/src/rauc/subprojects/openssl-3.0.8/crypto/rsa/rsa_ossl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include "internal/cryptlib.h" |
17 | | #include "crypto/bn.h" |
18 | | #include "rsa_local.h" |
19 | | #include "internal/constant_time.h" |
20 | | |
21 | | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
22 | | unsigned char *to, RSA *rsa, int padding); |
23 | | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
24 | | unsigned char *to, RSA *rsa, int padding); |
25 | | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
26 | | unsigned char *to, RSA *rsa, int padding); |
27 | | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
28 | | unsigned char *to, RSA *rsa, int padding); |
29 | | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
30 | | BN_CTX *ctx); |
31 | | static int rsa_ossl_init(RSA *rsa); |
32 | | static int rsa_ossl_finish(RSA *rsa); |
33 | | static RSA_METHOD rsa_pkcs1_ossl_meth = { |
34 | | "OpenSSL PKCS#1 RSA", |
35 | | rsa_ossl_public_encrypt, |
36 | | rsa_ossl_public_decrypt, /* signature verification */ |
37 | | rsa_ossl_private_encrypt, /* signing */ |
38 | | rsa_ossl_private_decrypt, |
39 | | rsa_ossl_mod_exp, |
40 | | BN_mod_exp_mont, /* XXX probably we should not use Montgomery |
41 | | * if e == 3 */ |
42 | | rsa_ossl_init, |
43 | | rsa_ossl_finish, |
44 | | RSA_FLAG_FIPS_METHOD, /* flags */ |
45 | | NULL, |
46 | | 0, /* rsa_sign */ |
47 | | 0, /* rsa_verify */ |
48 | | NULL, /* rsa_keygen */ |
49 | | NULL /* rsa_multi_prime_keygen */ |
50 | | }; |
51 | | |
52 | | static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth; |
53 | | |
54 | | void RSA_set_default_method(const RSA_METHOD *meth) |
55 | 0 | { |
56 | 0 | default_RSA_meth = meth; |
57 | 0 | } |
58 | | |
59 | | const RSA_METHOD *RSA_get_default_method(void) |
60 | 329 | { |
61 | 329 | return default_RSA_meth; |
62 | 329 | } |
63 | | |
64 | | const RSA_METHOD *RSA_PKCS1_OpenSSL(void) |
65 | 37 | { |
66 | 37 | return &rsa_pkcs1_ossl_meth; |
67 | 37 | } |
68 | | |
69 | | const RSA_METHOD *RSA_null_method(void) |
70 | 0 | { |
71 | 0 | return NULL; |
72 | 0 | } |
73 | | |
74 | | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
75 | | unsigned char *to, RSA *rsa, int padding) |
76 | 0 | { |
77 | 0 | BIGNUM *f, *ret; |
78 | 0 | int i, num = 0, r = -1; |
79 | 0 | unsigned char *buf = NULL; |
80 | 0 | BN_CTX *ctx = NULL; |
81 | |
|
82 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
83 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); |
84 | 0 | return -1; |
85 | 0 | } |
86 | | |
87 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
88 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
89 | 0 | return -1; |
90 | 0 | } |
91 | | |
92 | | /* for large moduli, enforce exponent limit */ |
93 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
94 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
95 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
96 | 0 | return -1; |
97 | 0 | } |
98 | 0 | } |
99 | | |
100 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
101 | 0 | goto err; |
102 | 0 | BN_CTX_start(ctx); |
103 | 0 | f = BN_CTX_get(ctx); |
104 | 0 | ret = BN_CTX_get(ctx); |
105 | 0 | num = BN_num_bytes(rsa->n); |
106 | 0 | buf = OPENSSL_malloc(num); |
107 | 0 | if (ret == NULL || buf == NULL) { |
108 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
109 | 0 | goto err; |
110 | 0 | } |
111 | | |
112 | 0 | switch (padding) { |
113 | 0 | case RSA_PKCS1_PADDING: |
114 | 0 | i = ossl_rsa_padding_add_PKCS1_type_2_ex(rsa->libctx, buf, num, |
115 | 0 | from, flen); |
116 | 0 | break; |
117 | 0 | case RSA_PKCS1_OAEP_PADDING: |
118 | 0 | i = ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(rsa->libctx, buf, num, |
119 | 0 | from, flen, NULL, 0, |
120 | 0 | NULL, NULL); |
121 | 0 | break; |
122 | 0 | case RSA_NO_PADDING: |
123 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
124 | 0 | break; |
125 | 0 | default: |
126 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
127 | 0 | goto err; |
128 | 0 | } |
129 | 0 | if (i <= 0) |
130 | 0 | goto err; |
131 | | |
132 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
133 | 0 | goto err; |
134 | | |
135 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
136 | | /* usually the padding functions would catch this */ |
137 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
138 | 0 | goto err; |
139 | 0 | } |
140 | | |
141 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
142 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
143 | 0 | rsa->n, ctx)) |
144 | 0 | goto err; |
145 | | |
146 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
147 | 0 | rsa->_method_mod_n)) |
148 | 0 | goto err; |
149 | | |
150 | | /* |
151 | | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
152 | | * the length of the modulus. |
153 | | */ |
154 | 0 | r = BN_bn2binpad(ret, to, num); |
155 | 0 | err: |
156 | 0 | BN_CTX_end(ctx); |
157 | 0 | BN_CTX_free(ctx); |
158 | 0 | OPENSSL_clear_free(buf, num); |
159 | 0 | return r; |
160 | 0 | } |
161 | | |
162 | | static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx) |
163 | 0 | { |
164 | 0 | BN_BLINDING *ret; |
165 | |
|
166 | 0 | if (!CRYPTO_THREAD_write_lock(rsa->lock)) |
167 | 0 | return NULL; |
168 | | |
169 | 0 | if (rsa->blinding == NULL) { |
170 | 0 | rsa->blinding = RSA_setup_blinding(rsa, ctx); |
171 | 0 | } |
172 | |
|
173 | 0 | ret = rsa->blinding; |
174 | 0 | if (ret == NULL) |
175 | 0 | goto err; |
176 | | |
177 | 0 | if (BN_BLINDING_is_current_thread(ret)) { |
178 | | /* rsa->blinding is ours! */ |
179 | |
|
180 | 0 | *local = 1; |
181 | 0 | } else { |
182 | | /* resort to rsa->mt_blinding instead */ |
183 | | |
184 | | /* |
185 | | * instructs rsa_blinding_convert(), rsa_blinding_invert() that the |
186 | | * BN_BLINDING is shared, meaning that accesses require locks, and |
187 | | * that the blinding factor must be stored outside the BN_BLINDING |
188 | | */ |
189 | 0 | *local = 0; |
190 | |
|
191 | 0 | if (rsa->mt_blinding == NULL) { |
192 | 0 | rsa->mt_blinding = RSA_setup_blinding(rsa, ctx); |
193 | 0 | } |
194 | 0 | ret = rsa->mt_blinding; |
195 | 0 | } |
196 | |
|
197 | 0 | err: |
198 | 0 | CRYPTO_THREAD_unlock(rsa->lock); |
199 | 0 | return ret; |
200 | 0 | } |
201 | | |
202 | | static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
203 | | BN_CTX *ctx) |
204 | 0 | { |
205 | 0 | if (unblind == NULL) { |
206 | | /* |
207 | | * Local blinding: store the unblinding factor in BN_BLINDING. |
208 | | */ |
209 | 0 | return BN_BLINDING_convert_ex(f, NULL, b, ctx); |
210 | 0 | } else { |
211 | | /* |
212 | | * Shared blinding: store the unblinding factor outside BN_BLINDING. |
213 | | */ |
214 | 0 | int ret; |
215 | |
|
216 | 0 | if (!BN_BLINDING_lock(b)) |
217 | 0 | return 0; |
218 | | |
219 | 0 | ret = BN_BLINDING_convert_ex(f, unblind, b, ctx); |
220 | 0 | BN_BLINDING_unlock(b); |
221 | |
|
222 | 0 | return ret; |
223 | 0 | } |
224 | 0 | } |
225 | | |
226 | | static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
227 | | BN_CTX *ctx) |
228 | 0 | { |
229 | | /* |
230 | | * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex |
231 | | * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING |
232 | | * is shared between threads, unblind must be non-null: |
233 | | * BN_BLINDING_invert_ex will then use the local unblinding factor, and |
234 | | * will only read the modulus from BN_BLINDING. In both cases it's safe |
235 | | * to access the blinding without a lock. |
236 | | */ |
237 | 0 | return BN_BLINDING_invert_ex(f, unblind, b, ctx); |
238 | 0 | } |
239 | | |
240 | | /* signing */ |
241 | | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
242 | | unsigned char *to, RSA *rsa, int padding) |
243 | 0 | { |
244 | 0 | BIGNUM *f, *ret, *res; |
245 | 0 | int i, num = 0, r = -1; |
246 | 0 | unsigned char *buf = NULL; |
247 | 0 | BN_CTX *ctx = NULL; |
248 | 0 | int local_blinding = 0; |
249 | | /* |
250 | | * Used only if the blinding structure is shared. A non-NULL unblind |
251 | | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
252 | | * the unblinding factor outside the blinding structure. |
253 | | */ |
254 | 0 | BIGNUM *unblind = NULL; |
255 | 0 | BN_BLINDING *blinding = NULL; |
256 | |
|
257 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
258 | 0 | goto err; |
259 | 0 | BN_CTX_start(ctx); |
260 | 0 | f = BN_CTX_get(ctx); |
261 | 0 | ret = BN_CTX_get(ctx); |
262 | 0 | num = BN_num_bytes(rsa->n); |
263 | 0 | buf = OPENSSL_malloc(num); |
264 | 0 | if (ret == NULL || buf == NULL) { |
265 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
266 | 0 | goto err; |
267 | 0 | } |
268 | | |
269 | 0 | switch (padding) { |
270 | 0 | case RSA_PKCS1_PADDING: |
271 | 0 | i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); |
272 | 0 | break; |
273 | 0 | case RSA_X931_PADDING: |
274 | 0 | i = RSA_padding_add_X931(buf, num, from, flen); |
275 | 0 | break; |
276 | 0 | case RSA_NO_PADDING: |
277 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
278 | 0 | break; |
279 | 0 | default: |
280 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
281 | 0 | goto err; |
282 | 0 | } |
283 | 0 | if (i <= 0) |
284 | 0 | goto err; |
285 | | |
286 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
287 | 0 | goto err; |
288 | | |
289 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
290 | | /* usually the padding functions would catch this */ |
291 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
292 | 0 | goto err; |
293 | 0 | } |
294 | | |
295 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
296 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
297 | 0 | rsa->n, ctx)) |
298 | 0 | goto err; |
299 | | |
300 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
301 | 0 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
302 | 0 | if (blinding == NULL) { |
303 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
304 | 0 | goto err; |
305 | 0 | } |
306 | 0 | } |
307 | | |
308 | 0 | if (blinding != NULL) { |
309 | 0 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
310 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
311 | 0 | goto err; |
312 | 0 | } |
313 | 0 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
314 | 0 | goto err; |
315 | 0 | } |
316 | | |
317 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
318 | 0 | (rsa->version == RSA_ASN1_VERSION_MULTI) || |
319 | 0 | ((rsa->p != NULL) && |
320 | 0 | (rsa->q != NULL) && |
321 | 0 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
322 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
323 | 0 | goto err; |
324 | 0 | } else { |
325 | 0 | BIGNUM *d = BN_new(); |
326 | 0 | if (d == NULL) { |
327 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
328 | 0 | goto err; |
329 | 0 | } |
330 | 0 | if (rsa->d == NULL) { |
331 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); |
332 | 0 | BN_free(d); |
333 | 0 | goto err; |
334 | 0 | } |
335 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
336 | |
|
337 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
338 | 0 | rsa->_method_mod_n)) { |
339 | 0 | BN_free(d); |
340 | 0 | goto err; |
341 | 0 | } |
342 | | /* We MUST free d before any further use of rsa->d */ |
343 | 0 | BN_free(d); |
344 | 0 | } |
345 | | |
346 | 0 | if (blinding) |
347 | 0 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
348 | 0 | goto err; |
349 | | |
350 | 0 | if (padding == RSA_X931_PADDING) { |
351 | 0 | if (!BN_sub(f, rsa->n, ret)) |
352 | 0 | goto err; |
353 | 0 | if (BN_cmp(ret, f) > 0) |
354 | 0 | res = f; |
355 | 0 | else |
356 | 0 | res = ret; |
357 | 0 | } else { |
358 | 0 | res = ret; |
359 | 0 | } |
360 | | |
361 | | /* |
362 | | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
363 | | * the length of the modulus. |
364 | | */ |
365 | 0 | r = BN_bn2binpad(res, to, num); |
366 | 0 | err: |
367 | 0 | BN_CTX_end(ctx); |
368 | 0 | BN_CTX_free(ctx); |
369 | 0 | OPENSSL_clear_free(buf, num); |
370 | 0 | return r; |
371 | 0 | } |
372 | | |
373 | | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
374 | | unsigned char *to, RSA *rsa, int padding) |
375 | 0 | { |
376 | 0 | BIGNUM *f, *ret; |
377 | 0 | int j, num = 0, r = -1; |
378 | 0 | unsigned char *buf = NULL; |
379 | 0 | BN_CTX *ctx = NULL; |
380 | 0 | int local_blinding = 0; |
381 | | /* |
382 | | * Used only if the blinding structure is shared. A non-NULL unblind |
383 | | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
384 | | * the unblinding factor outside the blinding structure. |
385 | | */ |
386 | 0 | BIGNUM *unblind = NULL; |
387 | 0 | BN_BLINDING *blinding = NULL; |
388 | |
|
389 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
390 | 0 | goto err; |
391 | 0 | BN_CTX_start(ctx); |
392 | 0 | f = BN_CTX_get(ctx); |
393 | 0 | ret = BN_CTX_get(ctx); |
394 | 0 | num = BN_num_bytes(rsa->n); |
395 | 0 | buf = OPENSSL_malloc(num); |
396 | 0 | if (ret == NULL || buf == NULL) { |
397 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
398 | 0 | goto err; |
399 | 0 | } |
400 | | |
401 | | /* |
402 | | * This check was for equality but PGP does evil things and chops off the |
403 | | * top '0' bytes |
404 | | */ |
405 | 0 | if (flen > num) { |
406 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
407 | 0 | goto err; |
408 | 0 | } |
409 | | |
410 | | /* make data into a big number */ |
411 | 0 | if (BN_bin2bn(from, (int)flen, f) == NULL) |
412 | 0 | goto err; |
413 | | |
414 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
415 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
416 | 0 | goto err; |
417 | 0 | } |
418 | | |
419 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
420 | 0 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
421 | 0 | if (blinding == NULL) { |
422 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
423 | 0 | goto err; |
424 | 0 | } |
425 | 0 | } |
426 | | |
427 | 0 | if (blinding != NULL) { |
428 | 0 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
429 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
430 | 0 | goto err; |
431 | 0 | } |
432 | 0 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
433 | 0 | goto err; |
434 | 0 | } |
435 | | |
436 | | /* do the decrypt */ |
437 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
438 | 0 | (rsa->version == RSA_ASN1_VERSION_MULTI) || |
439 | 0 | ((rsa->p != NULL) && |
440 | 0 | (rsa->q != NULL) && |
441 | 0 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
442 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
443 | 0 | goto err; |
444 | 0 | } else { |
445 | 0 | BIGNUM *d = BN_new(); |
446 | 0 | if (d == NULL) { |
447 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
448 | 0 | goto err; |
449 | 0 | } |
450 | 0 | if (rsa->d == NULL) { |
451 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); |
452 | 0 | BN_free(d); |
453 | 0 | goto err; |
454 | 0 | } |
455 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
456 | |
|
457 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
458 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
459 | 0 | rsa->n, ctx)) { |
460 | 0 | BN_free(d); |
461 | 0 | goto err; |
462 | 0 | } |
463 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
464 | 0 | rsa->_method_mod_n)) { |
465 | 0 | BN_free(d); |
466 | 0 | goto err; |
467 | 0 | } |
468 | | /* We MUST free d before any further use of rsa->d */ |
469 | 0 | BN_free(d); |
470 | 0 | } |
471 | | |
472 | 0 | if (blinding) { |
473 | | /* |
474 | | * ossl_bn_rsa_do_unblind() combines blinding inversion and |
475 | | * 0-padded BN BE serialization |
476 | | */ |
477 | 0 | j = ossl_bn_rsa_do_unblind(ret, blinding, unblind, rsa->n, ctx, |
478 | 0 | buf, num); |
479 | 0 | if (j == 0) |
480 | 0 | goto err; |
481 | 0 | } else { |
482 | 0 | j = BN_bn2binpad(ret, buf, num); |
483 | 0 | if (j < 0) |
484 | 0 | goto err; |
485 | 0 | } |
486 | | |
487 | 0 | switch (padding) { |
488 | 0 | case RSA_PKCS1_PADDING: |
489 | 0 | r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); |
490 | 0 | break; |
491 | 0 | case RSA_PKCS1_OAEP_PADDING: |
492 | 0 | r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); |
493 | 0 | break; |
494 | 0 | case RSA_NO_PADDING: |
495 | 0 | memcpy(to, buf, (r = j)); |
496 | 0 | break; |
497 | 0 | default: |
498 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
499 | 0 | goto err; |
500 | 0 | } |
501 | 0 | #ifndef FIPS_MODULE |
502 | | /* |
503 | | * This trick doesn't work in the FIPS provider because libcrypto manages |
504 | | * the error stack. Instead we opt not to put an error on the stack at all |
505 | | * in case of padding failure in the FIPS provider. |
506 | | */ |
507 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED); |
508 | 0 | err_clear_last_constant_time(1 & ~constant_time_msb(r)); |
509 | 0 | #endif |
510 | |
|
511 | 0 | err: |
512 | 0 | BN_CTX_end(ctx); |
513 | 0 | BN_CTX_free(ctx); |
514 | 0 | OPENSSL_clear_free(buf, num); |
515 | 0 | return r; |
516 | 0 | } |
517 | | |
518 | | /* signature verification */ |
519 | | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
520 | | unsigned char *to, RSA *rsa, int padding) |
521 | 0 | { |
522 | 0 | BIGNUM *f, *ret; |
523 | 0 | int i, num = 0, r = -1; |
524 | 0 | unsigned char *buf = NULL; |
525 | 0 | BN_CTX *ctx = NULL; |
526 | |
|
527 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
528 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); |
529 | 0 | return -1; |
530 | 0 | } |
531 | | |
532 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
533 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
534 | 0 | return -1; |
535 | 0 | } |
536 | | |
537 | | /* for large moduli, enforce exponent limit */ |
538 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
539 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
540 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
541 | 0 | return -1; |
542 | 0 | } |
543 | 0 | } |
544 | | |
545 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
546 | 0 | goto err; |
547 | 0 | BN_CTX_start(ctx); |
548 | 0 | f = BN_CTX_get(ctx); |
549 | 0 | ret = BN_CTX_get(ctx); |
550 | 0 | num = BN_num_bytes(rsa->n); |
551 | 0 | buf = OPENSSL_malloc(num); |
552 | 0 | if (ret == NULL || buf == NULL) { |
553 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
554 | 0 | goto err; |
555 | 0 | } |
556 | | |
557 | | /* |
558 | | * This check was for equality but PGP does evil things and chops off the |
559 | | * top '0' bytes |
560 | | */ |
561 | 0 | if (flen > num) { |
562 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
563 | 0 | goto err; |
564 | 0 | } |
565 | | |
566 | 0 | if (BN_bin2bn(from, flen, f) == NULL) |
567 | 0 | goto err; |
568 | | |
569 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
570 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
571 | 0 | goto err; |
572 | 0 | } |
573 | | |
574 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
575 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
576 | 0 | rsa->n, ctx)) |
577 | 0 | goto err; |
578 | | |
579 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
580 | 0 | rsa->_method_mod_n)) |
581 | 0 | goto err; |
582 | | |
583 | 0 | if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12)) |
584 | 0 | if (!BN_sub(ret, rsa->n, ret)) |
585 | 0 | goto err; |
586 | | |
587 | 0 | i = BN_bn2binpad(ret, buf, num); |
588 | 0 | if (i < 0) |
589 | 0 | goto err; |
590 | | |
591 | 0 | switch (padding) { |
592 | 0 | case RSA_PKCS1_PADDING: |
593 | 0 | r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); |
594 | 0 | break; |
595 | 0 | case RSA_X931_PADDING: |
596 | 0 | r = RSA_padding_check_X931(to, num, buf, i, num); |
597 | 0 | break; |
598 | 0 | case RSA_NO_PADDING: |
599 | 0 | memcpy(to, buf, (r = i)); |
600 | 0 | break; |
601 | 0 | default: |
602 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
603 | 0 | goto err; |
604 | 0 | } |
605 | 0 | if (r < 0) |
606 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED); |
607 | |
|
608 | 0 | err: |
609 | 0 | BN_CTX_end(ctx); |
610 | 0 | BN_CTX_free(ctx); |
611 | 0 | OPENSSL_clear_free(buf, num); |
612 | 0 | return r; |
613 | 0 | } |
614 | | |
615 | | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
616 | 0 | { |
617 | 0 | BIGNUM *r1, *m1, *vrfy; |
618 | 0 | int ret = 0, smooth = 0; |
619 | 0 | #ifndef FIPS_MODULE |
620 | 0 | BIGNUM *r2, *m[RSA_MAX_PRIME_NUM - 2]; |
621 | 0 | int i, ex_primes = 0; |
622 | 0 | RSA_PRIME_INFO *pinfo; |
623 | 0 | #endif |
624 | |
|
625 | 0 | BN_CTX_start(ctx); |
626 | |
|
627 | 0 | r1 = BN_CTX_get(ctx); |
628 | 0 | #ifndef FIPS_MODULE |
629 | 0 | r2 = BN_CTX_get(ctx); |
630 | 0 | #endif |
631 | 0 | m1 = BN_CTX_get(ctx); |
632 | 0 | vrfy = BN_CTX_get(ctx); |
633 | 0 | if (vrfy == NULL) |
634 | 0 | goto err; |
635 | | |
636 | 0 | #ifndef FIPS_MODULE |
637 | 0 | if (rsa->version == RSA_ASN1_VERSION_MULTI |
638 | 0 | && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 |
639 | 0 | || ex_primes > RSA_MAX_PRIME_NUM - 2)) |
640 | 0 | goto err; |
641 | 0 | #endif |
642 | | |
643 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { |
644 | 0 | BIGNUM *factor = BN_new(); |
645 | |
|
646 | 0 | if (factor == NULL) |
647 | 0 | goto err; |
648 | | |
649 | | /* |
650 | | * Make sure BN_mod_inverse in Montgomery initialization uses the |
651 | | * BN_FLG_CONSTTIME flag |
652 | | */ |
653 | 0 | if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), |
654 | 0 | BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, |
655 | 0 | factor, ctx)) |
656 | 0 | || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), |
657 | 0 | BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, |
658 | 0 | factor, ctx))) { |
659 | 0 | BN_free(factor); |
660 | 0 | goto err; |
661 | 0 | } |
662 | 0 | #ifndef FIPS_MODULE |
663 | 0 | for (i = 0; i < ex_primes; i++) { |
664 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
665 | 0 | BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); |
666 | 0 | if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { |
667 | 0 | BN_free(factor); |
668 | 0 | goto err; |
669 | 0 | } |
670 | 0 | } |
671 | 0 | #endif |
672 | | /* |
673 | | * We MUST free |factor| before any further use of the prime factors |
674 | | */ |
675 | 0 | BN_free(factor); |
676 | |
|
677 | 0 | smooth = (rsa->meth->bn_mod_exp == BN_mod_exp_mont) |
678 | 0 | #ifndef FIPS_MODULE |
679 | 0 | && (ex_primes == 0) |
680 | 0 | #endif |
681 | 0 | && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); |
682 | 0 | } |
683 | | |
684 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
685 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
686 | 0 | rsa->n, ctx)) |
687 | 0 | goto err; |
688 | | |
689 | 0 | if (smooth) { |
690 | | /* |
691 | | * Conversion from Montgomery domain, a.k.a. Montgomery reduction, |
692 | | * accepts values in [0-m*2^w) range. w is m's bit width rounded up |
693 | | * to limb width. So that at the very least if |I| is fully reduced, |
694 | | * i.e. less than p*q, we can count on from-to round to perform |
695 | | * below modulo operations on |I|. Unlike BN_mod it's constant time. |
696 | | */ |
697 | 0 | if (/* m1 = I moq q */ |
698 | 0 | !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) |
699 | 0 | || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) |
700 | | /* r1 = I mod p */ |
701 | 0 | || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) |
702 | 0 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
703 | | /* |
704 | | * Use parallel exponentiations optimization if possible, |
705 | | * otherwise fallback to two sequential exponentiations: |
706 | | * m1 = m1^dmq1 mod q |
707 | | * r1 = r1^dmp1 mod p |
708 | | */ |
709 | 0 | || !BN_mod_exp_mont_consttime_x2(m1, m1, rsa->dmq1, rsa->q, |
710 | 0 | rsa->_method_mod_q, |
711 | 0 | r1, r1, rsa->dmp1, rsa->p, |
712 | 0 | rsa->_method_mod_p, |
713 | 0 | ctx) |
714 | | /* r1 = (r1 - m1) mod p */ |
715 | | /* |
716 | | * bn_mod_sub_fixed_top is not regular modular subtraction, |
717 | | * it can tolerate subtrahend to be larger than modulus, but |
718 | | * not bit-wise wider. This makes up for uncommon q>p case, |
719 | | * when |m1| can be larger than |rsa->p|. |
720 | | */ |
721 | 0 | || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) |
722 | | |
723 | | /* r1 = r1 * iqmp mod p */ |
724 | 0 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
725 | 0 | || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, |
726 | 0 | ctx) |
727 | | /* r0 = r1 * q + m1 */ |
728 | 0 | || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) |
729 | 0 | || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) |
730 | 0 | goto err; |
731 | | |
732 | 0 | goto tail; |
733 | 0 | } |
734 | | |
735 | | /* compute I mod q */ |
736 | 0 | { |
737 | 0 | BIGNUM *c = BN_new(); |
738 | 0 | if (c == NULL) |
739 | 0 | goto err; |
740 | 0 | BN_with_flags(c, I, BN_FLG_CONSTTIME); |
741 | |
|
742 | 0 | if (!BN_mod(r1, c, rsa->q, ctx)) { |
743 | 0 | BN_free(c); |
744 | 0 | goto err; |
745 | 0 | } |
746 | | |
747 | 0 | { |
748 | 0 | BIGNUM *dmq1 = BN_new(); |
749 | 0 | if (dmq1 == NULL) { |
750 | 0 | BN_free(c); |
751 | 0 | goto err; |
752 | 0 | } |
753 | 0 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
754 | | |
755 | | /* compute r1^dmq1 mod q */ |
756 | 0 | if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, |
757 | 0 | rsa->_method_mod_q)) { |
758 | 0 | BN_free(c); |
759 | 0 | BN_free(dmq1); |
760 | 0 | goto err; |
761 | 0 | } |
762 | | /* We MUST free dmq1 before any further use of rsa->dmq1 */ |
763 | 0 | BN_free(dmq1); |
764 | 0 | } |
765 | | |
766 | | /* compute I mod p */ |
767 | 0 | if (!BN_mod(r1, c, rsa->p, ctx)) { |
768 | 0 | BN_free(c); |
769 | 0 | goto err; |
770 | 0 | } |
771 | | /* We MUST free c before any further use of I */ |
772 | 0 | BN_free(c); |
773 | 0 | } |
774 | | |
775 | 0 | { |
776 | 0 | BIGNUM *dmp1 = BN_new(); |
777 | 0 | if (dmp1 == NULL) |
778 | 0 | goto err; |
779 | 0 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
780 | | |
781 | | /* compute r1^dmp1 mod p */ |
782 | 0 | if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, |
783 | 0 | rsa->_method_mod_p)) { |
784 | 0 | BN_free(dmp1); |
785 | 0 | goto err; |
786 | 0 | } |
787 | | /* We MUST free dmp1 before any further use of rsa->dmp1 */ |
788 | 0 | BN_free(dmp1); |
789 | 0 | } |
790 | | |
791 | 0 | #ifndef FIPS_MODULE |
792 | 0 | if (ex_primes > 0) { |
793 | 0 | BIGNUM *di = BN_new(), *cc = BN_new(); |
794 | |
|
795 | 0 | if (cc == NULL || di == NULL) { |
796 | 0 | BN_free(cc); |
797 | 0 | BN_free(di); |
798 | 0 | goto err; |
799 | 0 | } |
800 | | |
801 | 0 | for (i = 0; i < ex_primes; i++) { |
802 | | /* prepare m_i */ |
803 | 0 | if ((m[i] = BN_CTX_get(ctx)) == NULL) { |
804 | 0 | BN_free(cc); |
805 | 0 | BN_free(di); |
806 | 0 | goto err; |
807 | 0 | } |
808 | | |
809 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
810 | | |
811 | | /* prepare c and d_i */ |
812 | 0 | BN_with_flags(cc, I, BN_FLG_CONSTTIME); |
813 | 0 | BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); |
814 | |
|
815 | 0 | if (!BN_mod(r1, cc, pinfo->r, ctx)) { |
816 | 0 | BN_free(cc); |
817 | 0 | BN_free(di); |
818 | 0 | goto err; |
819 | 0 | } |
820 | | /* compute r1 ^ d_i mod r_i */ |
821 | 0 | if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { |
822 | 0 | BN_free(cc); |
823 | 0 | BN_free(di); |
824 | 0 | goto err; |
825 | 0 | } |
826 | 0 | } |
827 | | |
828 | 0 | BN_free(cc); |
829 | 0 | BN_free(di); |
830 | 0 | } |
831 | 0 | #endif |
832 | | |
833 | 0 | if (!BN_sub(r0, r0, m1)) |
834 | 0 | goto err; |
835 | | /* |
836 | | * This will help stop the size of r0 increasing, which does affect the |
837 | | * multiply if it optimised for a power of 2 size |
838 | | */ |
839 | 0 | if (BN_is_negative(r0)) |
840 | 0 | if (!BN_add(r0, r0, rsa->p)) |
841 | 0 | goto err; |
842 | | |
843 | 0 | if (!BN_mul(r1, r0, rsa->iqmp, ctx)) |
844 | 0 | goto err; |
845 | | |
846 | 0 | { |
847 | 0 | BIGNUM *pr1 = BN_new(); |
848 | 0 | if (pr1 == NULL) |
849 | 0 | goto err; |
850 | 0 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
851 | |
|
852 | 0 | if (!BN_mod(r0, pr1, rsa->p, ctx)) { |
853 | 0 | BN_free(pr1); |
854 | 0 | goto err; |
855 | 0 | } |
856 | | /* We MUST free pr1 before any further use of r1 */ |
857 | 0 | BN_free(pr1); |
858 | 0 | } |
859 | | |
860 | | /* |
861 | | * If p < q it is occasionally possible for the correction of adding 'p' |
862 | | * if r0 is negative above to leave the result still negative. This can |
863 | | * break the private key operations: the following second correction |
864 | | * should *always* correct this rare occurrence. This will *never* happen |
865 | | * with OpenSSL generated keys because they ensure p > q [steve] |
866 | | */ |
867 | 0 | if (BN_is_negative(r0)) |
868 | 0 | if (!BN_add(r0, r0, rsa->p)) |
869 | 0 | goto err; |
870 | 0 | if (!BN_mul(r1, r0, rsa->q, ctx)) |
871 | 0 | goto err; |
872 | 0 | if (!BN_add(r0, r1, m1)) |
873 | 0 | goto err; |
874 | | |
875 | 0 | #ifndef FIPS_MODULE |
876 | | /* add m_i to m in multi-prime case */ |
877 | 0 | if (ex_primes > 0) { |
878 | 0 | BIGNUM *pr2 = BN_new(); |
879 | |
|
880 | 0 | if (pr2 == NULL) |
881 | 0 | goto err; |
882 | | |
883 | 0 | for (i = 0; i < ex_primes; i++) { |
884 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
885 | 0 | if (!BN_sub(r1, m[i], r0)) { |
886 | 0 | BN_free(pr2); |
887 | 0 | goto err; |
888 | 0 | } |
889 | | |
890 | 0 | if (!BN_mul(r2, r1, pinfo->t, ctx)) { |
891 | 0 | BN_free(pr2); |
892 | 0 | goto err; |
893 | 0 | } |
894 | | |
895 | 0 | BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); |
896 | |
|
897 | 0 | if (!BN_mod(r1, pr2, pinfo->r, ctx)) { |
898 | 0 | BN_free(pr2); |
899 | 0 | goto err; |
900 | 0 | } |
901 | | |
902 | 0 | if (BN_is_negative(r1)) |
903 | 0 | if (!BN_add(r1, r1, pinfo->r)) { |
904 | 0 | BN_free(pr2); |
905 | 0 | goto err; |
906 | 0 | } |
907 | 0 | if (!BN_mul(r1, r1, pinfo->pp, ctx)) { |
908 | 0 | BN_free(pr2); |
909 | 0 | goto err; |
910 | 0 | } |
911 | 0 | if (!BN_add(r0, r0, r1)) { |
912 | 0 | BN_free(pr2); |
913 | 0 | goto err; |
914 | 0 | } |
915 | 0 | } |
916 | 0 | BN_free(pr2); |
917 | 0 | } |
918 | 0 | #endif |
919 | | |
920 | 0 | tail: |
921 | 0 | if (rsa->e && rsa->n) { |
922 | 0 | if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { |
923 | 0 | if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, |
924 | 0 | rsa->_method_mod_n)) |
925 | 0 | goto err; |
926 | 0 | } else { |
927 | 0 | bn_correct_top(r0); |
928 | 0 | if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, |
929 | 0 | rsa->_method_mod_n)) |
930 | 0 | goto err; |
931 | 0 | } |
932 | | /* |
933 | | * If 'I' was greater than (or equal to) rsa->n, the operation will |
934 | | * be equivalent to using 'I mod n'. However, the result of the |
935 | | * verify will *always* be less than 'n' so we don't check for |
936 | | * absolute equality, just congruency. |
937 | | */ |
938 | 0 | if (!BN_sub(vrfy, vrfy, I)) |
939 | 0 | goto err; |
940 | 0 | if (BN_is_zero(vrfy)) { |
941 | 0 | bn_correct_top(r0); |
942 | 0 | ret = 1; |
943 | 0 | goto err; /* not actually error */ |
944 | 0 | } |
945 | 0 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) |
946 | 0 | goto err; |
947 | 0 | if (BN_is_negative(vrfy)) |
948 | 0 | if (!BN_add(vrfy, vrfy, rsa->n)) |
949 | 0 | goto err; |
950 | 0 | if (!BN_is_zero(vrfy)) { |
951 | | /* |
952 | | * 'I' and 'vrfy' aren't congruent mod n. Don't leak |
953 | | * miscalculated CRT output, just do a raw (slower) mod_exp and |
954 | | * return that instead. |
955 | | */ |
956 | |
|
957 | 0 | BIGNUM *d = BN_new(); |
958 | 0 | if (d == NULL) |
959 | 0 | goto err; |
960 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
961 | |
|
962 | 0 | if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, |
963 | 0 | rsa->_method_mod_n)) { |
964 | 0 | BN_free(d); |
965 | 0 | goto err; |
966 | 0 | } |
967 | | /* We MUST free d before any further use of rsa->d */ |
968 | 0 | BN_free(d); |
969 | 0 | } |
970 | 0 | } |
971 | | /* |
972 | | * It's unfortunate that we have to bn_correct_top(r0). What hopefully |
973 | | * saves the day is that correction is highly unlike, and private key |
974 | | * operations are customarily performed on blinded message. Which means |
975 | | * that attacker won't observe correlation with chosen plaintext. |
976 | | * Secondly, remaining code would still handle it in same computational |
977 | | * time and even conceal memory access pattern around corrected top. |
978 | | */ |
979 | 0 | bn_correct_top(r0); |
980 | 0 | ret = 1; |
981 | 0 | err: |
982 | 0 | BN_CTX_end(ctx); |
983 | 0 | return ret; |
984 | 0 | } |
985 | | |
986 | | static int rsa_ossl_init(RSA *rsa) |
987 | 329 | { |
988 | 329 | rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; |
989 | 329 | return 1; |
990 | 329 | } |
991 | | |
992 | | static int rsa_ossl_finish(RSA *rsa) |
993 | 329 | { |
994 | 329 | #ifndef FIPS_MODULE |
995 | 329 | int i; |
996 | 329 | RSA_PRIME_INFO *pinfo; |
997 | | |
998 | 329 | for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) { |
999 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
1000 | 0 | BN_MONT_CTX_free(pinfo->m); |
1001 | 0 | } |
1002 | 329 | #endif |
1003 | | |
1004 | 329 | BN_MONT_CTX_free(rsa->_method_mod_n); |
1005 | 329 | BN_MONT_CTX_free(rsa->_method_mod_p); |
1006 | 329 | BN_MONT_CTX_free(rsa->_method_mod_q); |
1007 | 329 | return 1; |
1008 | 329 | } |