Coverage Report

Created: 2025-07-11 06:37

/src/abseil-cpp/absl/strings/charconv.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include "absl/strings/charconv.h"
16
17
#include <algorithm>
18
#include <cassert>
19
#include <cstddef>
20
#include <cstdint>
21
#include <limits>
22
#include <system_error>  // NOLINT(build/c++11)
23
24
#include "absl/base/casts.h"
25
#include "absl/base/config.h"
26
#include "absl/base/nullability.h"
27
#include "absl/numeric/bits.h"
28
#include "absl/numeric/int128.h"
29
#include "absl/strings/internal/charconv_bigint.h"
30
#include "absl/strings/internal/charconv_parse.h"
31
32
// The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
33
// point numbers have the same endianness in memory as a bitfield struct
34
// containing the corresponding parts.
35
//
36
// When set, we replace calls to ldexp() with manual bit packing, which is
37
// faster and is unaffected by floating point environment.
38
#ifdef ABSL_BIT_PACK_FLOATS
39
#error ABSL_BIT_PACK_FLOATS cannot be directly set
40
#elif defined(__x86_64__) || defined(_M_X64)
41
#define ABSL_BIT_PACK_FLOATS 1
42
#endif
43
44
// A note about subnormals:
45
//
46
// The code below talks about "normals" and "subnormals".  A normal IEEE float
47
// has a fixed-width mantissa and power of two exponent.  For example, a normal
48
// `double` has a 53-bit mantissa.  Because the high bit is always 1, it is not
49
// stored in the representation.  The implicit bit buys an extra bit of
50
// resolution in the datatype.
51
//
52
// The downside of this scheme is that there is a large gap between DBL_MIN and
53
// zero.  (Large, at least, relative to the different between DBL_MIN and the
54
// next representable number).  This gap is softened by the "subnormal" numbers,
55
// which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
56
// bit.  An all-bits-zero exponent in the encoding represents subnormals.  (Zero
57
// is represented as a subnormal with an all-bits-zero mantissa.)
58
//
59
// The code below, in calculations, represents the mantissa as a uint64_t.  The
60
// end result normally has the 53rd bit set.  It represents subnormals by using
61
// narrower mantissas.
62
63
namespace absl {
64
ABSL_NAMESPACE_BEGIN
65
namespace {
66
67
template <typename FloatType>
68
struct FloatTraits;
69
70
template <>
71
struct FloatTraits<double> {
72
  using mantissa_t = uint64_t;
73
74
  // The number of bits in the given float type.
75
  static constexpr int kTargetBits = 64;
76
77
  // The number of exponent bits in the given float type.
78
  static constexpr int kTargetExponentBits = 11;
79
80
  // The number of mantissa bits in the given float type.  This includes the
81
  // implied high bit.
82
  static constexpr int kTargetMantissaBits = 53;
83
84
  // The largest supported IEEE exponent, in our integral mantissa
85
  // representation.
86
  //
87
  // If `m` is the largest possible int kTargetMantissaBits bits wide, then
88
  // m * 2**kMaxExponent is exactly equal to DBL_MAX.
89
  static constexpr int kMaxExponent = 971;
90
91
  // The smallest supported IEEE normal exponent, in our integral mantissa
92
  // representation.
93
  //
94
  // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
95
  // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
96
  static constexpr int kMinNormalExponent = -1074;
97
98
  // The IEEE exponent bias.  It equals ((1 << (kTargetExponentBits - 1)) - 1).
99
  static constexpr int kExponentBias = 1023;
100
101
  // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment.  It equals (63 - 1 -
102
  // kTargetMantissaBits).
103
  static constexpr int kEiselLemireShift = 9;
104
105
  // The Eisel-Lemire high64_mask.  It equals ((1 << kEiselLemireShift) - 1).
106
  static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
107
108
  // The smallest negative integer N (smallest negative means furthest from
109
  // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
110
  // positive. Parsing a smaller (more negative) N will produce zero.
111
  //
112
  // Adjusting the decimal point and exponent, without adjusting the value,
113
  // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
114
  //
115
  // 9999999999999999999, with 19 nines but no decimal point, is the largest
116
  // "repeated nines" integer that fits in a uint64_t.
117
  static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
118
119
  // The smallest positive integer N such that parsing 1eN produces infinity.
120
  // Parsing a smaller N will produce something finite.
121
  static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
122
123
0
  static double MakeNan(const char* absl_nonnull tagp) {
124
0
#if ABSL_HAVE_BUILTIN(__builtin_nan)
125
    // Use __builtin_nan() if available since it has a fix for
126
    // https://bugs.llvm.org/show_bug.cgi?id=37778
127
    // std::nan may use the glibc implementation.
128
0
    return __builtin_nan(tagp);
129
#else
130
    // Support nan no matter which namespace it's in.  Some platforms
131
    // incorrectly don't put it in namespace std.
132
    using namespace std;  // NOLINT
133
    return nan(tagp);
134
#endif
135
0
  }
136
137
  // Builds a nonzero floating point number out of the provided parts.
138
  //
139
  // This is intended to do the same operation as ldexp(mantissa, exponent),
140
  // but using purely integer math, to avoid -ffastmath and floating
141
  // point environment issues.  Using type punning is also faster. We fall back
142
  // to ldexp on a per-platform basis for portability.
143
  //
144
  // `exponent` must be between kMinNormalExponent and kMaxExponent.
145
  //
146
  // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
147
  // a normal value is made, or it must be less narrow than that, in which case
148
  // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
149
  // made.
150
0
  static double Make(mantissa_t mantissa, int exponent, bool sign) {
151
#ifndef ABSL_BIT_PACK_FLOATS
152
    // Support ldexp no matter which namespace it's in.  Some platforms
153
    // incorrectly don't put it in namespace std.
154
    using namespace std;  // NOLINT
155
    return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
156
#else
157
0
    constexpr uint64_t kMantissaMask =
158
0
        (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
159
0
    uint64_t dbl = static_cast<uint64_t>(sign) << 63;
160
0
    if (mantissa > kMantissaMask) {
161
      // Normal value.
162
      // Adjust by 1023 for the exponent representation bias, and an additional
163
      // 52 due to the implied decimal point in the IEEE mantissa
164
      // representation.
165
0
      dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
166
0
             << 52;
167
0
      mantissa &= kMantissaMask;
168
0
    } else {
169
      // subnormal value
170
0
      assert(exponent == kMinNormalExponent);
171
0
    }
172
0
    dbl += mantissa;
173
0
    return absl::bit_cast<double>(dbl);
174
0
#endif  // ABSL_BIT_PACK_FLOATS
175
0
  }
176
};
177
178
// Specialization of floating point traits for the `float` type.  See the
179
// FloatTraits<double> specialization above for meaning of each of the following
180
// members and methods.
181
template <>
182
struct FloatTraits<float> {
183
  using mantissa_t = uint32_t;
184
185
  static constexpr int kTargetBits = 32;
186
  static constexpr int kTargetExponentBits = 8;
187
  static constexpr int kTargetMantissaBits = 24;
188
  static constexpr int kMaxExponent = 104;
189
  static constexpr int kMinNormalExponent = -149;
190
  static constexpr int kExponentBias = 127;
191
  static constexpr int kEiselLemireShift = 38;
192
  static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
193
  static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
194
  static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
195
196
0
  static float MakeNan(const char* absl_nonnull tagp) {
197
0
#if ABSL_HAVE_BUILTIN(__builtin_nanf)
198
    // Use __builtin_nanf() if available since it has a fix for
199
    // https://bugs.llvm.org/show_bug.cgi?id=37778
200
    // std::nanf may use the glibc implementation.
201
0
    return __builtin_nanf(tagp);
202
#else
203
    // Support nanf no matter which namespace it's in.  Some platforms
204
    // incorrectly don't put it in namespace std.
205
    using namespace std;  // NOLINT
206
    return std::nanf(tagp);
207
#endif
208
0
  }
209
210
0
  static float Make(mantissa_t mantissa, int exponent, bool sign) {
211
#ifndef ABSL_BIT_PACK_FLOATS
212
    // Support ldexpf no matter which namespace it's in.  Some platforms
213
    // incorrectly don't put it in namespace std.
214
    using namespace std;  // NOLINT
215
    return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
216
#else
217
0
    constexpr uint32_t kMantissaMask =
218
0
        (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
219
0
    uint32_t flt = static_cast<uint32_t>(sign) << 31;
220
0
    if (mantissa > kMantissaMask) {
221
      // Normal value.
222
      // Adjust by 127 for the exponent representation bias, and an additional
223
      // 23 due to the implied decimal point in the IEEE mantissa
224
      // representation.
225
0
      flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
226
0
             << 23;
227
0
      mantissa &= kMantissaMask;
228
0
    } else {
229
      // subnormal value
230
0
      assert(exponent == kMinNormalExponent);
231
0
    }
232
0
    flt += mantissa;
233
0
    return absl::bit_cast<float>(flt);
234
0
#endif  // ABSL_BIT_PACK_FLOATS
235
0
  }
236
};
237
238
// Decimal-to-binary conversions require coercing powers of 10 into a mantissa
239
// and a power of 2.  The two helper functions Power10Mantissa(n) and
240
// Power10Exponent(n) perform this task.  Together, these represent a hand-
241
// rolled floating point value which is equal to or just less than 10**n.
242
//
243
// The return values satisfy two range guarantees:
244
//
245
//   Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
246
//     < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
247
//
248
//   2**63 <= Power10Mantissa(n) < 2**64.
249
//
250
// See the "Table of powers of 10" comment below for a "1e60" example.
251
//
252
// Lookups into the power-of-10 table must first check the Power10Overflow() and
253
// Power10Underflow() functions, to avoid out-of-bounds table access.
254
//
255
// Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
256
// indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
257
extern const uint64_t kPower10MantissaHighTable[];  // High 64 of 128 bits.
258
extern const uint64_t kPower10MantissaLowTable[];   // Low  64 of 128 bits.
259
260
// The smallest (inclusive) allowed value for use with the Power10Mantissa()
261
// and Power10Exponent() functions below.  (If a smaller exponent is needed in
262
// calculations, the end result is guaranteed to underflow.)
263
constexpr int kPower10TableMinInclusive = -342;
264
265
// The largest (exclusive) allowed value for use with the Power10Mantissa() and
266
// Power10Exponent() functions below.  (If a larger-or-equal exponent is needed
267
// in calculations, the end result is guaranteed to overflow.)
268
constexpr int kPower10TableMaxExclusive = 309;
269
270
0
uint64_t Power10Mantissa(int n) {
271
0
  return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
272
0
}
273
274
0
int Power10Exponent(int n) {
275
  // The 217706 etc magic numbers encode the results as a formula instead of a
276
  // table. Their equivalence (over the kPower10TableMinInclusive ..
277
  // kPower10TableMaxExclusive range) is confirmed by
278
  // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
279
0
  return (217706 * n >> 16) - 63;
280
0
}
281
282
// Returns true if n is large enough that 10**n always results in an IEEE
283
// overflow.
284
0
bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
285
286
// Returns true if n is small enough that 10**n times a ParsedFloat mantissa
287
// always results in an IEEE underflow.
288
0
bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
289
290
// Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
291
// to 10**n numerically.  Put another way, this returns true if there is no
292
// truncation error in Power10Mantissa(n).
293
0
bool Power10Exact(int n) { return n >= 0 && n <= 27; }
294
295
// Sentinel exponent values for representing numbers too large or too close to
296
// zero to represent in a double.
297
constexpr int kOverflow = 99999;
298
constexpr int kUnderflow = -99999;
299
300
// Struct representing the calculated conversion result of a positive (nonzero)
301
// floating point number.
302
//
303
// The calculated number is mantissa * 2**exponent (mantissa is treated as an
304
// integer.)  `mantissa` is chosen to be the correct width for the IEEE float
305
// representation being calculated.  (`mantissa` will always have the same bit
306
// width for normal values, and narrower bit widths for subnormals.)
307
//
308
// If the result of conversion was an underflow or overflow, exponent is set
309
// to kUnderflow or kOverflow.
310
struct CalculatedFloat {
311
  uint64_t mantissa = 0;
312
  int exponent = 0;
313
};
314
315
// Returns the bit width of the given uint128.  (Equivalently, returns 128
316
// minus the number of leading zero bits.)
317
0
int BitWidth(uint128 value) {
318
0
  if (Uint128High64(value) == 0) {
319
    // This static_cast is only needed when using a std::bit_width()
320
    // implementation that does not have the fix for LWG 3656 applied.
321
0
    return static_cast<int>(bit_width(Uint128Low64(value)));
322
0
  }
323
0
  return 128 - countl_zero(Uint128High64(value));
324
0
}
325
326
// Calculates how far to the right a mantissa needs to be shifted to create a
327
// properly adjusted mantissa for an IEEE floating point number.
328
//
329
// `mantissa_width` is the bit width of the mantissa to be shifted, and
330
// `binary_exponent` is the exponent of the number before the shift.
331
//
332
// This accounts for subnormal values, and will return a larger-than-normal
333
// shift if binary_exponent would otherwise be too low.
334
template <typename FloatType>
335
0
int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
336
0
  const int normal_shift =
337
0
      mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
338
0
  const int minimum_shift =
339
0
      FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
340
0
  return std::max(normal_shift, minimum_shift);
341
0
}
Unexecuted instantiation: charconv.cc:int absl::(anonymous namespace)::NormalizedShiftSize<double>(int, int)
Unexecuted instantiation: charconv.cc:int absl::(anonymous namespace)::NormalizedShiftSize<float>(int, int)
342
343
// Right shifts a uint128 so that it has the requested bit width.  (The
344
// resulting value will have 128 - bit_width leading zeroes.)  The initial
345
// `value` must be wider than the requested bit width.
346
//
347
// Returns the number of bits shifted.
348
0
int TruncateToBitWidth(int bit_width, uint128* absl_nonnull value) {
349
0
  const int current_bit_width = BitWidth(*value);
350
0
  const int shift = current_bit_width - bit_width;
351
0
  *value >>= shift;
352
0
  return shift;
353
0
}
354
355
// Checks if the given ParsedFloat represents one of the edge cases that are
356
// not dependent on number base: zero, infinity, or NaN.  If so, sets *value
357
// the appropriate double, and returns true.
358
template <typename FloatType>
359
bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
360
0
                    FloatType* absl_nonnull value) {
361
0
  if (input.type == strings_internal::FloatType::kNan) {
362
    // A bug in gcc would cause the compiler to optimize away the buffer we are
363
    // building below.  Declaring the buffer volatile avoids the issue, and has
364
    // no measurable performance impact in microbenchmarks.
365
    //
366
    // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
367
0
    constexpr ptrdiff_t kNanBufferSize = 128;
368
#if (defined(__GNUC__) && !defined(__clang__))
369
    volatile char n_char_sequence[kNanBufferSize];
370
#else
371
0
    char n_char_sequence[kNanBufferSize];
372
0
#endif
373
0
    if (input.subrange_begin == nullptr) {
374
0
      n_char_sequence[0] = '\0';
375
0
    } else {
376
0
      ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
377
0
      nan_size = std::min(nan_size, kNanBufferSize - 1);
378
0
      std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
379
0
      n_char_sequence[nan_size] = '\0';
380
0
    }
381
0
    char* nan_argument = const_cast<char*>(n_char_sequence);
382
0
    *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
383
0
                      : FloatTraits<FloatType>::MakeNan(nan_argument);
384
0
    return true;
385
0
  }
386
0
  if (input.type == strings_internal::FloatType::kInfinity) {
387
0
    *value = negative ? -std::numeric_limits<FloatType>::infinity()
388
0
                      : std::numeric_limits<FloatType>::infinity();
389
0
    return true;
390
0
  }
391
0
  if (input.mantissa == 0) {
392
0
    *value = negative ? -0.0f : 0.0f;
393
0
    return true;
394
0
  }
395
0
  return false;
396
0
}
Unexecuted instantiation: charconv.cc:bool absl::(anonymous namespace)::HandleEdgeCase<double>(absl::strings_internal::ParsedFloat const&, bool, double*)
Unexecuted instantiation: charconv.cc:bool absl::(anonymous namespace)::HandleEdgeCase<float>(absl::strings_internal::ParsedFloat const&, bool, float*)
397
398
// Given a CalculatedFloat result of a from_chars conversion, generate the
399
// correct output values.
400
//
401
// CalculatedFloat can represent an underflow or overflow, in which case the
402
// error code in *result is set.  Otherwise, the calculated floating point
403
// number is stored in *value.
404
template <typename FloatType>
405
void EncodeResult(const CalculatedFloat& calculated, bool negative,
406
                  absl::from_chars_result* absl_nonnull result,
407
0
                  FloatType* absl_nonnull value) {
408
0
  if (calculated.exponent == kOverflow) {
409
0
    result->ec = std::errc::result_out_of_range;
410
0
    *value = negative ? -std::numeric_limits<FloatType>::max()
411
0
                      : std::numeric_limits<FloatType>::max();
412
0
    return;
413
0
  } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
414
0
    result->ec = std::errc::result_out_of_range;
415
0
    *value = negative ? -0.0f : 0.0f;
416
0
    return;
417
0
  }
418
0
  *value = FloatTraits<FloatType>::Make(
419
0
      static_cast<typename FloatTraits<FloatType>::mantissa_t>(
420
0
          calculated.mantissa),
421
0
      calculated.exponent, negative);
422
0
}
Unexecuted instantiation: charconv.cc:void absl::(anonymous namespace)::EncodeResult<double>(absl::(anonymous namespace)::CalculatedFloat const&, bool, absl::from_chars_result*, double*)
Unexecuted instantiation: charconv.cc:void absl::(anonymous namespace)::EncodeResult<float>(absl::(anonymous namespace)::CalculatedFloat const&, bool, absl::from_chars_result*, float*)
423
424
// Returns the given uint128 shifted to the right by `shift` bits, and rounds
425
// the remaining bits using round_to_nearest logic.  The value is returned as a
426
// uint64_t, since this is the type used by this library for storing calculated
427
// floating point mantissas.
428
//
429
// It is expected that the width of the input value shifted by `shift` will
430
// be the correct bit-width for the target mantissa, which is strictly narrower
431
// than a uint64_t.
432
//
433
// If `input_exact` is false, then a nonzero error epsilon is assumed.  For
434
// rounding purposes, the true value being rounded is strictly greater than the
435
// input value.  The error may represent a single lost carry bit.
436
//
437
// When input_exact, shifted bits of the form 1000000... represent a tie, which
438
// is broken by rounding to even -- the rounding direction is chosen so the low
439
// bit of the returned value is 0.
440
//
441
// When !input_exact, shifted bits of the form 10000000... represent a value
442
// strictly greater than one half (due to the error epsilon), and so ties are
443
// always broken by rounding up.
444
//
445
// When !input_exact, shifted bits of the form 01111111... are uncertain;
446
// the true value may or may not be greater than 10000000..., due to the
447
// possible lost carry bit.  The correct rounding direction is unknown.  In this
448
// case, the result is rounded down, and `output_exact` is set to false.
449
//
450
// Zero and negative values of `shift` are accepted, in which case the word is
451
// shifted left, as necessary.
452
uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
453
0
                            bool* absl_nonnull output_exact) {
454
0
  if (shift <= 0) {
455
0
    *output_exact = input_exact;
456
0
    return static_cast<uint64_t>(value << -shift);
457
0
  }
458
0
  if (shift >= 128) {
459
    // Exponent is so small that we are shifting away all significant bits.
460
    // Answer will not be representable, even as a subnormal, so return a zero
461
    // mantissa (which represents underflow).
462
0
    *output_exact = true;
463
0
    return 0;
464
0
  }
465
466
0
  *output_exact = true;
467
0
  const uint128 shift_mask = (uint128(1) << shift) - 1;
468
0
  const uint128 halfway_point = uint128(1) << (shift - 1);
469
470
0
  const uint128 shifted_bits = value & shift_mask;
471
0
  value >>= shift;
472
0
  if (shifted_bits > halfway_point) {
473
    // Shifted bits greater than 10000... require rounding up.
474
0
    return static_cast<uint64_t>(value + 1);
475
0
  }
476
0
  if (shifted_bits == halfway_point) {
477
    // In exact mode, shifted bits of 10000... mean we're exactly halfway
478
    // between two numbers, and we must round to even.  So only round up if
479
    // the low bit of `value` is set.
480
    //
481
    // In inexact mode, the nonzero error means the actual value is greater
482
    // than the halfway point and we must always round up.
483
0
    if ((value & 1) == 1 || !input_exact) {
484
0
      ++value;
485
0
    }
486
0
    return static_cast<uint64_t>(value);
487
0
  }
488
0
  if (!input_exact && shifted_bits == halfway_point - 1) {
489
    // Rounding direction is unclear, due to error.
490
0
    *output_exact = false;
491
0
  }
492
  // Otherwise, round down.
493
0
  return static_cast<uint64_t>(value);
494
0
}
495
496
// Checks if a floating point guess needs to be rounded up, using high precision
497
// math.
498
//
499
// `guess_mantissa` and `guess_exponent` represent a candidate guess for the
500
// number represented by `parsed_decimal`.
501
//
502
// The exact number represented by `parsed_decimal` must lie between the two
503
// numbers:
504
//   A = `guess_mantissa * 2**guess_exponent`
505
//   B = `(guess_mantissa + 1) * 2**guess_exponent`
506
//
507
// This function returns false if `A` is the better guess, and true if `B` is
508
// the better guess, with rounding ties broken by rounding to even.
509
bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
510
0
                 const strings_internal::ParsedFloat& parsed_decimal) {
511
  // 768 is the number of digits needed in the worst case.  We could determine a
512
  // better limit dynamically based on the value of parsed_decimal.exponent.
513
  // This would optimize pathological input cases only.  (Sane inputs won't have
514
  // hundreds of digits of mantissa.)
515
0
  absl::strings_internal::BigUnsigned<84> exact_mantissa;
516
0
  int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
517
518
  // Adjust the `guess` arguments to be halfway between A and B.
519
0
  guess_mantissa = guess_mantissa * 2 + 1;
520
0
  guess_exponent -= 1;
521
522
  // In our comparison:
523
  // lhs = exact = exact_mantissa * 10**exact_exponent
524
  //             = exact_mantissa * 5**exact_exponent * 2**exact_exponent
525
  // rhs = guess = guess_mantissa * 2**guess_exponent
526
  //
527
  // Because we are doing integer math, we can't directly deal with negative
528
  // exponents.  We instead move these to the other side of the inequality.
529
0
  absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
530
0
  int comparison;
531
0
  if (exact_exponent >= 0) {
532
0
    lhs.MultiplyByFiveToTheNth(exact_exponent);
533
0
    absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
534
    // There are powers of 2 on both sides of the inequality; reduce this to
535
    // a single bit-shift.
536
0
    if (exact_exponent > guess_exponent) {
537
0
      lhs.ShiftLeft(exact_exponent - guess_exponent);
538
0
    } else {
539
0
      rhs.ShiftLeft(guess_exponent - exact_exponent);
540
0
    }
541
0
    comparison = Compare(lhs, rhs);
542
0
  } else {
543
    // Move the power of 5 to the other side of the equation, giving us:
544
    // lhs = exact_mantissa * 2**exact_exponent
545
    // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
546
0
    absl::strings_internal::BigUnsigned<84> rhs =
547
0
        absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
548
0
    rhs.MultiplyBy(guess_mantissa);
549
0
    if (exact_exponent > guess_exponent) {
550
0
      lhs.ShiftLeft(exact_exponent - guess_exponent);
551
0
    } else {
552
0
      rhs.ShiftLeft(guess_exponent - exact_exponent);
553
0
    }
554
0
    comparison = Compare(lhs, rhs);
555
0
  }
556
0
  if (comparison < 0) {
557
0
    return false;
558
0
  } else if (comparison > 0) {
559
0
    return true;
560
0
  } else {
561
    // When lhs == rhs, the decimal input is exactly between A and B.
562
    // Round towards even -- round up only if the low bit of the initial
563
    // `guess_mantissa` was a 1.  We shifted guess_mantissa left 1 bit at
564
    // the beginning of this function, so test the 2nd bit here.
565
0
    return (guess_mantissa & 2) == 2;
566
0
  }
567
0
}
568
569
// Constructs a CalculatedFloat from a given mantissa and exponent, but
570
// with the following normalizations applied:
571
//
572
// If rounding has caused mantissa to increase just past the allowed bit
573
// width, shift and adjust exponent.
574
//
575
// If exponent is too high, sets kOverflow.
576
//
577
// If mantissa is zero (representing a non-zero value not representable, even
578
// as a subnormal), sets kUnderflow.
579
template <typename FloatType>
580
0
CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
581
0
  CalculatedFloat result;
582
0
  if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
583
0
    mantissa >>= 1;
584
0
    exponent += 1;
585
0
  }
586
0
  if (exponent > FloatTraits<FloatType>::kMaxExponent) {
587
0
    result.exponent = kOverflow;
588
0
  } else if (mantissa == 0) {
589
0
    result.exponent = kUnderflow;
590
0
  } else {
591
0
    result.exponent = exponent;
592
0
    result.mantissa = mantissa;
593
0
  }
594
0
  return result;
595
0
}
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculatedFloatFromRawValues<double>(unsigned long, int)
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculatedFloatFromRawValues<float>(unsigned long, int)
596
597
template <typename FloatType>
598
CalculatedFloat CalculateFromParsedHexadecimal(
599
0
    const strings_internal::ParsedFloat& parsed_hex) {
600
0
  uint64_t mantissa = parsed_hex.mantissa;
601
0
  int exponent = parsed_hex.exponent;
602
  // This static_cast is only needed when using a std::bit_width()
603
  // implementation that does not have the fix for LWG 3656 applied.
604
0
  int mantissa_width = static_cast<int>(bit_width(mantissa));
605
0
  const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
606
0
  bool result_exact;
607
0
  exponent += shift;
608
0
  mantissa = ShiftRightAndRound(mantissa, shift,
609
0
                                /* input exact= */ true, &result_exact);
610
  // ParseFloat handles rounding in the hexadecimal case, so we don't have to
611
  // check `result_exact` here.
612
0
  return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
613
0
}
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedHexadecimal<double>(absl::strings_internal::ParsedFloat const&)
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedHexadecimal<float>(absl::strings_internal::ParsedFloat const&)
614
615
template <typename FloatType>
616
CalculatedFloat CalculateFromParsedDecimal(
617
0
    const strings_internal::ParsedFloat& parsed_decimal) {
618
0
  CalculatedFloat result;
619
620
  // Large or small enough decimal exponents will always result in overflow
621
  // or underflow.
622
0
  if (Power10Underflow(parsed_decimal.exponent)) {
623
0
    result.exponent = kUnderflow;
624
0
    return result;
625
0
  } else if (Power10Overflow(parsed_decimal.exponent)) {
626
0
    result.exponent = kOverflow;
627
0
    return result;
628
0
  }
629
630
  // Otherwise convert our power of 10 into a power of 2 times an integer
631
  // mantissa, and multiply this by our parsed decimal mantissa.
632
0
  uint128 wide_binary_mantissa = parsed_decimal.mantissa;
633
0
  wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
634
0
  int binary_exponent = Power10Exponent(parsed_decimal.exponent);
635
636
  // Discard bits that are inaccurate due to truncation error.  The magic
637
  // `mantissa_width` constants below are justified in
638
  // https://abseil.io/about/design/charconv. They represent the number of bits
639
  // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
640
  // propagation.
641
0
  bool mantissa_exact;
642
0
  int mantissa_width;
643
0
  if (parsed_decimal.subrange_begin) {
644
    // Truncated mantissa
645
0
    mantissa_width = 58;
646
0
    mantissa_exact = false;
647
0
    binary_exponent +=
648
0
        TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
649
0
  } else if (!Power10Exact(parsed_decimal.exponent)) {
650
    // Exact mantissa, truncated power of ten
651
0
    mantissa_width = 63;
652
0
    mantissa_exact = false;
653
0
    binary_exponent +=
654
0
        TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
655
0
  } else {
656
    // Product is exact
657
0
    mantissa_width = BitWidth(wide_binary_mantissa);
658
0
    mantissa_exact = true;
659
0
  }
660
661
  // Shift into an FloatType-sized mantissa, and round to nearest.
662
0
  const int shift =
663
0
      NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
664
0
  bool result_exact;
665
0
  binary_exponent += shift;
666
0
  uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
667
0
                                                mantissa_exact, &result_exact);
668
0
  if (!result_exact) {
669
    // We could not determine the rounding direction using int128 math.  Use
670
    // full resolution math instead.
671
0
    if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
672
0
      binary_mantissa += 1;
673
0
    }
674
0
  }
675
676
0
  return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
677
0
                                                 binary_exponent);
678
0
}
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedDecimal<double>(absl::strings_internal::ParsedFloat const&)
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedDecimal<float>(absl::strings_internal::ParsedFloat const&)
679
680
// As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
681
// primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
682
// not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
683
// the combined approach (falling back to an alternative implementation when
684
// this function returns false) is both fast and correct.
685
template <typename FloatType>
686
bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
687
0
                 FloatType* absl_nonnull value, std::errc* absl_nonnull ec) {
688
0
  uint64_t man = input.mantissa;
689
0
  int exp10 = input.exponent;
690
0
  if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
691
0
    *value = negative ? -0.0f : 0.0f;
692
0
    *ec = std::errc::result_out_of_range;
693
0
    return true;
694
0
  } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
695
    // Return max (a finite value) consistent with from_chars and DR 3081. For
696
    // SimpleAtod and SimpleAtof, post-processing will return infinity.
697
0
    *value = negative ? -std::numeric_limits<FloatType>::max()
698
0
                      : std::numeric_limits<FloatType>::max();
699
0
    *ec = std::errc::result_out_of_range;
700
0
    return true;
701
0
  }
702
703
  // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
704
  // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
705
0
  static_assert(
706
0
      FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
707
0
          kPower10TableMinInclusive,
708
0
      "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
709
0
  static_assert(
710
0
      FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
711
0
          kPower10TableMaxExclusive,
712
0
      "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
713
714
  // The terse (+) comments in this function body refer to sections of the
715
  // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
716
  //
717
  // That blog post discusses double precision (11 exponent bits with a -1023
718
  // bias, 52 mantissa bits), but the same approach applies to single precision
719
  // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
720
  // computation here happens with 64-bit values (e.g. man) or 128-bit values
721
  // (e.g. x) before finally converting to 64- or 32-bit floating point.
722
  //
723
  // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
724
  // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
725
726
  // (+) Normalization.
727
0
  int clz = countl_zero(man);
728
0
  man <<= static_cast<unsigned int>(clz);
729
  // The 217706 etc magic numbers are from the Power10Exponent function.
730
0
  uint64_t ret_exp2 =
731
0
      static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
732
0
                            FloatTraits<FloatType>::kExponentBias - clz);
733
734
  // (+) Multiplication.
735
0
  uint128 x = static_cast<uint128>(man) *
736
0
              static_cast<uint128>(
737
0
                  kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
738
739
  // (+) Wider Approximation.
740
0
  static constexpr uint64_t high64_mask =
741
0
      FloatTraits<FloatType>::kEiselLemireMask;
742
0
  if (((Uint128High64(x) & high64_mask) == high64_mask) &&
743
0
      (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
744
0
    uint128 y =
745
0
        static_cast<uint128>(man) *
746
0
        static_cast<uint128>(
747
0
            kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
748
0
    x += Uint128High64(y);
749
    // For example, parsing "4503599627370497.5" will take the if-true
750
    // branch here (for double precision), since:
751
    //  - x   = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
752
    //  - y   = 0x8000000000000BFF_7FFFFFFFFFFFF400
753
    //  - man = 0xA000000000000F00
754
    // Likewise, when parsing "0.0625" for single precision:
755
    //  - x   = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
756
    //  - y   = 0x813FFFFFFFFFFFFF_8A00000000000000
757
    //  - man = 0x9C40000000000000
758
0
    if (((Uint128High64(x) & high64_mask) == high64_mask) &&
759
0
        ((Uint128Low64(x) + 1) == 0) &&
760
0
        (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
761
0
      return false;
762
0
    }
763
0
  }
764
765
  // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
766
0
  uint64_t msb = Uint128High64(x) >> 63;
767
0
  uint64_t ret_man =
768
0
      Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
769
0
  ret_exp2 -= 1 ^ msb;
770
771
  // (+) Half-way Ambiguity.
772
  //
773
  // For example, parsing "1e+23" will take the if-true branch here (for double
774
  // precision), since:
775
  //  - x       = 0x54B40B1F852BDA00_0000000000000000
776
  //  - ret_man = 0x002A5A058FC295ED
777
  // Likewise, when parsing "20040229.0" for single precision:
778
  //  - x       = 0x4C72894000000000_0000000000000000
779
  //  - ret_man = 0x000000000131CA25
780
0
  if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
781
0
      ((ret_man & 3) == 1)) {
782
0
    return false;
783
0
  }
784
785
  // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
786
0
  ret_man += ret_man & 1;  // Line From54a.
787
0
  ret_man >>= 1;           // Line From54b.
788
  // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
789
  // bits after the right shift by 1 at line From54b), so adjust for that.
790
  //
791
  // For example, parsing "9223372036854775807" will take the if-true branch
792
  // here (for double precision), since:
793
  //  - ret_man = 0x0020000000000000 = (1 << 53)
794
  // Likewise, when parsing "2147483647.0" for single precision:
795
  //  - ret_man = 0x0000000001000000 = (1 << 24)
796
0
  if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
797
0
    ret_exp2 += 1;
798
    // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
799
    // incrementing ret_exp2 in the line immediately above. However, we only
800
    // get here when line From54a overflowed (after adding a 1), so ret_man
801
    // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
802
    // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
803
    // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
804
    //
805
    // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
806
    // rarely taken) and technically 'more correct', so that mutation tests
807
    // that would otherwise modify or omit that "ret_man >>= 1" don't complain
808
    // that such code mutations have no observable effect.
809
0
  }
810
811
  // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
812
  // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
813
  // above means that we're in Inf/NaN space.
814
  //
815
  // The if block is equivalent to (but has fewer branches than):
816
  //   if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
817
  //
818
  // For example, parsing "4.9406564584124654e-324" will take the if-true
819
  // branch here, since ret_exp2 = -51.
820
0
  static constexpr uint64_t max_exp2 =
821
0
      (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
822
0
  if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
823
0
    return false;
824
0
  }
825
826
#ifndef ABSL_BIT_PACK_FLOATS
827
  if (FloatTraits<FloatType>::kTargetBits == 64) {
828
    *value = FloatTraits<FloatType>::Make(
829
        (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
830
        static_cast<int>(ret_exp2) - 1023 - 52, negative);
831
    return true;
832
  } else if (FloatTraits<FloatType>::kTargetBits == 32) {
833
    *value = FloatTraits<FloatType>::Make(
834
        (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
835
        static_cast<int>(ret_exp2) - 127 - 23, negative);
836
    return true;
837
  }
838
#else
839
0
  if (FloatTraits<FloatType>::kTargetBits == 64) {
840
0
    uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
841
0
    if (negative) {
842
0
      ret_bits |= 0x8000000000000000u;
843
0
    }
844
0
    *value = static_cast<FloatType>(absl::bit_cast<double>(ret_bits));
845
0
    return true;
846
0
  } else if (FloatTraits<FloatType>::kTargetBits == 32) {
847
0
    uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
848
0
                        (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
849
0
    if (negative) {
850
0
      ret_bits |= 0x80000000u;
851
0
    }
852
0
    *value = static_cast<FloatType>(absl::bit_cast<float>(ret_bits));
853
0
    return true;
854
0
  }
855
0
#endif  // ABSL_BIT_PACK_FLOATS
856
0
  return false;
857
0
}
Unexecuted instantiation: charconv.cc:bool absl::(anonymous namespace)::EiselLemire<double>(absl::strings_internal::ParsedFloat const&, bool, double*, std::__1::errc*)
Unexecuted instantiation: charconv.cc:bool absl::(anonymous namespace)::EiselLemire<float>(absl::strings_internal::ParsedFloat const&, bool, float*, std::__1::errc*)
858
859
template <typename FloatType>
860
from_chars_result FromCharsImpl(const char* absl_nonnull first,
861
                                const char* absl_nonnull last, FloatType& value,
862
0
                                chars_format fmt_flags) {
863
0
  from_chars_result result;
864
0
  result.ptr = first;  // overwritten on successful parse
865
0
  result.ec = std::errc();
866
867
0
  bool negative = false;
868
0
  if (first != last && *first == '-') {
869
0
    ++first;
870
0
    negative = true;
871
0
  }
872
  // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
873
  // to parse a hexadecimal float.
874
0
  if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
875
0
      *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
876
0
    const char* hex_first = first + 2;
877
0
    strings_internal::ParsedFloat hex_parse =
878
0
        strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
879
0
    if (hex_parse.end == nullptr ||
880
0
        hex_parse.type != strings_internal::FloatType::kNumber) {
881
      // Either we failed to parse a hex float after the "0x", or we read
882
      // "0xinf" or "0xnan" which we don't want to match.
883
      //
884
      // However, a string that begins with "0x" also begins with "0", which
885
      // is normally a valid match for the number zero.  So we want these
886
      // strings to match zero unless fmt_flags is `scientific`.  (This flag
887
      // means an exponent is required, which the string "0" does not have.)
888
0
      if (fmt_flags == chars_format::scientific) {
889
0
        result.ec = std::errc::invalid_argument;
890
0
      } else {
891
0
        result.ptr = first + 1;
892
0
        value = negative ? -0.0f : 0.0f;
893
0
      }
894
0
      return result;
895
0
    }
896
    // We matched a value.
897
0
    result.ptr = hex_parse.end;
898
0
    if (HandleEdgeCase(hex_parse, negative, &value)) {
899
0
      return result;
900
0
    }
901
0
    CalculatedFloat calculated =
902
0
        CalculateFromParsedHexadecimal<FloatType>(hex_parse);
903
0
    EncodeResult(calculated, negative, &result, &value);
904
0
    return result;
905
0
  }
906
  // Otherwise, we choose the number base based on the flags.
907
0
  if ((fmt_flags & chars_format::hex) == chars_format::hex) {
908
0
    strings_internal::ParsedFloat hex_parse =
909
0
        strings_internal::ParseFloat<16>(first, last, fmt_flags);
910
0
    if (hex_parse.end == nullptr) {
911
0
      result.ec = std::errc::invalid_argument;
912
0
      return result;
913
0
    }
914
0
    result.ptr = hex_parse.end;
915
0
    if (HandleEdgeCase(hex_parse, negative, &value)) {
916
0
      return result;
917
0
    }
918
0
    CalculatedFloat calculated =
919
0
        CalculateFromParsedHexadecimal<FloatType>(hex_parse);
920
0
    EncodeResult(calculated, negative, &result, &value);
921
0
    return result;
922
0
  } else {
923
0
    strings_internal::ParsedFloat decimal_parse =
924
0
        strings_internal::ParseFloat<10>(first, last, fmt_flags);
925
0
    if (decimal_parse.end == nullptr) {
926
0
      result.ec = std::errc::invalid_argument;
927
0
      return result;
928
0
    }
929
0
    result.ptr = decimal_parse.end;
930
0
    if (HandleEdgeCase(decimal_parse, negative, &value)) {
931
0
      return result;
932
0
    }
933
    // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
934
    // (not truncated), a precondition of the Eisel-Lemire algorithm.
935
0
    if ((decimal_parse.subrange_begin == nullptr) &&
936
0
        EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
937
0
      return result;
938
0
    }
939
0
    CalculatedFloat calculated =
940
0
        CalculateFromParsedDecimal<FloatType>(decimal_parse);
941
0
    EncodeResult(calculated, negative, &result, &value);
942
0
    return result;
943
0
  }
944
0
}
Unexecuted instantiation: charconv.cc:absl::from_chars_result absl::(anonymous namespace)::FromCharsImpl<double>(char const*, char const*, double&, absl::chars_format)
Unexecuted instantiation: charconv.cc:absl::from_chars_result absl::(anonymous namespace)::FromCharsImpl<float>(char const*, char const*, float&, absl::chars_format)
945
}  // namespace
946
947
from_chars_result from_chars(const char* absl_nonnull first,
948
                             const char* absl_nonnull last, double& value,
949
0
                             chars_format fmt) {
950
0
  return FromCharsImpl(first, last, value, fmt);
951
0
}
952
953
from_chars_result from_chars(const char* absl_nonnull first,
954
                             const char* absl_nonnull last, float& value,
955
0
                             chars_format fmt) {
956
0
  return FromCharsImpl(first, last, value, fmt);
957
0
}
958
959
namespace {
960
961
// Table of powers of 10, from kPower10TableMinInclusive to
962
// kPower10TableMaxExclusive.
963
//
964
// kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
965
// mantissa. The high bit is always on.
966
//
967
// kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
968
//
969
// Power10Exponent(i) calculates the power-of-two exponent.
970
//
971
// For a number i, this gives the unique mantissaHigh and exponent such that
972
// (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
973
//
974
// For example, Python can confirm that the exact hexadecimal value of 1e60 is:
975
//    >>> a = 1000000000000000000000000000000000000000000000000000000000000
976
//    >>> hex(a)
977
//    '0x9f4f2726179a224501d762422c946590d91000000000000000'
978
// Adding underscores at every 8th hex digit shows 50 hex digits:
979
//    '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
980
// In this case, the high bit of the first hex digit, 9, is coincidentally set,
981
// so we do not have to do further shifting to deduce the 128-bit mantissa:
982
//   - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
983
//   - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
984
// where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
985
// digits are truncated.
986
//
987
// 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
988
// bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
989
//    >>> b = 0x9f4f2726179a2245
990
//    >>> ((b+0)<<136) <= a
991
//    True
992
//    >>> ((b+1)<<136) <= a
993
//    False
994
//
995
// The tables were generated by
996
// https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
997
// after re-formatting its output into two arrays of N uint64_t values (instead
998
// of an N element array of uint64_t pairs).
999
1000
const uint64_t kPower10MantissaHighTable[] = {
1001
    0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
1002
    0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
1003
    0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
1004
    0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
1005
    0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
1006
    0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
1007
    0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
1008
    0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
1009
    0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
1010
    0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
1011
    0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
1012
    0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
1013
    0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
1014
    0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
1015
    0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
1016
    0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
1017
    0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
1018
    0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
1019
    0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
1020
    0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
1021
    0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
1022
    0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
1023
    0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
1024
    0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
1025
    0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
1026
    0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
1027
    0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
1028
    0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
1029
    0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
1030
    0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
1031
    0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
1032
    0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
1033
    0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
1034
    0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
1035
    0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
1036
    0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
1037
    0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
1038
    0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
1039
    0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
1040
    0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
1041
    0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
1042
    0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
1043
    0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
1044
    0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
1045
    0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
1046
    0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
1047
    0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
1048
    0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
1049
    0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
1050
    0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
1051
    0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
1052
    0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
1053
    0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
1054
    0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
1055
    0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
1056
    0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
1057
    0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
1058
    0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
1059
    0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
1060
    0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
1061
    0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
1062
    0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
1063
    0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
1064
    0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
1065
    0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
1066
    0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
1067
    0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
1068
    0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
1069
    0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
1070
    0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
1071
    0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
1072
    0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
1073
    0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
1074
    0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
1075
    0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
1076
    0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
1077
    0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
1078
    0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
1079
    0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
1080
    0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
1081
    0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
1082
    0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
1083
    0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
1084
    0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
1085
    0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
1086
    0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
1087
    0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
1088
    0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
1089
    0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
1090
    0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
1091
    0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
1092
    0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
1093
    0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
1094
    0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
1095
    0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
1096
    0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
1097
    0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
1098
    0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
1099
    0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
1100
    0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
1101
    0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
1102
    0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
1103
    0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
1104
    0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
1105
    0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
1106
    0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
1107
    0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
1108
    0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
1109
    0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
1110
    0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
1111
    0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
1112
    0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
1113
    0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
1114
    0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
1115
    0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
1116
    0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
1117
    0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
1118
    0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
1119
    0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
1120
    0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
1121
    0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
1122
    0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
1123
    0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
1124
    0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
1125
    0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
1126
    0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
1127
    0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
1128
    0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
1129
    0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
1130
    0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
1131
    0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
1132
    0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
1133
    0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
1134
    0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
1135
    0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
1136
    0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
1137
    0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
1138
    0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
1139
    0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
1140
    0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
1141
    0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
1142
    0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
1143
    0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
1144
    0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
1145
    0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
1146
    0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
1147
    0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
1148
    0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
1149
    0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
1150
    0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
1151
    0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
1152
    0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
1153
    0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
1154
    0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
1155
    0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
1156
    0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
1157
    0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
1158
    0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
1159
    0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
1160
    0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
1161
    0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
1162
    0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
1163
    0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
1164
    0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
1165
    0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
1166
    0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
1167
    0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
1168
    0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
1169
    0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
1170
    0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
1171
    0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
1172
    0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
1173
    0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
1174
    0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
1175
    0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
1176
    0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
1177
    0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
1178
    0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
1179
    0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
1180
    0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
1181
    0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
1182
    0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
1183
    0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
1184
    0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
1185
    0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
1186
    0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
1187
    0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
1188
    0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
1189
    0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
1190
    0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
1191
    0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
1192
    0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
1193
    0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
1194
    0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
1195
    0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
1196
    0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
1197
    0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
1198
    0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
1199
    0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
1200
    0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
1201
    0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
1202
    0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
1203
    0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
1204
    0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
1205
    0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
1206
    0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
1207
    0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
1208
    0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
1209
    0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
1210
    0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
1211
    0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
1212
    0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
1213
    0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
1214
    0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
1215
    0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
1216
    0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
1217
    0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
1218
};
1219
1220
const uint64_t kPower10MantissaLowTable[] = {
1221
    0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
1222
    0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
1223
    0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
1224
    0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
1225
    0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
1226
    0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
1227
    0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
1228
    0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
1229
    0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
1230
    0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
1231
    0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
1232
    0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
1233
    0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
1234
    0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
1235
    0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
1236
    0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
1237
    0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
1238
    0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
1239
    0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
1240
    0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
1241
    0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
1242
    0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
1243
    0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
1244
    0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
1245
    0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
1246
    0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
1247
    0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
1248
    0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
1249
    0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
1250
    0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
1251
    0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
1252
    0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
1253
    0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
1254
    0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
1255
    0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
1256
    0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
1257
    0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
1258
    0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
1259
    0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
1260
    0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
1261
    0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
1262
    0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
1263
    0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
1264
    0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
1265
    0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
1266
    0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
1267
    0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
1268
    0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
1269
    0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
1270
    0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
1271
    0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
1272
    0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
1273
    0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
1274
    0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
1275
    0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
1276
    0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
1277
    0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
1278
    0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
1279
    0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
1280
    0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
1281
    0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
1282
    0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
1283
    0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
1284
    0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
1285
    0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
1286
    0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
1287
    0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
1288
    0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
1289
    0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
1290
    0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
1291
    0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
1292
    0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
1293
    0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
1294
    0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
1295
    0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
1296
    0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
1297
    0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
1298
    0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
1299
    0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
1300
    0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
1301
    0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
1302
    0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
1303
    0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
1304
    0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
1305
    0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
1306
    0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
1307
    0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
1308
    0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
1309
    0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
1310
    0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
1311
    0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
1312
    0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
1313
    0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
1314
    0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
1315
    0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
1316
    0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
1317
    0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
1318
    0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
1319
    0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
1320
    0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
1321
    0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
1322
    0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
1323
    0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
1324
    0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
1325
    0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
1326
    0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
1327
    0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
1328
    0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
1329
    0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
1330
    0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
1331
    0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
1332
    0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
1333
    0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
1334
    0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
1335
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1336
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1337
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1338
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1339
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1340
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1341
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1342
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1343
    0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1344
    0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
1345
    0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
1346
    0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
1347
    0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
1348
    0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
1349
    0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
1350
    0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
1351
    0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
1352
    0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
1353
    0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
1354
    0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
1355
    0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
1356
    0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
1357
    0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
1358
    0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
1359
    0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
1360
    0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
1361
    0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
1362
    0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
1363
    0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
1364
    0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
1365
    0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
1366
    0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
1367
    0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
1368
    0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
1369
    0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
1370
    0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
1371
    0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
1372
    0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
1373
    0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
1374
    0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
1375
    0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
1376
    0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
1377
    0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
1378
    0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
1379
    0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
1380
    0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
1381
    0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
1382
    0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
1383
    0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
1384
    0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
1385
    0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
1386
    0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
1387
    0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
1388
    0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
1389
    0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
1390
    0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
1391
    0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
1392
    0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
1393
    0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
1394
    0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
1395
    0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
1396
    0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
1397
    0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
1398
    0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
1399
    0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
1400
    0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
1401
    0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
1402
    0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
1403
    0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
1404
    0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
1405
    0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
1406
    0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
1407
    0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
1408
    0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
1409
    0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
1410
    0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
1411
    0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
1412
    0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
1413
    0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
1414
    0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
1415
    0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
1416
    0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
1417
    0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
1418
    0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
1419
    0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
1420
    0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
1421
    0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
1422
    0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
1423
    0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
1424
    0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
1425
    0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
1426
    0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
1427
    0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
1428
    0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
1429
    0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
1430
    0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
1431
    0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
1432
    0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
1433
    0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
1434
    0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
1435
    0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
1436
    0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
1437
    0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
1438
};
1439
1440
}  // namespace
1441
ABSL_NAMESPACE_END
1442
}  // namespace absl