Coverage Report

Created: 2026-01-10 06:30

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/abseil-cpp/absl/hash/internal/hash.h
Line
Count
Source
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// File: hash.h
17
// -----------------------------------------------------------------------------
18
//
19
#ifndef ABSL_HASH_INTERNAL_HASH_H_
20
#define ABSL_HASH_INTERNAL_HASH_H_
21
22
#ifdef __APPLE__
23
#include <Availability.h>
24
#include <TargetConditionals.h>
25
#endif
26
27
// We include config.h here to make sure that ABSL_INTERNAL_CPLUSPLUS_LANG is
28
// defined.
29
#include "absl/base/config.h"
30
31
// GCC15 warns that <ciso646> is deprecated in C++17 and suggests using
32
// <version> instead, even though <version> is not available in C++17 mode prior
33
// to GCC9.
34
#if defined(__has_include)
35
#if __has_include(<version>)
36
#define ABSL_INTERNAL_VERSION_HEADER_AVAILABLE 1
37
#endif
38
#endif
39
40
// For feature testing and determining which headers can be included.
41
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L || \
42
    defined(ABSL_INTERNAL_VERSION_HEADER_AVAILABLE)
43
#include <version>
44
#else
45
#include <ciso646>
46
#endif
47
48
#undef ABSL_INTERNAL_VERSION_HEADER_AVAILABLE
49
50
#include <algorithm>
51
#include <array>
52
#include <bitset>
53
#include <cassert>
54
#include <cmath>
55
#include <cstddef>
56
#include <cstdint>
57
#include <cstring>
58
#include <deque>
59
#include <forward_list>
60
#include <functional>
61
#include <iterator>
62
#include <limits>
63
#include <list>
64
#include <map>
65
#include <memory>
66
#include <set>
67
#include <string>
68
#include <string_view>
69
#include <tuple>
70
#include <type_traits>
71
#include <unordered_map>
72
#include <unordered_set>
73
#include <utility>
74
#include <vector>
75
76
#include "absl/base/attributes.h"
77
#include "absl/base/internal/endian.h"
78
#include "absl/base/internal/unaligned_access.h"
79
#include "absl/base/optimization.h"
80
#include "absl/base/port.h"
81
#include "absl/container/fixed_array.h"
82
#include "absl/hash/internal/city.h"
83
#include "absl/hash/internal/weakly_mixed_integer.h"
84
#include "absl/meta/type_traits.h"
85
#include "absl/numeric/bits.h"
86
#include "absl/numeric/int128.h"
87
#include "absl/strings/string_view.h"
88
#include "absl/types/optional.h"
89
#include "absl/types/variant.h"
90
#include "absl/utility/utility.h"
91
92
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
93
    !defined(__XTENSA__)
94
#include <filesystem>  // NOLINT
95
#endif
96
97
// 32-bit builds with SSE 4.2 do not have _mm_crc32_u64, so the
98
// __x86_64__ condition is necessary.
99
#if defined(__SSE4_2__) && defined(__x86_64__)
100
101
#include <x86intrin.h>
102
#define ABSL_HASH_INTERNAL_HAS_CRC32
103
#define ABSL_HASH_INTERNAL_CRC32_U64 _mm_crc32_u64
104
#define ABSL_HASH_INTERNAL_CRC32_U32 _mm_crc32_u32
105
#define ABSL_HASH_INTERNAL_CRC32_U8 _mm_crc32_u8
106
107
#elif defined(_MSC_VER) && !defined(__clang__) && defined(__AVX__)
108
109
// MSVC AVX (/arch:AVX) implies SSE 4.2.
110
#include <intrin.h>
111
#define ABSL_HASH_INTERNAL_HAS_CRC32
112
#define ABSL_HASH_INTERNAL_CRC32_U64 _mm_crc32_u64
113
#define ABSL_HASH_INTERNAL_CRC32_U32 _mm_crc32_u32
114
#define ABSL_HASH_INTERNAL_CRC32_U8 _mm_crc32_u8
115
116
#elif defined(__ARM_FEATURE_CRC32)
117
118
#include <arm_acle.h>
119
#define ABSL_HASH_INTERNAL_HAS_CRC32
120
// Casting to uint32_t to be consistent with x86 intrinsic (_mm_crc32_u64
121
// accepts crc as 64 bit integer).
122
#define ABSL_HASH_INTERNAL_CRC32_U64(crc, data) \
123
  __crc32cd(static_cast<uint32_t>(crc), data)
124
#define ABSL_HASH_INTERNAL_CRC32_U32 __crc32cw
125
#define ABSL_HASH_INTERNAL_CRC32_U8 __crc32cb
126
127
#endif
128
129
namespace absl {
130
ABSL_NAMESPACE_BEGIN
131
132
class HashState;
133
134
namespace hash_internal {
135
136
// Internal detail: Large buffers are hashed in smaller chunks.  This function
137
// returns the size of these chunks.
138
5.61M
constexpr size_t PiecewiseChunkSize() { return 1024; }
139
140
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
141
// buffer of `char` or `unsigned char` as though it were contiguous.  This class
142
// provides two methods:
143
//
144
//   H add_buffer(state, data, size)
145
//   H finalize(state)
146
//
147
// `add_buffer` can be called zero or more times, followed by a single call to
148
// `finalize`.  This will produce the same hash expansion as concatenating each
149
// buffer piece into a single contiguous buffer, and passing this to
150
// `H::combine_contiguous`.
151
//
152
//  Example usage:
153
//    PiecewiseCombiner combiner;
154
//    for (const auto& piece : pieces) {
155
//      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
156
//    }
157
//    return combiner.finalize(std::move(state));
158
class PiecewiseCombiner {
159
 public:
160
  PiecewiseCombiner() = default;
161
  PiecewiseCombiner(const PiecewiseCombiner&) = delete;
162
  PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
163
164
  // Appends the given range of bytes to the sequence to be hashed, which may
165
  // modify the provided hash state.
166
  template <typename H>
167
  H add_buffer(H state, const unsigned char* data, size_t size);
168
  template <typename H>
169
0
  H add_buffer(H state, const char* data, size_t size) {
170
0
    return add_buffer(std::move(state),
171
0
                      reinterpret_cast<const unsigned char*>(data), size);
172
0
  }
173
174
  // Finishes combining the hash sequence, which may may modify the provided
175
  // hash state.
176
  //
177
  // Once finalize() is called, add_buffer() may no longer be called. The
178
  // resulting hash state will be the same as if the pieces passed to
179
  // add_buffer() were concatenated into a single flat buffer, and then provided
180
  // to H::combine_contiguous().
181
  template <typename H>
182
  H finalize(H state);
183
184
 private:
185
  unsigned char buf_[PiecewiseChunkSize()];
186
  size_t position_ = 0;
187
  bool added_something_ = false;
188
};
189
190
// Trait class which returns true if T is hashable by the absl::Hash framework.
191
// Used for the AbslHashValue implementations for composite types below.
192
template <typename T>
193
struct is_hashable;
194
195
// HashStateBase is an internal implementation detail that contains common
196
// implementation details for all of the "hash state objects" objects generated
197
// by Abseil.  This is not a public API; users should not create classes that
198
// inherit from this.
199
//
200
// A hash state object is the template argument `H` passed to `AbslHashValue`.
201
// It represents an intermediate state in the computation of an unspecified hash
202
// algorithm. `HashStateBase` provides a CRTP style base class for hash state
203
// implementations. Developers adding type support for `absl::Hash` should not
204
// rely on any parts of the state object other than the following member
205
// functions:
206
//
207
//   * HashStateBase::combine()
208
//   * HashStateBase::combine_contiguous()
209
//   * HashStateBase::combine_unordered()
210
//
211
// A derived hash state class of type `H` must provide a public member function
212
// with a signature similar to the following:
213
//
214
//    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
215
//
216
// It must also provide a private template method named RunCombineUnordered.
217
//
218
// A "consumer" is a 1-arg functor returning void.  Its argument is a reference
219
// to an inner hash state object, and it may be called multiple times.  When
220
// called, the functor consumes the entropy from the provided state object,
221
// and resets that object to its empty state.
222
//
223
// A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
224
// an inner hash state object and an ElementStateConsumer functor.  A combiner
225
// uses the provided inner hash state object to hash each element of the
226
// container, passing the inner hash state object to the consumer after hashing
227
// each element.
228
//
229
// Given these definitions, a derived hash state class of type H
230
// must provide a private template method with a signature similar to the
231
// following:
232
//
233
//    `template <typename CombinerT>`
234
//    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
235
//
236
// This function is responsible for constructing the inner state object and
237
// providing a consumer to the combiner.  It uses side effects of the consumer
238
// and combiner to mix the state of each element in an order-independent manner,
239
// and uses this to return an updated value of `outer_state`.
240
//
241
// This inside-out approach generates efficient object code in the normal case,
242
// but allows us to use stack storage to implement the absl::HashState type
243
// erasure mechanism (avoiding heap allocations while hashing).
244
//
245
// `HashStateBase` will provide a complete implementation for a hash state
246
// object in terms of these two methods.
247
//
248
// Example:
249
//
250
//   // Use CRTP to define your derived class.
251
//   struct MyHashState : HashStateBase<MyHashState> {
252
//       static H combine_contiguous(H state, const unsigned char*, size_t);
253
//       using MyHashState::HashStateBase::combine;
254
//       using MyHashState::HashStateBase::combine_contiguous;
255
//       using MyHashState::HashStateBase::combine_unordered;
256
//     private:
257
//       template <typename CombinerT>
258
//       static H RunCombineUnordered(H state, CombinerT combiner);
259
//   };
260
template <typename H>
261
class HashStateBase {
262
 public:
263
  // Combines an arbitrary number of values into a hash state, returning the
264
  // updated state.
265
  //
266
  // Each of the value types `T` must be separately hashable by the Abseil
267
  // hashing framework.
268
  //
269
  // NOTE:
270
  //
271
  //   state = H::combine(std::move(state), value1, value2, value3);
272
  //
273
  // is guaranteed to produce the same hash expansion as:
274
  //
275
  //   state = H::combine(std::move(state), value1);
276
  //   state = H::combine(std::move(state), value2);
277
  //   state = H::combine(std::move(state), value3);
278
  template <typename T, typename... Ts>
279
  static H combine(H state, const T& value, const Ts&... values);
280
0
  static H combine(H state) { return state; }
281
282
  // Combines a contiguous array of `size` elements into a hash state, returning
283
  // the updated state.
284
  //
285
  // NOTE:
286
  //
287
  //   state = H::combine_contiguous(std::move(state), data, size);
288
  //
289
  // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
290
  // perform internal optimizations).  If you need this guarantee, use the
291
  // for-loop instead.
292
  template <typename T>
293
  static H combine_contiguous(H state, const T* data, size_t size);
294
295
  template <typename I>
296
  static H combine_unordered(H state, I begin, I end);
297
298
  using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
299
300
  template <typename T>
301
  using is_hashable = absl::hash_internal::is_hashable<T>;
302
303
 private:
304
  // Common implementation of the iteration step of a "combiner", as described
305
  // above.
306
  template <typename I>
307
  struct CombineUnorderedCallback {
308
    I begin;
309
    I end;
310
311
    template <typename InnerH, typename ElementStateConsumer>
312
    void operator()(InnerH inner_state, ElementStateConsumer cb) {
313
      for (; begin != end; ++begin) {
314
        inner_state = H::combine(std::move(inner_state), *begin);
315
        cb(inner_state);
316
      }
317
    }
318
  };
319
};
320
321
// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
322
// is uniquely represented.
323
//
324
// A type is "uniquely represented" if two equal values of that type are
325
// guaranteed to have the same bytes in their underlying storage. In other
326
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
327
// zero. This property cannot be detected automatically, so this trait is false
328
// by default, but can be specialized by types that wish to assert that they are
329
// uniquely represented. This makes them eligible for certain optimizations.
330
//
331
// If you have any doubt whatsoever, do not specialize this template.
332
// The default is completely safe, and merely disables some optimizations
333
// that will not matter for most types. Specializing this template,
334
// on the other hand, can be very hazardous.
335
//
336
// To be uniquely represented, a type must not have multiple ways of
337
// representing the same value; for example, float and double are not
338
// uniquely represented, because they have distinct representations for
339
// +0 and -0. Furthermore, the type's byte representation must consist
340
// solely of user-controlled data, with no padding bits and no compiler-
341
// controlled data such as vptrs or sanitizer metadata. This is usually
342
// very difficult to guarantee, because in most cases the compiler can
343
// insert data and padding bits at its own discretion.
344
//
345
// If you specialize this template for a type `T`, you must do so in the file
346
// that defines that type (or in this file). If you define that specialization
347
// anywhere else, `is_uniquely_represented<T>` could have different meanings
348
// in different places.
349
//
350
// The Enable parameter is meaningless; it is provided as a convenience,
351
// to support certain SFINAE techniques when defining specializations.
352
template <typename T, typename Enable = void>
353
struct is_uniquely_represented : std::false_type {};
354
355
// unsigned char is a synonym for "byte", so it is guaranteed to be
356
// uniquely represented.
357
template <>
358
struct is_uniquely_represented<unsigned char> : std::true_type {};
359
360
// is_uniquely_represented for non-standard integral types
361
//
362
// Integral types other than bool should be uniquely represented on any
363
// platform that this will plausibly be ported to.
364
template <typename Integral>
365
struct is_uniquely_represented<
366
    Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
367
    : std::true_type {};
368
369
template <>
370
struct is_uniquely_represented<bool> : std::false_type {};
371
372
#ifdef ABSL_HAVE_INTRINSIC_INT128
373
// Specialize the trait for GNU extension types.
374
template <>
375
struct is_uniquely_represented<__int128> : std::true_type {};
376
template <>
377
struct is_uniquely_represented<unsigned __int128> : std::true_type {};
378
#endif  // ABSL_HAVE_INTRINSIC_INT128
379
380
template <typename T>
381
struct FitsIn64Bits : std::integral_constant<bool, sizeof(T) <= 8> {};
382
383
struct CombineRaw {
384
  template <typename H>
385
0
  H operator()(H state, uint64_t value) const {
386
0
    return H::combine_raw(std::move(state), value);
387
0
  }
388
};
389
390
// For use in `raw_hash_set` to pass a seed to the hash function.
391
struct HashWithSeed {
392
  template <typename Hasher, typename T>
393
0
  size_t hash(const Hasher& hasher, const T& value, size_t seed) const {
394
0
    // NOLINTNEXTLINE(clang-diagnostic-sign-conversion)
395
0
    return hasher.hash_with_seed(value, seed);
396
0
  }
Unexecuted instantiation: unsigned long absl::hash_internal::HashWithSeed::hash<absl::hash_internal::Hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > >, std::__1::basic_string_view<char, std::__1::char_traits<char> > >(absl::hash_internal::Hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > > const&, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Unexecuted instantiation: unsigned long absl::hash_internal::HashWithSeed::hash<absl::hash_internal::Hash<absl::Cord>, absl::Cord>(absl::hash_internal::Hash<absl::Cord> const&, absl::Cord const&, unsigned long) const
397
};
398
399
// Convenience function that combines `hash_state` with the byte representation
400
// of `value`.
401
template <typename H, typename T,
402
          absl::enable_if_t<FitsIn64Bits<T>::value, int> = 0>
403
0
H hash_bytes(H hash_state, const T& value) {
404
0
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
405
0
  uint64_t v;
406
  if constexpr (sizeof(T) == 1) {
407
    v = *start;
408
  } else if constexpr (sizeof(T) == 2) {
409
    v = absl::base_internal::UnalignedLoad16(start);
410
0
  } else if constexpr (sizeof(T) == 4) {
411
0
    v = absl::base_internal::UnalignedLoad32(start);
412
0
  } else {
413
0
    static_assert(sizeof(T) == 8);
414
0
    v = absl::base_internal::UnalignedLoad64(start);
415
0
  }
416
0
  return CombineRaw()(std::move(hash_state), v);
417
0
}
Unexecuted instantiation: _ZN4absl13hash_internal10hash_bytesINS0_15MixingHashStateEiTnNSt3__19enable_ifIXsr12FitsIn64BitsIT0_EE5valueEiE4typeELi0EEET_S8_RKS5_
Unexecuted instantiation: _ZN4absl13hash_internal10hash_bytesINS0_15MixingHashStateEmTnNSt3__19enable_ifIXsr12FitsIn64BitsIT0_EE5valueEiE4typeELi0EEET_S8_RKS5_
418
template <typename H, typename T,
419
          absl::enable_if_t<!FitsIn64Bits<T>::value, int> = 0>
420
H hash_bytes(H hash_state, const T& value) {
421
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
422
  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
423
}
424
425
template <typename H>
426
H hash_weakly_mixed_integer(H hash_state, WeaklyMixedInteger value) {
427
  return H::combine_weakly_mixed_integer(std::move(hash_state), value);
428
}
429
430
// -----------------------------------------------------------------------------
431
// AbslHashValue for Basic Types
432
// -----------------------------------------------------------------------------
433
434
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
435
// allows us to block lexical scope lookup when doing an unqualified call to
436
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
437
// only be found via ADL.
438
439
// AbslHashValue() for hashing bool values
440
//
441
// We use SFINAE to ensure that this overload only accepts bool, not types that
442
// are convertible to bool.
443
template <typename H, typename B>
444
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
445
    H hash_state, B value) {
446
  // We use ~size_t{} instead of 1 so that all bits are different between
447
  // true/false instead of only 1.
448
  return H::combine(std::move(hash_state),
449
                    static_cast<size_t>(value ? ~size_t{} : 0));
450
}
451
452
// AbslHashValue() for hashing enum values
453
template <typename H, typename Enum>
454
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
455
    H hash_state, Enum e) {
456
  // In practice, we could almost certainly just invoke hash_bytes directly,
457
  // but it's possible that a sanitizer might one day want to
458
  // store data in the unused bits of an enum. To avoid that risk, we
459
  // convert to the underlying type before hashing. Hopefully this will get
460
  // optimized away; if not, we can reopen discussion with c-toolchain-team.
461
  return H::combine(std::move(hash_state),
462
                    static_cast<typename std::underlying_type<Enum>::type>(e));
463
}
464
// AbslHashValue() for hashing floating-point values
465
template <typename H, typename Float>
466
typename std::enable_if<std::is_same<Float, float>::value ||
467
                            std::is_same<Float, double>::value,
468
                        H>::type
469
AbslHashValue(H hash_state, Float value) {
470
  return hash_internal::hash_bytes(std::move(hash_state),
471
                                   value == 0 ? 0 : value);
472
}
473
474
// Long double has the property that it might have extra unused bytes in it.
475
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
476
// of it. This means we can't use hash_bytes on a long double and have to
477
// convert it to something else first.
478
template <typename H, typename LongDouble>
479
typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
480
AbslHashValue(H hash_state, LongDouble value) {
481
  const int category = std::fpclassify(value);
482
  switch (category) {
483
    case FP_INFINITE:
484
      // Add the sign bit to differentiate between +Inf and -Inf
485
      hash_state = H::combine(std::move(hash_state), std::signbit(value));
486
      break;
487
488
    case FP_NAN:
489
    case FP_ZERO:
490
    default:
491
      // Category is enough for these.
492
      break;
493
494
    case FP_NORMAL:
495
    case FP_SUBNORMAL:
496
      // We can't convert `value` directly to double because this would have
497
      // undefined behavior if the value is out of range.
498
      // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
499
      // guaranteed to be in range for `double`. The truncation is
500
      // implementation defined, but that works as long as it is deterministic.
501
      int exp;
502
      auto mantissa = static_cast<double>(std::frexp(value, &exp));
503
      hash_state = H::combine(std::move(hash_state), mantissa, exp);
504
  }
505
506
  return H::combine(std::move(hash_state), category);
507
}
508
509
// Without this overload, an array decays to a pointer and we hash that, which
510
// is not likely to be what the caller intended.
511
template <typename H, typename T, size_t N>
512
H AbslHashValue(H hash_state, T (&)[N]) {
513
  static_assert(
514
      sizeof(T) == -1,
515
      "Hashing C arrays is not allowed. For string literals, wrap the literal "
516
      "in absl::string_view(). To hash the array contents, use "
517
      "absl::MakeSpan() or make the array an std::array. To hash the array "
518
      "address, use &array[0].");
519
  return hash_state;
520
}
521
522
// AbslHashValue() for hashing pointers
523
template <typename H, typename T>
524
std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state,
525
0
                                                             T ptr) {
526
0
  auto v = reinterpret_cast<uintptr_t>(ptr);
527
  // Due to alignment, pointers tend to have low bits as zero, and the next few
528
  // bits follow a pattern since they are also multiples of some base value.
529
  // The PointerAlignment test verifies that our mixing is good enough to handle
530
  // these cases.
531
0
  return H::combine(std::move(hash_state), v);
532
0
}
533
534
// AbslHashValue() for hashing nullptr_t
535
template <typename H>
536
H AbslHashValue(H hash_state, std::nullptr_t) {
537
  return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
538
}
539
540
// AbslHashValue() for hashing pointers-to-member
541
template <typename H, typename T, typename C>
542
H AbslHashValue(H hash_state, T C::*ptr) {
543
  auto salient_ptm_size = [](std::size_t n) -> std::size_t {
544
#if defined(_MSC_VER)
545
    // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
546
    // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
547
    // padding (namely when they have 1 or 3 ints). The value below is a lower
548
    // bound on the number of salient, non-padding bytes that we use for
549
    // hashing.
550
    if constexpr (alignof(T C::*) == alignof(int)) {
551
      // No padding when all subobjects have the same size as the total
552
      // alignment. This happens in 32-bit mode.
553
      return n;
554
    } else {
555
      // Padding for 1 int (size 16) or 3 ints (size 24).
556
      // With 2 ints, the size is 16 with no padding, which we pessimize.
557
      return n == 24 ? 20 : n == 16 ? 12 : n;
558
    }
559
#else
560
  // On other platforms, we assume that pointers-to-members do not have
561
  // padding.
562
#ifdef __cpp_lib_has_unique_object_representations
563
    static_assert(std::has_unique_object_representations<T C::*>::value);
564
#endif  // __cpp_lib_has_unique_object_representations
565
    return n;
566
#endif
567
  };
568
  return H::combine_contiguous(std::move(hash_state),
569
                               reinterpret_cast<unsigned char*>(&ptr),
570
                               salient_ptm_size(sizeof ptr));
571
}
572
573
// -----------------------------------------------------------------------------
574
// AbslHashValue for Composite Types
575
// -----------------------------------------------------------------------------
576
577
// AbslHashValue() for hashing pairs
578
template <typename H, typename T1, typename T2>
579
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
580
                        H>::type
581
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
582
  return H::combine(std::move(hash_state), p.first, p.second);
583
}
584
585
// Helper function for hashing a tuple. The third argument should
586
// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
587
template <typename H, typename Tuple, size_t... Is>
588
0
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
589
0
  return H::combine(std::move(hash_state), std::get<Is>(t)...);
590
0
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&>, 0ul, 1ul>(absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul>)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&>, 0ul>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&, std::__1::integer_sequence<unsigned long, 0ul>)
591
592
// AbslHashValue for hashing tuples
593
template <typename H, typename... Ts>
594
#if defined(_MSC_VER)
595
// This SFINAE gets MSVC confused under some conditions. Let's just disable it
596
// for now.
597
H
598
#else   // _MSC_VER
599
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
600
#endif  // _MSC_VER
601
0
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
602
0
  return hash_internal::hash_tuple(std::move(hash_state), t,
603
0
                                   absl::make_index_sequence<sizeof...(Ts)>());
604
0
}
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKNSt3__117basic_string_viewIcNS3_11char_traitsIcEEEERKiEEENS3_9enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESH_RKNS3_5tupleIJDpSE_EEE
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKmEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESB_RKNS5_5tupleIJDpS8_EEE
605
606
// -----------------------------------------------------------------------------
607
// AbslHashValue for Pointers
608
// -----------------------------------------------------------------------------
609
610
// AbslHashValue for hashing unique_ptr
611
template <typename H, typename T, typename D>
612
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
613
  return H::combine(std::move(hash_state), ptr.get());
614
}
615
616
// AbslHashValue for hashing shared_ptr
617
template <typename H, typename T>
618
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
619
  return H::combine(std::move(hash_state), ptr.get());
620
}
621
622
// -----------------------------------------------------------------------------
623
// AbslHashValue for String-Like Types
624
// -----------------------------------------------------------------------------
625
626
// AbslHashValue for hashing strings
627
//
628
// All the string-like types supported here provide the same hash expansion for
629
// the same character sequence. These types are:
630
//
631
//  - `absl::Cord`
632
//  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
633
//      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
634
//  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
635
//    `std::u16string_view`, and `std::u32_string_view`.
636
//
637
// For simplicity, we currently support only strings built on `char`, `wchar_t`,
638
// `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
639
// with some caution - this overload would misbehave in cases where the traits'
640
// `eq()` member isn't equivalent to `==` on the underlying character type.
641
template <typename H>
642
0
H AbslHashValue(H hash_state, absl::string_view str) {
643
0
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
644
0
}
645
646
// Support std::wstring, std::u16string and std::u32string.
647
template <typename Char, typename Alloc, typename H,
648
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
649
                                       std::is_same<Char, char16_t>::value ||
650
                                       std::is_same<Char, char32_t>::value>>
651
H AbslHashValue(
652
    H hash_state,
653
    const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
654
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
655
}
656
657
// Support std::wstring_view, std::u16string_view and std::u32string_view.
658
template <typename Char, typename H,
659
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
660
                                       std::is_same<Char, char16_t>::value ||
661
                                       std::is_same<Char, char32_t>::value>>
662
H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
663
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
664
}
665
666
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
667
    (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) ||        \
668
     __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000) &&       \
669
    (!defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) ||         \
670
     __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ >= 101500) &&        \
671
    (!defined(__XTENSA__))
672
673
#define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1
674
675
// Support std::filesystem::path. The SFINAE is required because some string
676
// types are implicitly convertible to std::filesystem::path.
677
template <typename Path, typename H,
678
          typename = absl::enable_if_t<
679
              std::is_same_v<Path, std::filesystem::path>>>
680
H AbslHashValue(H hash_state, const Path& path) {
681
  // This is implemented by deferring to the standard library to compute the
682
  // hash.  The standard library requires that for two paths, `p1 == p2`, then
683
  // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same
684
  // requirement. Since `operator==` does platform specific matching, deferring
685
  // to the standard library is the simplest approach.
686
  return H::combine(std::move(hash_state), std::filesystem::hash_value(path));
687
}
688
689
#endif  // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE
690
691
// -----------------------------------------------------------------------------
692
// AbslHashValue for Sequence Containers
693
// -----------------------------------------------------------------------------
694
695
// AbslHashValue for hashing std::array
696
template <typename H, typename T, size_t N>
697
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
698
    H hash_state, const std::array<T, N>& array) {
699
  return H::combine_contiguous(std::move(hash_state), array.data(),
700
                               array.size());
701
}
702
703
// AbslHashValue for hashing std::deque
704
template <typename H, typename T, typename Allocator>
705
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
706
    H hash_state, const std::deque<T, Allocator>& deque) {
707
  // TODO(gromer): investigate a more efficient implementation taking
708
  // advantage of the chunk structure.
709
  for (const auto& t : deque) {
710
    hash_state = H::combine(std::move(hash_state), t);
711
  }
712
  return H::combine(std::move(hash_state), WeaklyMixedInteger{deque.size()});
713
}
714
715
// AbslHashValue for hashing std::forward_list
716
template <typename H, typename T, typename Allocator>
717
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
718
    H hash_state, const std::forward_list<T, Allocator>& list) {
719
  size_t size = 0;
720
  for (const T& t : list) {
721
    hash_state = H::combine(std::move(hash_state), t);
722
    ++size;
723
  }
724
  return H::combine(std::move(hash_state), WeaklyMixedInteger{size});
725
}
726
727
// AbslHashValue for hashing std::list
728
template <typename H, typename T, typename Allocator>
729
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
730
    H hash_state, const std::list<T, Allocator>& list) {
731
  for (const auto& t : list) {
732
    hash_state = H::combine(std::move(hash_state), t);
733
  }
734
  return H::combine(std::move(hash_state), WeaklyMixedInteger{list.size()});
735
}
736
737
// AbslHashValue for hashing std::vector
738
//
739
// Do not use this for vector<bool> on platforms that have a working
740
// implementation of std::hash. It does not have a .data(), and a fallback for
741
// std::hash<> is most likely faster.
742
template <typename H, typename T, typename Allocator>
743
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
744
                        H>::type
745
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
746
  return H::combine_contiguous(std::move(hash_state), vector.data(),
747
                               vector.size());
748
}
749
750
// AbslHashValue special cases for hashing std::vector<bool>
751
752
#if defined(ABSL_IS_BIG_ENDIAN) && \
753
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
754
755
// std::hash in libstdc++ does not work correctly with vector<bool> on Big
756
// Endian platforms therefore we need to implement a custom AbslHashValue for
757
// it. More details on the bug:
758
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
759
template <typename H, typename T, typename Allocator>
760
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
761
                        H>::type
762
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
763
  typename H::AbslInternalPiecewiseCombiner combiner;
764
  for (const auto& i : vector) {
765
    unsigned char c = static_cast<unsigned char>(i);
766
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
767
  }
768
  return H::combine(combiner.finalize(std::move(hash_state)),
769
                    WeaklyMixedInteger{vector.size()});
770
}
771
#else
772
// When not working around the libstdc++ bug above, we still have to contend
773
// with the fact that std::hash<vector<bool>> is often poor quality, hashing
774
// directly on the internal words and on no other state.  On these platforms,
775
// vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
776
//
777
// Mixing in the size (as we do in our other vector<> implementations) on top
778
// of the library-provided hash implementation avoids this QOI issue.
779
template <typename H, typename T, typename Allocator>
780
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
781
                        H>::type
782
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
783
  return H::combine(std::move(hash_state),
784
                    std::hash<std::vector<T, Allocator>>{}(vector),
785
                    WeaklyMixedInteger{vector.size()});
786
}
787
#endif
788
789
// -----------------------------------------------------------------------------
790
// AbslHashValue for Ordered Associative Containers
791
// -----------------------------------------------------------------------------
792
793
// AbslHashValue for hashing std::map
794
template <typename H, typename Key, typename T, typename Compare,
795
          typename Allocator>
796
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
797
                        H>::type
798
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
799
  for (const auto& t : map) {
800
    hash_state = H::combine(std::move(hash_state), t);
801
  }
802
  return H::combine(std::move(hash_state), WeaklyMixedInteger{map.size()});
803
}
804
805
// AbslHashValue for hashing std::multimap
806
template <typename H, typename Key, typename T, typename Compare,
807
          typename Allocator>
808
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
809
                        H>::type
810
AbslHashValue(H hash_state,
811
              const std::multimap<Key, T, Compare, Allocator>& map) {
812
  for (const auto& t : map) {
813
    hash_state = H::combine(std::move(hash_state), t);
814
  }
815
  return H::combine(std::move(hash_state), WeaklyMixedInteger{map.size()});
816
}
817
818
// AbslHashValue for hashing std::set
819
template <typename H, typename Key, typename Compare, typename Allocator>
820
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
821
    H hash_state, const std::set<Key, Compare, Allocator>& set) {
822
  for (const auto& t : set) {
823
    hash_state = H::combine(std::move(hash_state), t);
824
  }
825
  return H::combine(std::move(hash_state), WeaklyMixedInteger{set.size()});
826
}
827
828
// AbslHashValue for hashing std::multiset
829
template <typename H, typename Key, typename Compare, typename Allocator>
830
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
831
    H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
832
  for (const auto& t : set) {
833
    hash_state = H::combine(std::move(hash_state), t);
834
  }
835
  return H::combine(std::move(hash_state), WeaklyMixedInteger{set.size()});
836
}
837
838
// -----------------------------------------------------------------------------
839
// AbslHashValue for Unordered Associative Containers
840
// -----------------------------------------------------------------------------
841
842
// AbslHashValue for hashing std::unordered_set
843
template <typename H, typename Key, typename Hash, typename KeyEqual,
844
          typename Alloc>
845
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
846
    H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
847
  return H::combine(
848
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
849
      WeaklyMixedInteger{s.size()});
850
}
851
852
// AbslHashValue for hashing std::unordered_multiset
853
template <typename H, typename Key, typename Hash, typename KeyEqual,
854
          typename Alloc>
855
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
856
    H hash_state,
857
    const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
858
  return H::combine(
859
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
860
      WeaklyMixedInteger{s.size()});
861
}
862
863
// AbslHashValue for hashing std::unordered_set
864
template <typename H, typename Key, typename T, typename Hash,
865
          typename KeyEqual, typename Alloc>
866
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
867
                        H>::type
868
AbslHashValue(H hash_state,
869
              const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
870
  return H::combine(
871
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
872
      WeaklyMixedInteger{s.size()});
873
}
874
875
// AbslHashValue for hashing std::unordered_multiset
876
template <typename H, typename Key, typename T, typename Hash,
877
          typename KeyEqual, typename Alloc>
878
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
879
                        H>::type
880
AbslHashValue(H hash_state,
881
              const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
882
  return H::combine(
883
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
884
      WeaklyMixedInteger{s.size()});
885
}
886
887
// -----------------------------------------------------------------------------
888
// AbslHashValue for Wrapper Types
889
// -----------------------------------------------------------------------------
890
891
// AbslHashValue for hashing std::reference_wrapper
892
template <typename H, typename T>
893
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
894
    H hash_state, std::reference_wrapper<T> opt) {
895
  return H::combine(std::move(hash_state), opt.get());
896
}
897
898
// AbslHashValue for hashing absl::optional
899
template <typename H, typename T>
900
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
901
    H hash_state, const absl::optional<T>& opt) {
902
  if (opt) hash_state = H::combine(std::move(hash_state), *opt);
903
  return H::combine(std::move(hash_state), opt.has_value());
904
}
905
906
template <typename H>
907
struct VariantVisitor {
908
  H&& hash_state;
909
  template <typename T>
910
  H operator()(const T& t) const {
911
    return H::combine(std::move(hash_state), t);
912
  }
913
};
914
915
// AbslHashValue for hashing absl::variant
916
template <typename H, typename... T>
917
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
918
AbslHashValue(H hash_state, const absl::variant<T...>& v) {
919
  if (!v.valueless_by_exception()) {
920
    hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
921
  }
922
  return H::combine(std::move(hash_state), v.index());
923
}
924
925
// -----------------------------------------------------------------------------
926
// AbslHashValue for Other Types
927
// -----------------------------------------------------------------------------
928
929
// AbslHashValue for hashing std::bitset is not defined on Little Endian
930
// platforms, for the same reason as for vector<bool> (see std::vector above):
931
// It does not expose the raw bytes, and a fallback to std::hash<> is most
932
// likely faster.
933
934
#if defined(ABSL_IS_BIG_ENDIAN) && \
935
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
936
// AbslHashValue for hashing std::bitset
937
//
938
// std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
939
// platforms therefore we need to implement a custom AbslHashValue for it. More
940
// details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
941
template <typename H, size_t N>
942
H AbslHashValue(H hash_state, const std::bitset<N>& set) {
943
  typename H::AbslInternalPiecewiseCombiner combiner;
944
  for (size_t i = 0; i < N; i++) {
945
    unsigned char c = static_cast<unsigned char>(set[i]);
946
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
947
  }
948
  return H::combine(combiner.finalize(std::move(hash_state)), N);
949
}
950
#endif
951
952
// -----------------------------------------------------------------------------
953
954
// Mixes all values in the range [data, data+size) into the hash state.
955
// This overload accepts only uniquely-represented types, and hashes them by
956
// hashing the entire range of bytes.
957
template <typename H, typename T>
958
typename std::enable_if<is_uniquely_represented<T>::value, H>::type
959
0
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
960
0
  const auto* bytes = reinterpret_cast<const unsigned char*>(data);
961
0
  return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
962
0
}
963
964
template <typename H, typename T>
965
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
966
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
967
  for (const auto end = data + size; data < end; ++data) {
968
    hash_state = H::combine(std::move(hash_state), *data);
969
  }
970
  return H::combine(std::move(hash_state),
971
                    hash_internal::WeaklyMixedInteger{size});
972
}
973
974
inline constexpr uint64_t kMul = uint64_t{0x79d5f9e0de1e8cf5};
975
976
// Random data taken from the hexadecimal digits of Pi's fractional component.
977
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
978
ABSL_CACHELINE_ALIGNED inline constexpr uint64_t kStaticRandomData[] = {
979
    0x243f'6a88'85a3'08d3, 0x1319'8a2e'0370'7344, 0xa409'3822'299f'31d0,
980
    0x082e'fa98'ec4e'6c89, 0x4528'21e6'38d0'1377,
981
};
982
983
// Extremely weak mixture of length that is mixed into the state before
984
// combining the data. It is used only for small strings. This also ensures that
985
// we have high entropy in all bits of the state.
986
5.42k
inline uint64_t PrecombineLengthMix(uint64_t state, size_t len) {
987
5.42k
  ABSL_ASSUME(len + sizeof(uint64_t) <= sizeof(kStaticRandomData));
988
5.42k
  uint64_t data = absl::base_internal::UnalignedLoad64(
989
5.42k
      reinterpret_cast<const unsigned char*>(&kStaticRandomData[0]) + len);
990
5.42k
  return state ^ data;
991
5.42k
}
992
993
86.3M
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t Mix(uint64_t lhs, uint64_t rhs) {
994
  // Though the 128-bit product needs multiple instructions on non-x86-64
995
  // platforms, it is still a good balance between speed and hash quality.
996
86.3M
  absl::uint128 m = lhs;
997
86.3M
  m *= rhs;
998
86.3M
  return Uint128High64(m) ^ Uint128Low64(m);
999
86.3M
}
1000
1001
// Suppress erroneous array bounds errors on GCC.
1002
#if defined(__GNUC__) && !defined(__clang__)
1003
#pragma GCC diagnostic push
1004
#pragma GCC diagnostic ignored "-Warray-bounds"
1005
#endif
1006
0
inline uint32_t Read4(const unsigned char* p) {
1007
0
  return absl::base_internal::UnalignedLoad32(p);
1008
0
}
1009
17.8k
inline uint64_t Read8(const unsigned char* p) {
1010
17.8k
  return absl::base_internal::UnalignedLoad64(p);
1011
17.8k
}
1012
#if defined(__GNUC__) && !defined(__clang__)
1013
#pragma GCC diagnostic pop
1014
#endif
1015
1016
// Reads 9 to 16 bytes from p.
1017
// The first 8 bytes are in .first, and the rest of the bytes are in .second
1018
// along with duplicated bytes from .first if len<16.
1019
inline std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1020
622
                                               size_t len) {
1021
622
  return {Read8(p), Read8(p + len - 8)};
1022
622
}
1023
1024
// Reads 4 to 8 bytes from p.
1025
// Bytes are permuted and some input bytes may be duplicated in output.
1026
542
inline uint64_t Read4To8(const unsigned char* p, size_t len) {
1027
  // If `len < 8`, we duplicate bytes. We always put low memory at the end.
1028
  // E.g., on little endian platforms:
1029
  // `ABCD` will be read as `ABCDABCD`.
1030
  // `ABCDE` will be read as `BCDEABCD`.
1031
  // `ABCDEF` will be read as `CDEFABCD`.
1032
  // `ABCDEFG` will be read as `DEFGABCD`.
1033
  // `ABCDEFGH` will be read as `EFGHABCD`.
1034
  // We also do not care about endianness. On big-endian platforms, bytes will
1035
  // be permuted differently. We always shift low memory by 32, because that
1036
  // can be pipelined earlier. Reading high memory requires computing
1037
  // `p + len - 4`.
1038
542
  uint64_t most_significant =
1039
542
      static_cast<uint64_t>(absl::base_internal::UnalignedLoad32(p)) << 32;
1040
542
  uint64_t least_significant =
1041
542
      absl::base_internal::UnalignedLoad32(p + len - 4);
1042
542
  return most_significant | least_significant;
1043
542
}
1044
1045
// Reads 1 to 3 bytes from p. Some input bytes may be duplicated in output.
1046
101
inline uint32_t Read1To3(const unsigned char* p, size_t len) {
1047
  // The trick used by this implementation is to avoid branches.
1048
  // We always read three bytes by duplicating.
1049
  // E.g.,
1050
  // `A` is read as `AAA`.
1051
  // `AB` is read as `ABB`.
1052
  // `ABC` is read as `ABC`.
1053
  // We always shift `p[0]` so that it can be pipelined better.
1054
  // Other bytes require extra computation to find indices.
1055
101
  uint32_t mem0 = (static_cast<uint32_t>(p[0]) << 16) | p[len - 1];
1056
101
  uint32_t mem1 = static_cast<uint32_t>(p[len / 2]) << 8;
1057
101
  return mem0 | mem1;
1058
101
}
1059
1060
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineRawImpl(uint64_t state,
1061
643
                                                            uint64_t value) {
1062
643
  return Mix(state ^ value, kMul);
1063
643
}
1064
1065
// Slow dispatch path for calls to CombineContiguousImpl with a size argument
1066
// larger than inlined size. Has the same effect as calling
1067
// CombineContiguousImpl() repeatedly with the chunk stride size.
1068
uint64_t CombineLargeContiguousImplOn32BitLengthGt8(uint64_t state,
1069
                                                    const unsigned char* first,
1070
                                                    size_t len);
1071
uint64_t CombineLargeContiguousImplOn64BitLengthGt32(uint64_t state,
1072
                                                     const unsigned char* first,
1073
                                                     size_t len);
1074
1075
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineSmallContiguousImpl(
1076
643
    uint64_t state, const unsigned char* first, size_t len) {
1077
643
  ABSL_ASSUME(len <= 8);
1078
643
  uint64_t v;
1079
643
  if (len >= 4) {
1080
542
    v = Read4To8(first, len);
1081
542
  } else if (len > 0) {
1082
101
    v = Read1To3(first, len);
1083
101
  } else {
1084
    // Empty string must modify the state.
1085
0
    v = 0x57;
1086
0
  }
1087
643
  return CombineRawImpl(state, v);
1088
643
}
1089
1090
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineContiguousImpl9to16(
1091
622
    uint64_t state, const unsigned char* first, size_t len) {
1092
622
  ABSL_ASSUME(len >= 9);
1093
622
  ABSL_ASSUME(len <= 16);
1094
  // Note: any time one half of the mix function becomes zero it will fail to
1095
  // incorporate any bits from the other half. However, there is exactly 1 in
1096
  // 2^64 values for each side that achieve this, and only when the size is
1097
  // exactly 16 -- for smaller sizes there is an overlapping byte that makes
1098
  // this impossible unless the seed is *also* incredibly unlucky.
1099
622
  auto p = Read9To16(first, len);
1100
622
  return Mix(state ^ p.first, kMul ^ p.second);
1101
622
}
1102
1103
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineContiguousImpl17to32(
1104
4.15k
    uint64_t state, const unsigned char* first, size_t len) {
1105
4.15k
  ABSL_ASSUME(len >= 17);
1106
4.15k
  ABSL_ASSUME(len <= 32);
1107
  // Do two mixes of overlapping 16-byte ranges in parallel to minimize
1108
  // latency.
1109
4.15k
  const uint64_t m0 =
1110
4.15k
      Mix(Read8(first) ^ kStaticRandomData[1], Read8(first + 8) ^ state);
1111
1112
4.15k
  const unsigned char* tail_16b_ptr = first + (len - 16);
1113
4.15k
  const uint64_t m1 = Mix(Read8(tail_16b_ptr) ^ kStaticRandomData[3],
1114
4.15k
                          Read8(tail_16b_ptr + 8) ^ state);
1115
4.15k
  return m0 ^ m1;
1116
4.15k
}
1117
1118
// Implementation of the base case for combine_contiguous where we actually
1119
// mix the bytes into the state.
1120
// Dispatch to different implementations of combine_contiguous depending
1121
// on the value of `sizeof(size_t)`.
1122
inline uint64_t CombineContiguousImpl(
1123
    uint64_t state, const unsigned char* first, size_t len,
1124
0
    std::integral_constant<int, 4> /* sizeof_size_t */) {
1125
0
  // For large values we use CityHash, for small ones we use custom low latency
1126
0
  // hash.
1127
0
  if (len <= 8) {
1128
0
    return CombineSmallContiguousImpl(PrecombineLengthMix(state, len), first,
1129
0
                                      len);
1130
0
  }
1131
0
  return CombineLargeContiguousImplOn32BitLengthGt8(state, first, len);
1132
0
}
1133
1134
#ifdef ABSL_HASH_INTERNAL_HAS_CRC32
1135
inline uint64_t CombineContiguousImpl(
1136
    uint64_t state, const unsigned char* first, size_t len,
1137
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1138
  if (ABSL_PREDICT_FALSE(len > 32)) {
1139
    return CombineLargeContiguousImplOn64BitLengthGt32(state, first, len);
1140
  }
1141
  // `mul` is the salt that is used for final mixing. It is important to fill
1142
  // high 32 bits because CRC wipes out high 32 bits.
1143
  // `rotr` is important to mix `len` into high 32 bits.
1144
  uint64_t mul = absl::rotr(kMul, static_cast<int>(len));
1145
  // Only low 32 bits of each uint64_t are used in CRC32 so we use gbswap_64 to
1146
  // move high 32 bits to low 32 bits. It has slightly smaller binary size than
1147
  // `>> 32`. `state + 8 * len` is a single instruction on both x86 and ARM, so
1148
  // we use it to better mix length. Although only the low 32 bits of the pair
1149
  // elements are used, we use pair<uint64_t, uint64_t> for better generated
1150
  // code.
1151
  std::pair<uint64_t, uint64_t> crcs = {state + 8 * len,
1152
                                        absl::gbswap_64(state)};
1153
1154
  // All CRC operations here directly read bytes from the memory.
1155
  // Single fused instructions are used, like `crc32 rcx, qword ptr [rsi]`.
1156
  // On x86, llvm-mca reports latency `R + 2` for such fused instructions, while
1157
  // `R + 3` for two separate `mov` + `crc` instructions. `R` is the latency of
1158
  // reading the memory. Fused instructions also reduce register pressure
1159
  // allowing surrounding code to be more efficient when this code is inlined.
1160
  if (len > 8) {
1161
    crcs = {ABSL_HASH_INTERNAL_CRC32_U64(crcs.first, Read8(first)),
1162
            ABSL_HASH_INTERNAL_CRC32_U64(crcs.second, Read8(first + len - 8))};
1163
    if (len > 16) {
1164
      // We compute the second round of dependent CRC32 operations.
1165
      crcs = {ABSL_HASH_INTERNAL_CRC32_U64(crcs.first, Read8(first + len - 16)),
1166
              ABSL_HASH_INTERNAL_CRC32_U64(crcs.second, Read8(first + 8))};
1167
    }
1168
  } else {
1169
    if (len >= 4) {
1170
      // We use CRC for 4 bytes to benefit from the fused instruction and better
1171
      // hash quality.
1172
      // Using `xor` or `add` may reduce latency for this case, but would
1173
      // require more registers, more instructions and will have worse hash
1174
      // quality.
1175
      crcs = {ABSL_HASH_INTERNAL_CRC32_U32(static_cast<uint32_t>(crcs.first),
1176
                                           Read4(first)),
1177
              ABSL_HASH_INTERNAL_CRC32_U32(static_cast<uint32_t>(crcs.second),
1178
                                           Read4(first + len - 4))};
1179
    } else if (len >= 1) {
1180
      // We mix three bytes all into different output registers.
1181
      // This way, we do not need shifting of these bytes (so they don't overlap
1182
      // with each other).
1183
      crcs = {ABSL_HASH_INTERNAL_CRC32_U8(static_cast<uint32_t>(crcs.first),
1184
                                          first[0]),
1185
              ABSL_HASH_INTERNAL_CRC32_U8(static_cast<uint32_t>(crcs.second),
1186
                                          first[len - 1])};
1187
      // Middle byte is mixed weaker. It is a new byte only for len == 3.
1188
      // Mixing is independent from CRC operations so it is scheduled ASAP.
1189
      mul += first[len / 2];
1190
    }
1191
  }
1192
  // `mul` is mixed into both sides of `Mix` to guarantee non-zero values for
1193
  // both multiplicands. Using Mix instead of just multiplication here improves
1194
  // hash quality, especially for short strings.
1195
  return Mix(mul - crcs.first, crcs.second - mul);
1196
}
1197
#else
1198
inline uint64_t CombineContiguousImpl(
1199
    uint64_t state, const unsigned char* first, size_t len,
1200
123k
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1201
  // For large values we use LowLevelHash or CityHash depending on the platform,
1202
  // for small ones we use custom low latency hash.
1203
123k
  if (len <= 8) {
1204
643
    return CombineSmallContiguousImpl(PrecombineLengthMix(state, len), first,
1205
643
                                      len);
1206
643
  }
1207
122k
  if (len <= 16) {
1208
622
    return CombineContiguousImpl9to16(PrecombineLengthMix(state, len), first,
1209
622
                                      len);
1210
622
  }
1211
122k
  if (len <= 32) {
1212
4.15k
    return CombineContiguousImpl17to32(PrecombineLengthMix(state, len), first,
1213
4.15k
                                       len);
1214
4.15k
  }
1215
  // We must not mix length into the state here because calling
1216
  // CombineContiguousImpl twice with PiecewiseChunkSize() must be equivalent
1217
  // to calling CombineLargeContiguousImpl once with 2 * PiecewiseChunkSize().
1218
117k
  return CombineLargeContiguousImplOn64BitLengthGt32(state, first, len);
1219
122k
}
1220
#endif  // ABSL_HASH_INTERNAL_HAS_CRC32
1221
1222
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
1223
    ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
1224
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
1225
#else
1226
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
1227
#endif
1228
1229
// Type trait to select the appropriate hash implementation to use.
1230
// HashSelect::type<T> will give the proper hash implementation, to be invoked
1231
// as:
1232
//   HashSelect::type<T>::Invoke(state, value)
1233
// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
1234
// valid `Invoke` function. Types that are not hashable will have a ::value of
1235
// `false`.
1236
struct HashSelect {
1237
 private:
1238
  struct WeaklyMixedIntegerProbe {
1239
    template <typename H>
1240
    static H Invoke(H state, WeaklyMixedInteger value) {
1241
      return hash_internal::hash_weakly_mixed_integer(std::move(state), value);
1242
    }
1243
  };
1244
1245
  struct State : HashStateBase<State> {
1246
    static State combine_contiguous(State hash_state, const unsigned char*,
1247
                                    size_t);
1248
    using State::HashStateBase::combine_contiguous;
1249
    static State combine_raw(State state, uint64_t value);
1250
    static State combine_weakly_mixed_integer(State hash_state,
1251
                                              WeaklyMixedInteger value);
1252
  };
1253
1254
  struct UniquelyRepresentedProbe {
1255
    template <typename H, typename T>
1256
    static auto Invoke(H state, const T& value)
1257
0
        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
1258
0
      return hash_internal::hash_bytes(std::move(state), value);
1259
0
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEiEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEmEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
1260
  };
1261
1262
  struct HashValueProbe {
1263
    template <typename H, typename T>
1264
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
1265
        std::is_same<H,
1266
                     decltype(AbslHashValue(std::move(state), value))>::value,
1267
0
        H> {
1268
0
      return AbslHashValue(std::move(state), value);
1269
0
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKNS5_17basic_string_viewIcNS5_11char_traitsIcEEEERKiEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESH_E4typeESH_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__117basic_string_viewIcNS5_11char_traitsIcEEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKmEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENS_4CordEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES8_E4typeES8_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateEPKvEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES9_E4typeES9_RKT0_
1270
  };
1271
1272
  struct LegacyHashProbe {
1273
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1274
    template <typename H, typename T>
1275
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
1276
        std::is_convertible<
1277
            decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
1278
            size_t>::value,
1279
        H> {
1280
      return hash_internal::hash_bytes(
1281
          std::move(state),
1282
          ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
1283
    }
1284
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1285
  };
1286
1287
  struct StdHashProbe {
1288
    template <typename H, typename T>
1289
    static auto Invoke(H state, const T& value)
1290
        -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
1291
      return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
1292
    }
1293
  };
1294
1295
  template <typename Hash, typename T>
1296
  struct Probe : Hash {
1297
   private:
1298
    template <typename H, typename = decltype(H::Invoke(
1299
                              std::declval<State>(), std::declval<const T&>()))>
1300
    static std::true_type Test(int);
1301
    template <typename U>
1302
    static std::false_type Test(char);
1303
1304
   public:
1305
    static constexpr bool value = decltype(Test<Hash>(0))::value;
1306
  };
1307
1308
 public:
1309
  // Probe each implementation in order.
1310
  // disjunction provides short circuiting wrt instantiation.
1311
  template <typename T>
1312
  using Apply = absl::disjunction<         //
1313
      Probe<WeaklyMixedIntegerProbe, T>,   //
1314
      Probe<UniquelyRepresentedProbe, T>,  //
1315
      Probe<HashValueProbe, T>,            //
1316
      Probe<LegacyHashProbe, T>,           //
1317
      Probe<StdHashProbe, T>,              //
1318
      std::false_type>;
1319
};
1320
1321
template <typename T>
1322
struct is_hashable
1323
    : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
1324
1325
class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
1326
  template <typename T>
1327
  using IntegralFastPath =
1328
      conjunction<std::is_integral<T>, is_uniquely_represented<T>,
1329
                  FitsIn64Bits<T>>;
1330
1331
 public:
1332
  // Move only
1333
  MixingHashState(MixingHashState&&) = default;
1334
  MixingHashState& operator=(MixingHashState&&) = default;
1335
1336
  // Fundamental base case for hash recursion: mixes the given range of bytes
1337
  // into the hash state.
1338
  static MixingHashState combine_contiguous(MixingHashState hash_state,
1339
                                            const unsigned char* first,
1340
0
                                            size_t size) {
1341
0
    return MixingHashState(
1342
0
        CombineContiguousImpl(hash_state.state_, first, size,
1343
0
                              std::integral_constant<int, sizeof(size_t)>{}));
1344
0
  }
1345
  using MixingHashState::HashStateBase::combine_contiguous;
1346
1347
  template <typename T>
1348
0
  static size_t hash(const T& value) {
1349
0
    return hash_with_seed(value, Seed());
1350
0
  }
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> >(std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<unsigned long const&> >(std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > >(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<absl::Cord>(absl::Cord const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<void const*>(void const* const&)
1351
1352
  // For performance reasons in non-opt mode, we specialize this for
1353
  // integral types.
1354
  // Otherwise we would be instantiating and calling dozens of functions for
1355
  // something that is just one multiplication and a couple xor's.
1356
  // The result should be the same as running the whole algorithm, but faster.
1357
  template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
1358
  static size_t hash_with_seed(T value, size_t seed) {
1359
    return static_cast<size_t>(
1360
        CombineRawImpl(seed, static_cast<std::make_unsigned_t<T>>(value)));
1361
  }
1362
1363
  template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
1364
0
  static size_t hash_with_seed(const T& value, size_t seed) {
1365
0
    return static_cast<size_t>(combine(MixingHashState{seed}, value).state_);
1366
0
  }
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__15tupleIJRKNS3_17basic_string_viewIcNS3_11char_traitsIcEEEERKiEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSF_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__15tupleIJRKmEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS9_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__117basic_string_viewIcNS3_11char_traitsIcEEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS9_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINS_4CordETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS6_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedIPKvTnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS7_m
1367
1368
 private:
1369
  friend class MixingHashState::HashStateBase;
1370
  template <typename H>
1371
  friend H absl::hash_internal::hash_weakly_mixed_integer(H,
1372
                                                          WeaklyMixedInteger);
1373
  // Allow the HashState type-erasure implementation to invoke
1374
  // RunCombinedUnordered() directly.
1375
  friend class absl::HashState;
1376
  friend struct CombineRaw;
1377
1378
  // For use in Seed().
1379
  static const void* const kSeed;
1380
1381
  // Invoked only once for a given argument; that plus the fact that this is
1382
  // move-only ensures that there is only one non-moved-from object.
1383
0
  MixingHashState() : state_(Seed()) {}
1384
1385
  // Workaround for MSVC bug.
1386
  // We make the type copyable to fix the calling convention, even though we
1387
  // never actually copy it. Keep it private to not affect the public API of the
1388
  // type.
1389
  MixingHashState(const MixingHashState&) = default;
1390
1391
0
  explicit MixingHashState(uint64_t state) : state_(state) {}
1392
1393
  // Combines a raw value from e.g. integrals/floats/pointers/etc. This allows
1394
  // us to be consistent with IntegralFastPath when combining raw types, but
1395
  // optimize Read1To3 and Read4To8 differently for the string case.
1396
  static MixingHashState combine_raw(MixingHashState hash_state,
1397
0
                                     uint64_t value) {
1398
0
    return MixingHashState(CombineRawImpl(hash_state.state_, value));
1399
0
  }
1400
1401
  static MixingHashState combine_weakly_mixed_integer(
1402
0
      MixingHashState hash_state, WeaklyMixedInteger value) {
1403
0
    // Some transformation for the value is needed to make an empty
1404
0
    // string/container change the mixing hash state.
1405
0
    // We use constant smaller than 8 bits to make compiler use
1406
0
    // `add` with an immediate operand with 1 byte value.
1407
0
    return MixingHashState{hash_state.state_ + (0x57 + value.value)};
1408
0
  }
1409
1410
  template <typename CombinerT>
1411
  static MixingHashState RunCombineUnordered(MixingHashState state,
1412
                                             CombinerT combiner) {
1413
    uint64_t unordered_state = 0;
1414
    combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1415
      // Add the hash state of the element to the running total, but mix the
1416
      // carry bit back into the low bit.  This in intended to avoid losing
1417
      // entropy to overflow, especially when unordered_multisets contain
1418
      // multiple copies of the same value.
1419
      auto element_state = inner_state.state_;
1420
      unordered_state += element_state;
1421
      if (unordered_state < element_state) {
1422
        ++unordered_state;
1423
      }
1424
      inner_state = MixingHashState{};
1425
    });
1426
    return MixingHashState::combine(std::move(state), unordered_state);
1427
  }
1428
1429
  // A non-deterministic seed.
1430
  //
1431
  // The current purpose of this seed is to generate non-deterministic results
1432
  // and prevent having users depend on the particular hash values.
1433
  // It is not meant as a security feature right now, but it leaves the door
1434
  // open to upgrade it to a true per-process random seed. A true random seed
1435
  // costs more and we don't need to pay for that right now.
1436
  //
1437
  // On platforms with ASLR, we take advantage of it to make a per-process
1438
  // random value.
1439
  // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1440
  //
1441
  // On other platforms this is still going to be non-deterministic but most
1442
  // probably per-build and not per-process.
1443
0
  ABSL_ATTRIBUTE_ALWAYS_INLINE static size_t Seed() {
1444
0
#if (!defined(__clang__) || __clang_major__ > 11) && \
1445
0
    (!defined(__apple_build_version__) ||            \
1446
0
     __apple_build_version__ >= 19558921)  // Xcode 12
1447
0
    return static_cast<size_t>(reinterpret_cast<uintptr_t>(&kSeed));
1448
#else
1449
    // Workaround the absence of
1450
    // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1451
    return static_cast<size_t>(reinterpret_cast<uintptr_t>(kSeed));
1452
#endif
1453
0
  }
1454
1455
  uint64_t state_;
1456
};
1457
1458
struct AggregateBarrier {};
1459
1460
// Add a private base class to make sure this type is not an aggregate.
1461
// Aggregates can be aggregate initialized even if the default constructor is
1462
// deleted.
1463
struct PoisonedHash : private AggregateBarrier {
1464
  PoisonedHash() = delete;
1465
  PoisonedHash(const PoisonedHash&) = delete;
1466
  PoisonedHash& operator=(const PoisonedHash&) = delete;
1467
};
1468
1469
template <typename T>
1470
struct HashImpl {
1471
0
  size_t operator()(const T& value) const {
1472
0
    return MixingHashState::hash(value);
1473
0
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> >::operator()(std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<unsigned long const&> >::operator()(std::__1::tuple<unsigned long const&> const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::basic_string_view<char, std::__1::char_traits<char> > >::operator()(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::operator()(absl::Cord const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<void const*>::operator()(void const* const&) const
1474
1475
 private:
1476
  friend struct HashWithSeed;
1477
1478
0
  size_t hash_with_seed(const T& value, size_t seed) const {
1479
0
    return MixingHashState::hash_with_seed(value, seed);
1480
0
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::basic_string_view<char, std::__1::char_traits<char> > >::hash_with_seed(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::hash_with_seed(absl::Cord const&, unsigned long) const
1481
};
1482
1483
template <typename T>
1484
struct Hash
1485
    : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1486
1487
template <typename H>
1488
template <typename T, typename... Ts>
1489
0
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1490
0
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1491
0
                        std::move(state), value),
1492
0
                    values...);
1493
0
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::basic_string_view<char, std::__1::char_traits<char> >, int>(absl::hash_internal::MixingHashState, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<int>(absl::hash_internal::MixingHashState, int const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<unsigned long>(absl::hash_internal::MixingHashState, unsigned long const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::basic_string_view<char, std::__1::char_traits<char> >>(absl::hash_internal::MixingHashState, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<absl::Cord>(absl::hash_internal::MixingHashState, absl::Cord const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<void const*>(absl::hash_internal::MixingHashState, void const* const&)
1494
1495
template <typename H>
1496
template <typename T>
1497
0
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1498
0
  return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1499
0
}
1500
1501
template <typename H>
1502
template <typename I>
1503
H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1504
  return H::RunCombineUnordered(std::move(state),
1505
                                CombineUnorderedCallback<I>{begin, end});
1506
}
1507
1508
template <typename H>
1509
H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1510
0
                                size_t size) {
1511
0
  if (position_ + size < PiecewiseChunkSize()) {
1512
0
    // This partial chunk does not fill our existing buffer
1513
0
    memcpy(buf_ + position_, data, size);
1514
0
    position_ += size;
1515
0
    return state;
1516
0
  }
1517
0
  added_something_ = true;
1518
0
  // If the buffer is partially filled we need to complete the buffer
1519
0
  // and hash it.
1520
0
  if (position_ != 0) {
1521
0
    const size_t bytes_needed = PiecewiseChunkSize() - position_;
1522
0
    memcpy(buf_ + position_, data, bytes_needed);
1523
0
    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1524
0
    data += bytes_needed;
1525
0
    size -= bytes_needed;
1526
0
  }
1527
0
1528
0
  // Hash whatever chunks we can without copying
1529
0
  while (size >= PiecewiseChunkSize()) {
1530
0
    state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1531
0
    data += PiecewiseChunkSize();
1532
0
    size -= PiecewiseChunkSize();
1533
0
  }
1534
0
  // Fill the buffer with the remainder
1535
0
  memcpy(buf_, data, size);
1536
0
  position_ = size;
1537
0
  return state;
1538
0
}
1539
1540
template <typename H>
1541
0
H PiecewiseCombiner::finalize(H state) {
1542
0
  // Do not call combine_contiguous with empty remainder since it is modifying
1543
0
  // state.
1544
0
  if (added_something_ && position_ == 0) {
1545
0
    return state;
1546
0
  }
1547
0
  // We still call combine_contiguous for the entirely empty buffer.
1548
0
  return H::combine_contiguous(std::move(state), buf_, position_);
1549
0
}
1550
1551
}  // namespace hash_internal
1552
ABSL_NAMESPACE_END
1553
}  // namespace absl
1554
1555
#undef ABSL_HASH_INTERNAL_HAS_CRC32
1556
#undef ABSL_HASH_INTERNAL_CRC32_U64
1557
#undef ABSL_HASH_INTERNAL_CRC32_U32
1558
#undef ABSL_HASH_INTERNAL_CRC32_U8
1559
1560
#endif  // ABSL_HASH_INTERNAL_HASH_H_