/src/abseil-cpp/absl/debugging/symbolize_elf.inc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2018 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | // This library provides Symbolize() function that symbolizes program |
16 | | // counters to their corresponding symbol names on linux platforms. |
17 | | // This library has a minimal implementation of an ELF symbol table |
18 | | // reader (i.e. it doesn't depend on libelf, etc.). |
19 | | // |
20 | | // The algorithm used in Symbolize() is as follows. |
21 | | // |
22 | | // 1. Go through a list of maps in /proc/self/maps and find the map |
23 | | // containing the program counter. |
24 | | // |
25 | | // 2. Open the mapped file and find a regular symbol table inside. |
26 | | // Iterate over symbols in the symbol table and look for the symbol |
27 | | // containing the program counter. If such a symbol is found, |
28 | | // obtain the symbol name, and demangle the symbol if possible. |
29 | | // If the symbol isn't found in the regular symbol table (binary is |
30 | | // stripped), try the same thing with a dynamic symbol table. |
31 | | // |
32 | | // Note that Symbolize() is originally implemented to be used in |
33 | | // signal handlers, hence it doesn't use malloc() and other unsafe |
34 | | // operations. It should be both thread-safe and async-signal-safe. |
35 | | // |
36 | | // Implementation note: |
37 | | // |
38 | | // We don't use heaps but only use stacks. We want to reduce the |
39 | | // stack consumption so that the symbolizer can run on small stacks. |
40 | | // |
41 | | // Here are some numbers collected with GCC 4.1.0 on x86: |
42 | | // - sizeof(Elf32_Sym) = 16 |
43 | | // - sizeof(Elf32_Shdr) = 40 |
44 | | // - sizeof(Elf64_Sym) = 24 |
45 | | // - sizeof(Elf64_Shdr) = 64 |
46 | | // |
47 | | // This implementation is intended to be async-signal-safe but uses some |
48 | | // functions which are not guaranteed to be so, such as memchr() and |
49 | | // memmove(). We assume they are async-signal-safe. |
50 | | |
51 | | #include <dlfcn.h> |
52 | | #include <elf.h> |
53 | | #include <fcntl.h> |
54 | | #include <link.h> // For ElfW() macro. |
55 | | #include <sys/resource.h> |
56 | | #include <sys/stat.h> |
57 | | #include <sys/types.h> |
58 | | #include <unistd.h> |
59 | | |
60 | | #include <algorithm> |
61 | | #include <array> |
62 | | #include <atomic> |
63 | | #include <cerrno> |
64 | | #include <cinttypes> |
65 | | #include <climits> |
66 | | #include <cstdint> |
67 | | #include <cstdio> |
68 | | #include <cstdlib> |
69 | | #include <cstring> |
70 | | |
71 | | #include "absl/base/casts.h" |
72 | | #include "absl/base/dynamic_annotations.h" |
73 | | #include "absl/base/internal/low_level_alloc.h" |
74 | | #include "absl/base/internal/raw_logging.h" |
75 | | #include "absl/base/internal/spinlock.h" |
76 | | #include "absl/base/port.h" |
77 | | #include "absl/debugging/internal/demangle.h" |
78 | | #include "absl/debugging/internal/vdso_support.h" |
79 | | #include "absl/strings/string_view.h" |
80 | | |
81 | | #if defined(__FreeBSD__) && !defined(ElfW) |
82 | | #define ElfW(x) __ElfN(x) |
83 | | #endif |
84 | | |
85 | | namespace absl { |
86 | | ABSL_NAMESPACE_BEGIN |
87 | | |
88 | | // Value of argv[0]. Used by MaybeInitializeObjFile(). |
89 | | static char *argv0_value = nullptr; |
90 | | |
91 | 0 | void InitializeSymbolizer(const char *argv0) { |
92 | 0 | #ifdef ABSL_HAVE_VDSO_SUPPORT |
93 | | // We need to make sure VDSOSupport::Init() is called before any setuid or |
94 | | // chroot calls, so InitializeSymbolizer() should be called very early in the |
95 | | // life of a program. |
96 | 0 | absl::debugging_internal::VDSOSupport::Init(); |
97 | 0 | #endif |
98 | 0 | if (argv0_value != nullptr) { |
99 | 0 | free(argv0_value); |
100 | 0 | argv0_value = nullptr; |
101 | 0 | } |
102 | 0 | if (argv0 != nullptr && argv0[0] != '\0') { |
103 | 0 | argv0_value = strdup(argv0); |
104 | 0 | } |
105 | 0 | } |
106 | | |
107 | | namespace debugging_internal { |
108 | | namespace { |
109 | | |
110 | | // Re-runs fn until it doesn't cause EINTR. |
111 | | #define NO_INTR(fn) \ |
112 | 0 | do { \ |
113 | 0 | } while ((fn) < 0 && errno == EINTR) |
114 | | |
115 | | // On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable |
116 | | // we define our own ELF_ST_BIND and ELF_ST_TYPE if not available. |
117 | | #ifndef ELF_ST_BIND |
118 | 0 | #define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4) |
119 | | #endif |
120 | | |
121 | | #ifndef ELF_ST_TYPE |
122 | 0 | #define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF) |
123 | | #endif |
124 | | |
125 | | // Some platforms use a special .opd section to store function pointers. |
126 | | const char kOpdSectionName[] = ".opd"; |
127 | | |
128 | | #if defined(__powerpc64__) && defined(_CALL_ELF) |
129 | | #if _CALL_ELF <= 1 |
130 | | #define ABSL_INTERNAL_HAVE_PPC64_ELFV1_ABI 1 |
131 | | #endif |
132 | | #endif |
133 | | #if defined(ABSL_INTERNAL_HAVE_PPC64_ELFV1_ABI) || defined(__ia64) |
134 | | // Use opd section for function descriptors on these platforms, the function |
135 | | // address is the first word of the descriptor. |
136 | | // |
137 | | // https://maskray.me/blog/2023-02-26-linker-notes-on-power-isa notes that |
138 | | // opd sections are used on 64-bit PowerPC with the ELFv1 ABI. |
139 | | inline constexpr bool kPlatformUsesOPDSections = true; |
140 | | #else |
141 | | inline constexpr bool kPlatformUsesOPDSections = false; |
142 | | #endif |
143 | | |
144 | | // This works for PowerPC & IA64 only. A function descriptor consist of two |
145 | | // pointers and the first one is the function's entry. |
146 | | const size_t kFunctionDescriptorSize = sizeof(void *) * 2; |
147 | | |
148 | | const int kMaxDecorators = 10; // Seems like a reasonable upper limit. |
149 | | |
150 | | struct InstalledSymbolDecorator { |
151 | | SymbolDecorator fn; |
152 | | void *arg; |
153 | | int ticket; |
154 | | }; |
155 | | |
156 | | int g_num_decorators; |
157 | | InstalledSymbolDecorator g_decorators[kMaxDecorators]; |
158 | | |
159 | | struct FileMappingHint { |
160 | | const void *start; |
161 | | const void *end; |
162 | | uint64_t offset; |
163 | | const char *filename; |
164 | | }; |
165 | | |
166 | | // Protects g_decorators. |
167 | | // We are using SpinLock and not a Mutex here, because we may be called |
168 | | // from inside Mutex::Lock itself, and it prohibits recursive calls. |
169 | | // This happens in e.g. base/stacktrace_syscall_unittest. |
170 | | // Moreover, we are using only TryLock(), if the decorator list |
171 | | // is being modified (is busy), we skip all decorators, and possibly |
172 | | // loose some info. Sorry, that's the best we could do. |
173 | | ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu( |
174 | | absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY); |
175 | | |
176 | | const int kMaxFileMappingHints = 8; |
177 | | int g_num_file_mapping_hints; |
178 | | FileMappingHint g_file_mapping_hints[kMaxFileMappingHints]; |
179 | | // Protects g_file_mapping_hints. |
180 | | ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu( |
181 | | absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY); |
182 | | |
183 | | // Async-signal-safe function to zero a buffer. |
184 | | // memset() is not guaranteed to be async-signal-safe. |
185 | 0 | static void SafeMemZero(void* p, size_t size) { |
186 | 0 | unsigned char *c = static_cast<unsigned char *>(p); |
187 | 0 | while (size--) { |
188 | 0 | *c++ = 0; |
189 | 0 | } |
190 | 0 | } |
191 | | |
192 | | struct ObjFile { |
193 | | ObjFile() |
194 | 0 | : filename(nullptr), |
195 | 0 | start_addr(nullptr), |
196 | 0 | end_addr(nullptr), |
197 | 0 | offset(0), |
198 | 0 | fd(-1), |
199 | 0 | elf_type(-1) { |
200 | 0 | SafeMemZero(&elf_header, sizeof(elf_header)); |
201 | 0 | SafeMemZero(&phdr[0], sizeof(phdr)); |
202 | 0 | } |
203 | | |
204 | | char *filename; |
205 | | const void *start_addr; |
206 | | const void *end_addr; |
207 | | uint64_t offset; |
208 | | |
209 | | // The following fields are initialized on the first access to the |
210 | | // object file. |
211 | | int fd; |
212 | | int elf_type; |
213 | | ElfW(Ehdr) elf_header; |
214 | | |
215 | | // PT_LOAD program header describing executable code. |
216 | | // Normally we expect just one, but SWIFT binaries have two. |
217 | | // CUDA binaries have 3 (see cr/473913254 description). |
218 | | std::array<ElfW(Phdr), 4> phdr; |
219 | | }; |
220 | | |
221 | | // Build 4-way associative cache for symbols. Within each cache line, symbols |
222 | | // are replaced in LRU order. |
223 | | enum { |
224 | | ASSOCIATIVITY = 4, |
225 | | }; |
226 | | struct SymbolCacheLine { |
227 | | const void *pc[ASSOCIATIVITY]; |
228 | | char *name[ASSOCIATIVITY]; |
229 | | |
230 | | // age[i] is incremented when a line is accessed. it's reset to zero if the |
231 | | // i'th entry is read. |
232 | | uint32_t age[ASSOCIATIVITY]; |
233 | | }; |
234 | | |
235 | | // --------------------------------------------------------------- |
236 | | // An async-signal-safe arena for LowLevelAlloc |
237 | | static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena; |
238 | | |
239 | 0 | static base_internal::LowLevelAlloc::Arena *SigSafeArena() { |
240 | 0 | return g_sig_safe_arena.load(std::memory_order_acquire); |
241 | 0 | } |
242 | | |
243 | 0 | static void InitSigSafeArena() { |
244 | 0 | if (SigSafeArena() == nullptr) { |
245 | 0 | base_internal::LowLevelAlloc::Arena *new_arena = |
246 | 0 | base_internal::LowLevelAlloc::NewArena( |
247 | 0 | base_internal::LowLevelAlloc::kAsyncSignalSafe); |
248 | 0 | base_internal::LowLevelAlloc::Arena *old_value = nullptr; |
249 | 0 | if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena, |
250 | 0 | std::memory_order_release, |
251 | 0 | std::memory_order_relaxed)) { |
252 | | // We lost a race to allocate an arena; deallocate. |
253 | 0 | base_internal::LowLevelAlloc::DeleteArena(new_arena); |
254 | 0 | } |
255 | 0 | } |
256 | 0 | } |
257 | | |
258 | | // --------------------------------------------------------------- |
259 | | // An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation. |
260 | | |
261 | | class AddrMap { |
262 | | public: |
263 | 0 | AddrMap() : size_(0), allocated_(0), obj_(nullptr) {} |
264 | 0 | ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); } |
265 | 0 | size_t Size() const { return size_; } |
266 | 0 | ObjFile *At(size_t i) { return &obj_[i]; } |
267 | | ObjFile *Add(); |
268 | | void Clear(); |
269 | | |
270 | | private: |
271 | | size_t size_; // count of valid elements (<= allocated_) |
272 | | size_t allocated_; // count of allocated elements |
273 | | ObjFile *obj_; // array of allocated_ elements |
274 | | AddrMap(const AddrMap &) = delete; |
275 | | AddrMap &operator=(const AddrMap &) = delete; |
276 | | }; |
277 | | |
278 | 0 | void AddrMap::Clear() { |
279 | 0 | for (size_t i = 0; i != size_; i++) { |
280 | 0 | At(i)->~ObjFile(); |
281 | 0 | } |
282 | 0 | size_ = 0; |
283 | 0 | } |
284 | | |
285 | 0 | ObjFile *AddrMap::Add() { |
286 | 0 | if (size_ == allocated_) { |
287 | 0 | size_t new_allocated = allocated_ * 2 + 50; |
288 | 0 | ObjFile *new_obj_ = |
289 | 0 | static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena( |
290 | 0 | new_allocated * sizeof(*new_obj_), SigSafeArena())); |
291 | 0 | if (obj_) { |
292 | 0 | memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_)); |
293 | 0 | base_internal::LowLevelAlloc::Free(obj_); |
294 | 0 | } |
295 | 0 | obj_ = new_obj_; |
296 | 0 | allocated_ = new_allocated; |
297 | 0 | } |
298 | 0 | return new (&obj_[size_++]) ObjFile; |
299 | 0 | } |
300 | | |
301 | | class CachingFile { |
302 | | public: |
303 | | // Setup reader for fd that uses buf[0, buf_size-1] as a cache. |
304 | | CachingFile(int fd, char *buf, size_t buf_size) |
305 | 0 | : fd_(fd), |
306 | 0 | cache_(buf), |
307 | 0 | cache_size_(buf_size), |
308 | 0 | cache_start_(0), |
309 | 0 | cache_limit_(0) {} |
310 | | |
311 | 0 | int fd() const { return fd_; } |
312 | | ssize_t ReadFromOffset(void *buf, size_t count, off_t offset); |
313 | | bool ReadFromOffsetExact(void *buf, size_t count, off_t offset); |
314 | | |
315 | | private: |
316 | | // Bytes [cache_start_, cache_limit_-1] from fd_ are stored in |
317 | | // a prefix of cache_[0, cache_size_-1]. |
318 | | int fd_; |
319 | | char *cache_; |
320 | | size_t cache_size_; |
321 | | off_t cache_start_; |
322 | | off_t cache_limit_; |
323 | | }; |
324 | | |
325 | | // --------------------------------------------------------------- |
326 | | |
327 | | enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND }; |
328 | | |
329 | | class Symbolizer { |
330 | | public: |
331 | | Symbolizer(); |
332 | | ~Symbolizer(); |
333 | | const char *GetSymbol(const void *const pc); |
334 | | |
335 | | private: |
336 | 0 | char *CopyString(const char *s) { |
337 | 0 | size_t len = strlen(s); |
338 | 0 | char *dst = static_cast<char *>( |
339 | 0 | base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); |
340 | 0 | ABSL_RAW_CHECK(dst != nullptr, "out of memory"); |
341 | 0 | memcpy(dst, s, len + 1); |
342 | 0 | return dst; |
343 | 0 | } |
344 | | ObjFile *FindObjFile(const void *const start, |
345 | | size_t size) ABSL_ATTRIBUTE_NOINLINE; |
346 | | static bool RegisterObjFile(const char *filename, |
347 | | const void *const start_addr, |
348 | | const void *const end_addr, uint64_t offset, |
349 | | void *arg); |
350 | | SymbolCacheLine *GetCacheLine(const void *const pc); |
351 | | const char *FindSymbolInCache(const void *const pc); |
352 | | const char *InsertSymbolInCache(const void *const pc, const char *name); |
353 | | void AgeSymbols(SymbolCacheLine *line); |
354 | | void ClearAddrMap(); |
355 | | FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj, |
356 | | const void *const pc, |
357 | | const ptrdiff_t relocation, |
358 | | char *out, size_t out_size, |
359 | | char *tmp_buf, size_t tmp_buf_size); |
360 | | const char *GetUncachedSymbol(const void *pc); |
361 | | |
362 | | enum { |
363 | | SYMBOL_BUF_SIZE = 3072, |
364 | | TMP_BUF_SIZE = 1024, |
365 | | SYMBOL_CACHE_LINES = 128, |
366 | | FILE_CACHE_SIZE = 8192, |
367 | | }; |
368 | | |
369 | | AddrMap addr_map_; |
370 | | |
371 | | bool ok_; |
372 | | bool addr_map_read_; |
373 | | |
374 | | char symbol_buf_[SYMBOL_BUF_SIZE]; |
375 | | char file_cache_[FILE_CACHE_SIZE]; |
376 | | |
377 | | // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym) |
378 | | // so we ensure that tmp_buf_ is properly aligned to store either. |
379 | | alignas(16) char tmp_buf_[TMP_BUF_SIZE]; |
380 | | static_assert(alignof(ElfW(Shdr)) <= 16, |
381 | | "alignment of tmp buf too small for Shdr"); |
382 | | static_assert(alignof(ElfW(Sym)) <= 16, |
383 | | "alignment of tmp buf too small for Sym"); |
384 | | |
385 | | SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES]; |
386 | | }; |
387 | | |
388 | | // Protect against client code closing low-valued file descriptors it doesn't |
389 | | // actually own. |
390 | 0 | int OpenReadOnlyWithHighFD(const char *fname) { |
391 | 0 | static int high_fd = [] { |
392 | 0 | struct rlimit rlim{}; |
393 | 0 | const int rc = getrlimit(RLIMIT_NOFILE, &rlim); |
394 | 0 | if (rc == 0 && rlim.rlim_cur >= 2000) { |
395 | 0 | const int max_fd = static_cast<int>(rlim.rlim_cur); |
396 | | |
397 | | // This will return 2000 on reasonably-configured systems. |
398 | 0 | return std::min<int>(2000, max_fd - 1000); |
399 | 0 | } |
400 | 0 | ABSL_RAW_LOG(WARNING, "Unable to get high fd: rc=%d, limit=%ld", // |
401 | 0 | rc, static_cast<long>(rlim.rlim_cur)); |
402 | 0 | return -1; |
403 | 0 | }(); |
404 | 0 | constexpr int kOpenFlags = O_RDONLY | O_CLOEXEC; |
405 | 0 | if (high_fd >= 1000) { |
406 | 0 | const int fd = open(fname, kOpenFlags); |
407 | 0 | if (fd != -1 && fd < high_fd) { |
408 | | // Try to relocate fd to high range. |
409 | 0 | static_assert(kOpenFlags & O_CLOEXEC, |
410 | 0 | "F_DUPFD_CLOEXEC assumes O_CLOEXEC"); |
411 | 0 | const int fd2 = fcntl(fd, F_DUPFD_CLOEXEC, high_fd); |
412 | 0 | if (fd2 != -1) { |
413 | | // Successfully obtained high fd. Use it. |
414 | 0 | close(fd); |
415 | 0 | return fd2; |
416 | 0 | } else { |
417 | 0 | ABSL_RAW_LOG(WARNING, "Unable to dup fd=%d above %d, errno=%d", fd, |
418 | 0 | high_fd, errno); |
419 | 0 | } |
420 | 0 | } |
421 | | // Either open failed and fd==-1, or fd is already above high_fd, or fcntl |
422 | | // failed and fd is valid (but low). |
423 | 0 | return fd; |
424 | 0 | } |
425 | 0 | return open(fname, kOpenFlags); |
426 | 0 | } |
427 | | |
428 | | static std::atomic<Symbolizer *> g_cached_symbolizer; |
429 | | |
430 | | } // namespace |
431 | | |
432 | 0 | static size_t SymbolizerSize() { |
433 | | #if defined(__wasm__) || defined(__asmjs__) |
434 | | auto pagesize = static_cast<size_t>(getpagesize()); |
435 | | #else |
436 | 0 | auto pagesize = static_cast<size_t>(sysconf(_SC_PAGESIZE)); |
437 | 0 | #endif |
438 | 0 | return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize; |
439 | 0 | } |
440 | | |
441 | | // Return (and set null) g_cached_symbolized_state if it is not null. |
442 | | // Otherwise return a new symbolizer. |
443 | 0 | static Symbolizer *AllocateSymbolizer() { |
444 | 0 | InitSigSafeArena(); |
445 | 0 | Symbolizer *symbolizer = |
446 | 0 | g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire); |
447 | 0 | if (symbolizer != nullptr) { |
448 | 0 | return symbolizer; |
449 | 0 | } |
450 | 0 | return new (base_internal::LowLevelAlloc::AllocWithArena( |
451 | 0 | SymbolizerSize(), SigSafeArena())) Symbolizer(); |
452 | 0 | } |
453 | | |
454 | | // Set g_cached_symbolize_state to s if it is null, otherwise |
455 | | // delete s. |
456 | 0 | static void FreeSymbolizer(Symbolizer *s) { |
457 | 0 | Symbolizer *old_cached_symbolizer = nullptr; |
458 | 0 | if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s, |
459 | 0 | std::memory_order_release, |
460 | 0 | std::memory_order_relaxed)) { |
461 | 0 | s->~Symbolizer(); |
462 | 0 | base_internal::LowLevelAlloc::Free(s); |
463 | 0 | } |
464 | 0 | } |
465 | | |
466 | 0 | Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) { |
467 | 0 | for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { |
468 | 0 | for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) { |
469 | 0 | symbol_cache_line.pc[j] = nullptr; |
470 | 0 | symbol_cache_line.name[j] = nullptr; |
471 | 0 | symbol_cache_line.age[j] = 0; |
472 | 0 | } |
473 | 0 | } |
474 | 0 | } |
475 | | |
476 | 0 | Symbolizer::~Symbolizer() { |
477 | 0 | for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { |
478 | 0 | for (char *s : symbol_cache_line.name) { |
479 | 0 | base_internal::LowLevelAlloc::Free(s); |
480 | 0 | } |
481 | 0 | } |
482 | 0 | ClearAddrMap(); |
483 | 0 | } |
484 | | |
485 | | // We don't use assert() since it's not guaranteed to be |
486 | | // async-signal-safe. Instead we define a minimal assertion |
487 | | // macro. So far, we don't need pretty printing for __FILE__, etc. |
488 | 0 | #define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort()) |
489 | | |
490 | | // Read up to "count" bytes from file descriptor "fd" into the buffer |
491 | | // starting at "buf" while handling short reads and EINTR. On |
492 | | // success, return the number of bytes read. Otherwise, return -1. |
493 | 0 | static ssize_t ReadPersistent(int fd, void *buf, size_t count) { |
494 | 0 | SAFE_ASSERT(fd >= 0); |
495 | 0 | SAFE_ASSERT(count <= SSIZE_MAX); |
496 | 0 | char *buf0 = reinterpret_cast<char *>(buf); |
497 | 0 | size_t num_bytes = 0; |
498 | 0 | while (num_bytes < count) { |
499 | 0 | ssize_t len; |
500 | 0 | NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes)); |
501 | 0 | if (len < 0) { // There was an error other than EINTR. |
502 | 0 | ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno); |
503 | 0 | return -1; |
504 | 0 | } |
505 | 0 | if (len == 0) { // Reached EOF. |
506 | 0 | break; |
507 | 0 | } |
508 | 0 | num_bytes += static_cast<size_t>(len); |
509 | 0 | } |
510 | 0 | SAFE_ASSERT(num_bytes <= count); |
511 | 0 | return static_cast<ssize_t>(num_bytes); |
512 | 0 | } |
513 | | |
514 | | // Read up to "count" bytes from "offset" into the buffer starting at "buf", |
515 | | // while handling short reads and EINTR. On success, return the number of bytes |
516 | | // read. Otherwise, return -1. |
517 | 0 | ssize_t CachingFile::ReadFromOffset(void *buf, size_t count, off_t offset) { |
518 | 0 | char *dst = static_cast<char *>(buf); |
519 | 0 | size_t read = 0; |
520 | 0 | while (read < count) { |
521 | | // Look in cache first. |
522 | 0 | if (offset >= cache_start_ && offset < cache_limit_) { |
523 | 0 | const char *hit_start = &cache_[offset - cache_start_]; |
524 | 0 | const size_t n = |
525 | 0 | std::min(count - read, static_cast<size_t>(cache_limit_ - offset)); |
526 | 0 | memcpy(dst, hit_start, n); |
527 | 0 | dst += n; |
528 | 0 | read += static_cast<size_t>(n); |
529 | 0 | offset += static_cast<off_t>(n); |
530 | 0 | continue; |
531 | 0 | } |
532 | | |
533 | 0 | cache_start_ = 0; |
534 | 0 | cache_limit_ = 0; |
535 | 0 | ssize_t n = pread(fd_, cache_, cache_size_, offset); |
536 | 0 | if (n < 0) { |
537 | 0 | if (errno == EINTR) { |
538 | 0 | continue; |
539 | 0 | } |
540 | 0 | ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno); |
541 | 0 | return -1; |
542 | 0 | } |
543 | 0 | if (n == 0) { // Reached EOF. |
544 | 0 | break; |
545 | 0 | } |
546 | | |
547 | 0 | cache_start_ = offset; |
548 | 0 | cache_limit_ = offset + static_cast<off_t>(n); |
549 | | // Next iteration will copy from cache into dst. |
550 | 0 | } |
551 | 0 | return static_cast<ssize_t>(read); |
552 | 0 | } |
553 | | |
554 | | // Try reading exactly "count" bytes from "offset" bytes into the buffer |
555 | | // starting at "buf" while handling short reads and EINTR. On success, return |
556 | | // true. Otherwise, return false. |
557 | 0 | bool CachingFile::ReadFromOffsetExact(void *buf, size_t count, off_t offset) { |
558 | 0 | ssize_t len = ReadFromOffset(buf, count, offset); |
559 | 0 | return len >= 0 && static_cast<size_t>(len) == count; |
560 | 0 | } |
561 | | |
562 | | // Returns elf_header.e_type if the file pointed by fd is an ELF binary. |
563 | 0 | static int FileGetElfType(CachingFile *file) { |
564 | 0 | ElfW(Ehdr) elf_header; |
565 | 0 | if (!file->ReadFromOffsetExact(&elf_header, sizeof(elf_header), 0)) { |
566 | 0 | return -1; |
567 | 0 | } |
568 | 0 | if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { |
569 | 0 | return -1; |
570 | 0 | } |
571 | 0 | return elf_header.e_type; |
572 | 0 | } |
573 | | |
574 | | // Read the section headers in the given ELF binary, and if a section |
575 | | // of the specified type is found, set the output to this section header |
576 | | // and return true. Otherwise, return false. |
577 | | // To keep stack consumption low, we would like this function to not get |
578 | | // inlined. |
579 | | static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType( |
580 | | CachingFile *file, ElfW(Half) sh_num, const off_t sh_offset, |
581 | 0 | ElfW(Word) type, ElfW(Shdr) * out, char *tmp_buf, size_t tmp_buf_size) { |
582 | 0 | ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf); |
583 | 0 | const size_t buf_entries = tmp_buf_size / sizeof(buf[0]); |
584 | 0 | const size_t buf_bytes = buf_entries * sizeof(buf[0]); |
585 | |
|
586 | 0 | for (size_t i = 0; static_cast<int>(i) < sh_num;) { |
587 | 0 | const size_t num_bytes_left = |
588 | 0 | (static_cast<size_t>(sh_num) - i) * sizeof(buf[0]); |
589 | 0 | const size_t num_bytes_to_read = |
590 | 0 | (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes; |
591 | 0 | const off_t offset = sh_offset + static_cast<off_t>(i * sizeof(buf[0])); |
592 | 0 | const ssize_t len = file->ReadFromOffset(buf, num_bytes_to_read, offset); |
593 | 0 | if (len <= 0) { |
594 | 0 | ABSL_RAW_LOG(WARNING, "Reading %zu bytes from offset %ju returned %zd.", |
595 | 0 | num_bytes_to_read, static_cast<intmax_t>(offset), len); |
596 | 0 | return false; |
597 | 0 | } |
598 | 0 | if (static_cast<size_t>(len) % sizeof(buf[0]) != 0) { |
599 | 0 | ABSL_RAW_LOG( |
600 | 0 | WARNING, |
601 | 0 | "Reading %zu bytes from offset %jd returned %zd which is not a " |
602 | 0 | "multiple of %zu.", |
603 | 0 | num_bytes_to_read, static_cast<intmax_t>(offset), len, |
604 | 0 | sizeof(buf[0])); |
605 | 0 | return false; |
606 | 0 | } |
607 | 0 | const size_t num_headers_in_buf = static_cast<size_t>(len) / sizeof(buf[0]); |
608 | 0 | SAFE_ASSERT(num_headers_in_buf <= buf_entries); |
609 | 0 | for (size_t j = 0; j < num_headers_in_buf; ++j) { |
610 | 0 | if (buf[j].sh_type == type) { |
611 | 0 | *out = buf[j]; |
612 | 0 | return true; |
613 | 0 | } |
614 | 0 | } |
615 | 0 | i += num_headers_in_buf; |
616 | 0 | } |
617 | 0 | return false; |
618 | 0 | } |
619 | | |
620 | | // There is no particular reason to limit section name to 63 characters, |
621 | | // but there has (as yet) been no need for anything longer either. |
622 | | const int kMaxSectionNameLen = 64; |
623 | | |
624 | | // Small cache to use for miscellaneous file reads. |
625 | | const int kSmallFileCacheSize = 100; |
626 | | |
627 | | bool ForEachSection(int fd, |
628 | | const std::function<bool(absl::string_view name, |
629 | 0 | const ElfW(Shdr) &)> &callback) { |
630 | 0 | char buf[kSmallFileCacheSize]; |
631 | 0 | CachingFile file(fd, buf, sizeof(buf)); |
632 | |
|
633 | 0 | ElfW(Ehdr) elf_header; |
634 | 0 | if (!file.ReadFromOffsetExact(&elf_header, sizeof(elf_header), 0)) { |
635 | 0 | return false; |
636 | 0 | } |
637 | | |
638 | | // Technically it can be larger, but in practice this never happens. |
639 | 0 | if (elf_header.e_shentsize != sizeof(ElfW(Shdr))) { |
640 | 0 | return false; |
641 | 0 | } |
642 | | |
643 | 0 | ElfW(Shdr) shstrtab; |
644 | 0 | off_t shstrtab_offset = static_cast<off_t>(elf_header.e_shoff) + |
645 | 0 | elf_header.e_shentsize * elf_header.e_shstrndx; |
646 | 0 | if (!file.ReadFromOffsetExact(&shstrtab, sizeof(shstrtab), shstrtab_offset)) { |
647 | 0 | return false; |
648 | 0 | } |
649 | | |
650 | 0 | for (int i = 0; i < elf_header.e_shnum; ++i) { |
651 | 0 | ElfW(Shdr) out; |
652 | 0 | off_t section_header_offset = |
653 | 0 | static_cast<off_t>(elf_header.e_shoff) + elf_header.e_shentsize * i; |
654 | 0 | if (!file.ReadFromOffsetExact(&out, sizeof(out), section_header_offset)) { |
655 | 0 | return false; |
656 | 0 | } |
657 | 0 | off_t name_offset = static_cast<off_t>(shstrtab.sh_offset) + out.sh_name; |
658 | 0 | char header_name[kMaxSectionNameLen]; |
659 | 0 | ssize_t n_read = |
660 | 0 | file.ReadFromOffset(&header_name, kMaxSectionNameLen, name_offset); |
661 | 0 | if (n_read < 0) { |
662 | 0 | return false; |
663 | 0 | } else if (n_read > kMaxSectionNameLen) { |
664 | | // Long read? |
665 | 0 | return false; |
666 | 0 | } |
667 | | |
668 | 0 | absl::string_view name(header_name, |
669 | 0 | strnlen(header_name, static_cast<size_t>(n_read))); |
670 | 0 | if (!callback(name, out)) { |
671 | 0 | break; |
672 | 0 | } |
673 | 0 | } |
674 | 0 | return true; |
675 | 0 | } |
676 | | |
677 | | // name_len should include terminating '\0'. |
678 | | bool GetSectionHeaderByName(int fd, const char *name, size_t name_len, |
679 | 0 | ElfW(Shdr) * out) { |
680 | 0 | char header_name[kMaxSectionNameLen]; |
681 | 0 | if (sizeof(header_name) < name_len) { |
682 | 0 | ABSL_RAW_LOG(WARNING, |
683 | 0 | "Section name '%s' is too long (%zu); " |
684 | 0 | "section will not be found (even if present).", |
685 | 0 | name, name_len); |
686 | | // No point in even trying. |
687 | 0 | return false; |
688 | 0 | } |
689 | | |
690 | 0 | char buf[kSmallFileCacheSize]; |
691 | 0 | CachingFile file(fd, buf, sizeof(buf)); |
692 | 0 | ElfW(Ehdr) elf_header; |
693 | 0 | if (!file.ReadFromOffsetExact(&elf_header, sizeof(elf_header), 0)) { |
694 | 0 | return false; |
695 | 0 | } |
696 | | |
697 | | // Technically it can be larger, but in practice this never happens. |
698 | 0 | if (elf_header.e_shentsize != sizeof(ElfW(Shdr))) { |
699 | 0 | return false; |
700 | 0 | } |
701 | | |
702 | 0 | ElfW(Shdr) shstrtab; |
703 | 0 | off_t shstrtab_offset = static_cast<off_t>(elf_header.e_shoff) + |
704 | 0 | elf_header.e_shentsize * elf_header.e_shstrndx; |
705 | 0 | if (!file.ReadFromOffsetExact(&shstrtab, sizeof(shstrtab), shstrtab_offset)) { |
706 | 0 | return false; |
707 | 0 | } |
708 | | |
709 | 0 | for (int i = 0; i < elf_header.e_shnum; ++i) { |
710 | 0 | off_t section_header_offset = |
711 | 0 | static_cast<off_t>(elf_header.e_shoff) + elf_header.e_shentsize * i; |
712 | 0 | if (!file.ReadFromOffsetExact(out, sizeof(*out), section_header_offset)) { |
713 | 0 | return false; |
714 | 0 | } |
715 | 0 | off_t name_offset = static_cast<off_t>(shstrtab.sh_offset) + out->sh_name; |
716 | 0 | ssize_t n_read = file.ReadFromOffset(&header_name, name_len, name_offset); |
717 | 0 | if (n_read < 0) { |
718 | 0 | return false; |
719 | 0 | } else if (static_cast<size_t>(n_read) != name_len) { |
720 | | // Short read -- name could be at end of file. |
721 | 0 | continue; |
722 | 0 | } |
723 | 0 | if (memcmp(header_name, name, name_len) == 0) { |
724 | 0 | return true; |
725 | 0 | } |
726 | 0 | } |
727 | 0 | return false; |
728 | 0 | } |
729 | | |
730 | | // Compare symbols at in the same address. |
731 | | // Return true if we should pick symbol1. |
732 | | static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1, |
733 | 0 | const ElfW(Sym) & symbol2) { |
734 | | // If one of the symbols is weak and the other is not, pick the one |
735 | | // this is not a weak symbol. |
736 | 0 | char bind1 = ELF_ST_BIND(symbol1.st_info); |
737 | 0 | char bind2 = ELF_ST_BIND(symbol1.st_info); |
738 | 0 | if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false; |
739 | 0 | if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true; |
740 | | |
741 | | // If one of the symbols has zero size and the other is not, pick the |
742 | | // one that has non-zero size. |
743 | 0 | if (symbol1.st_size != 0 && symbol2.st_size == 0) { |
744 | 0 | return true; |
745 | 0 | } |
746 | 0 | if (symbol1.st_size == 0 && symbol2.st_size != 0) { |
747 | 0 | return false; |
748 | 0 | } |
749 | | |
750 | | // If one of the symbols has no type and the other is not, pick the |
751 | | // one that has a type. |
752 | 0 | char type1 = ELF_ST_TYPE(symbol1.st_info); |
753 | 0 | char type2 = ELF_ST_TYPE(symbol1.st_info); |
754 | 0 | if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) { |
755 | 0 | return true; |
756 | 0 | } |
757 | 0 | if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) { |
758 | 0 | return false; |
759 | 0 | } |
760 | | |
761 | | // Pick the first one, if we still cannot decide. |
762 | 0 | return true; |
763 | 0 | } |
764 | | |
765 | | // Return true if an address is inside a section. |
766 | | static bool InSection(const void *address, ptrdiff_t relocation, |
767 | 0 | const ElfW(Shdr) * section) { |
768 | 0 | const char *start = reinterpret_cast<const char *>( |
769 | 0 | section->sh_addr + static_cast<ElfW(Addr)>(relocation)); |
770 | 0 | size_t size = static_cast<size_t>(section->sh_size); |
771 | 0 | return start <= address && address < (start + size); |
772 | 0 | } |
773 | | |
774 | 0 | static const char *ComputeOffset(const char *base, ptrdiff_t offset) { |
775 | | // Note: cast to intptr_t to avoid undefined behavior when base evaluates to |
776 | | // zero and offset is non-zero. |
777 | 0 | return reinterpret_cast<const char *>(reinterpret_cast<intptr_t>(base) + |
778 | 0 | offset); |
779 | 0 | } |
780 | | |
781 | | // Read a symbol table and look for the symbol containing the |
782 | | // pc. Iterate over symbols in a symbol table and look for the symbol |
783 | | // containing "pc". If the symbol is found, and its name fits in |
784 | | // out_size, the name is written into out and SYMBOL_FOUND is returned. |
785 | | // If the name does not fit, truncated name is written into out, |
786 | | // and SYMBOL_TRUNCATED is returned. Out is NUL-terminated. |
787 | | // If the symbol is not found, SYMBOL_NOT_FOUND is returned; |
788 | | // To keep stack consumption low, we would like this function to not get |
789 | | // inlined. |
790 | | static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol( |
791 | | const void *const pc, CachingFile *file, char *out, size_t out_size, |
792 | | ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab, |
793 | 0 | const ElfW(Shdr) * opd, char *tmp_buf, size_t tmp_buf_size) { |
794 | 0 | if (symtab == nullptr) { |
795 | 0 | return SYMBOL_NOT_FOUND; |
796 | 0 | } |
797 | | |
798 | | // Read multiple symbols at once to save read() calls. |
799 | 0 | ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf); |
800 | 0 | const size_t buf_entries = tmp_buf_size / sizeof(buf[0]); |
801 | |
|
802 | 0 | const size_t num_symbols = symtab->sh_size / symtab->sh_entsize; |
803 | | |
804 | | // On platforms using an .opd section (PowerPC & IA64), a function symbol |
805 | | // has the address of a function descriptor, which contains the real |
806 | | // starting address. However, we do not always want to use the real |
807 | | // starting address because we sometimes want to symbolize a function |
808 | | // pointer into the .opd section, e.g. FindSymbol(&foo,...). |
809 | 0 | const bool pc_in_opd = kPlatformUsesOPDSections && opd != nullptr && |
810 | 0 | InSection(pc, relocation, opd); |
811 | 0 | const bool deref_function_descriptor_pointer = |
812 | 0 | kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd; |
813 | |
|
814 | 0 | ElfW(Sym) best_match; |
815 | 0 | SafeMemZero(&best_match, sizeof(best_match)); |
816 | 0 | bool found_match = false; |
817 | 0 | for (size_t i = 0; i < num_symbols;) { |
818 | 0 | off_t offset = |
819 | 0 | static_cast<off_t>(symtab->sh_offset + i * symtab->sh_entsize); |
820 | 0 | const size_t num_remaining_symbols = num_symbols - i; |
821 | 0 | const size_t entries_in_chunk = |
822 | 0 | std::min(num_remaining_symbols, buf_entries); |
823 | 0 | const size_t bytes_in_chunk = entries_in_chunk * sizeof(buf[0]); |
824 | 0 | const ssize_t len = file->ReadFromOffset(buf, bytes_in_chunk, offset); |
825 | 0 | SAFE_ASSERT(len >= 0); |
826 | 0 | SAFE_ASSERT(static_cast<size_t>(len) % sizeof(buf[0]) == 0); |
827 | 0 | const size_t num_symbols_in_buf = static_cast<size_t>(len) / sizeof(buf[0]); |
828 | 0 | SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk); |
829 | 0 | for (size_t j = 0; j < num_symbols_in_buf; ++j) { |
830 | 0 | const ElfW(Sym) &symbol = buf[j]; |
831 | | |
832 | | // For a DSO, a symbol address is relocated by the loading address. |
833 | | // We keep the original address for opd redirection below. |
834 | 0 | const char *const original_start_address = |
835 | 0 | reinterpret_cast<const char *>(symbol.st_value); |
836 | 0 | const char *start_address = |
837 | 0 | ComputeOffset(original_start_address, relocation); |
838 | |
|
839 | | #ifdef __arm__ |
840 | | // ARM functions are always aligned to multiples of two bytes; the |
841 | | // lowest-order bit in start_address is ignored by the CPU and indicates |
842 | | // whether the function contains ARM (0) or Thumb (1) code. We don't care |
843 | | // about what encoding is being used; we just want the real start address |
844 | | // of the function. |
845 | | start_address = reinterpret_cast<const char *>( |
846 | | reinterpret_cast<uintptr_t>(start_address) & ~1u); |
847 | | #endif |
848 | |
|
849 | 0 | if (deref_function_descriptor_pointer && |
850 | 0 | InSection(original_start_address, /*relocation=*/0, opd)) { |
851 | | // The opd section is mapped into memory. Just dereference |
852 | | // start_address to get the first double word, which points to the |
853 | | // function entry. |
854 | 0 | start_address = *reinterpret_cast<const char *const *>(start_address); |
855 | 0 | } |
856 | | |
857 | | // If pc is inside the .opd section, it points to a function descriptor. |
858 | 0 | const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size; |
859 | 0 | const void *const end_address = |
860 | 0 | ComputeOffset(start_address, static_cast<ptrdiff_t>(size)); |
861 | 0 | if (symbol.st_value != 0 && // Skip null value symbols. |
862 | 0 | symbol.st_shndx != 0 && // Skip undefined symbols. |
863 | 0 | #ifdef STT_TLS |
864 | 0 | ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data. |
865 | 0 | #endif // STT_TLS |
866 | 0 | ((start_address <= pc && pc < end_address) || |
867 | 0 | (start_address == pc && pc == end_address))) { |
868 | 0 | if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) { |
869 | 0 | found_match = true; |
870 | 0 | best_match = symbol; |
871 | 0 | } |
872 | 0 | } |
873 | 0 | } |
874 | 0 | i += num_symbols_in_buf; |
875 | 0 | } |
876 | | |
877 | 0 | if (found_match) { |
878 | 0 | const off_t off = |
879 | 0 | static_cast<off_t>(strtab->sh_offset) + best_match.st_name; |
880 | 0 | const ssize_t n_read = file->ReadFromOffset(out, out_size, off); |
881 | 0 | if (n_read <= 0) { |
882 | | // This should never happen. |
883 | 0 | ABSL_RAW_LOG(WARNING, |
884 | 0 | "Unable to read from fd %d at offset %lld: n_read = %zd", |
885 | 0 | file->fd(), static_cast<long long>(off), n_read); |
886 | 0 | return SYMBOL_NOT_FOUND; |
887 | 0 | } |
888 | 0 | ABSL_RAW_CHECK(static_cast<size_t>(n_read) <= out_size, |
889 | 0 | "ReadFromOffset read too much data."); |
890 | | |
891 | | // strtab->sh_offset points into .strtab-like section that contains |
892 | | // NUL-terminated strings: '\0foo\0barbaz\0...". |
893 | | // |
894 | | // sh_offset+st_name points to the start of symbol name, but we don't know |
895 | | // how long the symbol is, so we try to read as much as we have space for, |
896 | | // and usually over-read (i.e. there is a NUL somewhere before n_read). |
897 | 0 | if (memchr(out, '\0', static_cast<size_t>(n_read)) == nullptr) { |
898 | | // Either out_size was too small (n_read == out_size and no NUL), or |
899 | | // we tried to read past the EOF (n_read < out_size) and .strtab is |
900 | | // corrupt (missing terminating NUL; should never happen for valid ELF). |
901 | 0 | out[n_read - 1] = '\0'; |
902 | 0 | return SYMBOL_TRUNCATED; |
903 | 0 | } |
904 | 0 | return SYMBOL_FOUND; |
905 | 0 | } |
906 | | |
907 | 0 | return SYMBOL_NOT_FOUND; |
908 | 0 | } |
909 | | |
910 | | // Get the symbol name of "pc" from the file pointed by "fd". Process |
911 | | // both regular and dynamic symbol tables if necessary. |
912 | | // See FindSymbol() comment for description of return value. |
913 | | FindSymbolResult Symbolizer::GetSymbolFromObjectFile( |
914 | | const ObjFile &obj, const void *const pc, const ptrdiff_t relocation, |
915 | 0 | char *out, size_t out_size, char *tmp_buf, size_t tmp_buf_size) { |
916 | 0 | ElfW(Shdr) symtab; |
917 | 0 | ElfW(Shdr) strtab; |
918 | 0 | ElfW(Shdr) opd; |
919 | 0 | ElfW(Shdr) *opd_ptr = nullptr; |
920 | | |
921 | | // On platforms using an .opd sections for function descriptor, read |
922 | | // the section header. The .opd section is in data segment and should be |
923 | | // loaded but we check that it is mapped just to be extra careful. |
924 | 0 | if (kPlatformUsesOPDSections) { |
925 | 0 | if (GetSectionHeaderByName(obj.fd, kOpdSectionName, |
926 | 0 | sizeof(kOpdSectionName) - 1, &opd) && |
927 | 0 | FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation, |
928 | 0 | opd.sh_size) != nullptr) { |
929 | 0 | opd_ptr = &opd; |
930 | 0 | } else { |
931 | 0 | return SYMBOL_NOT_FOUND; |
932 | 0 | } |
933 | 0 | } |
934 | | |
935 | 0 | CachingFile file(obj.fd, file_cache_, sizeof(file_cache_)); |
936 | | |
937 | | // Consult a regular symbol table, then fall back to the dynamic symbol table. |
938 | 0 | for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) { |
939 | 0 | if (!GetSectionHeaderByType(&file, obj.elf_header.e_shnum, |
940 | 0 | static_cast<off_t>(obj.elf_header.e_shoff), |
941 | 0 | static_cast<ElfW(Word)>(symbol_table_type), |
942 | 0 | &symtab, tmp_buf, tmp_buf_size)) { |
943 | 0 | continue; |
944 | 0 | } |
945 | 0 | if (!file.ReadFromOffsetExact( |
946 | 0 | &strtab, sizeof(strtab), |
947 | 0 | static_cast<off_t>(obj.elf_header.e_shoff + |
948 | 0 | symtab.sh_link * sizeof(symtab)))) { |
949 | 0 | continue; |
950 | 0 | } |
951 | 0 | const FindSymbolResult rc = |
952 | 0 | FindSymbol(pc, &file, out, out_size, relocation, &strtab, &symtab, |
953 | 0 | opd_ptr, tmp_buf, tmp_buf_size); |
954 | 0 | if (rc != SYMBOL_NOT_FOUND) { |
955 | 0 | return rc; |
956 | 0 | } |
957 | 0 | } |
958 | | |
959 | 0 | return SYMBOL_NOT_FOUND; |
960 | 0 | } |
961 | | |
962 | | namespace { |
963 | | // Thin wrapper around a file descriptor so that the file descriptor |
964 | | // gets closed for sure. |
965 | | class FileDescriptor { |
966 | | public: |
967 | 0 | explicit FileDescriptor(int fd) : fd_(fd) {} |
968 | | FileDescriptor(const FileDescriptor &) = delete; |
969 | | FileDescriptor &operator=(const FileDescriptor &) = delete; |
970 | | |
971 | 0 | ~FileDescriptor() { |
972 | 0 | if (fd_ >= 0) { |
973 | 0 | close(fd_); |
974 | 0 | } |
975 | 0 | } |
976 | | |
977 | 0 | int get() const { return fd_; } |
978 | | |
979 | | private: |
980 | | const int fd_; |
981 | | }; |
982 | | |
983 | | // Helper class for reading lines from file. |
984 | | // |
985 | | // Note: we don't use ProcMapsIterator since the object is big (it has |
986 | | // a 5k array member) and uses async-unsafe functions such as sscanf() |
987 | | // and snprintf(). |
988 | | class LineReader { |
989 | | public: |
990 | | explicit LineReader(int fd, char *buf, size_t buf_len) |
991 | 0 | : fd_(fd), |
992 | 0 | buf_len_(buf_len), |
993 | 0 | buf_(buf), |
994 | 0 | bol_(buf), |
995 | 0 | eol_(buf), |
996 | 0 | eod_(buf) {} |
997 | | |
998 | | LineReader(const LineReader &) = delete; |
999 | | LineReader &operator=(const LineReader &) = delete; |
1000 | | |
1001 | | // Read '\n'-terminated line from file. On success, modify "bol" |
1002 | | // and "eol", then return true. Otherwise, return false. |
1003 | | // |
1004 | | // Note: if the last line doesn't end with '\n', the line will be |
1005 | | // dropped. It's an intentional behavior to make the code simple. |
1006 | 0 | bool ReadLine(const char **bol, const char **eol) { |
1007 | 0 | if (BufferIsEmpty()) { // First time. |
1008 | 0 | const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_); |
1009 | 0 | if (num_bytes <= 0) { // EOF or error. |
1010 | 0 | return false; |
1011 | 0 | } |
1012 | 0 | eod_ = buf_ + num_bytes; |
1013 | 0 | bol_ = buf_; |
1014 | 0 | } else { |
1015 | 0 | bol_ = eol_ + 1; // Advance to the next line in the buffer. |
1016 | 0 | SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_". |
1017 | 0 | if (!HasCompleteLine()) { |
1018 | 0 | const auto incomplete_line_length = static_cast<size_t>(eod_ - bol_); |
1019 | | // Move the trailing incomplete line to the beginning. |
1020 | 0 | memmove(buf_, bol_, incomplete_line_length); |
1021 | | // Read text from file and append it. |
1022 | 0 | char *const append_pos = buf_ + incomplete_line_length; |
1023 | 0 | const size_t capacity_left = buf_len_ - incomplete_line_length; |
1024 | 0 | const ssize_t num_bytes = |
1025 | 0 | ReadPersistent(fd_, append_pos, capacity_left); |
1026 | 0 | if (num_bytes <= 0) { // EOF or error. |
1027 | 0 | return false; |
1028 | 0 | } |
1029 | 0 | eod_ = append_pos + num_bytes; |
1030 | 0 | bol_ = buf_; |
1031 | 0 | } |
1032 | 0 | } |
1033 | 0 | eol_ = FindLineFeed(); |
1034 | 0 | if (eol_ == nullptr) { // '\n' not found. Malformed line. |
1035 | 0 | return false; |
1036 | 0 | } |
1037 | 0 | *eol_ = '\0'; // Replace '\n' with '\0'. |
1038 | |
|
1039 | 0 | *bol = bol_; |
1040 | 0 | *eol = eol_; |
1041 | 0 | return true; |
1042 | 0 | } |
1043 | | |
1044 | | private: |
1045 | 0 | char *FindLineFeed() const { |
1046 | 0 | return reinterpret_cast<char *>( |
1047 | 0 | memchr(bol_, '\n', static_cast<size_t>(eod_ - bol_))); |
1048 | 0 | } |
1049 | | |
1050 | 0 | bool BufferIsEmpty() const { return buf_ == eod_; } |
1051 | | |
1052 | 0 | bool HasCompleteLine() const { |
1053 | 0 | return !BufferIsEmpty() && FindLineFeed() != nullptr; |
1054 | 0 | } |
1055 | | |
1056 | | const int fd_; |
1057 | | const size_t buf_len_; |
1058 | | char *const buf_; |
1059 | | char *bol_; |
1060 | | char *eol_; |
1061 | | const char *eod_; // End of data in "buf_". |
1062 | | }; |
1063 | | } // namespace |
1064 | | |
1065 | | // Place the hex number read from "start" into "*hex". The pointer to |
1066 | | // the first non-hex character or "end" is returned. |
1067 | | static const char *GetHex(const char *start, const char *end, |
1068 | 0 | uint64_t *const value) { |
1069 | 0 | uint64_t hex = 0; |
1070 | 0 | const char *p; |
1071 | 0 | for (p = start; p < end; ++p) { |
1072 | 0 | int ch = *p; |
1073 | 0 | if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') || |
1074 | 0 | (ch >= 'a' && ch <= 'f')) { |
1075 | 0 | hex = (hex << 4) | |
1076 | 0 | static_cast<uint64_t>(ch < 'A' ? ch - '0' : (ch & 0xF) + 9); |
1077 | 0 | } else { // Encountered the first non-hex character. |
1078 | 0 | break; |
1079 | 0 | } |
1080 | 0 | } |
1081 | 0 | SAFE_ASSERT(p <= end); |
1082 | 0 | *value = hex; |
1083 | 0 | return p; |
1084 | 0 | } |
1085 | | |
1086 | | static const char *GetHex(const char *start, const char *end, |
1087 | 0 | const void **const addr) { |
1088 | 0 | uint64_t hex = 0; |
1089 | 0 | const char *p = GetHex(start, end, &hex); |
1090 | 0 | *addr = reinterpret_cast<void *>(hex); |
1091 | 0 | return p; |
1092 | 0 | } |
1093 | | |
1094 | | // Normally we are only interested in "r?x" maps. |
1095 | | // On the PowerPC, function pointers point to descriptors in the .opd |
1096 | | // section. The descriptors themselves are not executable code, so |
1097 | | // we need to relax the check below to "r??". |
1098 | 0 | static bool ShouldUseMapping(const char *const flags) { |
1099 | 0 | return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x'); |
1100 | 0 | } |
1101 | | |
1102 | | // Read /proc/self/maps and run "callback" for each mmapped file found. If |
1103 | | // "callback" returns false, stop scanning and return true. Else continue |
1104 | | // scanning /proc/self/maps. Return true if no parse error is found. |
1105 | | static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap( |
1106 | | bool (*callback)(const char *filename, const void *const start_addr, |
1107 | | const void *const end_addr, uint64_t offset, void *arg), |
1108 | 0 | void *arg, void *tmp_buf, size_t tmp_buf_size) { |
1109 | | // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter |
1110 | | // requires kernel to stop all threads, and is significantly slower when there |
1111 | | // are 1000s of threads. |
1112 | 0 | char maps_path[80]; |
1113 | 0 | snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid()); |
1114 | |
|
1115 | 0 | int maps_fd; |
1116 | 0 | NO_INTR(maps_fd = OpenReadOnlyWithHighFD(maps_path)); |
1117 | 0 | FileDescriptor wrapped_maps_fd(maps_fd); |
1118 | 0 | if (wrapped_maps_fd.get() < 0) { |
1119 | 0 | ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno); |
1120 | 0 | return false; |
1121 | 0 | } |
1122 | | |
1123 | | // Iterate over maps and look for the map containing the pc. Then |
1124 | | // look into the symbol tables inside. |
1125 | 0 | LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf), |
1126 | 0 | tmp_buf_size); |
1127 | 0 | while (true) { |
1128 | 0 | const char *cursor; |
1129 | 0 | const char *eol; |
1130 | 0 | if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line. |
1131 | 0 | break; |
1132 | 0 | } |
1133 | | |
1134 | 0 | const char *line = cursor; |
1135 | 0 | const void *start_address; |
1136 | | // Start parsing line in /proc/self/maps. Here is an example: |
1137 | | // |
1138 | | // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat |
1139 | | // |
1140 | | // We want start address (08048000), end address (0804c000), flags |
1141 | | // (r-xp) and file name (/bin/cat). |
1142 | | |
1143 | | // Read start address. |
1144 | 0 | cursor = GetHex(cursor, eol, &start_address); |
1145 | 0 | if (cursor == eol || *cursor != '-') { |
1146 | 0 | ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); |
1147 | 0 | return false; |
1148 | 0 | } |
1149 | 0 | ++cursor; // Skip '-'. |
1150 | | |
1151 | | // Read end address. |
1152 | 0 | const void *end_address; |
1153 | 0 | cursor = GetHex(cursor, eol, &end_address); |
1154 | 0 | if (cursor == eol || *cursor != ' ') { |
1155 | 0 | ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); |
1156 | 0 | return false; |
1157 | 0 | } |
1158 | 0 | ++cursor; // Skip ' '. |
1159 | | |
1160 | | // Read flags. Skip flags until we encounter a space or eol. |
1161 | 0 | const char *const flags_start = cursor; |
1162 | 0 | while (cursor < eol && *cursor != ' ') { |
1163 | 0 | ++cursor; |
1164 | 0 | } |
1165 | | // We expect at least four letters for flags (ex. "r-xp"). |
1166 | 0 | if (cursor == eol || cursor < flags_start + 4) { |
1167 | 0 | ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line); |
1168 | 0 | return false; |
1169 | 0 | } |
1170 | | |
1171 | | // Check flags. |
1172 | 0 | if (!ShouldUseMapping(flags_start)) { |
1173 | 0 | continue; // We skip this map. |
1174 | 0 | } |
1175 | 0 | ++cursor; // Skip ' '. |
1176 | | |
1177 | | // Read file offset. |
1178 | 0 | uint64_t offset; |
1179 | 0 | cursor = GetHex(cursor, eol, &offset); |
1180 | 0 | ++cursor; // Skip ' '. |
1181 | | |
1182 | | // Skip to file name. "cursor" now points to dev. We need to skip at least |
1183 | | // two spaces for dev and inode. |
1184 | 0 | int num_spaces = 0; |
1185 | 0 | while (cursor < eol) { |
1186 | 0 | if (*cursor == ' ') { |
1187 | 0 | ++num_spaces; |
1188 | 0 | } else if (num_spaces >= 2) { |
1189 | | // The first non-space character after skipping two spaces |
1190 | | // is the beginning of the file name. |
1191 | 0 | break; |
1192 | 0 | } |
1193 | 0 | ++cursor; |
1194 | 0 | } |
1195 | | |
1196 | | // Check whether this entry corresponds to our hint table for the true |
1197 | | // filename. |
1198 | 0 | bool hinted = |
1199 | 0 | GetFileMappingHint(&start_address, &end_address, &offset, &cursor); |
1200 | 0 | if (!hinted && (cursor == eol || cursor[0] == '[')) { |
1201 | | // not an object file, typically [vdso] or [vsyscall] |
1202 | 0 | continue; |
1203 | 0 | } |
1204 | 0 | if (!callback(cursor, start_address, end_address, offset, arg)) break; |
1205 | 0 | } |
1206 | 0 | return true; |
1207 | 0 | } |
1208 | | |
1209 | | // Find the objfile mapped in address region containing [addr, addr + len). |
1210 | 0 | ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) { |
1211 | 0 | for (int i = 0; i < 2; ++i) { |
1212 | 0 | if (!ok_) return nullptr; |
1213 | | |
1214 | | // Read /proc/self/maps if necessary |
1215 | 0 | if (!addr_map_read_) { |
1216 | 0 | addr_map_read_ = true; |
1217 | 0 | if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) { |
1218 | 0 | ok_ = false; |
1219 | 0 | return nullptr; |
1220 | 0 | } |
1221 | 0 | } |
1222 | | |
1223 | 0 | size_t lo = 0; |
1224 | 0 | size_t hi = addr_map_.Size(); |
1225 | 0 | while (lo < hi) { |
1226 | 0 | size_t mid = (lo + hi) / 2; |
1227 | 0 | if (addr < addr_map_.At(mid)->end_addr) { |
1228 | 0 | hi = mid; |
1229 | 0 | } else { |
1230 | 0 | lo = mid + 1; |
1231 | 0 | } |
1232 | 0 | } |
1233 | 0 | if (lo != addr_map_.Size()) { |
1234 | 0 | ObjFile *obj = addr_map_.At(lo); |
1235 | 0 | SAFE_ASSERT(obj->end_addr > addr); |
1236 | 0 | if (addr >= obj->start_addr && |
1237 | 0 | reinterpret_cast<const char *>(addr) + len <= obj->end_addr) |
1238 | 0 | return obj; |
1239 | 0 | } |
1240 | | |
1241 | | // The address mapping may have changed since it was last read. Retry. |
1242 | 0 | ClearAddrMap(); |
1243 | 0 | } |
1244 | 0 | return nullptr; |
1245 | 0 | } |
1246 | | |
1247 | 0 | void Symbolizer::ClearAddrMap() { |
1248 | 0 | for (size_t i = 0; i != addr_map_.Size(); i++) { |
1249 | 0 | ObjFile *o = addr_map_.At(i); |
1250 | 0 | base_internal::LowLevelAlloc::Free(o->filename); |
1251 | 0 | if (o->fd >= 0) { |
1252 | 0 | close(o->fd); |
1253 | 0 | } |
1254 | 0 | } |
1255 | 0 | addr_map_.Clear(); |
1256 | 0 | addr_map_read_ = false; |
1257 | 0 | } |
1258 | | |
1259 | | // Callback for ReadAddrMap to register objfiles in an in-memory table. |
1260 | | bool Symbolizer::RegisterObjFile(const char *filename, |
1261 | | const void *const start_addr, |
1262 | | const void *const end_addr, uint64_t offset, |
1263 | 0 | void *arg) { |
1264 | 0 | Symbolizer *impl = static_cast<Symbolizer *>(arg); |
1265 | | |
1266 | | // Files are supposed to be added in the increasing address order. Make |
1267 | | // sure that's the case. |
1268 | 0 | size_t addr_map_size = impl->addr_map_.Size(); |
1269 | 0 | if (addr_map_size != 0) { |
1270 | 0 | ObjFile *old = impl->addr_map_.At(addr_map_size - 1); |
1271 | 0 | if (old->end_addr > end_addr) { |
1272 | 0 | ABSL_RAW_LOG(ERROR, |
1273 | 0 | "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR |
1274 | 0 | ": %s", |
1275 | 0 | reinterpret_cast<uintptr_t>(end_addr), filename, |
1276 | 0 | reinterpret_cast<uintptr_t>(old->end_addr), old->filename); |
1277 | 0 | return true; |
1278 | 0 | } else if (old->end_addr == end_addr) { |
1279 | | // The same entry appears twice. This sometimes happens for [vdso]. |
1280 | 0 | if (old->start_addr != start_addr || |
1281 | 0 | strcmp(old->filename, filename) != 0) { |
1282 | 0 | ABSL_RAW_LOG(ERROR, |
1283 | 0 | "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s", |
1284 | 0 | reinterpret_cast<uintptr_t>(end_addr), filename, |
1285 | 0 | reinterpret_cast<uintptr_t>(old->end_addr), old->filename); |
1286 | 0 | } |
1287 | 0 | return true; |
1288 | 0 | } else if (old->end_addr == start_addr && |
1289 | 0 | reinterpret_cast<uintptr_t>(old->start_addr) - old->offset == |
1290 | 0 | reinterpret_cast<uintptr_t>(start_addr) - offset && |
1291 | 0 | strcmp(old->filename, filename) == 0) { |
1292 | | // Two contiguous map entries that span a contiguous region of the file, |
1293 | | // perhaps because some part of the file was mlock()ed. Combine them. |
1294 | 0 | old->end_addr = end_addr; |
1295 | 0 | return true; |
1296 | 0 | } |
1297 | 0 | } |
1298 | 0 | ObjFile *obj = impl->addr_map_.Add(); |
1299 | 0 | obj->filename = impl->CopyString(filename); |
1300 | 0 | obj->start_addr = start_addr; |
1301 | 0 | obj->end_addr = end_addr; |
1302 | 0 | obj->offset = offset; |
1303 | 0 | obj->elf_type = -1; // filled on demand |
1304 | 0 | obj->fd = -1; // opened on demand |
1305 | 0 | return true; |
1306 | 0 | } |
1307 | | |
1308 | | // This function wraps the Demangle function to provide an interface |
1309 | | // where the input symbol is demangled in-place. |
1310 | | // To keep stack consumption low, we would like this function to not |
1311 | | // get inlined. |
1312 | | static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, size_t out_size, |
1313 | | char *tmp_buf, |
1314 | 0 | size_t tmp_buf_size) { |
1315 | 0 | if (Demangle(out, tmp_buf, tmp_buf_size)) { |
1316 | | // Demangling succeeded. Copy to out if the space allows. |
1317 | 0 | size_t len = strlen(tmp_buf); |
1318 | 0 | if (len + 1 <= out_size) { // +1 for '\0'. |
1319 | 0 | SAFE_ASSERT(len < tmp_buf_size); |
1320 | 0 | memmove(out, tmp_buf, len + 1); |
1321 | 0 | } |
1322 | 0 | } |
1323 | 0 | } |
1324 | | |
1325 | 0 | SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) { |
1326 | 0 | uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc); |
1327 | 0 | pc0 >>= 3; // drop the low 3 bits |
1328 | | |
1329 | | // Shuffle bits. |
1330 | 0 | pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18); |
1331 | 0 | return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES]; |
1332 | 0 | } |
1333 | | |
1334 | 0 | void Symbolizer::AgeSymbols(SymbolCacheLine *line) { |
1335 | 0 | for (uint32_t &age : line->age) { |
1336 | 0 | ++age; |
1337 | 0 | } |
1338 | 0 | } |
1339 | | |
1340 | 0 | const char *Symbolizer::FindSymbolInCache(const void *const pc) { |
1341 | 0 | if (pc == nullptr) return nullptr; |
1342 | | |
1343 | 0 | SymbolCacheLine *line = GetCacheLine(pc); |
1344 | 0 | for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { |
1345 | 0 | if (line->pc[i] == pc) { |
1346 | 0 | AgeSymbols(line); |
1347 | 0 | line->age[i] = 0; |
1348 | 0 | return line->name[i]; |
1349 | 0 | } |
1350 | 0 | } |
1351 | 0 | return nullptr; |
1352 | 0 | } |
1353 | | |
1354 | | const char *Symbolizer::InsertSymbolInCache(const void *const pc, |
1355 | 0 | const char *name) { |
1356 | 0 | SAFE_ASSERT(pc != nullptr); |
1357 | | |
1358 | 0 | SymbolCacheLine *line = GetCacheLine(pc); |
1359 | 0 | uint32_t max_age = 0; |
1360 | 0 | size_t oldest_index = 0; |
1361 | 0 | bool found_oldest_index = false; |
1362 | 0 | for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { |
1363 | 0 | if (line->pc[i] == nullptr) { |
1364 | 0 | AgeSymbols(line); |
1365 | 0 | line->pc[i] = pc; |
1366 | 0 | line->name[i] = CopyString(name); |
1367 | 0 | line->age[i] = 0; |
1368 | 0 | return line->name[i]; |
1369 | 0 | } |
1370 | 0 | if (line->age[i] >= max_age) { |
1371 | 0 | max_age = line->age[i]; |
1372 | 0 | oldest_index = i; |
1373 | 0 | found_oldest_index = true; |
1374 | 0 | } |
1375 | 0 | } |
1376 | | |
1377 | 0 | AgeSymbols(line); |
1378 | 0 | ABSL_RAW_CHECK(found_oldest_index, "Corrupt cache"); |
1379 | 0 | base_internal::LowLevelAlloc::Free(line->name[oldest_index]); |
1380 | 0 | line->pc[oldest_index] = pc; |
1381 | 0 | line->name[oldest_index] = CopyString(name); |
1382 | 0 | line->age[oldest_index] = 0; |
1383 | 0 | return line->name[oldest_index]; |
1384 | 0 | } |
1385 | | |
1386 | 0 | static void MaybeOpenFdFromSelfExe(ObjFile *obj) { |
1387 | 0 | if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) { |
1388 | 0 | return; |
1389 | 0 | } |
1390 | 0 | int fd = OpenReadOnlyWithHighFD("/proc/self/exe"); |
1391 | 0 | if (fd == -1) { |
1392 | 0 | return; |
1393 | 0 | } |
1394 | | // Verify that contents of /proc/self/exe matches in-memory image of |
1395 | | // the binary. This can fail if the "deleted" binary is in fact not |
1396 | | // the main executable, or for binaries that have the first PT_LOAD |
1397 | | // segment smaller than 4K. We do it in four steps so that the |
1398 | | // buffer is smaller and we don't consume too much stack space. |
1399 | 0 | const char *mem = reinterpret_cast<const char *>(obj->start_addr); |
1400 | 0 | for (int i = 0; i < 4; ++i) { |
1401 | 0 | char buf[1024]; |
1402 | 0 | ssize_t n = read(fd, buf, sizeof(buf)); |
1403 | 0 | if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) { |
1404 | 0 | close(fd); |
1405 | 0 | return; |
1406 | 0 | } |
1407 | 0 | mem += sizeof(buf); |
1408 | 0 | } |
1409 | 0 | obj->fd = fd; |
1410 | 0 | } |
1411 | | |
1412 | 0 | static bool MaybeInitializeObjFile(ObjFile *obj) { |
1413 | 0 | if (obj->fd < 0) { |
1414 | 0 | obj->fd = OpenReadOnlyWithHighFD(obj->filename); |
1415 | |
|
1416 | 0 | if (obj->fd < 0) { |
1417 | | // Getting /proc/self/exe here means that we were hinted. |
1418 | 0 | if (strcmp(obj->filename, "/proc/self/exe") == 0) { |
1419 | | // /proc/self/exe may be inaccessible (due to setuid, etc.), so try |
1420 | | // accessing the binary via argv0. |
1421 | 0 | if (argv0_value != nullptr) { |
1422 | 0 | obj->fd = OpenReadOnlyWithHighFD(argv0_value); |
1423 | 0 | } |
1424 | 0 | } else { |
1425 | 0 | MaybeOpenFdFromSelfExe(obj); |
1426 | 0 | } |
1427 | 0 | } |
1428 | |
|
1429 | 0 | if (obj->fd < 0) { |
1430 | 0 | ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno); |
1431 | 0 | return false; |
1432 | 0 | } |
1433 | | |
1434 | 0 | char buf[kSmallFileCacheSize]; |
1435 | 0 | CachingFile file(obj->fd, buf, sizeof(buf)); |
1436 | |
|
1437 | 0 | obj->elf_type = FileGetElfType(&file); |
1438 | 0 | if (obj->elf_type < 0) { |
1439 | 0 | ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename, |
1440 | 0 | obj->elf_type); |
1441 | 0 | return false; |
1442 | 0 | } |
1443 | | |
1444 | 0 | if (!file.ReadFromOffsetExact(&obj->elf_header, sizeof(obj->elf_header), |
1445 | 0 | 0)) { |
1446 | 0 | ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename); |
1447 | 0 | return false; |
1448 | 0 | } |
1449 | 0 | const int phnum = obj->elf_header.e_phnum; |
1450 | 0 | const int phentsize = obj->elf_header.e_phentsize; |
1451 | 0 | auto phoff = static_cast<off_t>(obj->elf_header.e_phoff); |
1452 | 0 | size_t num_interesting_load_segments = 0; |
1453 | 0 | for (int j = 0; j < phnum; j++) { |
1454 | 0 | ElfW(Phdr) phdr; |
1455 | 0 | if (!file.ReadFromOffsetExact(&phdr, sizeof(phdr), phoff)) { |
1456 | 0 | ABSL_RAW_LOG(WARNING, "%s: failed to read program header %d", |
1457 | 0 | obj->filename, j); |
1458 | 0 | return false; |
1459 | 0 | } |
1460 | 0 | phoff += phentsize; |
1461 | |
|
1462 | | #ifdef ABSL_INTERNAL_HAVE_PPC64_ELFV1_ABI |
1463 | | // On the PowerPC 64-bit ELFv1 ABI, function pointers actually point to |
1464 | | // function descriptors. These descriptors are stored in an .opd section, |
1465 | | // which is mapped read-only. We thus need to look at all readable |
1466 | | // segments, not just the executable ones. |
1467 | | constexpr int interesting = PF_R; |
1468 | | #else |
1469 | 0 | constexpr int interesting = PF_X | PF_R; |
1470 | 0 | #endif |
1471 | |
|
1472 | 0 | if (phdr.p_type != PT_LOAD |
1473 | 0 | || (phdr.p_flags & interesting) != interesting) { |
1474 | | // Not a LOAD segment, not executable code, and not a function |
1475 | | // descriptor. |
1476 | 0 | continue; |
1477 | 0 | } |
1478 | 0 | if (num_interesting_load_segments < obj->phdr.size()) { |
1479 | 0 | memcpy(&obj->phdr[num_interesting_load_segments++], &phdr, sizeof(phdr)); |
1480 | 0 | } else { |
1481 | 0 | ABSL_RAW_LOG( |
1482 | 0 | WARNING, "%s: too many interesting LOAD segments: %zu >= %zu", |
1483 | 0 | obj->filename, num_interesting_load_segments, obj->phdr.size()); |
1484 | 0 | break; |
1485 | 0 | } |
1486 | 0 | } |
1487 | 0 | if (num_interesting_load_segments == 0) { |
1488 | | // This object has no interesting LOAD segments. That's unexpected. |
1489 | 0 | ABSL_RAW_LOG(WARNING, "%s: no interesting LOAD segments", obj->filename); |
1490 | 0 | return false; |
1491 | 0 | } |
1492 | 0 | } |
1493 | 0 | return true; |
1494 | 0 | } |
1495 | | |
1496 | | // The implementation of our symbolization routine. If it |
1497 | | // successfully finds the symbol containing "pc" and obtains the |
1498 | | // symbol name, returns pointer to that symbol. Otherwise, returns nullptr. |
1499 | | // If any symbol decorators have been installed via InstallSymbolDecorator(), |
1500 | | // they are called here as well. |
1501 | | // To keep stack consumption low, we would like this function to not |
1502 | | // get inlined. |
1503 | 0 | const char *Symbolizer::GetUncachedSymbol(const void *pc) { |
1504 | 0 | ObjFile *const obj = FindObjFile(pc, 1); |
1505 | 0 | ptrdiff_t relocation = 0; |
1506 | 0 | int fd = -1; |
1507 | 0 | if (obj != nullptr) { |
1508 | 0 | if (MaybeInitializeObjFile(obj)) { |
1509 | 0 | const size_t start_addr = reinterpret_cast<size_t>(obj->start_addr); |
1510 | 0 | if (obj->elf_type == ET_DYN && start_addr >= obj->offset) { |
1511 | | // This object was relocated. |
1512 | | // |
1513 | | // For obj->offset > 0, adjust the relocation since a mapping at offset |
1514 | | // X in the file will have a start address of [true relocation]+X. |
1515 | 0 | relocation = static_cast<ptrdiff_t>(start_addr - obj->offset); |
1516 | | |
1517 | | // Note: some binaries have multiple LOAD segments that can contain |
1518 | | // function pointers. We must find the right one. |
1519 | 0 | ElfW(Phdr) *phdr = nullptr; |
1520 | 0 | for (size_t j = 0; j < obj->phdr.size(); j++) { |
1521 | 0 | ElfW(Phdr) &p = obj->phdr[j]; |
1522 | 0 | if (p.p_type != PT_LOAD) { |
1523 | | // We only expect PT_LOADs. This must be PT_NULL that we didn't |
1524 | | // write over (i.e. we exhausted all interesting PT_LOADs). |
1525 | 0 | ABSL_RAW_CHECK(p.p_type == PT_NULL, "unexpected p_type"); |
1526 | 0 | break; |
1527 | 0 | } |
1528 | 0 | if (pc < reinterpret_cast<void *>(start_addr + p.p_vaddr + p.p_memsz)) { |
1529 | 0 | phdr = &p; |
1530 | 0 | break; |
1531 | 0 | } |
1532 | 0 | } |
1533 | 0 | if (phdr == nullptr) { |
1534 | | // That's unexpected. Hope for the best. |
1535 | 0 | ABSL_RAW_LOG( |
1536 | 0 | WARNING, |
1537 | 0 | "%s: unable to find LOAD segment for pc: %p, start_addr: %zx", |
1538 | 0 | obj->filename, pc, start_addr); |
1539 | 0 | } else { |
1540 | | // Adjust relocation in case phdr.p_vaddr != 0. |
1541 | | // This happens for binaries linked with `lld --rosegment`, and for |
1542 | | // binaries linked with BFD `ld -z separate-code`. |
1543 | 0 | relocation -= phdr->p_vaddr - phdr->p_offset; |
1544 | 0 | } |
1545 | 0 | } |
1546 | | |
1547 | 0 | fd = obj->fd; |
1548 | 0 | if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_, |
1549 | 0 | sizeof(symbol_buf_), tmp_buf_, |
1550 | 0 | sizeof(tmp_buf_)) == SYMBOL_FOUND) { |
1551 | | // Only try to demangle the symbol name if it fit into symbol_buf_. |
1552 | 0 | DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_, |
1553 | 0 | sizeof(tmp_buf_)); |
1554 | 0 | } |
1555 | 0 | } |
1556 | 0 | } else { |
1557 | 0 | #if ABSL_HAVE_VDSO_SUPPORT |
1558 | 0 | VDSOSupport vdso; |
1559 | 0 | if (vdso.IsPresent()) { |
1560 | 0 | VDSOSupport::SymbolInfo symbol_info; |
1561 | 0 | if (vdso.LookupSymbolByAddress(pc, &symbol_info)) { |
1562 | | // All VDSO symbols are known to be short. |
1563 | 0 | size_t len = strlen(symbol_info.name); |
1564 | 0 | ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_), |
1565 | 0 | "VDSO symbol unexpectedly long"); |
1566 | 0 | memcpy(symbol_buf_, symbol_info.name, len + 1); |
1567 | 0 | } |
1568 | 0 | } |
1569 | 0 | #endif |
1570 | 0 | } |
1571 | | |
1572 | 0 | if (g_decorators_mu.TryLock()) { |
1573 | 0 | if (g_num_decorators > 0) { |
1574 | 0 | SymbolDecoratorArgs decorator_args = { |
1575 | 0 | pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_), |
1576 | 0 | tmp_buf_, sizeof(tmp_buf_), nullptr}; |
1577 | 0 | for (int i = 0; i < g_num_decorators; ++i) { |
1578 | 0 | decorator_args.arg = g_decorators[i].arg; |
1579 | 0 | g_decorators[i].fn(&decorator_args); |
1580 | 0 | } |
1581 | 0 | } |
1582 | 0 | g_decorators_mu.Unlock(); |
1583 | 0 | } |
1584 | 0 | if (symbol_buf_[0] == '\0') { |
1585 | 0 | return nullptr; |
1586 | 0 | } |
1587 | 0 | symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia. |
1588 | 0 | return InsertSymbolInCache(pc, symbol_buf_); |
1589 | 0 | } |
1590 | | |
1591 | 0 | const char *Symbolizer::GetSymbol(const void *pc) { |
1592 | 0 | const char *entry = FindSymbolInCache(pc); |
1593 | 0 | if (entry != nullptr) { |
1594 | 0 | return entry; |
1595 | 0 | } |
1596 | 0 | symbol_buf_[0] = '\0'; |
1597 | |
|
1598 | | #ifdef __hppa__ |
1599 | | { |
1600 | | // In some contexts (e.g., return addresses), PA-RISC uses the lowest two |
1601 | | // bits of the address to indicate the privilege level. Clear those bits |
1602 | | // before trying to symbolize. |
1603 | | const auto pc_bits = reinterpret_cast<uintptr_t>(pc); |
1604 | | const auto address = pc_bits & ~0x3; |
1605 | | entry = GetUncachedSymbol(reinterpret_cast<const void *>(address)); |
1606 | | if (entry != nullptr) { |
1607 | | return entry; |
1608 | | } |
1609 | | |
1610 | | // In some contexts, PA-RISC also uses bit 1 of the address to indicate that |
1611 | | // this is a cross-DSO function pointer. Such function pointers actually |
1612 | | // point to a procedure label, a struct whose first 32-bit (pointer) element |
1613 | | // actually points to the function text. With no symbol found for this |
1614 | | // address so far, try interpreting it as a cross-DSO function pointer and |
1615 | | // see how that goes. |
1616 | | if (pc_bits & 0x2) { |
1617 | | return GetUncachedSymbol(*reinterpret_cast<const void *const *>(address)); |
1618 | | } |
1619 | | |
1620 | | return nullptr; |
1621 | | } |
1622 | | #else |
1623 | 0 | return GetUncachedSymbol(pc); |
1624 | 0 | #endif |
1625 | 0 | } |
1626 | | |
1627 | 0 | bool RemoveAllSymbolDecorators(void) { |
1628 | 0 | if (!g_decorators_mu.TryLock()) { |
1629 | | // Someone else is using decorators. Get out. |
1630 | 0 | return false; |
1631 | 0 | } |
1632 | 0 | g_num_decorators = 0; |
1633 | 0 | g_decorators_mu.Unlock(); |
1634 | 0 | return true; |
1635 | 0 | } |
1636 | | |
1637 | 0 | bool RemoveSymbolDecorator(int ticket) { |
1638 | 0 | if (!g_decorators_mu.TryLock()) { |
1639 | | // Someone else is using decorators. Get out. |
1640 | 0 | return false; |
1641 | 0 | } |
1642 | 0 | for (int i = 0; i < g_num_decorators; ++i) { |
1643 | 0 | if (g_decorators[i].ticket == ticket) { |
1644 | 0 | while (i < g_num_decorators - 1) { |
1645 | 0 | g_decorators[i] = g_decorators[i + 1]; |
1646 | 0 | ++i; |
1647 | 0 | } |
1648 | 0 | g_num_decorators = i; |
1649 | 0 | break; |
1650 | 0 | } |
1651 | 0 | } |
1652 | 0 | g_decorators_mu.Unlock(); |
1653 | 0 | return true; // Decorator is known to be removed. |
1654 | 0 | } |
1655 | | |
1656 | 0 | int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) { |
1657 | 0 | static int ticket = 0; |
1658 | |
|
1659 | 0 | if (!g_decorators_mu.TryLock()) { |
1660 | | // Someone else is using decorators. Get out. |
1661 | 0 | return -2; |
1662 | 0 | } |
1663 | 0 | int ret = ticket; |
1664 | 0 | if (g_num_decorators >= kMaxDecorators) { |
1665 | 0 | ret = -1; |
1666 | 0 | } else { |
1667 | 0 | g_decorators[g_num_decorators] = {decorator, arg, ticket++}; |
1668 | 0 | ++g_num_decorators; |
1669 | 0 | } |
1670 | 0 | g_decorators_mu.Unlock(); |
1671 | 0 | return ret; |
1672 | 0 | } |
1673 | | |
1674 | | bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset, |
1675 | 0 | const char *filename) { |
1676 | 0 | SAFE_ASSERT(start <= end); |
1677 | 0 | SAFE_ASSERT(filename != nullptr); |
1678 | | |
1679 | 0 | InitSigSafeArena(); |
1680 | |
|
1681 | 0 | if (!g_file_mapping_mu.TryLock()) { |
1682 | 0 | return false; |
1683 | 0 | } |
1684 | | |
1685 | 0 | bool ret = true; |
1686 | 0 | if (g_num_file_mapping_hints >= kMaxFileMappingHints) { |
1687 | 0 | ret = false; |
1688 | 0 | } else { |
1689 | | // TODO(ckennelly): Move this into a string copy routine. |
1690 | 0 | size_t len = strlen(filename); |
1691 | 0 | char *dst = static_cast<char *>( |
1692 | 0 | base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); |
1693 | 0 | ABSL_RAW_CHECK(dst != nullptr, "out of memory"); |
1694 | 0 | memcpy(dst, filename, len + 1); |
1695 | |
|
1696 | 0 | auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++]; |
1697 | 0 | hint.start = start; |
1698 | 0 | hint.end = end; |
1699 | 0 | hint.offset = offset; |
1700 | 0 | hint.filename = dst; |
1701 | 0 | } |
1702 | | |
1703 | 0 | g_file_mapping_mu.Unlock(); |
1704 | 0 | return ret; |
1705 | 0 | } |
1706 | | |
1707 | | bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset, |
1708 | 0 | const char **filename) { |
1709 | 0 | if (!g_file_mapping_mu.TryLock()) { |
1710 | 0 | return false; |
1711 | 0 | } |
1712 | 0 | bool found = false; |
1713 | 0 | for (int i = 0; i < g_num_file_mapping_hints; i++) { |
1714 | 0 | if (g_file_mapping_hints[i].start <= *start && |
1715 | 0 | *end <= g_file_mapping_hints[i].end) { |
1716 | | // We assume that the start_address for the mapping is the base |
1717 | | // address of the ELF section, but when [start_address,end_address) is |
1718 | | // not strictly equal to [hint.start, hint.end), that assumption is |
1719 | | // invalid. |
1720 | | // |
1721 | | // This uses the hint's start address (even though hint.start is not |
1722 | | // necessarily equal to start_address) to ensure the correct |
1723 | | // relocation is computed later. |
1724 | 0 | *start = g_file_mapping_hints[i].start; |
1725 | 0 | *end = g_file_mapping_hints[i].end; |
1726 | 0 | *offset = g_file_mapping_hints[i].offset; |
1727 | 0 | *filename = g_file_mapping_hints[i].filename; |
1728 | 0 | found = true; |
1729 | 0 | break; |
1730 | 0 | } |
1731 | 0 | } |
1732 | 0 | g_file_mapping_mu.Unlock(); |
1733 | 0 | return found; |
1734 | 0 | } |
1735 | | |
1736 | | } // namespace debugging_internal |
1737 | | |
1738 | 0 | bool Symbolize(const void *pc, char *out, int out_size) { |
1739 | | // Symbolization is very slow under tsan. |
1740 | 0 | ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); |
1741 | 0 | SAFE_ASSERT(out_size >= 0); |
1742 | 0 | debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer(); |
1743 | 0 | const char *name = s->GetSymbol(pc); |
1744 | 0 | bool ok = false; |
1745 | 0 | if (name != nullptr && out_size > 0) { |
1746 | 0 | strncpy(out, name, static_cast<size_t>(out_size)); |
1747 | 0 | ok = true; |
1748 | 0 | if (out[static_cast<size_t>(out_size) - 1] != '\0') { |
1749 | | // strncpy() does not '\0' terminate when it truncates. Do so, with |
1750 | | // trailing ellipsis. |
1751 | 0 | static constexpr char kEllipsis[] = "..."; |
1752 | 0 | size_t ellipsis_size = |
1753 | 0 | std::min(strlen(kEllipsis), static_cast<size_t>(out_size) - 1); |
1754 | 0 | memcpy(out + static_cast<size_t>(out_size) - ellipsis_size - 1, kEllipsis, |
1755 | 0 | ellipsis_size); |
1756 | 0 | out[static_cast<size_t>(out_size) - 1] = '\0'; |
1757 | 0 | } |
1758 | 0 | } |
1759 | 0 | debugging_internal::FreeSymbolizer(s); |
1760 | 0 | ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); |
1761 | 0 | return ok; |
1762 | 0 | } |
1763 | | |
1764 | | ABSL_NAMESPACE_END |
1765 | | } // namespace absl |
1766 | | |
1767 | | extern "C" bool AbslInternalGetFileMappingHint(const void **start, |
1768 | | const void **end, uint64_t *offset, |
1769 | 0 | const char **filename) { |
1770 | 0 | return absl::debugging_internal::GetFileMappingHint(start, end, offset, |
1771 | 0 | filename); |
1772 | 0 | } |
1773 | | |
1774 | | #undef ABSL_INTERNAL_HAVE_PPC64_ELFV1_ABI |