
4231
 *
4232
 * Since: 2.40
4233
 **/
4234
void
4235
g_variant_dict_clear (GVariantDict *dict)
4236
0
{
4237
0
  if (GVSD(dict)->magic == 0)
4238
    /* all-zeros case */
4239
0
    return;
4240
4241
0
  return_if_invalid_dict (dict);
4242
4243
0
  g_hash_table_unref (GVSD(dict)->values);
4244
0
  GVSD(dict)->values = NULL;
4245
4246
0
  GVSD(dict)->magic = 0;
4247
0
}
4248
4249
/**
4250
 * g_variant_dict_end:
4251
 * @dict: a #GVariantDict
4252
 *
4253
 * Returns the current value of @dict as a #GVariant of type
4254
 * %G_VARIANT_TYPE_VARDICT, clearing it in the process.
4255
 *
4256
 * It is not permissible to use @dict in any way after this call except
4257
 * for reference counting operations (in the case of a heap-allocated
4258
 * #GVariantDict) or by reinitialising it with g_variant_dict_init() (in
4259
 * the case of stack-allocated).
4260
 *
4261
 * Returns: (transfer none): a new, floating, #GVariant
4262
 *
4263
 * Since: 2.40
4264
 **/
4265
GVariant *
4266
g_variant_dict_end (GVariantDict *dict)
4267
0
{
4268
0
  GVariantBuilder builder;
4269
0
  GHashTableIter iter;
4270
0
  gpointer key, value;
4271
4272
0
  return_val_if_invalid_dict (dict, NULL);
4273
4274
0
  g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
4275
4276
0
  g_hash_table_iter_init (&iter, GVSD(dict)->values);
4277
0
  while (g_hash_table_iter_next (&iter, &key, &value))
4278
0
    g_variant_builder_add (&builder, "{sv}", (const gchar *) key, (GVariant *) value);
4279
4280
0
  g_variant_dict_clear (dict);
4281
4282
0
  return g_variant_builder_end (&builder);
4283
0
}
4284
4285
/**
4286
 * g_variant_dict_ref:
4287
 * @dict: a heap-allocated #GVariantDict
4288
 *
4289
 * Increases the reference count on @dict.
4290
 *
4291
 * Don't call this on stack-allocated #GVariantDict instances or bad
4292
 * things will happen.
4293
 *
4294
 * Returns: (transfer full): a new reference to @dict
4295
 *
4296
 * Since: 2.40
4297
 **/
4298
GVariantDict *
4299
g_variant_dict_ref (GVariantDict *dict)
4300
0
{
4301
0
  g_return_val_if_fail (is_valid_heap_dict (dict), NULL);
4302
4303
0
  GVHD(dict)->ref_count++;
4304
4305
0
  return dict;
4306
0
}
4307
4308
/**
4309
 * g_variant_dict_unref:
4310
 * @dict: (transfer full): a heap-allocated #GVariantDict
4311
 *
4312
 * Decreases the reference count on @dict.
4313
 *
4314
 * In the event that there are no more references, releases all memory
4315
 * associated with the #GVariantDict.
4316
 *
4317
 * Don't call this on stack-allocated #GVariantDict instances or bad
4318
 * things will happen.
4319
 *
4320
 * Since: 2.40
4321
 **/
4322
void
4323
g_variant_dict_unref (GVariantDict *dict)
4324
0
{
4325
0
  g_return_if_fail (is_valid_heap_dict (dict));
4326
4327
0
  if (--GVHD(dict)->ref_count == 0)
4328
0
    {
4329
0
      g_variant_dict_clear (dict);
4330
0
      g_slice_free (struct heap_dict, (struct heap_dict *) dict);
4331
0
    }
4332
0
}
4333
4334
4335
/* Format strings {{{1 */
4336
/*< private >
4337
 * g_variant_format_string_scan:
4338
 * @string: a string that may be prefixed with a format string
4339
 * @limit: (nullable) (default NULL): a pointer to the end of @string,
4340
 *         or %NULL
4341
 * @endptr: (nullable) (default NULL): location to store the end pointer,
4342
 *          or %NULL
4343
 *
4344
 * Checks the string pointed to by @string for starting with a properly
4345
 * formed #GVariant varargs format string.  If no valid format string is
4346
 * found then %FALSE is returned.
4347
 *
4348
 * If @string does start with a valid format string then %TRUE is
4349
 * returned.  If @endptr is non-%NULL then it is updated to point to the
4350
 * first character after the format string.
4351
 *
4352
 * If @limit is non-%NULL then @limit (and any character after it) will
4353
 * not be accessed and the effect is otherwise equivalent to if the
4354
 * character at @limit were nul.
4355
 *
4356
 * See the section on [GVariant format strings][gvariant-format-strings].
4357
 *
4358
 * Returns: %TRUE if there was a valid format string
4359
 *
4360
 * Since: 2.24
4361
 */
4362
gboolean
4363
g_variant_format_string_scan (const gchar  *string,
4364
                              const gchar  *limit,
4365
                              const gchar **endptr)
4366
0
{
4367
0
#define next_char() (string == limit ? '\0' : *(string++))
4368
0
#define peek_char() (string == limit ? '\0' : *string)
4369
0
  char c;
4370
4371
0
  switch (next_char())
4372
0
    {
4373
0
    case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
4374
0
    case 'x': case 't': case 'h': case 'd': case 's': case 'o':
4375
0
    case 'g': case 'v': case '*': case '?': case 'r':
4376
0
      break;
4377
4378
0
    case 'm':
4379
0
      return g_variant_format_string_scan (string, limit, endptr);
4380
4381
0
    case 'a':
4382
0
    case '@':
4383
0
      return g_variant_type_string_scan (string, limit, endptr);
4384
4385
0
    case '(':
4386
0
      while (peek_char() != ')')
4387
0
        if (!g_variant_format_string_scan (string, limit, &string))
4388
0
          return FALSE;
4389
4390
0
      next_char(); /* consume ')' */
4391
0
      break;
4392
4393
0
    case '{':
4394
0
      c = next_char();
4395
4396
0
      if (c == '&')
4397
0
        {
4398
0
          c = next_char ();
4399
4400
0
          if (c != 's' && c != 'o' && c != 'g')
4401
0
            return FALSE;
4402
0
        }
4403
0
      else
4404
0
        {
4405
0
          if (c == '@')
4406
0
            c = next_char ();
4407
4408
          /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
4409
           *    The terminating null character is considered to be
4410
           *    part of the string.
4411
           */
4412
0
          if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
4413
0
            return FALSE;
4414
0
        }
4415
4416
0
      if (!g_variant_format_string_scan (string, limit, &string))
4417
0
        return FALSE;
4418
4419
0
      if (next_char() != '}')
4420
0
        return FALSE;
4421
4422
0
      break;
4423
4424
0
    case '^':
4425
0
      if ((c = next_char()) == 'a')
4426
0
        {
4427
0
          if ((c = next_char()) == '&')
4428
0
            {
4429
0
              if ((c = next_char()) == 'a')
4430
0
                {
4431
0
                  if ((c = next_char()) == 'y')
4432
0
                    break;      /* '^a&ay' */
4433
0
                }
4434
4435
0
              else if (c == 's' || c == 'o')
4436
0
                break;          /* '^a&s', '^a&o' */
4437
0
            }
4438
4439
0
          else if (c == 'a')
4440
0
            {
4441
0
              if ((c = next_char()) == 'y')
4442
0
                break;          /* '^aay' */
4443
0
            }
4444
4445
0
          else if (c == 's' || c == 'o')
4446
0
            break;              /* '^as', '^ao' */
4447
4448
0
          else if (c == 'y')
4449
0
            break;              /* '^ay' */
4450
0
        }
4451
0
      else if (c == '&')
4452
0
        {
4453
0
          if ((c = next_char()) == 'a')
4454
0
            {
4455
0
              if ((c = next_char()) == 'y')
4456
0
                break;          /* '^&ay' */
4457
0
            }
4458
0
        }
4459
4460
0
      return FALSE;
4461
4462
0
    case '&':
4463
0
      c = next_char();
4464
4465
0
      if (c != 's' && c != 'o' && c != 'g')
4466
0
        return FALSE;
4467
4468
0
      break;
4469
4470
0
    default:
4471
0
      return FALSE;
4472
0
    }
4473
4474
0
  if (endptr != NULL)
4475
0
    *endptr = string;
4476
4477
0
#undef next_char
4478
0
#undef peek_char
4479
4480
0
  return TRUE;
4481
0
}
4482
4483
/**
4484
 * g_variant_check_format_string:
4485
 * @value: a #GVariant
4486
 * @format_string: a valid #GVariant format string
4487
 * @copy_only: %TRUE to ensure the format string makes deep copies
4488
 *
4489
 * Checks if calling g_variant_get() with @format_string on @value would
4490
 * be valid from a type-compatibility standpoint.  @format_string is
4491
 * assumed to be a valid format string (from a syntactic standpoint).
4492
 *
4493
 * If @copy_only is %TRUE then this function additionally checks that it
4494
 * would be safe to call g_variant_unref() on @value immediately after
4495
 * the call to g_variant_get() without invalidating the result.  This is
4496
 * only possible if deep copies are made (ie: there are no pointers to
4497
 * the data inside of the soon-to-be-freed #GVariant instance).  If this
4498
 * check fails then a g_critical() is printed and %FALSE is returned.
4499
 *
4500
 * This function is meant to be used by functions that wish to provide
4501
 * varargs accessors to #GVariant values of uncertain values (eg:
4502
 * g_variant_lookup() or g_menu_model_get_item_attribute()).
4503
 *
4504
 * Returns: %TRUE if @format_string is safe to use
4505
 *
4506
 * Since: 2.34
4507
 */
4508
gboolean
4509
g_variant_check_format_string (GVariant    *value,
4510
                               const gchar *format_string,
4511
                               gboolean     copy_only)
4512
0
{
4513
0
  const gchar *original_format = format_string;
4514
0
  const gchar *type_string;
4515
4516
  /* Interesting factoid: assuming a format string is valid, it can be
4517
   * converted to a type string by removing all '@' '&' and '^'
4518
   * characters.
4519
   *
4520
   * Instead of doing that, we can just skip those characters when
4521
   * comparing it to the type string of @value.
4522
   *
4523
   * For the copy-only case we can just drop the '&' from the list of
4524
   * characters to skip over.  A '&' will never appear in a type string
4525
   * so we know that it won't be possible to return %TRUE if it is in a
4526
   * format string.
4527
   */
4528
0
  type_string = g_variant_get_type_string (value);
4529
4530
0
  while (*type_string || *format_string)
4531
0
    {
4532
0
      gchar format = *format_string++;
4533
4534
0
      switch (format)
4535
0
        {
4536
0
        case '&':
4537
0
          if G_UNLIKELY (copy_only)
4538
0
            {
4539
              /* for the love of all that is good, please don't mark this string for translation... */
4540
0
              g_critical ("g_variant_check_format_string() is being called by a function with a GVariant varargs "
4541
0
                          "interface to validate the passed format string for type safety.  The passed format "
4542
0
                          "(%s) contains a '&' character which would result in a pointer being returned to the "
4543
0
                          "data inside of a GVariant instance that may no longer exist by the time the function "
4544
0
                          "returns.  Modify your code to use a format string without '&'.", original_format);
4545
0
              return FALSE;
4546
0
            }
4547
4548
0
          G_GNUC_FALLTHROUGH;
4549
0
        case '^':
4550
0
        case '@':
4551
          /* ignore these 2 (or 3) */
4552
0
          continue;
4553
4554
0
        case '?':
4555
          /* attempt to consume one of 'bynqiuxthdsog' */
4556
0
          {
4557
0
            char s = *type_string++;
4558
4559
0
            if (s == '\0' || strchr ("bynqiuxthdsog", s) == NULL)
4560
0
              return FALSE;
4561
0
          }
4562
0
          continue;
4563
4564
0
        case 'r':
4565
          /* ensure it's a tuple */
4566
0
          if (*type_string != '(')
4567
0
            return FALSE;
4568
4569
0
          G_GNUC_FALLTHROUGH;
4570
0
        case '*':
4571
          /* consume a full type string for the '*' or 'r' */
4572
0
          if (!g_variant_type_string_scan (type_string, NULL, &type_string))
4573
0
            return FALSE;
4574
4575
0
          continue;
4576
4577
0
        default:
4578
          /* attempt to consume exactly one character equal to the format */
4579
0
          if (format != *type_string++)
4580
0
            return FALSE;
4581
0
        }
4582
0
    }
4583
4584
0
  return TRUE;
4585
0
}
4586
4587
/*< private >
4588
 * g_variant_format_string_scan_type:
4589
 * @string: a string that may be prefixed with a format string
4590
 * @limit: (nullable) (default NULL): a pointer to the end of @string,
4591
 *         or %NULL
4592
 * @endptr: (nullable) (default NULL): location to store the end pointer,
4593
 *          or %NULL
4594
 *
4595
 * If @string starts with a valid format string then this function will
4596
 * return the type that the format string corresponds to.  Otherwise
4597
 * this function returns %NULL.
4598
 *
4599
 * Use g_variant_type_free() to free the return value when you no longer
4600
 * need it.
4601
 *
4602
 * This function is otherwise exactly like
4603
 * g_variant_format_string_scan().
4604
 *
4605
 * Returns: (nullable): a #GVariantType if there was a valid format string
4606
 *
4607
 * Since: 2.24
4608
 */
4609
GVariantType *
4610
g_variant_format_string_scan_type (const gchar  *string,
4611
                                   const gchar  *limit,
4612
                                   const gchar **endptr)
4613
0
{
4614
0
  const gchar *my_end;
4615
0
  gchar *dest;
4616
0
  gchar *new;
4617
4618
0
  if (endptr == NULL)
4619
0
    endptr = &my_end;
4620
4621
0
  if (!g_variant_format_string_scan (string, limit, endptr))
4622
0
    return NULL;
4623
4624
0
  dest = new = g_malloc (*endptr - string + 1);
4625
0
  while (string != *endptr)
4626
0
    {
4627
0
      if (*string != '@' && *string != '&' && *string != '^')
4628
0
        *dest++ = *string;
4629
0
      string++;
4630
0
    }
4631
0
  *dest = '\0';
4632
4633
0
  return (GVariantType *) G_VARIANT_TYPE (new);
4634
0
}
4635
4636
static gboolean
4637
valid_format_string (const gchar *format_string,
4638
                     gboolean     single,
4639
                     GVariant    *value)
4640
0
{
4641
0
  const gchar *endptr;
4642
0
  GVariantType *type;
4643
4644
0
  type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
4645
4646
0
  if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
4647
0
    {
4648
0
      if (single)
4649
0
        g_critical ("'%s' is not a valid GVariant format string",
4650
0
                    format_string);
4651
0
      else
4652
0
        g_critical ("'%s' does not have a valid GVariant format "
4653
0
                    "string as a prefix", format_string);
4654
4655
0
      if (type != NULL)
4656
0
        g_variant_type_free (type);
4657
4658
0
      return FALSE;
4659
0
    }
4660
4661
0
  if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
4662
0
    {
4663
0
      gchar *fragment;
4664
0
      gchar *typestr;
4665
4666
0
      fragment = g_strndup (format_string, endptr - format_string);
4667
0
      typestr = g_variant_type_dup_string (type);
4668
4669
0
      g_critical ("the GVariant format string '%s' has a type of "
4670
0
                  "'%s' but the given value has a type of '%s'",
4671
0
                  fragment, typestr, g_variant_get_type_string (value));
4672
4673
0
      g_variant_type_free (type);
4674
0
      g_free (fragment);
4675
0
      g_free (typestr);
4676
4677
0
      return FALSE;
4678
0
    }
4679
4680
0
  g_variant_type_free (type);
4681
4682
0
  return TRUE;
4683
0
}
4684
4685
/* Variable Arguments {{{1 */
4686
/* We consider 2 main classes of format strings:
4687
 *
4688
 *   - recursive format strings
4689
 *      these are ones that result in recursion and the collection of
4690
 *      possibly more than one argument.  Maybe types, tuples,
4691
 *      dictionary entries.
4692
 *
4693
 *   - leaf format string
4694
 *      these result in the collection of a single argument.
4695
 *
4696
 * Leaf format strings are further subdivided into two categories:
4697
 *
4698
 *   - single non-null pointer ("nnp")
4699
 *      these either collect or return a single non-null pointer.
4700
 *
4701
 *   - other
4702
 *      these collect or return something else (bool, number, etc).
4703
 *
4704
 * Based on the above, the varargs handling code is split into 4 main parts:
4705
 *
4706
 *   - nnp handling code
4707
 *   - leaf handling code (which may invoke nnp code)
4708
 *   - generic handling code (may be recursive, may invoke leaf code)
4709
 *   - user-facing API (which invokes the generic code)
4710
 *
4711
 * Each section implements some of the following functions:
4712
 *
4713
 *   - skip:
4714
 *      collect the arguments for the format string as if
4715
 *      g_variant_new() had been called, but do nothing with them.  used
4716
 *      for skipping over arguments when constructing a Nothing maybe
4717
 *      type.
4718
 *
4719
 *   - new:
4720
 *      create a GVariant *
4721
 *
4722
 *   - get:
4723
 *      unpack a GVariant *
4724
 *
4725
 *   - free (nnp only):
4726
 *      free a previously allocated item
4727
 */
4728
4729
static gboolean
4730
g_variant_format_string_is_leaf (const gchar *str)
4731
0
{
4732
0
  return str[0] != 'm' && str[0] != '(' && str[0] != '{';
4733
0
}
4734
4735
static gboolean
4736
g_variant_format_string_is_nnp (const gchar *str)
4737
0
{
4738
0
  return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
4739
0
         str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
4740
0
         str[0] == 'r' || str[0] == 'v' || str[0] == '&';
4741
0
}
4742
4743
/* Single non-null pointer ("nnp") {{{2 */
4744
static void
4745
g_variant_valist_free_nnp (const gchar *str,
4746
                           gpointer     ptr)
4747
0
{
4748
0
  switch (*str)
4749
0
    {
4750
0
    case 'a':
4751
0
      g_variant_iter_free (ptr);
4752
0
      break;
4753
4754
0
    case '^':
4755
0
      if (g_str_has_suffix (str, "y"))
4756
0
        {
4757
0
          if (str[2] != 'a') /* '^a&ay', '^ay' */
4758
0
            g_free (ptr);
4759
0
          else if (str[1] == 'a') /* '^aay' */
4760
0
            g_strfreev (ptr);
4761
0
          break; /* '^&ay' */
4762
0
        }
4763
0
      else if (str[2] != '&') /* '^as', '^ao' */
4764
0
        g_strfreev (ptr);
4765
0
      else                      /* '^a&s', '^a&o' */
4766
0
        g_free (ptr);
4767
0
      break;
4768
4769
0
    case 's':
4770
0
    case 'o':
4771
0
    case 'g':
4772
0
      g_free (ptr);
4773
0
      break;
4774
4775
0
    case '@':
4776
0
    case '*':
4777
0
    case '?':
4778
0
    case 'v':
4779
0
      g_variant_unref (ptr);
4780
0
      break;
4781
4782
0
    case '&':
4783
0
      break;
4784
4785
0
    default:
4786
0
      g_assert_not_reached ();
4787
0
    }
4788
0
}
4789
4790
static gchar
4791
g_variant_scan_convenience (const gchar **str,
4792
                            gboolean     *constant,
4793
                            guint        *arrays)
4794
0
{
4795
0
  *constant = FALSE;
4796
0
  *arrays = 0;
4797
4798
0
  for (;;)
4799
0
    {
4800
0
      char c = *(*str)++;
4801
4802
0
      if (c == '&')
4803
0
        *constant = TRUE;
4804
4805
0
      else if (c == 'a')
4806
0
        (*arrays)++;
4807
4808
0
      else
4809
0
        return c;
4810
0
    }
4811
0
}
4812
4813
static GVariant *
4814
g_variant_valist_new_nnp (const gchar **str,
4815
                          gpointer      ptr)
4816
0
{
4817
0
  if (**str == '&')
4818
0
    (*str)++;
4819
4820
0
  switch (*(*str)++)
4821
0
    {
4822
0
    case 'a':
4823
0
      if (ptr != NULL)
4824
0
        {
4825
0
          const GVariantType *type;
4826
0
          GVariant *value;
4827
4828
0
          value = g_variant_builder_end (ptr);
4829
0
          type = g_variant_get_type (value);
4830
4831
0
          if G_UNLIKELY (!g_variant_type_is_array (type))
4832
0
            g_error ("g_variant_new: expected array GVariantBuilder but "
4833
0
                     "the built value has type '%s'",
4834
0
                     g_variant_get_type_string (value));
4835
4836
0
          type = g_variant_type_element (type);
4837
4838
0
          if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
4839
0
            {
4840
0
              gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4841
0
              g_error ("g_variant_new: expected GVariantBuilder array element "
4842
0
                       "type '%s' but the built value has element type '%s'",
4843
0
                       type_string, g_variant_get_type_string (value) + 1);
4844
0
              g_free (type_string);
4845
0
            }
4846
4847
0
          g_variant_type_string_scan (*str, NULL, str);
4848
4849
0
          return value;
4850
0
        }
4851
0
      else
4852
4853
        /* special case: NULL pointer for empty array */
4854
0
        {
4855
0
          const GVariantType *type = (GVariantType *) *str;
4856
4857
0
          g_variant_type_string_scan (*str, NULL, str);
4858
4859
0
          if G_UNLIKELY (!g_variant_type_is_definite (type))
4860
0
            g_error ("g_variant_new: NULL pointer given with indefinite "
4861
0
                     "array type; unable to determine which type of empty "
4862
0
                     "array to construct.");
4863
4864
0
          return g_variant_new_array (type, NULL, 0);
4865
0
        }
4866
4867
0
    case 's':
4868
0
      {
4869
0
        GVariant *value;
4870
4871
0
        value = g_variant_new_string (ptr);
4872
4873
0
        if (value == NULL)
4874
0
          value = g_variant_new_string ("[Invalid UTF-8]");
4875
4876
0
        return value;
4877
0
      }
4878
4879
0
    case 'o':
4880
0
      return g_variant_new_object_path (ptr);
4881
4882
0
    case 'g':
4883
0
      return g_variant_new_signature (ptr);
4884
4885
0
    case '^':
4886
0
      {
4887
0
        gboolean constant;
4888
0
        guint arrays;
4889
0
        gchar type;
4890
4891
0
        type = g_variant_scan_convenience (str, &constant, &arrays);
4892
4893
0
        if (type == 's')
4894
0
          return g_variant_new_strv (ptr, -1);
4895
4896
0
        if (type == 'o')
4897
0
          return g_variant_new_objv (ptr, -1);
4898
4899
0
        if (arrays > 1)
4900
0
          return g_variant_new_bytestring_array (ptr, -1);
4901
4902
0
        return g_variant_new_bytestring (ptr);
4903
0
      }
4904
4905
0
    case '@':
4906
0
      if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
4907
0
        {
4908
0
          gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4909
0
          g_error ("g_variant_new: expected GVariant of type '%s' but "
4910
0
                   "received value has type '%s'",
4911
0
                   type_string, g_variant_get_type_string (ptr));
4912
0
          g_free (type_string);
4913
0
        }
4914
4915
0
      g_variant_type_string_scan (*str, NULL, str);
4916
4917
0
      return ptr;
4918
4919
0
    case '*':
4920
0
      return ptr;
4921
4922
0
    case '?':
4923
0
      if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
4924
0
        g_error ("g_variant_new: format string '?' expects basic-typed "
4925
0
                 "GVariant, but received value has type '%s'",
4926
0
                 g_variant_get_type_string (ptr));
4927
4928
0
      return ptr;
4929
4930
0
    case 'r':
4931
0
      if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
4932
0
        g_error ("g_variant_new: format string 'r' expects tuple-typed "
4933
0
                 "GVariant, but received value has type '%s'",
4934
0
                 g_variant_get_type_string (ptr));
4935
4936
0
      return ptr;
4937
4938
0
    case 'v':
4939
0
      return g_variant_new_variant (ptr);
4940
4941
0
    default:
4942
0
      g_assert_not_reached ();
4943
0
    }
4944
0
}
4945
4946
static gpointer
4947
g_variant_valist_get_nnp (const gchar **str,
4948
                          GVariant     *value)
4949
0
{
4950
0
  switch (*(*str)++)
4951
0
    {
4952
0
    case 'a':
4953
0
      g_variant_type_string_scan (*str, NULL, str);
4954
0
      return g_variant_iter_new (value);
4955
4956
0
    case '&':
4957
0
      (*str)++;
4958
0
      return (gchar *) g_variant_get_string (value, NULL);
4959
4960
0
    case 's':
4961
0
    case 'o':
4962
0
    case 'g':
4963
0
      return g_variant_dup_string (value, NULL);
4964
4965
0
    case '^':
4966
0
      {
4967
0
        gboolean constant;
4968
0
        guint arrays;
4969
0
        gchar type;
4970
4971
0
        type = g_variant_scan_convenience (str, &constant, &arrays);
4972
4973
0
        if (type == 's')
4974
0
          {
4975
0
            if (constant)
4976
0
              return g_variant_get_strv (value, NULL);
4977
0
            else
4978
0
              return g_variant_dup_strv (value, NULL);
4979
0
          }
4980
4981
0
        else if (type == 'o')
4982
0
          {
4983
0
            if (constant)
4984
0
              return g_variant_get_objv (value, NULL);
4985
0
            else
4986
0
              return g_variant_dup_objv (value, NULL);
4987
0
          }
4988
4989
0
        else if (arrays > 1)
4990
0
          {
4991
0
            if (constant)
4992
0
              return g_variant_get_bytestring_array (value, NULL);
4993
0
            else
4994
0
              return g_variant_dup_bytestring_array (value, NULL);
4995
0
          }
4996
4997
0
        else
4998
0
          {
4999
0
            if (constant)
5000
0
              return (gchar *) g_variant_get_bytestring (value);
5001
0
            else
5002
0
              return g_variant_dup_bytestring (value, NULL);
5003
0
          }
5004
0
      }
5005
5006
0
    case '@':
5007
0
      g_variant_type_string_scan (*str, NULL, str);
5008
0
      G_GNUC_FALLTHROUGH;
5009
5010
0
    case '*':
5011
0
    case '?':
5012
0
    case 'r':
5013
0
      return g_variant_ref (value);
5014
5015
0
    case 'v':
5016
0
      return g_variant_get_variant (value);
5017
5018
0
    default:
5019
0
      g_assert_not_reached ();
5020
0
    }
5021
0
}
5022
5023
/* Leaves {{{2 */
5024
static void
5025
g_variant_valist_skip_leaf (const gchar **str,
5026
                            va_list      *app)
5027
0
{
5028
0
  if (g_variant_format_string_is_nnp (*str))
5029
0
    {
5030
0
      g_variant_format_string_scan (*str, NULL, str);
5031
0
      va_arg (*app, gpointer);
5032
0
      return;
5033
0
    }
5034
5035
0
  switch (*(*str)++)
5036
0
    {
5037
0
    case 'b':
5038
0
    case 'y':
5039
0
    case 'n':
5040
0
    case 'q':
5041
0
    case 'i':
5042
0
    case 'u':
5043
0
    case 'h':
5044
0
      va_arg (*app, int);
5045
0
      return;
5046
5047
0
    case 'x':
5048
0
    case 't':
5049
0
      va_arg (*app, guint64);
5050
0
      return;
5051
5052
0
    case 'd':
5053
0
      va_arg (*app, gdouble);
5054
0
      return;
5055
5056
0
    default:
5057
0
      g_assert_not_reached ();
5058
0
    }
5059
0
}
5060
5061
static GVariant *
5062
g_variant_valist_new_leaf (const gchar **str,
5063
                           va_list      *app)
5064
0
{
5065
0
  if (g_variant_format_string_is_nnp (*str))
5066
0
    return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
5067
5068
0
  switch (*(*str)++)
5069
0
    {
5070
0
    case 'b':
5071
0
      return g_variant_new_boolean (va_arg (*app, gboolean));
5072
5073
0
    case 'y':
5074
0
      return g_variant_new_byte (va_arg (*app, guint));
5075
5076
0
    case 'n':
5077
0
      return g_variant_new_int16 (va_arg (*app, gint));
5078
5079
0
    case 'q':
5080
0
      return g_variant_new_uint16 (va_arg (*app, guint));
5081
5082
0
    case 'i':
5083
0
      return g_variant_new_int32 (va_arg (*app, gint));
5084
5085
0
    case 'u':
5086
0
      return g_variant_new_uint32 (va_arg (*app, guint));
5087
5088
0
    case 'x':
5089
0
      return g_variant_new_int64 (va_arg (*app, gint64));
5090
5091
0
    case 't':
5092
0
      return g_variant_new_uint64 (va_arg (*app, guint64));
5093
5094
0
    case 'h':
5095
0
      return g_variant_new_handle (va_arg (*app, gint));
5096
5097
0
    case 'd':
5098
0
      return g_variant_new_double (va_arg (*app, gdouble));
5099
5100
0
    default:
5101
0
      g_assert_not_reached ();
5102
0
    }
5103
0
}
5104
5105
/* The code below assumes this */
5106
G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
5107
G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
5108
5109
static void
5110
g_variant_valist_get_leaf (const gchar **str,
5111
                           GVariant     *value,
5112
                           gboolean      free,
5113
                           va_list      *app)
5114
0
{
5115
0
  gpointer ptr = va_arg (*app, gpointer);
5116
5117
0
  if (ptr == NULL)
5118
0
    {
5119
0
      g_variant_format_string_scan (*str, NULL, str);
5120
0
      return;
5121
0
    }
5122
5123
0
  if (g_variant_format_string_is_nnp (*str))
5124
0
    {
5125
0
      gpointer *nnp = (gpointer *) ptr;
5126
5127
0
      if (free && *nnp != NULL)
5128
0
        g_variant_valist_free_nnp (*str, *nnp);
5129
5130
0
      *nnp = NULL;
5131
5132
0
      if (value != NULL)
5133
0
        *nnp = g_variant_valist_get_nnp (str, value);
5134
0
      else
5135
0
        g_variant_format_string_scan (*str, NULL, str);
5136
5137
0
      return;
5138
0
    }
5139
5140
0
  if (value != NULL)
5141
0
    {
5142
0
      switch (*(*str)++)
5143
0
        {
5144
0
        case 'b':
5145
0
          *(gboolean *) ptr = g_variant_get_boolean (value);
5146
0
          return;
5147
5148
0
        case 'y':
5149
0
          *(guint8 *) ptr = g_variant_get_byte (value);
5150
0
          return;
5151
5152
0
        case 'n':
5153
0
          *(gint16 *) ptr = g_variant_get_int16 (value);
5154
0
          return;
5155
5156
0
        case 'q':
5157
0
          *(guint16 *) ptr = g_variant_get_uint16 (value);
5158
0
          return;
5159
5160
0
        case 'i':
5161
0
          *(gint32 *) ptr = g_variant_get_int32 (value);
5162
0
          return;
5163
5164
0
        case 'u':
5165
0
          *(guint32 *) ptr = g_variant_get_uint32 (value);
5166
0
          return;
5167
5168
0
        case 'x':
5169
0
          *(gint64 *) ptr = g_variant_get_int64 (value);
5170
0
          return;
5171
5172
0
        case 't':
5173
0
          *(guint64 *) ptr = g_variant_get_uint64 (value);
5174
0
          return;
5175
5176
0
        case 'h':
5177
0
          *(gint32 *) ptr = g_variant_get_handle (value);
5178
0
          return;
5179
5180
0
        case 'd':
5181
0
          *(gdouble *) ptr = g_variant_get_double (value);
5182
0
          return;
5183
0
        }
5184
0
    }
5185
0
  else
5186
0
    {
5187
0
      switch (*(*str)++)
5188
0
        {
5189
0
        case 'y':
5190
0
          *(guint8 *) ptr = 0;
5191
0
          return;
5192
5193
0
        case 'n':
5194
0
        case 'q':
5195
0
          *(guint16 *) ptr = 0;
5196
0
          return;
5197
5198
0
        case 'i':
5199
0
        case 'u':
5200
0
        case 'h':
5201
0
        case 'b':
5202
0
          *(guint32 *) ptr = 0;
5203
0
          return;
5204
5205
0
        case 'x':
5206
0
        case 't':
5207
0
        case 'd':
5208
0
          *(guint64 *) ptr = 0;
5209
0
          return;
5210
0
        }
5211
0
    }
5212
5213
0
  g_assert_not_reached ();
5214
0
}
5215
5216
/* Generic (recursive) {{{2 */
5217
static void
5218
g_variant_valist_skip (const gchar **str,
5219
                       va_list      *app)
5220
0
{
5221
0
  if (g_variant_format_string_is_leaf (*str))
5222
0
    g_variant_valist_skip_leaf (str, app);
5223
5224
0
  else if (**str == 'm') /* maybe */
5225
0
    {
5226
0
      (*str)++;
5227
5228
0
      if (!g_variant_format_string_is_nnp (*str))
5229
0
        va_arg (*app, gboolean);
5230
5231
0
      g_variant_valist_skip (str, app);
5232
0
    }
5233
0
  else /* tuple, dictionary entry */
5234
0
    {
5235
0
      g_assert (**str == '(' || **str == '{');
5236
0
      (*str)++;
5237
0
      while (**str != ')' && **str != '}')
5238
0
        g_variant_valist_skip (str, app);
5239
0
      (*str)++;
5240
0
    }
5241
0
}
5242
5243
static GVariant *
5244
g_variant_valist_new (const gchar **str,
5245
                      va_list      *app)
5246
0
{
5247
0
  if (g_variant_format_string_is_leaf (*str))
5248
0
    return g_variant_valist_new_leaf (str, app);
5249
5250
0
  if (**str == 'm') /* maybe */
5251
0
    {
5252
0
      GVariantType *type = NULL;
5253
0
      GVariant *value = NULL;
5254
5255
0
      (*str)++;
5256
5257
0
      if (g_variant_format_string_is_nnp (*str))
5258
0
        {
5259
0
          gpointer nnp = va_arg (*app, gpointer);
5260
5261
0
          if (nnp != NULL)
5262
0
            value = g_variant_valist_new_nnp (str, nnp);
5263
0
          else
5264
0
            type = g_variant_format_string_scan_type (*str, NULL, str);
5265
0
        }
5266
0
      else
5267
0
        {
5268
0
          gboolean just = va_arg (*app, gboolean);
5269
5270
0
          if (just)
5271
0
            value = g_variant_valist_new (str, app);
5272
0
          else
5273
0
            {
5274
0
              type = g_variant_format_string_scan_type (*str, NULL, NULL);
5275
0
              g_variant_valist_skip (str, app);
5276
0
            }
5277
0
        }
5278
5279
0
      value = g_variant_new_maybe (type, value);
5280
5281
0
      if (type != NULL)
5282
0
        g_variant_type_free (type);
5283
5284
0
      return value;
5285
0
    }
5286
0
  else /* tuple, dictionary entry */
5287
0
    {
5288
0
      GVariantBuilder b;
5289
5290
0
      if (**str == '(')
5291
0
        g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
5292
0
      else
5293
0
        {
5294
0
          g_assert (**str == '{');
5295
0
          g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
5296
0
        }
5297
5298
0
      (*str)++; /* '(' */
5299
0
      while (**str != ')' && **str != '}')
5300
0
        g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
5301
0
      (*str)++; /* ')' */
5302
5303
0
      return g_variant_builder_end (&b);
5304
0
    }
5305
0
}
5306
5307
static void
5308
g_variant_valist_get (const gchar **str,
5309
                      GVariant     *value,
5310
                      gboolean      free,
5311
                      va_list      *app)
5312
0
{
5313
0
  if (g_variant_format_string_is_leaf (*str))
5314
0
    g_variant_valist_get_leaf (str, value, free, app);
5315
5316
0
  else if (**str == 'm')
5317
0
    {
5318
0
      (*str)++;
5319
5320
0
      if (value != NULL)
5321
0
        value = g_variant_get_maybe (value);
5322
5323
0
      if (!g_variant_format_string_is_nnp (*str))
5324
0
        {
5325
0
          gboolean *ptr = va_arg (*app, gboolean *);
5326
5327
0
          if (ptr != NULL)
5328
0
            *ptr = value != NULL;
5329
0
        }
5330
5331
0
      g_variant_valist_get (str, value, free, app);
5332
5333
0
      if (value != NULL)
5334
0
        g_variant_unref (value);
5335
0
    }
5336
5337
0
  else /* tuple, dictionary entry */
5338
0
    {
5339
0
      gint index = 0;
5340
5341
0
      g_assert (**str == '(' || **str == '{');
5342
5343
0
      (*str)++;
5344
0
      while (**str != ')' && **str != '}')
5345
0
        {
5346
0
          if (value != NULL)
5347
0
            {
5348
0
              GVariant *child = g_variant_get_child_value (value, index++);
5349
0
              g_variant_valist_get (str, child, free, app);
5350
0
              g_variant_unref (child);
5351
0
            }
5352
0
          else
5353
0
            g_variant_valist_get (str, NULL, free, app);
5354
0
        }
5355
0
      (*str)++;
5356
0
    }
5357
0
}
5358
5359
/* User-facing API {{{2 */
5360
/**
5361
 * g_variant_new: (skip)
5362
 * @format_string: a #GVariant format string
5363
 * @...: arguments, as per @format_string
5364
 *
5365
 * Creates a new #GVariant instance.
5366
 *
5367
 * Think of this function as an analogue to g_strdup_printf().
5368
 *
5369
 * The type of the created instance and the arguments that are expected
5370
 * by this function are determined by @format_string. See the section on
5371
 * [GVariant format strings][gvariant-format-strings]. Please note that
5372
 * the syntax of the format string is very likely to be extended in the
5373
 * future.
5374
 *
5375
 * The first character of the format string must not be '*' '?' '@' or
5376
 * 'r'; in essence, a new #GVariant must always be constructed by this
5377
 * function (and not merely passed through it unmodified).
5378
 *
5379
 * Note that the arguments must be of the correct width for their types
5380
 * specified in @format_string. This can be achieved by casting them. See
5381
 * the [GVariant varargs documentation][gvariant-varargs].
5382
 *
5383
 * |[<!-- language="C" -->
5384
 * MyFlags some_flags = FLAG_ONE | FLAG_TWO;
5385
 * const gchar *some_strings[] = { "a", "b", "c", NULL };
5386
 * GVariant *new_variant;
5387
 *
5388
 * new_variant = g_variant_new ("(t^as)",
5389
 *                              // This cast is required.
5390
 *                              (guint64) some_flags,
5391
 *                              some_strings);
5392
 * ]|
5393
 *
5394
 * Returns: a new floating #GVariant instance
5395
 *
5396
 * Since: 2.24
5397
 **/
5398
GVariant *
5399
g_variant_new (const gchar *format_string,
5400
               ...)
5401
0
{
5402
0
  GVariant *value;
5403
0
  va_list ap;
5404
5405
0
  g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
5406
0
                        format_string[0] != '?' && format_string[0] != '@' &&
5407
0
                        format_string[0] != '*' && format_string[0] != 'r',
5408
0
                        NULL);
5409
5410
0
  va_start (ap, format_string);
5411
0
  value = g_variant_new_va (format_string, NULL, &ap);
5412
0
  va_end (ap);
5413
5414
0
  return value;
5415
0
}
5416
5417
/**
5418
 * g_variant_new_va: (skip)
5419
 * @format_string: a string that is prefixed with a format string
5420
 * @endptr: (nullable) (default NULL): location to store the end pointer,
5421
 *          or %NULL
5422
 * @app: a pointer to a #va_list
5423
 *
5424
 * This function is intended to be used by libraries based on
5425
 * #GVariant that want to provide g_variant_new()-like functionality
5426
 * to their users.
5427
 *
5428
 * The API is more general than g_variant_new() to allow a wider range
5429
 * of possible uses.
5430
 *
5431
 * @format_string must still point to a valid format string, but it only
5432
 * needs to be nul-terminated if @endptr is %NULL.  If @endptr is
5433
 * non-%NULL then it is updated to point to the first character past the
5434
 * end of the format string.
5435
 *
5436
 * @app is a pointer to a #va_list.  The arguments, according to
5437
 * @format_string, are collected from this #va_list and the list is left
5438
 * pointing to the argument following the last.
5439
 *
5440
 * Note that the arguments in @app must be of the correct width for their
5441
 * types specified in @format_string when collected into the #va_list.
5442
 * See the [GVariant varargs documentation][gvariant-varargs].
5443
 *
5444
 * These two generalisations allow mixing of multiple calls to
5445
 * g_variant_new_va() and g_variant_get_va() within a single actual
5446
 * varargs call by the user.
5447
 *
5448
 * The return value will be floating if it was a newly created GVariant
5449
 * instance (for example, if the format string was "(ii)").  In the case
5450
 * that the format_string was '*', '?', 'r', or a format starting with
5451
 * '@' then the collected #GVariant pointer will be returned unmodified,
5452
 * without adding any additional references.
5453
 *
5454
 * In order to behave correctly in all cases it is necessary for the
5455
 * calling function to g_variant_ref_sink() the return result before
5456
 * returning control to the user that originally provided the pointer.
5457
 * At this point, the caller will have their own full reference to the
5458
 * result.  This can also be done by adding the result to a container,
5459
 * or by passing it to another g_variant_new() call.
5460
 *
5461
 * Returns: a new, usually floating, #GVariant
5462
 *
5463
 * Since: 2.24
5464
 **/
5465
GVariant *
5466
g_variant_new_va (const gchar  *format_string,
5467
                  const gchar **endptr,
5468
                  va_list      *app)
5469
0
{
5470
0
  GVariant *value;
5471
5472
0
  g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
5473
0
                        NULL);
5474
0
  g_return_val_if_fail (app != NULL, NULL);
5475
5476
0
  value = g_variant_valist_new (&format_string, app);
5477
5478
0
  if (endptr != NULL)
5479
0
    *endptr = format_string;
5480
5481
0
  return value;
5482
0
}
5483
5484
/**
5485
 * g_variant_get: (skip)
5486
 * @value: a #GVariant instance
5487
 * @format_string: a #GVariant format string
5488
 * @...: arguments, as per @format_string
5489
 *
5490
 * Deconstructs a #GVariant instance.
5491
 *
5492
 * Think of this function as an analogue to scanf().
5493
 *
5494
 * The arguments that are expected by this function are entirely
5495
 * determined by @format_string.  @format_string also restricts the
5496
 * permissible types of @value.  It is an error to give a value with
5497
 * an incompatible type.  See the section on
5498
 * [GVariant format strings][gvariant-format-strings].
5499
 * Please note that the syntax of the format string is very likely to be
5500
 * extended in the future.
5501
 *
5502
 * @format_string determines the C types that are used for unpacking
5503
 * the values and also determines if the values are copied or borrowed,
5504
 * see the section on
5505
 * [GVariant format strings][gvariant-format-strings-pointers].
5506
 *
5507
 * Since: 2.24
5508
 **/
5509
void
5510
g_variant_get (GVariant    *value,
5511
               const gchar *format_string,
5512
               ...)
5513
0
{
5514
0
  va_list ap;
5515
5516
0
  g_return_if_fail (value != NULL);
5517
0
  g_return_if_fail (valid_format_string (format_string, TRUE, value));
5518
5519
  /* if any direct-pointer-access formats are in use, flatten first */
5520
0
  if (strchr (format_string, '&'))
5521
0
    g_variant_get_data (value);
5522
5523
0
  va_start (ap, format_string);
5524
0
  g_variant_get_va (value, format_string, NULL, &ap);
5525
0
  va_end (ap);
5526
0
}
5527
5528
/**
5529
 * g_variant_get_va: (skip)
5530
 * @value: a #GVariant
5531
 * @format_string: a string that is prefixed with a format string
5532
 * @endptr: (nullable) (default NULL): location to store the end pointer,
5533
 *          or %NULL
5534
 * @app: a pointer to a #va_list
5535
 *
5536
 * This function is intended to be used by libraries based on #GVariant
5537
 * that want to provide g_variant_get()-like functionality to their
5538
 * users.
5539
 *
5540
 * The API is more general than g_variant_get() to allow a wider range
5541
 * of possible uses.
5542
 *
5543
 * @format_string must still point to a valid format string, but it only
5544
 * need to be nul-terminated if @endptr is %NULL.  If @endptr is
5545
 * non-%NULL then it is updated to point to the first character past the
5546
 * end of the format string.
5547
 *
5548
 * @app is a pointer to a #va_list.  The arguments, according to
5549
 * @format_string, are collected from this #va_list and the list is left
5550
 * pointing to the argument following the last.
5551
 *
5552
 * These two generalisations allow mixing of multiple calls to
5553
 * g_variant_new_va() and g_variant_get_va() within a single actual
5554
 * varargs call by the user.
5555
 *
5556
 * @format_string determines the C types that are used for unpacking
5557
 * the values and also determines if the values are copied or borrowed,
5558
 * see the section on
5559
 * [GVariant format strings][gvariant-format-strings-pointers].
5560
 *
5561
 * Since: 2.24
5562
 **/
5563
void
5564
g_variant_get_va (GVariant     *value,
5565
                  const gchar  *format_string,
5566
                  const gchar **endptr,
5567
                  va_list      *app)
5568
0
{
5569
0
  g_return_if_fail (valid_format_string (format_string, !endptr, value));
5570
0
  g_return_if_fail (value != NULL);
5571
0
  g_return_if_fail (app != NULL);
5572
5573
  /* if any direct-pointer-access formats are in use, flatten first */
5574
0
  if (strchr (format_string, '&'))
5575
0
    g_variant_get_data (value);
5576
5577
0
  g_variant_valist_get (&format_string, value, FALSE, app);
5578
5579
0
  if (endptr != NULL)
5580
0
    *endptr = format_string;
5581
0
}
5582
5583
/* Varargs-enabled Utility Functions {{{1 */
5584
5585
/**
5586
 * g_variant_builder_add: (skip)
5587
 * @builder: a #GVariantBuilder
5588
 * @format_string: a #GVariant varargs format string
5589
 * @...: arguments, as per @format_string
5590
 *
5591
 * Adds to a #GVariantBuilder.
5592
 *
5593
 * This call is a convenience wrapper that is exactly equivalent to
5594
 * calling g_variant_new() followed by g_variant_builder_add_value().
5595
 *
5596
 * Note that the arguments must be of the correct width for their types
5597
 * specified in @format_string. This can be achieved by casting them. See
5598
 * the [GVariant varargs documentation][gvariant-varargs].
5599
 *
5600
 * This function might be used as follows:
5601
 *
5602
 * |[<!-- language="C" --> 
5603
 * GVariant *
5604
 * make_pointless_dictionary (void)
5605
 * {
5606
 *   GVariantBuilder builder;
5607
 *   int i;
5608
 *
5609
 *   g_variant_builder_init (&builder, G_VARIANT_TYPE_ARRAY);
5610
 *   for (i = 0; i < 16; i++)
5611
 *     {
5612
 *       gchar buf[3];
5613
 *
5614
 *       sprintf (buf, "%d", i);
5615
 *       g_variant_builder_add (&builder, "{is}", i, buf);
5616
 *     }
5617
 *
5618
 *   return g_variant_builder_end (&builder);
5619
 * }
5620
 * ]|
5621
 *
5622
 * Since: 2.24
5623
 */
5624
void
5625
g_variant_builder_add (GVariantBuilder *builder,
5626
                       const gchar     *format_string,
5627
                       ...)
5628
0
{
5629
0
  GVariant *variant;
5630
0
  va_list ap;
5631
5632
0
  va_start (ap, format_string);
5633
0
  variant = g_variant_new_va (format_string, NULL, &ap);
5634
0
  va_end (ap);
5635
5636
0
  g_variant_builder_add_value (builder, variant);
5637
0
}
5638
5639
/**
5640
 * g_variant_get_child: (skip)
5641
 * @value: a container #GVariant
5642
 * @index_: the index of the child to deconstruct
5643
 * @format_string: a #GVariant format string
5644
 * @...: arguments, as per @format_string
5645
 *
5646
 * Reads a child item out of a container #GVariant instance and
5647
 * deconstructs it according to @format_string.  This call is
5648
 * essentially a combination of g_variant_get_child_value() and
5649
 * g_variant_get().
5650
 *
5651
 * @format_string determines the C types that are used for unpacking
5652
 * the values and also determines if the values are copied or borrowed,
5653
 * see the section on
5654
 * [GVariant format strings][gvariant-format-strings-pointers].
5655
 *
5656
 * Since: 2.24
5657
 **/
5658
void
5659
g_variant_get_child (GVariant    *value,
5660
                     gsize        index_,
5661
                     const gchar *format_string,
5662
                     ...)
5663
0
{
5664
0
  GVariant *child;
5665
0
  va_list ap;
5666
5667
  /* if any direct-pointer-access formats are in use, flatten first */
5668
0
  if (strchr (format_string, '&'))
5669
0
    g_variant_get_data (value);
5670
5671
0
  child = g_variant_get_child_value (value, index_);
5672
0
  g_return_if_fail (valid_format_string (format_string, TRUE, child));
5673
5674
0
  va_start (ap, format_string);
5675
0
  g_variant_get_va (child, format_string, NULL, &ap);
5676
0
  va_end (ap);
5677
5678
0
  g_variant_unref (child);
5679
0
}
5680
5681
/**
5682
 * g_variant_iter_next: (skip)
5683
 * @iter: a #GVariantIter
5684
 * @format_string: a GVariant format string
5685
 * @...: the arguments to unpack the value into
5686
 *
5687
 * Gets the next item in the container and unpacks it into the variable
5688
 * argument list according to @format_string, returning %TRUE.
5689
 *
5690
 * If no more items remain then %FALSE is returned.
5691
 *
5692
 * All of the pointers given on the variable arguments list of this
5693
 * function are assumed to point at uninitialised memory.  It is the
5694
 * responsibility of the caller to free all of the values returned by
5695
 * the unpacking process.
5696
 *
5697
 * Here is an example for memory management with g_variant_iter_next():
5698
 * |[<!-- language="C" --> 
5699
 *   // Iterates a dictionary of type 'a{sv}'
5700
 *   void
5701
 *   iterate_dictionary (GVariant *dictionary)
5702
 *   {
5703
 *     GVariantIter iter;
5704
 *     GVariant *value;
5705
 *     gchar *key;
5706
 *
5707
 *     g_variant_iter_init (&iter, dictionary);
5708
 *     while (g_variant_iter_next (&iter, "{sv}", &key, &value))
5709
 *       {
5710
 *         g_print ("Item '%s' has type '%s'\n", key,
5711
 *                  g_variant_get_type_string (value));
5712
 *
5713
 *         // must free data for ourselves
5714
 *         g_variant_unref (value);
5715
 *         g_free (key);
5716
 *       }
5717
 *   }
5718
 * ]|
5719
 *
5720
 * For a solution that is likely to be more convenient to C programmers
5721
 * when dealing with loops, see g_variant_iter_loop().
5722
 *
5723
 * @format_string determines the C types that are used for unpacking
5724
 * the values and also determines if the values are copied or borrowed.
5725
 *
5726
 * See the section on
5727
 * [GVariant format strings][gvariant-format-strings-pointers].
5728
 *
5729
 * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
5730
 *
5731
 * Since: 2.24
5732
 **/
5733
gboolean
5734
g_variant_iter_next (GVariantIter *iter,
5735
                     const gchar  *format_string,
5736
                     ...)
5737
0
{
5738
0
  GVariant *value;
5739
5740
0
  value = g_variant_iter_next_value (iter);
5741
5742
0
  g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
5743
0
                        FALSE);
5744
5745
0
  if (value != NULL)
5746
0
    {
5747
0
      va_list ap;
5748
5749
0
      va_start (ap, format_string);
5750
0
      g_variant_valist_get (&format_string, value, FALSE, &ap);
5751
0
      va_end (ap);
5752
5753
0
      g_variant_unref (value);
5754
0
    }
5755
5756
0
  return value != NULL;
5757
0
}
5758
5759
/**
5760
 * g_variant_iter_loop: (skip)
5761
 * @iter: a #GVariantIter
5762
 * @format_string: a GVariant format string
5763
 * @...: the arguments to unpack the value into
5764
 *
5765
 * Gets the next item in the container and unpacks it into the variable
5766
 * argument list according to @format_string, returning %TRUE.
5767
 *
5768
 * If no more items remain then %FALSE is returned.
5769
 *
5770
 * On the first call to this function, the pointers appearing on the
5771
 * variable argument list are assumed to point at uninitialised memory.
5772
 * On the second and later calls, it is assumed that the same pointers
5773
 * will be given and that they will point to the memory as set by the
5774
 * previous call to this function.  This allows the previous values to
5775
 * be freed, as appropriate.
5776
 *
5777
 * This function is intended to be used with a while loop as
5778
 * demonstrated in the following example.  This function can only be
5779
 * used when iterating over an array.  It is only valid to call this
5780
 * function with a string constant for the format string and the same
5781
 * string constant must be used each time.  Mixing calls to this
5782
 * function and g_variant_iter_next() or g_variant_iter_next_value() on
5783
 * the same iterator causes undefined behavior.
5784
 *
5785
 * If you break out of a such a while loop using g_variant_iter_loop() then
5786
 * you must free or unreference all the unpacked values as you would with
5787
 * g_variant_get(). Failure to do so will cause a memory leak.
5788
 *
5789
 * Here is an example for memory management with g_variant_iter_loop():
5790
 * |[<!-- language="C" --> 
5791
 *   // Iterates a dictionary of type 'a{sv}'
5792
 *   void
5793
 *   iterate_dictionary (GVariant *dictionary)
5794
 *   {
5795
 *     GVariantIter iter;
5796
 *     GVariant *value;
5797
 *     gchar *key;
5798
 *
5799
 *     g_variant_iter_init (&iter, dictionary);
5800
 *     while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
5801
 *       {
5802
 *         g_print ("Item '%s' has type '%s'\n", key,
5803
 *                  g_variant_get_type_string (value));
5804
 *
5805
 *         // no need to free 'key' and 'value' here
5806
 *         // unless breaking out of this loop
5807
 *       }
5808
 *   }
5809
 * ]|
5810
 *
5811
 * For most cases you should use g_variant_iter_next().
5812
 *
5813
 * This function is really only useful when unpacking into #GVariant or
5814
 * #GVariantIter in order to allow you to skip the call to
5815
 * g_variant_unref() or g_variant_iter_free().
5816
 *
5817
 * For example, if you are only looping over simple integer and string
5818
 * types, g_variant_iter_next() is definitely preferred.  For string
5819
 * types, use the '&' prefix to avoid allocating any memory at all (and
5820
 * thereby avoiding the need to free anything as well).
5821
 *
5822
 * @format_string determines the C types that are used for unpacking
5823
 * the values and also determines if the values are copied or borrowed.
5824
 *
5825
 * See the section on
5826
 * [GVariant format strings][gvariant-format-strings-pointers].
5827
 *
5828
 * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
5829
 *          value
5830
 *
5831
 * Since: 2.24
5832
 **/
5833
gboolean
5834
g_variant_iter_loop (GVariantIter *iter,
5835
                     const gchar  *format_string,
5836
                     ...)
5837
0
{
5838
0
  gboolean first_time = GVSI(iter)->loop_format == NULL;
5839
0
  GVariant *value;
5840
0
  va_list ap;
5841
5842
0
  g_return_val_if_fail (first_time ||
5843
0
                        format_string == GVSI(iter)->loop_format,
5844
0
                        FALSE);
5845
5846
0
  if (first_time)
5847
0
    {
5848
0
      TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
5849
0
      GVSI(iter)->loop_format = format_string;
5850
5851
0
      if (strchr (format_string, '&'))
5852
0
        g_variant_get_data (GVSI(iter)->value);
5853
0
    }
5854
5855
0
  value = g_variant_iter_next_value (iter);
5856
5857
0
  g_return_val_if_fail (!first_time ||
5858
0
                        valid_format_string (format_string, TRUE, value),
5859
0
                        FALSE);
5860
5861
0
  va_start (ap, format_string);
5862
0
  g_variant_valist_get (&format_string, value, !first_time, &ap);
5863
0
  va_end (ap);
5864
5865
0
  if (value != NULL)
5866
0
    g_variant_unref (value);
5867
5868
0
  return value != NULL;
5869
0
}
5870
5871
/* Serialized data {{{1 */
5872
static GVariant *
5873
g_variant_deep_copy (GVariant *value,
5874
                     gboolean  byteswap)
5875
0
{
5876
0
  switch (g_variant_classify (value))
5877
0
    {
5878
0
    case G_VARIANT_CLASS_MAYBE:
5879
0
    case G_VARIANT_CLASS_TUPLE:
5880
0
    case G_VARIANT_CLASS_DICT_ENTRY:
5881
0
    case G_VARIANT_CLASS_VARIANT:
5882
0
      {
5883
0
        GVariantBuilder builder;
5884
0
        gsize i, n_children;
5885
5886
0
        g_variant_builder_init (&builder, g_variant_get_type (value));
5887
5888
0
        for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
5889
0
          {
5890
0
            GVariant *child = g_variant_get_child_value (value, i);
5891
0
            g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
5892
0
            g_variant_unref (child);
5893
0
          }
5894
5895
0
        return g_variant_builder_end (&builder);
5896
0
      }
5897
5898
0
    case G_VARIANT_CLASS_ARRAY:
5899
0
      {
5900
0
        GVariantBuilder builder;
5901
0
        gsize i, n_children;
5902
0
        GVariant *first_invalid_child_deep_copy = NULL;
5903
5904
        /* Arrays are in theory treated the same as maybes, tuples, dict entries
5905
         * and variants, and could be another case in the above block of code.
5906
         *
5907
         * However, they have the property that when dealing with non-normal
5908
         * data (which is the only time g_variant_deep_copy() is currently
5909
         * called) in a variable-sized array, the code above can easily end up
5910
         * creating many default child values in order to return an array which
5911
         * is of the right length and type, but without containing non-normal
5912
         * data. This can happen if the offset table for the array is malformed.
5913
         *
5914
         * In this case, the code above would end up allocating the same default
5915
         * value for each one of the child indexes beyond the first malformed
5916
         * entry in the offset table. This can end up being a lot of identical
5917
         * allocations of default values, particularly if the non-normal array
5918
         * is crafted maliciously.
5919
         *
5920
         * Avoid that problem by returning a new reference to the same default
5921
         * value for every child after the first invalid one. This results in
5922
         * returning an equivalent array, in normal form and trusted — but with
5923
         * significantly fewer memory allocations.
5924
         *
5925
         * See https://gitlab.gnome.org/GNOME/glib/-/issues/2540 */
5926
5927
0
        g_variant_builder_init (&builder, g_variant_get_type (value));
5928
5929
0
        for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
5930
0
          {
5931
            /* Try maybe_get_child_value() first; if it returns NULL, this child
5932
             * is non-normal. get_child_value() would have constructed and
5933
             * returned a default value in that case. */
5934
0
            GVariant *child = g_variant_maybe_get_child_value (value, i);
5935
5936
0
            if (child != NULL)
5937
0
              {
5938
                /* Non-normal children may not always be contiguous, as they may
5939
                 * be non-normal for reasons other than invalid offset table
5940
                 * entries. As they are all the same type, they will all have
5941
                 * the same default value though, so keep that around. */
5942
0
                g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
5943
0
              }
5944
0
            else if (child == NULL && first_invalid_child_deep_copy != NULL)
5945
0
              {
5946
0
                g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
5947
0
              }
5948
0
            else if (child == NULL)
5949
0
              {
5950
0
                child = g_variant_get_child_value (value, i);
5951
0
                first_invalid_child_deep_copy = g_variant_ref_sink (g_variant_deep_copy (child, byteswap));
5952
0
                g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
5953
0
              }
5954
5955
0
            g_clear_pointer (&child, g_variant_unref);
5956
0
          }
5957
5958
0
        g_clear_pointer (&first_invalid_child_deep_copy, g_variant_unref);
5959
5960
0
        return g_variant_builder_end (&builder);
5961
0
      }
5962
5963
0
    case G_VARIANT_CLASS_BOOLEAN:
5964
0
      return g_variant_new_boolean (g_variant_get_boolean (value));
5965
5966
0
    case G_VARIANT_CLASS_BYTE:
5967
0
      return g_variant_new_byte (g_variant_get_byte (value));
5968
5969
0
    case G_VARIANT_CLASS_INT16:
5970
0
      if (byteswap)
5971
0
        return g_variant_new_int16 (GUINT16_SWAP_LE_BE (g_variant_get_int16 (value)));
5972
0
      else
5973
0
        return g_variant_new_int16 (g_variant_get_int16 (value));
5974
5975
0
    case G_VARIANT_CLASS_UINT16:
5976
0
      if (byteswap)
5977
0
        return g_variant_new_uint16 (GUINT16_SWAP_LE_BE (g_variant_get_uint16 (value)));
5978
0
      else
5979
0
        return g_variant_new_uint16 (g_variant_get_uint16 (value));
5980
5981
0
    case G_VARIANT_CLASS_INT32:
5982
0
      if (byteswap)
5983
0
        return g_variant_new_int32 (GUINT32_SWAP_LE_BE (g_variant_get_int32 (value)));
5984
0
      else
5985
0
        return g_variant_new_int32 (g_variant_get_int32 (value));
5986
5987
0
    case G_VARIANT_CLASS_UINT32:
5988
0
      if (byteswap)
5989
0
        return g_variant_new_uint32 (GUINT32_SWAP_LE_BE (g_variant_get_uint32 (value)));
5990
0
      else
5991
0
        return g_variant_new_uint32 (g_variant_get_uint32 (value));
5992
5993
0
    case G_VARIANT_CLASS_INT64:
5994
0
      if (byteswap)
5995
0
        return g_variant_new_int64 (GUINT64_SWAP_LE_BE (g_variant_get_int64 (value)));
5996
0
      else
5997
0
        return g_variant_new_int64 (g_variant_get_int64 (value));
5998
5999
0
    case G_VARIANT_CLASS_UINT64:
6000
0
      if (byteswap)
6001
0
        return g_variant_new_uint64 (GUINT64_SWAP_LE_BE (g_variant_get_uint64 (value)));
6002
0
      else
6003
0
        return g_variant_new_uint64 (g_variant_get_uint64 (value));
6004
6005
0
    case G_VARIANT_CLASS_HANDLE:
6006
0
      if (byteswap)
6007
0
        return g_variant_new_handle (GUINT32_SWAP_LE_BE (g_variant_get_handle (value)));
6008
0
      else
6009
0
        return g_variant_new_handle (g_variant_get_handle (value));
6010
6011
0
    case G_VARIANT_CLASS_DOUBLE:
6012
0
      if (byteswap)
6013
0
        {
6014
          /* We have to convert the double to a uint64 here using a union,
6015
           * because a cast will round it numerically. */
6016
0
          union
6017
0
            {
6018
0
              guint64 u64;
6019
0
              gdouble dbl;
6020
0
            } u1, u2;
6021
0
          u1.dbl = g_variant_get_double (value);
6022
0
          u2.u64 = GUINT64_SWAP_LE_BE (u1.u64);
6023
0
          return g_variant_new_double (u2.dbl);
6024
0
        }
6025
0
      else
6026
0
        return g_variant_new_double (g_variant_get_double (value));
6027
6028
0
    case G_VARIANT_CLASS_STRING:
6029
0
      return g_variant_new_string (g_variant_get_string (value, NULL));
6030
6031
0
    case G_VARIANT_CLASS_OBJECT_PATH:
6032
0
      return g_variant_new_object_path (g_variant_get_string (value, NULL));
6033
6034
0
    case G_VARIANT_CLASS_SIGNATURE:
6035
0
      return g_variant_new_signature (g_variant_get_string (value, NULL));
6036
0
    }
6037
6038
0
  g_assert_not_reached ();
6039
0
}
6040
6041
/**
6042
 * g_variant_get_normal_form:
6043
 * @value: a #GVariant
6044
 *
6045
 * Gets a #GVariant instance that has the same value as @value and is
6046
 * trusted to be in normal form.
6047
 *
6048
 * If @value is already trusted to be in normal form then a new
6049
 * reference to @value is returned.
6050
 *
6051
 * If @value is not already trusted, then it is scanned to check if it
6052
 * is in normal form.  If it is found to be in normal form then it is
6053
 * marked as trusted and a new reference to it is returned.
6054
 *
6055
 * If @value is found not to be in normal form then a new trusted
6056
 * #GVariant is created with the same value as @value. The non-normal parts of
6057
 * @value will be replaced with default values which are guaranteed to be in
6058
 * normal form.
6059
 *
6060
 * It makes sense to call this function if you've received #GVariant
6061
 * data from untrusted sources and you want to ensure your serialized
6062
 * output is definitely in normal form.
6063
 *
6064
 * If @value is already in normal form, a new reference will be returned
6065
 * (which will be floating if @value is floating). If it is not in normal form,
6066
 * the newly created #GVariant will be returned with a single non-floating
6067
 * reference. Typically, g_variant_take_ref() should be called on the return
6068
 * value from this function to guarantee ownership of a single non-floating
6069
 * reference to it.
6070
 *
6071
 * Returns: (transfer full): a trusted #GVariant
6072
 *
6073
 * Since: 2.24
6074
 **/
6075
GVariant *
6076
g_variant_get_normal_form (GVariant *value)
6077
0
{
6078
0
  GVariant *trusted;
6079
6080
0
  if (g_variant_is_normal_form (value))
6081
0
    return g_variant_ref (value);
6082
6083
0
  trusted = g_variant_deep_copy (value, FALSE);
6084
0
  g_assert (g_variant_is_trusted (trusted));
6085
6086
0
  return g_variant_ref_sink (trusted);
6087
0
}
6088
6089
/**
6090
 * g_variant_byteswap:
6091
 * @value: a #GVariant
6092
 *
6093
 * Performs a byteswapping operation on the contents of @value.  The
6094
 * result is that all multi-byte numeric data contained in @value is
6095
 * byteswapped.  That includes 16, 32, and 64bit signed and unsigned
6096
 * integers as well as file handles and double precision floating point
6097
 * values.
6098
 *
6099
 * This function is an identity mapping on any value that does not
6100
 * contain multi-byte numeric data.  That include strings, booleans,
6101
 * bytes and containers containing only these things (recursively).
6102
 *
6103
 * While this function can safely handle untrusted, non-normal data, it is
6104
 * recommended to check whether the input is in normal form beforehand, using
6105
 * g_variant_is_normal_form(), and to reject non-normal inputs if your
6106
 * application can be strict about what inputs it rejects.
6107
 *
6108
 * The returned value is always in normal form and is marked as trusted.
6109
 * A full, not floating, reference is returned.
6110
 *
6111
 * Returns: (transfer full): the byteswapped form of @value
6112
 *
6113
 * Since: 2.24
6114
 **/
6115
GVariant *
6116
g_variant_byteswap (GVariant *value)
6117
0
{
6118
0
  GVariantTypeInfo *type_info;
6119
0
  guint alignment;
6120
0
  GVariant *new;
6121
6122
0
  type_info = g_variant_get_type_info (value);
6123
6124
0
  g_variant_type_info_query (type_info, &alignment, NULL);
6125
6126
0
  if (alignment && g_variant_is_normal_form (value))
6127
0
    {
6128
      /* (potentially) contains multi-byte numeric data, but is also already in
6129
       * normal form so we can use a faster byteswapping codepath on the
6130
       * serialised data */
6131
0
      GVariantSerialised serialised = { 0, };
6132
0
      GBytes *bytes;
6133
6134
0
      serialised.type_info = g_variant_get_type_info (value);
6135
0
      serialised.size = g_variant_get_size (value);
6136
0
      serialised.data = g_malloc (serialised.size);
6137
0
      serialised.depth = g_variant_get_depth (value);
6138
0
      serialised.ordered_offsets_up_to = G_MAXSIZE;  /* operating on the normal form */
6139
0
      serialised.checked_offsets_up_to = G_MAXSIZE;
6140
0
      g_variant_store (value, serialised.data);
6141
6142
0
      g_variant_serialised_byteswap (serialised);
6143
6144
0
      bytes = g_bytes_new_take (serialised.data, serialised.size);
6145
0
      new = g_variant_ref_sink (g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE));
6146
0
      g_bytes_unref (bytes);
6147
0
    }
6148
0
  else if (alignment)
6149
    /* (potentially) contains multi-byte numeric data */
6150
0
    new = g_variant_ref_sink (g_variant_deep_copy (value, TRUE));
6151
0
  else
6152
    /* contains no multi-byte data */
6153
0
    new = g_variant_get_normal_form (value);
6154
6155
0
  g_assert (g_variant_is_trusted (new));
6156
6157
0
  return g_steal_pointer (&new);
6158
0
}
6159
6160
/**
6161
 * g_variant_new_from_data:
6162
 * @type: a definite #GVariantType
6163
 * @data: (array length=size) (element-type guint8): the serialized data
6164
 * @size: the size of @data
6165
 * @trusted: %TRUE if @data is definitely in normal form
6166
 * @notify: (scope async): function to call when @data is no longer needed
6167
 * @user_data: data for @notify
6168
 *
6169
 * Creates a new #GVariant instance from serialized data.
6170
 *
6171
 * @type is the type of #GVariant instance that will be constructed.
6172
 * The interpretation of @data depends on knowing the type.
6173
 *
6174
 * @data is not modified by this function and must remain valid with an
6175
 * unchanging value until such a time as @notify is called with
6176
 * @user_data.  If the contents of @data change before that time then
6177
 * the result is undefined.
6178
 *
6179
 * If @data is trusted to be serialized data in normal form then
6180
 * @trusted should be %TRUE.  This applies to serialized data created
6181
 * within this process or read from a trusted location on the disk (such
6182
 * as a file installed in /usr/lib alongside your application).  You
6183
 * should set trusted to %FALSE if @data is read from the network, a
6184
 * file in the user's home directory, etc.
6185
 *
6186
 * If @data was not stored in this machine's native endianness, any multi-byte
6187
 * numeric values in the returned variant will also be in non-native
6188
 * endianness. g_variant_byteswap() can be used to recover the original values.
6189
 *
6190
 * @notify will be called with @user_data when @data is no longer
6191
 * needed.  The exact time of this call is unspecified and might even be
6192
 * before this function returns.
6193
 *
6194
 * Note: @data must be backed by memory that is aligned appropriately for the
6195
 * @type being loaded. Otherwise this function will internally create a copy of
6196
 * the memory (since GLib 2.60) or (in older versions) fail and exit the
6197
 * process.
6198
 *
6199
 * Returns: (transfer none): a new floating #GVariant of type @type
6200
 *
6201
 * Since: 2.24
6202
 **/
6203
GVariant *
6204
g_variant_new_from_data (const GVariantType *type,
6205
                         gconstpointer       data,
6206
                         gsize               size,
6207
                         gboolean            trusted,
6208
                         GDestroyNotify      notify,
6209
                         gpointer            user_data)
6210
0
{
6211
0
  GVariant *value;
6212
0
  GBytes *bytes;
6213
6214
0
  g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
6215
0
  g_return_val_if_fail (data != NULL || size == 0, NULL);
6216
6217
0
  if (notify)
6218
0
    bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
6219
0
  else
6220
0
    bytes = g_bytes_new_static (data, size);
6221
6222
0
  value = g_variant_new_from_bytes (type, bytes, trusted);
6223
0
  g_bytes_unref (bytes);
6224
6225
0
  return value;
6226
0
}
6227
6228
/* Epilogue {{{1 */
6229
/* vim:set foldmethod=marker: */