Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/abseil-cpp/absl/hash/internal/hash.h
Line
Count
Source
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// File: hash.h
17
// -----------------------------------------------------------------------------
18
//
19
#ifndef ABSL_HASH_INTERNAL_HASH_H_
20
#define ABSL_HASH_INTERNAL_HASH_H_
21
22
#ifdef __APPLE__
23
#include <Availability.h>
24
#include <TargetConditionals.h>
25
#endif
26
27
// We include config.h here to make sure that ABSL_INTERNAL_CPLUSPLUS_LANG is
28
// defined.
29
#include "absl/base/config.h"
30
31
// GCC15 warns that <ciso646> is deprecated in C++17 and suggests using
32
// <version> instead, even though <version> is not available in C++17 mode prior
33
// to GCC9.
34
#if defined(__has_include)
35
#if __has_include(<version>)
36
#define ABSL_INTERNAL_VERSION_HEADER_AVAILABLE 1
37
#endif
38
#endif
39
40
// For feature testing and determining which headers can be included.
41
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L || \
42
    defined(ABSL_INTERNAL_VERSION_HEADER_AVAILABLE)
43
#include <version>
44
#else
45
#include <ciso646>
46
#endif
47
48
#undef ABSL_INTERNAL_VERSION_HEADER_AVAILABLE
49
50
#include <algorithm>
51
#include <array>
52
#include <bitset>
53
#include <cassert>
54
#include <cmath>
55
#include <cstddef>
56
#include <cstdint>
57
#include <cstring>
58
#include <deque>
59
#include <forward_list>
60
#include <functional>
61
#include <iterator>
62
#include <limits>
63
#include <list>
64
#include <map>
65
#include <memory>
66
#include <set>
67
#include <string>
68
#include <string_view>
69
#include <tuple>
70
#include <type_traits>
71
#include <unordered_map>
72
#include <unordered_set>
73
#include <utility>
74
#include <vector>
75
76
#include "absl/base/attributes.h"
77
#include "absl/base/internal/endian.h"
78
#include "absl/base/internal/unaligned_access.h"
79
#include "absl/base/optimization.h"
80
#include "absl/base/port.h"
81
#include "absl/container/fixed_array.h"
82
#include "absl/hash/internal/city.h"
83
#include "absl/hash/internal/weakly_mixed_integer.h"
84
#include "absl/meta/type_traits.h"
85
#include "absl/numeric/bits.h"
86
#include "absl/numeric/int128.h"
87
#include "absl/strings/string_view.h"
88
#include "absl/types/optional.h"
89
#include "absl/types/variant.h"
90
#include "absl/utility/utility.h"
91
92
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
93
    !defined(__XTENSA__)
94
#include <filesystem>  // NOLINT
95
#endif
96
97
// 32-bit builds with SSE 4.2 do not have _mm_crc32_u64, so the
98
// __x86_64__ condition is necessary.
99
#if defined(__SSE4_2__) && defined(__x86_64__)
100
101
#include <x86intrin.h>
102
#define ABSL_HASH_INTERNAL_HAS_CRC32
103
#define ABSL_HASH_INTERNAL_CRC32_U64 _mm_crc32_u64
104
#define ABSL_HASH_INTERNAL_CRC32_U32 _mm_crc32_u32
105
#define ABSL_HASH_INTERNAL_CRC32_U8 _mm_crc32_u8
106
107
// 32-bit builds with AVX do not have _mm_crc32_u64, so the _M_X64 condition is
108
// necessary.
109
#elif defined(_MSC_VER) && !defined(__clang__) && defined(__AVX__) && \
110
    defined(_M_X64)
111
112
// MSVC AVX (/arch:AVX) implies SSE 4.2.
113
#include <intrin.h>
114
#define ABSL_HASH_INTERNAL_HAS_CRC32
115
#define ABSL_HASH_INTERNAL_CRC32_U64 _mm_crc32_u64
116
#define ABSL_HASH_INTERNAL_CRC32_U32 _mm_crc32_u32
117
#define ABSL_HASH_INTERNAL_CRC32_U8 _mm_crc32_u8
118
119
#elif defined(__ARM_FEATURE_CRC32)
120
121
#include <arm_acle.h>
122
#define ABSL_HASH_INTERNAL_HAS_CRC32
123
// Casting to uint32_t to be consistent with x86 intrinsic (_mm_crc32_u64
124
// accepts crc as 64 bit integer).
125
#define ABSL_HASH_INTERNAL_CRC32_U64(crc, data) \
126
  __crc32cd(static_cast<uint32_t>(crc), data)
127
#define ABSL_HASH_INTERNAL_CRC32_U32 __crc32cw
128
#define ABSL_HASH_INTERNAL_CRC32_U8 __crc32cb
129
130
#endif
131
132
namespace absl {
133
ABSL_NAMESPACE_BEGIN
134
135
class HashState;
136
137
namespace hash_internal {
138
139
// Internal detail: Large buffers are hashed in smaller chunks.  This function
140
// returns the size of these chunks.
141
4.04M
constexpr size_t PiecewiseChunkSize() { return 1024; }
142
143
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
144
// buffer of `char` or `unsigned char` as though it were contiguous.  This class
145
// provides two methods:
146
//
147
//   H add_buffer(state, data, size)
148
//   H finalize(state)
149
//
150
// `add_buffer` can be called zero or more times, followed by a single call to
151
// `finalize`.  This will produce the same hash expansion as concatenating each
152
// buffer piece into a single contiguous buffer, and passing this to
153
// `H::combine_contiguous`.
154
//
155
//  Example usage:
156
//    PiecewiseCombiner combiner;
157
//    for (const auto& piece : pieces) {
158
//      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
159
//    }
160
//    return combiner.finalize(std::move(state));
161
class PiecewiseCombiner {
162
 public:
163
  PiecewiseCombiner() = default;
164
  PiecewiseCombiner(const PiecewiseCombiner&) = delete;
165
  PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
166
167
  // Appends the given range of bytes to the sequence to be hashed, which may
168
  // modify the provided hash state.
169
  template <typename H>
170
  H add_buffer(H state, const unsigned char* data, size_t size);
171
  template <typename H>
172
0
  H add_buffer(H state, const char* data, size_t size) {
173
0
    return add_buffer(std::move(state),
174
0
                      reinterpret_cast<const unsigned char*>(data), size);
175
0
  }
176
177
  // Finishes combining the hash sequence, which may may modify the provided
178
  // hash state.
179
  //
180
  // Once finalize() is called, add_buffer() may no longer be called. The
181
  // resulting hash state will be the same as if the pieces passed to
182
  // add_buffer() were concatenated into a single flat buffer, and then provided
183
  // to H::combine_contiguous().
184
  template <typename H>
185
  H finalize(H state);
186
187
 private:
188
  unsigned char buf_[PiecewiseChunkSize()];
189
  size_t position_ = 0;
190
  bool added_something_ = false;
191
};
192
193
// Trait class which returns true if T is hashable by the absl::Hash framework.
194
// Used for the AbslHashValue implementations for composite types below.
195
template <typename T>
196
struct is_hashable;
197
198
// HashStateBase is an internal implementation detail that contains common
199
// implementation details for all of the "hash state objects" objects generated
200
// by Abseil.  This is not a public API; users should not create classes that
201
// inherit from this.
202
//
203
// A hash state object is the template argument `H` passed to `AbslHashValue`.
204
// It represents an intermediate state in the computation of an unspecified hash
205
// algorithm. `HashStateBase` provides a CRTP style base class for hash state
206
// implementations. Developers adding type support for `absl::Hash` should not
207
// rely on any parts of the state object other than the following member
208
// functions:
209
//
210
//   * HashStateBase::combine()
211
//   * HashStateBase::combine_contiguous()
212
//   * HashStateBase::combine_unordered()
213
//
214
// A derived hash state class of type `H` must provide a public member function
215
// with a signature similar to the following:
216
//
217
//    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
218
//
219
// It must also provide a private template method named RunCombineUnordered.
220
//
221
// A "consumer" is a 1-arg functor returning void.  Its argument is a reference
222
// to an inner hash state object, and it may be called multiple times.  When
223
// called, the functor consumes the entropy from the provided state object,
224
// and resets that object to its empty state.
225
//
226
// A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
227
// an inner hash state object and an ElementStateConsumer functor.  A combiner
228
// uses the provided inner hash state object to hash each element of the
229
// container, passing the inner hash state object to the consumer after hashing
230
// each element.
231
//
232
// Given these definitions, a derived hash state class of type H
233
// must provide a private template method with a signature similar to the
234
// following:
235
//
236
//    `template <typename CombinerT>`
237
//    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
238
//
239
// This function is responsible for constructing the inner state object and
240
// providing a consumer to the combiner.  It uses side effects of the consumer
241
// and combiner to mix the state of each element in an order-independent manner,
242
// and uses this to return an updated value of `outer_state`.
243
//
244
// This inside-out approach generates efficient object code in the normal case,
245
// but allows us to use stack storage to implement the absl::HashState type
246
// erasure mechanism (avoiding heap allocations while hashing).
247
//
248
// `HashStateBase` will provide a complete implementation for a hash state
249
// object in terms of these two methods.
250
//
251
// Example:
252
//
253
//   // Use CRTP to define your derived class.
254
//   struct MyHashState : HashStateBase<MyHashState> {
255
//       static H combine_contiguous(H state, const unsigned char*, size_t);
256
//       using MyHashState::HashStateBase::combine;
257
//       using MyHashState::HashStateBase::combine_contiguous;
258
//       using MyHashState::HashStateBase::combine_unordered;
259
//     private:
260
//       template <typename CombinerT>
261
//       static H RunCombineUnordered(H state, CombinerT combiner);
262
//   };
263
template <typename H>
264
class HashStateBase {
265
 public:
266
  // Combines an arbitrary number of values into a hash state, returning the
267
  // updated state.
268
  //
269
  // Each of the value types `T` must be separately hashable by the Abseil
270
  // hashing framework.
271
  //
272
  // NOTE:
273
  //
274
  //   state = H::combine(std::move(state), value1, value2, value3);
275
  //
276
  // is guaranteed to produce the same hash expansion as:
277
  //
278
  //   state = H::combine(std::move(state), value1);
279
  //   state = H::combine(std::move(state), value2);
280
  //   state = H::combine(std::move(state), value3);
281
  template <typename T, typename... Ts>
282
  static H combine(H state, const T& value, const Ts&... values);
283
0
  static H combine(H state) { return state; }
284
285
  // Combines a contiguous array of `size` elements into a hash state, returning
286
  // the updated state.
287
  //
288
  // NOTE:
289
  //
290
  //   state = H::combine_contiguous(std::move(state), data, size);
291
  //
292
  // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
293
  // perform internal optimizations).  If you need this guarantee, use the
294
  // for-loop instead.
295
  template <typename T>
296
  static H combine_contiguous(H state, const T* data, size_t size);
297
298
  template <typename I>
299
  static H combine_unordered(H state, I begin, I end);
300
301
  using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
302
303
  template <typename T>
304
  using is_hashable = absl::hash_internal::is_hashable<T>;
305
306
 private:
307
  // Common implementation of the iteration step of a "combiner", as described
308
  // above.
309
  template <typename I>
310
  struct CombineUnorderedCallback {
311
    I begin;
312
    I end;
313
314
    template <typename InnerH, typename ElementStateConsumer>
315
    void operator()(InnerH inner_state, ElementStateConsumer cb) {
316
      for (; begin != end; ++begin) {
317
        inner_state = H::combine(std::move(inner_state), *begin);
318
        cb(inner_state);
319
      }
320
    }
321
  };
322
};
323
324
// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
325
// is uniquely represented.
326
//
327
// A type is "uniquely represented" if two equal values of that type are
328
// guaranteed to have the same bytes in their underlying storage. In other
329
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
330
// zero. This property cannot be detected automatically, so this trait is false
331
// by default, but can be specialized by types that wish to assert that they are
332
// uniquely represented. This makes them eligible for certain optimizations.
333
//
334
// If you have any doubt whatsoever, do not specialize this template.
335
// The default is completely safe, and merely disables some optimizations
336
// that will not matter for most types. Specializing this template,
337
// on the other hand, can be very hazardous.
338
//
339
// To be uniquely represented, a type must not have multiple ways of
340
// representing the same value; for example, float and double are not
341
// uniquely represented, because they have distinct representations for
342
// +0 and -0. Furthermore, the type's byte representation must consist
343
// solely of user-controlled data, with no padding bits and no compiler-
344
// controlled data such as vptrs or sanitizer metadata. This is usually
345
// very difficult to guarantee, because in most cases the compiler can
346
// insert data and padding bits at its own discretion.
347
//
348
// If you specialize this template for a type `T`, you must do so in the file
349
// that defines that type (or in this file). If you define that specialization
350
// anywhere else, `is_uniquely_represented<T>` could have different meanings
351
// in different places.
352
//
353
// The Enable parameter is meaningless; it is provided as a convenience,
354
// to support certain SFINAE techniques when defining specializations.
355
template <typename T, typename Enable = void>
356
struct is_uniquely_represented : std::false_type {};
357
358
// unsigned char is a synonym for "byte", so it is guaranteed to be
359
// uniquely represented.
360
template <>
361
struct is_uniquely_represented<unsigned char> : std::true_type {};
362
363
// is_uniquely_represented for non-standard integral types
364
//
365
// Integral types other than bool should be uniquely represented on any
366
// platform that this will plausibly be ported to.
367
template <typename Integral>
368
struct is_uniquely_represented<
369
    Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
370
    : std::true_type {};
371
372
template <>
373
struct is_uniquely_represented<bool> : std::false_type {};
374
375
#ifdef ABSL_HAVE_INTRINSIC_INT128
376
// Specialize the trait for GNU extension types.
377
template <>
378
struct is_uniquely_represented<__int128> : std::true_type {};
379
template <>
380
struct is_uniquely_represented<unsigned __int128> : std::true_type {};
381
#endif  // ABSL_HAVE_INTRINSIC_INT128
382
383
template <typename T>
384
struct FitsIn64Bits : std::integral_constant<bool, sizeof(T) <= 8> {};
385
386
struct CombineRaw {
387
  template <typename H>
388
0
  H operator()(H state, uint64_t value) const {
389
0
    return H::combine_raw(std::move(state), value);
390
0
  }
391
};
392
393
// For use in `raw_hash_set` to pass a seed to the hash function.
394
struct HashWithSeed {
395
  template <typename Hasher, typename T>
396
0
  size_t hash(const Hasher& hasher, const T& value, size_t seed) const {
397
0
    // NOLINTNEXTLINE(clang-diagnostic-sign-conversion)
398
0
    return hasher.hash_with_seed(value, seed);
399
0
  }
Unexecuted instantiation: unsigned long absl::hash_internal::HashWithSeed::hash<absl::hash_internal::Hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > >, std::__1::basic_string_view<char, std::__1::char_traits<char> > >(absl::hash_internal::Hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > > const&, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Unexecuted instantiation: unsigned long absl::hash_internal::HashWithSeed::hash<absl::hash_internal::Hash<absl::Cord>, absl::Cord>(absl::hash_internal::Hash<absl::Cord> const&, absl::Cord const&, unsigned long) const
400
};
401
402
// Convenience function that combines `hash_state` with the byte representation
403
// of `value`.
404
template <typename H, typename T,
405
          absl::enable_if_t<FitsIn64Bits<T>::value, int> = 0>
406
0
H hash_bytes(H hash_state, const T& value) {
407
0
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
408
0
  uint64_t v;
409
  if constexpr (sizeof(T) == 1) {
410
    v = *start;
411
  } else if constexpr (sizeof(T) == 2) {
412
    v = absl::base_internal::UnalignedLoad16(start);
413
0
  } else if constexpr (sizeof(T) == 4) {
414
0
    v = absl::base_internal::UnalignedLoad32(start);
415
0
  } else {
416
0
    static_assert(sizeof(T) == 8);
417
0
    v = absl::base_internal::UnalignedLoad64(start);
418
0
  }
419
0
  return CombineRaw()(std::move(hash_state), v);
420
0
}
Unexecuted instantiation: _ZN4absl13hash_internal10hash_bytesINS0_15MixingHashStateEiTnNSt3__19enable_ifIXsr12FitsIn64BitsIT0_EE5valueEiE4typeELi0EEET_S8_RKS5_
Unexecuted instantiation: _ZN4absl13hash_internal10hash_bytesINS0_15MixingHashStateEmTnNSt3__19enable_ifIXsr12FitsIn64BitsIT0_EE5valueEiE4typeELi0EEET_S8_RKS5_
421
template <typename H, typename T,
422
          absl::enable_if_t<!FitsIn64Bits<T>::value, int> = 0>
423
H hash_bytes(H hash_state, const T& value) {
424
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
425
  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
426
}
427
428
template <typename H>
429
H hash_weakly_mixed_integer(H hash_state, WeaklyMixedInteger value) {
430
  return H::combine_weakly_mixed_integer(std::move(hash_state), value);
431
}
432
433
// -----------------------------------------------------------------------------
434
// AbslHashValue for Basic Types
435
// -----------------------------------------------------------------------------
436
437
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
438
// allows us to block lexical scope lookup when doing an unqualified call to
439
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
440
// only be found via ADL.
441
442
// AbslHashValue() for hashing bool values
443
//
444
// We use SFINAE to ensure that this overload only accepts bool, not types that
445
// are convertible to bool.
446
template <typename H, typename B>
447
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
448
    H hash_state, B value) {
449
  // We use ~size_t{} instead of 1 so that all bits are different between
450
  // true/false instead of only 1.
451
  return H::combine(std::move(hash_state),
452
                    static_cast<size_t>(value ? ~size_t{} : 0));
453
}
454
455
// AbslHashValue() for hashing enum values
456
template <typename H, typename Enum>
457
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
458
    H hash_state, Enum e) {
459
  // In practice, we could almost certainly just invoke hash_bytes directly,
460
  // but it's possible that a sanitizer might one day want to
461
  // store data in the unused bits of an enum. To avoid that risk, we
462
  // convert to the underlying type before hashing. Hopefully this will get
463
  // optimized away; if not, we can reopen discussion with c-toolchain-team.
464
  return H::combine(std::move(hash_state),
465
                    static_cast<typename std::underlying_type<Enum>::type>(e));
466
}
467
// AbslHashValue() for hashing floating-point values
468
template <typename H, typename Float>
469
typename std::enable_if<std::is_same<Float, float>::value ||
470
                            std::is_same<Float, double>::value,
471
                        H>::type
472
AbslHashValue(H hash_state, Float value) {
473
  return hash_internal::hash_bytes(std::move(hash_state),
474
                                   value == 0 ? 0 : value);
475
}
476
477
// Long double has the property that it might have extra unused bytes in it.
478
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
479
// of it. This means we can't use hash_bytes on a long double and have to
480
// convert it to something else first.
481
template <typename H, typename LongDouble>
482
typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
483
AbslHashValue(H hash_state, LongDouble value) {
484
  const int category = std::fpclassify(value);
485
  switch (category) {
486
    case FP_INFINITE:
487
      // Add the sign bit to differentiate between +Inf and -Inf
488
      hash_state = H::combine(std::move(hash_state), std::signbit(value));
489
      break;
490
491
    case FP_NAN:
492
    case FP_ZERO:
493
    default:
494
      // Category is enough for these.
495
      break;
496
497
    case FP_NORMAL:
498
    case FP_SUBNORMAL:
499
      // We can't convert `value` directly to double because this would have
500
      // undefined behavior if the value is out of range.
501
      // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
502
      // guaranteed to be in range for `double`. The truncation is
503
      // implementation defined, but that works as long as it is deterministic.
504
      int exp;
505
      auto mantissa = static_cast<double>(std::frexp(value, &exp));
506
      hash_state = H::combine(std::move(hash_state), mantissa, exp);
507
  }
508
509
  return H::combine(std::move(hash_state), category);
510
}
511
512
// Without this overload, an array decays to a pointer and we hash that, which
513
// is not likely to be what the caller intended.
514
template <typename H, typename T, size_t N>
515
H AbslHashValue(H hash_state, T (&)[N]) {
516
  static_assert(
517
      sizeof(T) == -1,
518
      "Hashing C arrays is not allowed. For string literals, wrap the literal "
519
      "in absl::string_view(). To hash the array contents, use "
520
      "absl::MakeSpan() or make the array an std::array. To hash the array "
521
      "address, use &array[0].");
522
  return hash_state;
523
}
524
525
// AbslHashValue() for hashing pointers
526
template <typename H, typename T>
527
std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state,
528
0
                                                             T ptr) {
529
0
  auto v = reinterpret_cast<uintptr_t>(ptr);
530
  // Due to alignment, pointers tend to have low bits as zero, and the next few
531
  // bits follow a pattern since they are also multiples of some base value.
532
  // The PointerAlignment test verifies that our mixing is good enough to handle
533
  // these cases.
534
0
  return H::combine(std::move(hash_state), v);
535
0
}
536
537
// AbslHashValue() for hashing nullptr_t
538
template <typename H>
539
H AbslHashValue(H hash_state, std::nullptr_t) {
540
  return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
541
}
542
543
// AbslHashValue() for hashing pointers-to-member
544
template <typename H, typename T, typename C>
545
H AbslHashValue(H hash_state, T C::*ptr) {
546
  auto salient_ptm_size = [](std::size_t n) -> std::size_t {
547
#if defined(_MSC_VER)
548
    // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
549
    // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
550
    // padding (namely when they have 1 or 3 ints). The value below is a lower
551
    // bound on the number of salient, non-padding bytes that we use for
552
    // hashing.
553
    if constexpr (alignof(T C::*) == alignof(int)) {
554
      // No padding when all subobjects have the same size as the total
555
      // alignment. This happens in 32-bit mode.
556
      return n;
557
    } else {
558
      // Padding for 1 int (size 16) or 3 ints (size 24).
559
      // With 2 ints, the size is 16 with no padding, which we pessimize.
560
      return n == 24 ? 20 : n == 16 ? 12 : n;
561
    }
562
#else
563
  // On other platforms, we assume that pointers-to-members do not have
564
  // padding.
565
#ifdef __cpp_lib_has_unique_object_representations
566
    static_assert(std::has_unique_object_representations<T C::*>::value);
567
#endif  // __cpp_lib_has_unique_object_representations
568
    return n;
569
#endif
570
  };
571
  return H::combine_contiguous(std::move(hash_state),
572
                               reinterpret_cast<unsigned char*>(&ptr),
573
                               salient_ptm_size(sizeof ptr));
574
}
575
576
// -----------------------------------------------------------------------------
577
// AbslHashValue for Composite Types
578
// -----------------------------------------------------------------------------
579
580
// AbslHashValue() for hashing pairs
581
template <typename H, typename T1, typename T2>
582
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
583
                        H>::type
584
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
585
  return H::combine(std::move(hash_state), p.first, p.second);
586
}
587
588
// Helper function for hashing a tuple. The third argument should
589
// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
590
template <typename H, typename Tuple, size_t... Is>
591
0
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
592
0
  return H::combine(std::move(hash_state), std::get<Is>(t)...);
593
0
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&>, 0ul, 1ul>(absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul>)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&>, 0ul>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&, std::__1::integer_sequence<unsigned long, 0ul>)
594
595
// AbslHashValue for hashing tuples
596
template <typename H, typename... Ts>
597
#if defined(_MSC_VER)
598
// This SFINAE gets MSVC confused under some conditions. Let's just disable it
599
// for now.
600
H
601
#else   // _MSC_VER
602
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
603
#endif  // _MSC_VER
604
0
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
605
0
  return hash_internal::hash_tuple(std::move(hash_state), t,
606
0
                                   absl::make_index_sequence<sizeof...(Ts)>());
607
0
}
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKNSt3__117basic_string_viewIcNS3_11char_traitsIcEEEERKiEEENS3_9enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESH_RKNS3_5tupleIJDpSE_EEE
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKmEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESB_RKNS5_5tupleIJDpS8_EEE
608
609
// -----------------------------------------------------------------------------
610
// AbslHashValue for Pointers
611
// -----------------------------------------------------------------------------
612
613
// AbslHashValue for hashing unique_ptr
614
template <typename H, typename T, typename D>
615
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
616
  return H::combine(std::move(hash_state), ptr.get());
617
}
618
619
// AbslHashValue for hashing shared_ptr
620
template <typename H, typename T>
621
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
622
  return H::combine(std::move(hash_state), ptr.get());
623
}
624
625
// -----------------------------------------------------------------------------
626
// AbslHashValue for String-Like Types
627
// -----------------------------------------------------------------------------
628
629
// AbslHashValue for hashing strings
630
//
631
// All the string-like types supported here provide the same hash expansion for
632
// the same character sequence. These types are:
633
//
634
//  - `absl::Cord`
635
//  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
636
//      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
637
//  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
638
//    `std::u16string_view`, and `std::u32_string_view`.
639
//
640
// For simplicity, we currently support only strings built on `char`, `wchar_t`,
641
// `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
642
// with some caution - this overload would misbehave in cases where the traits'
643
// `eq()` member isn't equivalent to `==` on the underlying character type.
644
template <typename H>
645
0
H AbslHashValue(H hash_state, absl::string_view str) {
646
0
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
647
0
}
648
649
// Support std::wstring, std::u16string and std::u32string.
650
template <typename Char, typename Alloc, typename H,
651
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
652
                                       std::is_same<Char, char16_t>::value ||
653
                                       std::is_same<Char, char32_t>::value>>
654
H AbslHashValue(
655
    H hash_state,
656
    const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
657
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
658
}
659
660
// Support std::wstring_view, std::u16string_view and std::u32string_view.
661
template <typename Char, typename H,
662
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
663
                                       std::is_same<Char, char16_t>::value ||
664
                                       std::is_same<Char, char32_t>::value>>
665
H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
666
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
667
}
668
669
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
670
    (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) ||        \
671
     __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000) &&       \
672
    (!defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) ||         \
673
     __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ >= 101500) &&        \
674
    (!defined(__XTENSA__))
675
676
#define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1
677
678
// Support std::filesystem::path. The SFINAE is required because some string
679
// types are implicitly convertible to std::filesystem::path.
680
template <typename Path, typename H,
681
          typename = absl::enable_if_t<
682
              std::is_same_v<Path, std::filesystem::path>>>
683
H AbslHashValue(H hash_state, const Path& path) {
684
  // This is implemented by deferring to the standard library to compute the
685
  // hash.  The standard library requires that for two paths, `p1 == p2`, then
686
  // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same
687
  // requirement. Since `operator==` does platform specific matching, deferring
688
  // to the standard library is the simplest approach.
689
  return H::combine(std::move(hash_state), std::filesystem::hash_value(path));
690
}
691
692
#endif  // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE
693
694
// -----------------------------------------------------------------------------
695
// AbslHashValue for Sequence Containers
696
// -----------------------------------------------------------------------------
697
698
// AbslHashValue for hashing std::array
699
template <typename H, typename T, size_t N>
700
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
701
    H hash_state, const std::array<T, N>& array) {
702
  return H::combine_contiguous(std::move(hash_state), array.data(),
703
                               array.size());
704
}
705
706
// AbslHashValue for hashing std::deque
707
template <typename H, typename T, typename Allocator>
708
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
709
    H hash_state, const std::deque<T, Allocator>& deque) {
710
  // TODO(gromer): investigate a more efficient implementation taking
711
  // advantage of the chunk structure.
712
  for (const auto& t : deque) {
713
    hash_state = H::combine(std::move(hash_state), t);
714
  }
715
  return H::combine(std::move(hash_state), WeaklyMixedInteger{deque.size()});
716
}
717
718
// AbslHashValue for hashing std::forward_list
719
template <typename H, typename T, typename Allocator>
720
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
721
    H hash_state, const std::forward_list<T, Allocator>& list) {
722
  size_t size = 0;
723
  for (const T& t : list) {
724
    hash_state = H::combine(std::move(hash_state), t);
725
    ++size;
726
  }
727
  return H::combine(std::move(hash_state), WeaklyMixedInteger{size});
728
}
729
730
// AbslHashValue for hashing std::list
731
template <typename H, typename T, typename Allocator>
732
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
733
    H hash_state, const std::list<T, Allocator>& list) {
734
  for (const auto& t : list) {
735
    hash_state = H::combine(std::move(hash_state), t);
736
  }
737
  return H::combine(std::move(hash_state), WeaklyMixedInteger{list.size()});
738
}
739
740
// AbslHashValue for hashing std::vector
741
//
742
// Do not use this for vector<bool> on platforms that have a working
743
// implementation of std::hash. It does not have a .data(), and a fallback for
744
// std::hash<> is most likely faster.
745
template <typename H, typename T, typename Allocator>
746
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
747
                        H>::type
748
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
749
  return H::combine_contiguous(std::move(hash_state), vector.data(),
750
                               vector.size());
751
}
752
753
// AbslHashValue special cases for hashing std::vector<bool>
754
755
#if defined(ABSL_IS_BIG_ENDIAN) && \
756
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
757
758
// std::hash in libstdc++ does not work correctly with vector<bool> on Big
759
// Endian platforms therefore we need to implement a custom AbslHashValue for
760
// it. More details on the bug:
761
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
762
template <typename H, typename T, typename Allocator>
763
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
764
                        H>::type
765
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
766
  typename H::AbslInternalPiecewiseCombiner combiner;
767
  for (const auto& i : vector) {
768
    unsigned char c = static_cast<unsigned char>(i);
769
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
770
  }
771
  return H::combine(combiner.finalize(std::move(hash_state)),
772
                    WeaklyMixedInteger{vector.size()});
773
}
774
#else
775
// When not working around the libstdc++ bug above, we still have to contend
776
// with the fact that std::hash<vector<bool>> is often poor quality, hashing
777
// directly on the internal words and on no other state.  On these platforms,
778
// vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
779
//
780
// Mixing in the size (as we do in our other vector<> implementations) on top
781
// of the library-provided hash implementation avoids this QOI issue.
782
template <typename H, typename T, typename Allocator>
783
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
784
                        H>::type
785
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
786
  return H::combine(std::move(hash_state),
787
                    std::hash<std::vector<T, Allocator>>{}(vector),
788
                    WeaklyMixedInteger{vector.size()});
789
}
790
#endif
791
792
// -----------------------------------------------------------------------------
793
// AbslHashValue for Ordered Associative Containers
794
// -----------------------------------------------------------------------------
795
796
// AbslHashValue for hashing std::map
797
template <typename H, typename Key, typename T, typename Compare,
798
          typename Allocator>
799
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
800
                        H>::type
801
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
802
  for (const auto& t : map) {
803
    hash_state = H::combine(std::move(hash_state), t);
804
  }
805
  return H::combine(std::move(hash_state), WeaklyMixedInteger{map.size()});
806
}
807
808
// AbslHashValue for hashing std::multimap
809
template <typename H, typename Key, typename T, typename Compare,
810
          typename Allocator>
811
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
812
                        H>::type
813
AbslHashValue(H hash_state,
814
              const std::multimap<Key, T, Compare, Allocator>& map) {
815
  for (const auto& t : map) {
816
    hash_state = H::combine(std::move(hash_state), t);
817
  }
818
  return H::combine(std::move(hash_state), WeaklyMixedInteger{map.size()});
819
}
820
821
// AbslHashValue for hashing std::set
822
template <typename H, typename Key, typename Compare, typename Allocator>
823
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
824
    H hash_state, const std::set<Key, Compare, Allocator>& set) {
825
  for (const auto& t : set) {
826
    hash_state = H::combine(std::move(hash_state), t);
827
  }
828
  return H::combine(std::move(hash_state), WeaklyMixedInteger{set.size()});
829
}
830
831
// AbslHashValue for hashing std::multiset
832
template <typename H, typename Key, typename Compare, typename Allocator>
833
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
834
    H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
835
  for (const auto& t : set) {
836
    hash_state = H::combine(std::move(hash_state), t);
837
  }
838
  return H::combine(std::move(hash_state), WeaklyMixedInteger{set.size()});
839
}
840
841
// -----------------------------------------------------------------------------
842
// AbslHashValue for Unordered Associative Containers
843
// -----------------------------------------------------------------------------
844
845
// AbslHashValue for hashing std::unordered_set
846
template <typename H, typename Key, typename Hash, typename KeyEqual,
847
          typename Alloc>
848
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
849
    H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
850
  return H::combine(
851
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
852
      WeaklyMixedInteger{s.size()});
853
}
854
855
// AbslHashValue for hashing std::unordered_multiset
856
template <typename H, typename Key, typename Hash, typename KeyEqual,
857
          typename Alloc>
858
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
859
    H hash_state,
860
    const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
861
  return H::combine(
862
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
863
      WeaklyMixedInteger{s.size()});
864
}
865
866
// AbslHashValue for hashing std::unordered_set
867
template <typename H, typename Key, typename T, typename Hash,
868
          typename KeyEqual, typename Alloc>
869
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
870
                        H>::type
871
AbslHashValue(H hash_state,
872
              const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
873
  return H::combine(
874
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
875
      WeaklyMixedInteger{s.size()});
876
}
877
878
// AbslHashValue for hashing std::unordered_multiset
879
template <typename H, typename Key, typename T, typename Hash,
880
          typename KeyEqual, typename Alloc>
881
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
882
                        H>::type
883
AbslHashValue(H hash_state,
884
              const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
885
  return H::combine(
886
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
887
      WeaklyMixedInteger{s.size()});
888
}
889
890
// -----------------------------------------------------------------------------
891
// AbslHashValue for Wrapper Types
892
// -----------------------------------------------------------------------------
893
894
// AbslHashValue for hashing std::reference_wrapper
895
template <typename H, typename T>
896
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
897
    H hash_state, std::reference_wrapper<T> opt) {
898
  return H::combine(std::move(hash_state), opt.get());
899
}
900
901
// AbslHashValue for hashing absl::optional
902
template <typename H, typename T>
903
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
904
    H hash_state, const absl::optional<T>& opt) {
905
  if (opt) hash_state = H::combine(std::move(hash_state), *opt);
906
  return H::combine(std::move(hash_state), opt.has_value());
907
}
908
909
template <typename H>
910
struct VariantVisitor {
911
  H&& hash_state;
912
  template <typename T>
913
  H operator()(const T& t) const {
914
    return H::combine(std::move(hash_state), t);
915
  }
916
};
917
918
// AbslHashValue for hashing absl::variant
919
template <typename H, typename... T>
920
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
921
AbslHashValue(H hash_state, const absl::variant<T...>& v) {
922
  if (!v.valueless_by_exception()) {
923
    hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
924
  }
925
  return H::combine(std::move(hash_state), v.index());
926
}
927
928
// -----------------------------------------------------------------------------
929
// AbslHashValue for Other Types
930
// -----------------------------------------------------------------------------
931
932
// AbslHashValue for hashing std::bitset is not defined on Little Endian
933
// platforms, for the same reason as for vector<bool> (see std::vector above):
934
// It does not expose the raw bytes, and a fallback to std::hash<> is most
935
// likely faster.
936
937
#if defined(ABSL_IS_BIG_ENDIAN) && \
938
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
939
// AbslHashValue for hashing std::bitset
940
//
941
// std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
942
// platforms therefore we need to implement a custom AbslHashValue for it. More
943
// details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
944
template <typename H, size_t N>
945
H AbslHashValue(H hash_state, const std::bitset<N>& set) {
946
  typename H::AbslInternalPiecewiseCombiner combiner;
947
  for (size_t i = 0; i < N; i++) {
948
    unsigned char c = static_cast<unsigned char>(set[i]);
949
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
950
  }
951
  return H::combine(combiner.finalize(std::move(hash_state)), N);
952
}
953
#endif
954
955
// -----------------------------------------------------------------------------
956
957
// Mixes all values in the range [data, data+size) into the hash state.
958
// This overload accepts only uniquely-represented types, and hashes them by
959
// hashing the entire range of bytes.
960
template <typename H, typename T>
961
typename std::enable_if<is_uniquely_represented<T>::value, H>::type
962
0
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
963
0
  const auto* bytes = reinterpret_cast<const unsigned char*>(data);
964
0
  return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
965
0
}
966
967
template <typename H, typename T>
968
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
969
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
970
  for (const auto end = data + size; data < end; ++data) {
971
    hash_state = H::combine(std::move(hash_state), *data);
972
  }
973
  return H::combine(std::move(hash_state),
974
                    hash_internal::WeaklyMixedInteger{size});
975
}
976
977
inline constexpr uint64_t kMul = uint64_t{0x79d5f9e0de1e8cf5};
978
979
// Random data taken from the hexadecimal digits of Pi's fractional component.
980
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
981
ABSL_CACHELINE_ALIGNED inline constexpr uint64_t kStaticRandomData[] = {
982
    0x243f'6a88'85a3'08d3, 0x1319'8a2e'0370'7344, 0xa409'3822'299f'31d0,
983
    0x082e'fa98'ec4e'6c89, 0x4528'21e6'38d0'1377,
984
};
985
986
// Extremely weak mixture of length that is mixed into the state before
987
// combining the data. It is used only for small strings. This also ensures that
988
// we have high entropy in all bits of the state.
989
2.29k
inline uint64_t PrecombineLengthMix(uint64_t state, size_t len) {
990
2.29k
  ABSL_ASSUME(len + sizeof(uint64_t) <= sizeof(kStaticRandomData));
991
2.29k
  uint64_t data = absl::base_internal::UnalignedLoad64(
992
2.29k
      reinterpret_cast<const unsigned char*>(&kStaticRandomData[0]) + len);
993
2.29k
  return state ^ data;
994
2.29k
}
995
996
62.2M
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t Mix(uint64_t lhs, uint64_t rhs) {
997
  // Though the 128-bit product needs multiple instructions on non-x86-64
998
  // platforms, it is still a good balance between speed and hash quality.
999
62.2M
  absl::uint128 m = lhs;
1000
62.2M
  m *= rhs;
1001
62.2M
  return Uint128High64(m) ^ Uint128Low64(m);
1002
62.2M
}
1003
1004
// Suppress erroneous array bounds errors on GCC.
1005
#if defined(__GNUC__) && !defined(__clang__)
1006
#pragma GCC diagnostic push
1007
#pragma GCC diagnostic ignored "-Warray-bounds"
1008
#endif
1009
0
inline uint32_t Read4(const unsigned char* p) {
1010
0
  return absl::base_internal::UnalignedLoad32(p);
1011
0
}
1012
5.39k
inline uint64_t Read8(const unsigned char* p) {
1013
5.39k
  return absl::base_internal::UnalignedLoad64(p);
1014
5.39k
}
1015
#if defined(__GNUC__) && !defined(__clang__)
1016
#pragma GCC diagnostic pop
1017
#endif
1018
1019
// Reads 9 to 16 bytes from p.
1020
// The first 8 bytes are in .first, and the rest of the bytes are in .second
1021
// along with duplicated bytes from .first if len<16.
1022
inline std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1023
591
                                               size_t len) {
1024
591
  return {Read8(p), Read8(p + len - 8)};
1025
591
}
1026
1027
// Reads 4 to 8 bytes from p.
1028
// Bytes are permuted and some input bytes may be duplicated in output.
1029
545
inline uint64_t Read4To8(const unsigned char* p, size_t len) {
1030
  // If `len < 8`, we duplicate bytes. We always put low memory at the end.
1031
  // E.g., on little endian platforms:
1032
  // `ABCD` will be read as `ABCDABCD`.
1033
  // `ABCDE` will be read as `BCDEABCD`.
1034
  // `ABCDEF` will be read as `CDEFABCD`.
1035
  // `ABCDEFG` will be read as `DEFGABCD`.
1036
  // `ABCDEFGH` will be read as `EFGHABCD`.
1037
  // We also do not care about endianness. On big-endian platforms, bytes will
1038
  // be permuted differently. We always shift low memory by 32, because that
1039
  // can be pipelined earlier. Reading high memory requires computing
1040
  // `p + len - 4`.
1041
545
  uint64_t most_significant =
1042
545
      static_cast<uint64_t>(absl::base_internal::UnalignedLoad32(p)) << 32;
1043
545
  uint64_t least_significant =
1044
545
      absl::base_internal::UnalignedLoad32(p + len - 4);
1045
545
  return most_significant | least_significant;
1046
545
}
1047
1048
// Reads 1 to 3 bytes from p. Some input bytes may be duplicated in output.
1049
107
inline uint32_t Read1To3(const unsigned char* p, size_t len) {
1050
  // The trick used by this implementation is to avoid branches.
1051
  // We always read three bytes by duplicating.
1052
  // E.g.,
1053
  // `A` is read as `AAA`.
1054
  // `AB` is read as `ABB`.
1055
  // `ABC` is read as `ABC`.
1056
  // We always shift `p[0]` so that it can be pipelined better.
1057
  // Other bytes require extra computation to find indices.
1058
107
  uint32_t mem0 = (static_cast<uint32_t>(p[0]) << 16) | p[len - 1];
1059
107
  uint32_t mem1 = static_cast<uint32_t>(p[len / 2]) << 8;
1060
107
  return mem0 | mem1;
1061
107
}
1062
1063
#ifdef ABSL_HASH_INTERNAL_HAS_CRC32
1064
1065
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineRawImpl(uint64_t state,
1066
                                                            uint64_t value) {
1067
  // We use a union to access the high and low 32 bits of the state.
1068
  union {
1069
    uint64_t u64;
1070
    struct {
1071
#ifdef ABSL_IS_LITTLE_ENDIAN
1072
      uint32_t low, high;
1073
#else  // big endian
1074
      uint32_t high, low;
1075
#endif
1076
    } u32s;
1077
  } s;
1078
  s.u64 = state;
1079
  // The general idea here is to do two CRC32 operations in parallel using the
1080
  // low and high 32 bits of state as CRC states. Note that: (1) when absl::Hash
1081
  // is inlined into swisstable lookups, we know that the seed's high bits are
1082
  // zero so s.u32s.high is available immediately. (2) We chose to rotate value
1083
  // right by 45 for the low CRC because that minimizes the probe benchmark
1084
  // geomean across the 64 possible rotations. (3) The union makes it easy for
1085
  // the compiler to understand that the high and low CRC states are independent
1086
  // from each other so that when CombineRawImpl is repeated (e.g. for
1087
  // std::pair<size_t, size_t>), the CRC chains can run in parallel. We
1088
  // originally tried using bswaps rather than shifting by 32 bits (to get from
1089
  // high to low bits) because bswap is one byte smaller in code size, but the
1090
  // compiler couldn't understand that the CRC chains were independent.
1091
  s.u32s.high =
1092
      static_cast<uint32_t>(ABSL_HASH_INTERNAL_CRC32_U64(s.u32s.high, value));
1093
  s.u32s.low = static_cast<uint32_t>(
1094
      ABSL_HASH_INTERNAL_CRC32_U64(s.u32s.low, absl::rotr(value, 45)));
1095
  return s.u64;
1096
}
1097
#else   // ABSL_HASH_INTERNAL_HAS_CRC32
1098
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineRawImpl(uint64_t state,
1099
652
                                                            uint64_t value) {
1100
652
  return Mix(state ^ value, kMul);
1101
652
}
1102
#endif  // ABSL_HASH_INTERNAL_HAS_CRC32
1103
1104
// Slow dispatch path for calls to CombineContiguousImpl with a size argument
1105
// larger than inlined size. Has the same effect as calling
1106
// CombineContiguousImpl() repeatedly with the chunk stride size.
1107
uint64_t CombineLargeContiguousImplOn32BitLengthGt8(uint64_t state,
1108
                                                    const unsigned char* first,
1109
                                                    size_t len);
1110
uint64_t CombineLargeContiguousImplOn64BitLengthGt32(uint64_t state,
1111
                                                     const unsigned char* first,
1112
                                                     size_t len);
1113
1114
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineSmallContiguousImpl(
1115
652
    uint64_t state, const unsigned char* first, size_t len) {
1116
652
  ABSL_ASSUME(len <= 8);
1117
652
  uint64_t v;
1118
652
  if (len >= 4) {
1119
545
    v = Read4To8(first, len);
1120
545
  } else if (len > 0) {
1121
107
    v = Read1To3(first, len);
1122
107
  } else {
1123
    // Empty string must modify the state.
1124
0
    v = 0x57;
1125
0
  }
1126
652
  return CombineRawImpl(state, v);
1127
652
}
1128
1129
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineContiguousImpl9to16(
1130
591
    uint64_t state, const unsigned char* first, size_t len) {
1131
591
  ABSL_ASSUME(len >= 9);
1132
591
  ABSL_ASSUME(len <= 16);
1133
  // Note: any time one half of the mix function becomes zero it will fail to
1134
  // incorporate any bits from the other half. However, there is exactly 1 in
1135
  // 2^64 values for each side that achieve this, and only when the size is
1136
  // exactly 16 -- for smaller sizes there is an overlapping byte that makes
1137
  // this impossible unless the seed is *also* incredibly unlucky.
1138
591
  auto p = Read9To16(first, len);
1139
591
  return Mix(state ^ p.first, kMul ^ p.second);
1140
591
}
1141
1142
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineContiguousImpl17to32(
1143
1.05k
    uint64_t state, const unsigned char* first, size_t len) {
1144
1.05k
  ABSL_ASSUME(len >= 17);
1145
1.05k
  ABSL_ASSUME(len <= 32);
1146
  // Do two mixes of overlapping 16-byte ranges in parallel to minimize
1147
  // latency.
1148
1.05k
  const uint64_t m0 =
1149
1.05k
      Mix(Read8(first) ^ kStaticRandomData[1], Read8(first + 8) ^ state);
1150
1151
1.05k
  const unsigned char* tail_16b_ptr = first + (len - 16);
1152
1.05k
  const uint64_t m1 = Mix(Read8(tail_16b_ptr) ^ kStaticRandomData[3],
1153
1.05k
                          Read8(tail_16b_ptr + 8) ^ state);
1154
1.05k
  return m0 ^ m1;
1155
1.05k
}
1156
1157
// Implementation of the base case for combine_contiguous where we actually
1158
// mix the bytes into the state.
1159
// Dispatch to different implementations of combine_contiguous depending
1160
// on the value of `sizeof(size_t)`.
1161
inline uint64_t CombineContiguousImpl(
1162
    uint64_t state, const unsigned char* first, size_t len,
1163
0
    std::integral_constant<int, 4> /* sizeof_size_t */) {
1164
0
  // For large values we use CityHash, for small ones we use custom low latency
1165
0
  // hash.
1166
0
  if (len <= 8) {
1167
0
    return CombineSmallContiguousImpl(PrecombineLengthMix(state, len), first,
1168
0
                                      len);
1169
0
  }
1170
0
  return CombineLargeContiguousImplOn32BitLengthGt8(state, first, len);
1171
0
}
1172
1173
#ifdef ABSL_HASH_INTERNAL_HAS_CRC32
1174
inline uint64_t CombineContiguousImpl(
1175
    uint64_t state, const unsigned char* first, size_t len,
1176
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1177
  if (ABSL_PREDICT_FALSE(len > 32)) {
1178
    return CombineLargeContiguousImplOn64BitLengthGt32(state, first, len);
1179
  }
1180
  // `mul` is the salt that is used for final mixing. It is important to fill
1181
  // high 32 bits because CRC wipes out high 32 bits.
1182
  // `rotr` is important to mix `len` into high 32 bits.
1183
  uint64_t mul = absl::rotr(kMul, static_cast<int>(len));
1184
  // Only low 32 bits of each uint64_t are used in CRC32 so we use gbswap_64 to
1185
  // move high 32 bits to low 32 bits. It has slightly smaller binary size than
1186
  // `>> 32`. `state + 8 * len` is a single instruction on both x86 and ARM, so
1187
  // we use it to better mix length. Although only the low 32 bits of the pair
1188
  // elements are used, we use pair<uint64_t, uint64_t> for better generated
1189
  // code.
1190
  std::pair<uint64_t, uint64_t> crcs = {state + 8 * len,
1191
                                        absl::gbswap_64(state)};
1192
1193
  // All CRC operations here directly read bytes from the memory.
1194
  // Single fused instructions are used, like `crc32 rcx, qword ptr [rsi]`.
1195
  // On x86, llvm-mca reports latency `R + 2` for such fused instructions, while
1196
  // `R + 3` for two separate `mov` + `crc` instructions. `R` is the latency of
1197
  // reading the memory. Fused instructions also reduce register pressure
1198
  // allowing surrounding code to be more efficient when this code is inlined.
1199
  if (len > 8) {
1200
    crcs = {ABSL_HASH_INTERNAL_CRC32_U64(crcs.first, Read8(first)),
1201
            ABSL_HASH_INTERNAL_CRC32_U64(crcs.second, Read8(first + len - 8))};
1202
    if (len > 16) {
1203
      // We compute the second round of dependent CRC32 operations.
1204
      crcs = {ABSL_HASH_INTERNAL_CRC32_U64(crcs.first, Read8(first + len - 16)),
1205
              ABSL_HASH_INTERNAL_CRC32_U64(crcs.second, Read8(first + 8))};
1206
    }
1207
  } else {
1208
    if (len >= 4) {
1209
      // We use CRC for 4 bytes to benefit from the fused instruction and better
1210
      // hash quality.
1211
      // Using `xor` or `add` may reduce latency for this case, but would
1212
      // require more registers, more instructions and will have worse hash
1213
      // quality.
1214
      crcs = {ABSL_HASH_INTERNAL_CRC32_U32(static_cast<uint32_t>(crcs.first),
1215
                                           Read4(first)),
1216
              ABSL_HASH_INTERNAL_CRC32_U32(static_cast<uint32_t>(crcs.second),
1217
                                           Read4(first + len - 4))};
1218
    } else if (len >= 1) {
1219
      // We mix three bytes all into different output registers.
1220
      // This way, we do not need shifting of these bytes (so they don't overlap
1221
      // with each other).
1222
      crcs = {ABSL_HASH_INTERNAL_CRC32_U8(static_cast<uint32_t>(crcs.first),
1223
                                          first[0]),
1224
              ABSL_HASH_INTERNAL_CRC32_U8(static_cast<uint32_t>(crcs.second),
1225
                                          first[len - 1])};
1226
      // Middle byte is mixed weaker. It is a new byte only for len == 3.
1227
      // Mixing is independent from CRC operations so it is scheduled ASAP.
1228
      mul += first[len / 2];
1229
    }
1230
  }
1231
  // `mul` is mixed into both sides of `Mix` to guarantee non-zero values for
1232
  // both multiplicands. Using Mix instead of just multiplication here improves
1233
  // hash quality, especially for short strings.
1234
  return Mix(mul - crcs.first, crcs.second - mul);
1235
}
1236
#else
1237
inline uint64_t CombineContiguousImpl(
1238
    uint64_t state, const unsigned char* first, size_t len,
1239
95.8k
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1240
  // For large values we use LowLevelHash or CityHash depending on the platform,
1241
  // for small ones we use custom low latency hash.
1242
95.8k
  if (len <= 8) {
1243
652
    return CombineSmallContiguousImpl(PrecombineLengthMix(state, len), first,
1244
652
                                      len);
1245
652
  }
1246
95.2k
  if (len <= 16) {
1247
591
    return CombineContiguousImpl9to16(PrecombineLengthMix(state, len), first,
1248
591
                                      len);
1249
591
  }
1250
94.6k
  if (len <= 32) {
1251
1.05k
    return CombineContiguousImpl17to32(PrecombineLengthMix(state, len), first,
1252
1.05k
                                       len);
1253
1.05k
  }
1254
  // We must not mix length into the state here because calling
1255
  // CombineContiguousImpl twice with PiecewiseChunkSize() must be equivalent
1256
  // to calling CombineLargeContiguousImpl once with 2 * PiecewiseChunkSize().
1257
93.5k
  return CombineLargeContiguousImplOn64BitLengthGt32(state, first, len);
1258
94.6k
}
1259
#endif  // ABSL_HASH_INTERNAL_HAS_CRC32
1260
1261
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE)
1262
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
1263
#else
1264
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
1265
#endif
1266
1267
// Type trait to select the appropriate hash implementation to use.
1268
// HashSelect::type<T> will give the proper hash implementation, to be invoked
1269
// as:
1270
//   HashSelect::type<T>::Invoke(state, value)
1271
// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
1272
// valid `Invoke` function. Types that are not hashable will have a ::value of
1273
// `false`.
1274
struct HashSelect {
1275
 private:
1276
  struct WeaklyMixedIntegerProbe {
1277
    template <typename H>
1278
    static H Invoke(H state, WeaklyMixedInteger value) {
1279
      return hash_internal::hash_weakly_mixed_integer(std::move(state), value);
1280
    }
1281
  };
1282
1283
  struct State : HashStateBase<State> {
1284
    static State combine_contiguous(State hash_state, const unsigned char*,
1285
                                    size_t);
1286
    using State::HashStateBase::combine_contiguous;
1287
    static State combine_raw(State state, uint64_t value);
1288
    static State combine_weakly_mixed_integer(State hash_state,
1289
                                              WeaklyMixedInteger value);
1290
  };
1291
1292
  struct UniquelyRepresentedProbe {
1293
    template <typename H, typename T>
1294
    static auto Invoke(H state, const T& value)
1295
0
        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
1296
0
      return hash_internal::hash_bytes(std::move(state), value);
1297
0
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEiEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEmEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
1298
  };
1299
1300
  struct HashValueProbe {
1301
    template <typename H, typename T>
1302
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
1303
        std::is_same<H,
1304
                     decltype(AbslHashValue(std::move(state), value))>::value,
1305
0
        H> {
1306
0
      return AbslHashValue(std::move(state), value);
1307
0
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKNS5_17basic_string_viewIcNS5_11char_traitsIcEEEERKiEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESH_E4typeESH_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__117basic_string_viewIcNS5_11char_traitsIcEEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKmEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENS_4CordEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES8_E4typeES8_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateEPKvEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES9_E4typeES9_RKT0_
1308
  };
1309
1310
  struct LegacyHashProbe {
1311
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1312
    template <typename H, typename T>
1313
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
1314
        std::is_convertible<
1315
            decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
1316
            size_t>::value,
1317
        H> {
1318
      return hash_internal::hash_bytes(
1319
          std::move(state),
1320
          ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
1321
    }
1322
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1323
  };
1324
1325
  struct StdHashProbe {
1326
    template <typename H, typename T>
1327
    static auto Invoke(H state, const T& value)
1328
        -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
1329
      return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
1330
    }
1331
  };
1332
1333
  template <typename Hash, typename T>
1334
  struct Probe : Hash {
1335
   private:
1336
    template <typename H, typename = decltype(H::Invoke(
1337
                              std::declval<State>(), std::declval<const T&>()))>
1338
    static std::true_type Test(int);
1339
    template <typename U>
1340
    static std::false_type Test(char);
1341
1342
   public:
1343
    static constexpr bool value = decltype(Test<Hash>(0))::value;
1344
  };
1345
1346
 public:
1347
  // Probe each implementation in order.
1348
  // disjunction provides short circuiting wrt instantiation.
1349
  template <typename T>
1350
  using Apply = absl::disjunction<         //
1351
      Probe<WeaklyMixedIntegerProbe, T>,   //
1352
      Probe<UniquelyRepresentedProbe, T>,  //
1353
      Probe<HashValueProbe, T>,            //
1354
      Probe<LegacyHashProbe, T>,           //
1355
      Probe<StdHashProbe, T>,              //
1356
      std::false_type>;
1357
};
1358
1359
template <typename T>
1360
struct is_hashable
1361
    : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
1362
1363
class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
1364
  template <typename T>
1365
  using IntegralFastPath =
1366
      conjunction<std::is_integral<T>, is_uniquely_represented<T>,
1367
                  FitsIn64Bits<T>>;
1368
1369
 public:
1370
  // Move only
1371
  MixingHashState(MixingHashState&&) = default;
1372
  MixingHashState& operator=(MixingHashState&&) = default;
1373
1374
  // Fundamental base case for hash recursion: mixes the given range of bytes
1375
  // into the hash state.
1376
  static MixingHashState combine_contiguous(MixingHashState hash_state,
1377
                                            const unsigned char* first,
1378
0
                                            size_t size) {
1379
0
    return MixingHashState(
1380
0
        CombineContiguousImpl(hash_state.state_, first, size,
1381
0
                              std::integral_constant<int, sizeof(size_t)>{}));
1382
0
  }
1383
  using MixingHashState::HashStateBase::combine_contiguous;
1384
1385
  template <typename T>
1386
0
  static size_t hash(const T& value) {
1387
0
    return hash_with_seed(value, Seed());
1388
0
  }
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> >(std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<unsigned long const&> >(std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > >(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<absl::Cord>(absl::Cord const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<void const*>(void const* const&)
1389
1390
  // For performance reasons in non-opt mode, we specialize this for
1391
  // integral types.
1392
  // Otherwise we would be instantiating and calling dozens of functions for
1393
  // something that is just one multiplication and a couple xor's.
1394
  // The result should be the same as running the whole algorithm, but faster.
1395
  template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
1396
  static size_t hash_with_seed(T value, size_t seed) {
1397
    return static_cast<size_t>(
1398
        CombineRawImpl(seed, static_cast<std::make_unsigned_t<T>>(value)));
1399
  }
1400
1401
  template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
1402
0
  static size_t hash_with_seed(const T& value, size_t seed) {
1403
0
    return static_cast<size_t>(combine(MixingHashState{seed}, value).state_);
1404
0
  }
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__15tupleIJRKNS3_17basic_string_viewIcNS3_11char_traitsIcEEEERKiEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSF_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__15tupleIJRKmEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS9_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__117basic_string_viewIcNS3_11char_traitsIcEEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS9_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINS_4CordETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS6_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedIPKvTnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS7_m
1405
1406
 private:
1407
  friend class MixingHashState::HashStateBase;
1408
  template <typename H>
1409
  friend H absl::hash_internal::hash_weakly_mixed_integer(H,
1410
                                                          WeaklyMixedInteger);
1411
  // Allow the HashState type-erasure implementation to invoke
1412
  // RunCombinedUnordered() directly.
1413
  friend class absl::HashState;
1414
  friend struct CombineRaw;
1415
1416
  // For use in Seed().
1417
  static const void* const kSeed;
1418
1419
  // Invoked only once for a given argument; that plus the fact that this is
1420
  // move-only ensures that there is only one non-moved-from object.
1421
0
  MixingHashState() : state_(Seed()) {}
1422
1423
  // Workaround for MSVC bug.
1424
  // We make the type copyable to fix the calling convention, even though we
1425
  // never actually copy it. Keep it private to not affect the public API of the
1426
  // type.
1427
  MixingHashState(const MixingHashState&) = default;
1428
1429
0
  explicit MixingHashState(uint64_t state) : state_(state) {}
1430
1431
  // Combines a raw value from e.g. integrals/floats/pointers/etc. This allows
1432
  // us to be consistent with IntegralFastPath when combining raw types, but
1433
  // optimize Read1To3 and Read4To8 differently for the string case.
1434
  static MixingHashState combine_raw(MixingHashState hash_state,
1435
0
                                     uint64_t value) {
1436
0
    return MixingHashState(CombineRawImpl(hash_state.state_, value));
1437
0
  }
1438
1439
  static MixingHashState combine_weakly_mixed_integer(
1440
0
      MixingHashState hash_state, WeaklyMixedInteger value) {
1441
0
    // Some transformation for the value is needed to make an empty
1442
0
    // string/container change the mixing hash state.
1443
0
    // We use constant smaller than 8 bits to make compiler use
1444
0
    // `add` with an immediate operand with 1 byte value.
1445
0
    return MixingHashState{hash_state.state_ + (0x57 + value.value)};
1446
0
  }
1447
1448
  template <typename CombinerT>
1449
  static MixingHashState RunCombineUnordered(MixingHashState state,
1450
                                             CombinerT combiner) {
1451
    uint64_t unordered_state = 0;
1452
    combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1453
      // Add the hash state of the element to the running total, but mix the
1454
      // carry bit back into the low bit.  This in intended to avoid losing
1455
      // entropy to overflow, especially when unordered_multisets contain
1456
      // multiple copies of the same value.
1457
      auto element_state = inner_state.state_;
1458
      unordered_state += element_state;
1459
      if (unordered_state < element_state) {
1460
        ++unordered_state;
1461
      }
1462
      inner_state = MixingHashState{};
1463
    });
1464
    return MixingHashState::combine(std::move(state), unordered_state);
1465
  }
1466
1467
  // A non-deterministic seed.
1468
  //
1469
  // The current purpose of this seed is to generate non-deterministic results
1470
  // and prevent having users depend on the particular hash values.
1471
  // It is not meant as a security feature right now, but it leaves the door
1472
  // open to upgrade it to a true per-process random seed. A true random seed
1473
  // costs more and we don't need to pay for that right now.
1474
  //
1475
  // On platforms with ASLR, we take advantage of it to make a per-process
1476
  // random value.
1477
  // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1478
  //
1479
  // On other platforms this is still going to be non-deterministic but most
1480
  // probably per-build and not per-process.
1481
0
  ABSL_ATTRIBUTE_ALWAYS_INLINE static size_t Seed() {
1482
0
#if (!defined(__clang__) || __clang_major__ > 11) && \
1483
0
    (!defined(__apple_build_version__) ||            \
1484
0
     __apple_build_version__ >= 19558921)  // Xcode 12
1485
0
    return static_cast<size_t>(reinterpret_cast<uintptr_t>(&kSeed));
1486
#else
1487
    // Workaround the absence of
1488
    // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1489
    return static_cast<size_t>(reinterpret_cast<uintptr_t>(kSeed));
1490
#endif
1491
0
  }
1492
1493
  uint64_t state_;
1494
};
1495
1496
struct AggregateBarrier {};
1497
1498
// Add a private base class to make sure this type is not an aggregate.
1499
// Aggregates can be aggregate initialized even if the default constructor is
1500
// deleted.
1501
struct PoisonedHash : private AggregateBarrier {
1502
  PoisonedHash() = delete;
1503
  PoisonedHash(const PoisonedHash&) = delete;
1504
  PoisonedHash& operator=(const PoisonedHash&) = delete;
1505
};
1506
1507
template <typename T>
1508
struct HashImpl {
1509
0
  size_t operator()(const T& value) const {
1510
0
    return MixingHashState::hash(value);
1511
0
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> >::operator()(std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<unsigned long const&> >::operator()(std::__1::tuple<unsigned long const&> const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::basic_string_view<char, std::__1::char_traits<char> > >::operator()(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::operator()(absl::Cord const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<void const*>::operator()(void const* const&) const
1512
1513
 private:
1514
  friend struct HashWithSeed;
1515
1516
0
  size_t hash_with_seed(const T& value, size_t seed) const {
1517
0
    return MixingHashState::hash_with_seed(value, seed);
1518
0
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::basic_string_view<char, std::__1::char_traits<char> > >::hash_with_seed(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::hash_with_seed(absl::Cord const&, unsigned long) const
1519
};
1520
1521
template <typename T>
1522
struct Hash
1523
    : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1524
1525
template <typename H>
1526
template <typename T, typename... Ts>
1527
0
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1528
0
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1529
0
                        std::move(state), value),
1530
0
                    values...);
1531
0
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::basic_string_view<char, std::__1::char_traits<char> >, int>(absl::hash_internal::MixingHashState, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<int>(absl::hash_internal::MixingHashState, int const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<unsigned long>(absl::hash_internal::MixingHashState, unsigned long const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::basic_string_view<char, std::__1::char_traits<char> >>(absl::hash_internal::MixingHashState, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<absl::Cord>(absl::hash_internal::MixingHashState, absl::Cord const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<void const*>(absl::hash_internal::MixingHashState, void const* const&)
1532
1533
template <typename H>
1534
template <typename T>
1535
0
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1536
0
  return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1537
0
}
1538
1539
template <typename H>
1540
template <typename I>
1541
H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1542
  return H::RunCombineUnordered(std::move(state),
1543
                                CombineUnorderedCallback<I>{begin, end});
1544
}
1545
1546
template <typename H>
1547
H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1548
0
                                size_t size) {
1549
0
  if (position_ + size < PiecewiseChunkSize()) {
1550
0
    // This partial chunk does not fill our existing buffer
1551
0
    memcpy(buf_ + position_, data, size);
1552
0
    position_ += size;
1553
0
    return state;
1554
0
  }
1555
0
  added_something_ = true;
1556
0
  // If the buffer is partially filled we need to complete the buffer
1557
0
  // and hash it.
1558
0
  if (position_ != 0) {
1559
0
    const size_t bytes_needed = PiecewiseChunkSize() - position_;
1560
0
    memcpy(buf_ + position_, data, bytes_needed);
1561
0
    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1562
0
    data += bytes_needed;
1563
0
    size -= bytes_needed;
1564
0
  }
1565
0
1566
0
  // Hash whatever chunks we can without copying
1567
0
  while (size >= PiecewiseChunkSize()) {
1568
0
    state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1569
0
    data += PiecewiseChunkSize();
1570
0
    size -= PiecewiseChunkSize();
1571
0
  }
1572
0
  // Fill the buffer with the remainder
1573
0
  memcpy(buf_, data, size);
1574
0
  position_ = size;
1575
0
  return state;
1576
0
}
1577
1578
template <typename H>
1579
0
H PiecewiseCombiner::finalize(H state) {
1580
0
  // Do not call combine_contiguous with empty remainder since it is modifying
1581
0
  // state.
1582
0
  if (added_something_ && position_ == 0) {
1583
0
    return state;
1584
0
  }
1585
0
  // We still call combine_contiguous for the entirely empty buffer.
1586
0
  return H::combine_contiguous(std::move(state), buf_, position_);
1587
0
}
1588
1589
}  // namespace hash_internal
1590
ABSL_NAMESPACE_END
1591
}  // namespace absl
1592
1593
#undef ABSL_HASH_INTERNAL_HAS_CRC32
1594
#undef ABSL_HASH_INTERNAL_CRC32_U64
1595
#undef ABSL_HASH_INTERNAL_CRC32_U32
1596
#undef ABSL_HASH_INTERNAL_CRC32_U8
1597
1598
#endif  // ABSL_HASH_INTERNAL_HASH_H_