/src/abseil-cpp/absl/container/fixed_array.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2018 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | // |
15 | | // ----------------------------------------------------------------------------- |
16 | | // File: fixed_array.h |
17 | | // ----------------------------------------------------------------------------- |
18 | | // |
19 | | // A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
20 | | // the array can be determined at run-time. It is a good replacement for |
21 | | // non-standard and deprecated uses of `alloca()` and variable length arrays |
22 | | // within the GCC extension. (See |
23 | | // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
24 | | // |
25 | | // `FixedArray` allocates small arrays inline, keeping performance fast by |
26 | | // avoiding heap operations. It also helps reduce the chances of |
27 | | // accidentally overflowing your stack if large input is passed to |
28 | | // your function. |
29 | | |
30 | | #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ |
31 | | #define ABSL_CONTAINER_FIXED_ARRAY_H_ |
32 | | |
33 | | #include <algorithm> |
34 | | #include <cassert> |
35 | | #include <cstddef> |
36 | | #include <initializer_list> |
37 | | #include <iterator> |
38 | | #include <limits> |
39 | | #include <memory> |
40 | | #include <new> |
41 | | #include <type_traits> |
42 | | |
43 | | #include "absl/algorithm/algorithm.h" |
44 | | #include "absl/base/attributes.h" |
45 | | #include "absl/base/config.h" |
46 | | #include "absl/base/dynamic_annotations.h" |
47 | | #include "absl/base/internal/iterator_traits.h" |
48 | | #include "absl/base/internal/throw_delegate.h" |
49 | | #include "absl/base/macros.h" |
50 | | #include "absl/base/optimization.h" |
51 | | #include "absl/base/port.h" |
52 | | #include "absl/container/internal/compressed_tuple.h" |
53 | | #include "absl/hash/internal/weakly_mixed_integer.h" |
54 | | #include "absl/memory/memory.h" |
55 | | |
56 | | namespace absl { |
57 | | ABSL_NAMESPACE_BEGIN |
58 | | |
59 | | constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
60 | | |
61 | | // ----------------------------------------------------------------------------- |
62 | | // FixedArray |
63 | | // ----------------------------------------------------------------------------- |
64 | | // |
65 | | // A `FixedArray` provides a run-time fixed-size array, allocating a small array |
66 | | // inline for efficiency. |
67 | | // |
68 | | // Most users should not specify the `N` template parameter and let `FixedArray` |
69 | | // automatically determine the number of elements to store inline based on |
70 | | // `sizeof(T)`. If `N` is specified, the `FixedArray` implementation will use |
71 | | // inline storage for arrays with a length <= `N`. |
72 | | // |
73 | | // Note that a `FixedArray` constructed with a `size_type` argument will |
74 | | // default-initialize its values by leaving trivially constructible types |
75 | | // uninitialized (e.g. int, int[4], double), and others default-constructed. |
76 | | // This matches the behavior of c-style arrays and `std::array`, but not |
77 | | // `std::vector`. |
78 | | template <typename T, size_t N = kFixedArrayUseDefault, |
79 | | typename A = std::allocator<T>> |
80 | | class ABSL_ATTRIBUTE_WARN_UNUSED FixedArray { |
81 | | static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, |
82 | | "Arrays with unknown bounds cannot be used with FixedArray."); |
83 | | |
84 | | static constexpr size_t kInlineBytesDefault = 256; |
85 | | |
86 | | using AllocatorTraits = std::allocator_traits<A>; |
87 | | // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
88 | | // but this seems to be mostly pedantic. |
89 | | template <typename Iterator> |
90 | | using EnableIfForwardIterator = std::enable_if_t< |
91 | | base_internal::IsAtLeastForwardIterator<Iterator>::value>; |
92 | | static constexpr bool NoexceptCopyable() { |
93 | | return std::is_nothrow_copy_constructible<StorageElement>::value && |
94 | | absl::allocator_is_nothrow<allocator_type>::value; |
95 | | } |
96 | | static constexpr bool NoexceptMovable() { |
97 | | return std::is_nothrow_move_constructible<StorageElement>::value && |
98 | | absl::allocator_is_nothrow<allocator_type>::value; |
99 | | } |
100 | 0 | static constexpr bool DefaultConstructorIsNonTrivial() { |
101 | 0 | return !absl::is_trivially_default_constructible<StorageElement>::value; |
102 | 0 | } |
103 | | |
104 | | public: |
105 | | using allocator_type = typename AllocatorTraits::allocator_type; |
106 | | using value_type = typename AllocatorTraits::value_type; |
107 | | using pointer = typename AllocatorTraits::pointer; |
108 | | using const_pointer = typename AllocatorTraits::const_pointer; |
109 | | using reference = value_type&; |
110 | | using const_reference = const value_type&; |
111 | | using size_type = typename AllocatorTraits::size_type; |
112 | | using difference_type = typename AllocatorTraits::difference_type; |
113 | | using iterator = pointer; |
114 | | using const_iterator = const_pointer; |
115 | | using reverse_iterator = std::reverse_iterator<iterator>; |
116 | | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
117 | | |
118 | | static constexpr size_type inline_elements = |
119 | | (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) |
120 | | : static_cast<size_type>(N)); |
121 | | |
122 | | FixedArray(const FixedArray& other) noexcept(NoexceptCopyable()) |
123 | | : FixedArray(other, |
124 | | AllocatorTraits::select_on_container_copy_construction( |
125 | | other.storage_.alloc())) {} |
126 | | |
127 | | FixedArray(const FixedArray& other, |
128 | | const allocator_type& a) noexcept(NoexceptCopyable()) |
129 | | : FixedArray(other.begin(), other.end(), a) {} |
130 | | |
131 | | FixedArray(FixedArray&& other) noexcept(NoexceptMovable()) |
132 | | : FixedArray(std::move(other), other.storage_.alloc()) {} |
133 | | |
134 | | FixedArray(FixedArray&& other, |
135 | | const allocator_type& a) noexcept(NoexceptMovable()) |
136 | | : FixedArray(std::make_move_iterator(other.begin()), |
137 | | std::make_move_iterator(other.end()), a) {} |
138 | | |
139 | | // Creates an array object that can store `n` elements. |
140 | | // Note that trivially constructible elements will be uninitialized. |
141 | | explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) |
142 | 0 | : storage_(n, a) { |
143 | 0 | if (DefaultConstructorIsNonTrivial()) { |
144 | 0 | memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
145 | 0 | storage_.end()); |
146 | 0 | } |
147 | 0 | } |
148 | | |
149 | | // Creates an array initialized with `n` copies of `val`. |
150 | | FixedArray(size_type n, const value_type& val, |
151 | | const allocator_type& a = allocator_type()) |
152 | | : storage_(n, a) { |
153 | | memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
154 | | storage_.end(), val); |
155 | | } |
156 | | |
157 | | // Creates an array initialized with the size and contents of `init_list`. |
158 | | FixedArray(std::initializer_list<value_type> init_list, |
159 | | const allocator_type& a = allocator_type()) |
160 | | : FixedArray(init_list.begin(), init_list.end(), a) {} |
161 | | |
162 | | // Creates an array initialized with the elements from the input |
163 | | // range. The array's size will always be `std::distance(first, last)`. |
164 | | // REQUIRES: Iterator must be a forward_iterator or better. |
165 | | template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> |
166 | | FixedArray(Iterator first, Iterator last, |
167 | | const allocator_type& a = allocator_type()) |
168 | | : storage_(std::distance(first, last), a) { |
169 | | memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last); |
170 | | } |
171 | | |
172 | 0 | ~FixedArray() noexcept { |
173 | 0 | for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { |
174 | 0 | AllocatorTraits::destroy(storage_.alloc(), cur); |
175 | 0 | } |
176 | 0 | } |
177 | | |
178 | | // Assignments are deleted because they break the invariant that the size of a |
179 | | // `FixedArray` never changes. |
180 | | void operator=(FixedArray&&) = delete; |
181 | | void operator=(const FixedArray&) = delete; |
182 | | |
183 | | // FixedArray::size() |
184 | | // |
185 | | // Returns the length of the fixed array. |
186 | 0 | size_type size() const { return storage_.size(); } |
187 | | |
188 | | // FixedArray::max_size() |
189 | | // |
190 | | // Returns the largest possible value of `std::distance(begin(), end())` for a |
191 | | // `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
192 | | // over the number of bytes taken by T. |
193 | | constexpr size_type max_size() const { |
194 | | return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); |
195 | | } |
196 | | |
197 | | // FixedArray::empty() |
198 | | // |
199 | | // Returns whether or not the fixed array is empty. |
200 | | bool empty() const { return size() == 0; } |
201 | | |
202 | | // FixedArray::memsize() |
203 | | // |
204 | | // Returns the memory size of the fixed array in bytes. |
205 | | size_t memsize() const { return size() * sizeof(value_type); } |
206 | | |
207 | | // FixedArray::data() |
208 | | // |
209 | | // Returns a const T* pointer to elements of the `FixedArray`. This pointer |
210 | | // can be used to access (but not modify) the contained elements. |
211 | | const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
212 | | return AsValueType(storage_.begin()); |
213 | | } |
214 | | |
215 | | // Overload of FixedArray::data() to return a T* pointer to elements of the |
216 | | // fixed array. This pointer can be used to access and modify the contained |
217 | | // elements. |
218 | 0 | pointer data() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
219 | 0 | return AsValueType(storage_.begin()); |
220 | 0 | } |
221 | | |
222 | | // FixedArray::operator[] |
223 | | // |
224 | | // Returns a reference the ith element of the fixed array. |
225 | | // REQUIRES: 0 <= i < size() |
226 | 0 | reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
227 | 0 | ABSL_HARDENING_ASSERT(i < size()); |
228 | 0 | return data()[i]; |
229 | 0 | } |
230 | | |
231 | | // Overload of FixedArray::operator()[] to return a const reference to the |
232 | | // ith element of the fixed array. |
233 | | // REQUIRES: 0 <= i < size() |
234 | | const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
235 | | ABSL_HARDENING_ASSERT(i < size()); |
236 | | return data()[i]; |
237 | | } |
238 | | |
239 | | // FixedArray::at |
240 | | // |
241 | | // Bounds-checked access. Returns a reference to the ith element of the fixed |
242 | | // array, or throws std::out_of_range |
243 | | reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
244 | | if (ABSL_PREDICT_FALSE(i >= size())) { |
245 | | base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
246 | | } |
247 | | return data()[i]; |
248 | | } |
249 | | |
250 | | // Overload of FixedArray::at() to return a const reference to the ith element |
251 | | // of the fixed array. |
252 | | const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
253 | | if (ABSL_PREDICT_FALSE(i >= size())) { |
254 | | base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
255 | | } |
256 | | return data()[i]; |
257 | | } |
258 | | |
259 | | // FixedArray::front() |
260 | | // |
261 | | // Returns a reference to the first element of the fixed array. |
262 | | reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
263 | | ABSL_HARDENING_ASSERT(!empty()); |
264 | | return data()[0]; |
265 | | } |
266 | | |
267 | | // Overload of FixedArray::front() to return a reference to the first element |
268 | | // of a fixed array of const values. |
269 | | const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
270 | | ABSL_HARDENING_ASSERT(!empty()); |
271 | | return data()[0]; |
272 | | } |
273 | | |
274 | | // FixedArray::back() |
275 | | // |
276 | | // Returns a reference to the last element of the fixed array. |
277 | | reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
278 | | ABSL_HARDENING_ASSERT(!empty()); |
279 | | return data()[size() - 1]; |
280 | | } |
281 | | |
282 | | // Overload of FixedArray::back() to return a reference to the last element |
283 | | // of a fixed array of const values. |
284 | | const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
285 | | ABSL_HARDENING_ASSERT(!empty()); |
286 | | return data()[size() - 1]; |
287 | | } |
288 | | |
289 | | // FixedArray::begin() |
290 | | // |
291 | | // Returns an iterator to the beginning of the fixed array. |
292 | | iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } |
293 | | |
294 | | // Overload of FixedArray::begin() to return a const iterator to the |
295 | | // beginning of the fixed array. |
296 | | const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } |
297 | | |
298 | | // FixedArray::cbegin() |
299 | | // |
300 | | // Returns a const iterator to the beginning of the fixed array. |
301 | | const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
302 | | return begin(); |
303 | | } |
304 | | |
305 | | // FixedArray::end() |
306 | | // |
307 | | // Returns an iterator to the end of the fixed array. |
308 | | iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); } |
309 | | |
310 | | // Overload of FixedArray::end() to return a const iterator to the end of the |
311 | | // fixed array. |
312 | | const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
313 | | return data() + size(); |
314 | | } |
315 | | |
316 | | // FixedArray::cend() |
317 | | // |
318 | | // Returns a const iterator to the end of the fixed array. |
319 | | const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } |
320 | | |
321 | | // FixedArray::rbegin() |
322 | | // |
323 | | // Returns a reverse iterator from the end of the fixed array. |
324 | | reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
325 | | return reverse_iterator(end()); |
326 | | } |
327 | | |
328 | | // Overload of FixedArray::rbegin() to return a const reverse iterator from |
329 | | // the end of the fixed array. |
330 | | const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
331 | | return const_reverse_iterator(end()); |
332 | | } |
333 | | |
334 | | // FixedArray::crbegin() |
335 | | // |
336 | | // Returns a const reverse iterator from the end of the fixed array. |
337 | | const_reverse_iterator crbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
338 | | return rbegin(); |
339 | | } |
340 | | |
341 | | // FixedArray::rend() |
342 | | // |
343 | | // Returns a reverse iterator from the beginning of the fixed array. |
344 | | reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
345 | | return reverse_iterator(begin()); |
346 | | } |
347 | | |
348 | | // Overload of FixedArray::rend() for returning a const reverse iterator |
349 | | // from the beginning of the fixed array. |
350 | | const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
351 | | return const_reverse_iterator(begin()); |
352 | | } |
353 | | |
354 | | // FixedArray::crend() |
355 | | // |
356 | | // Returns a reverse iterator from the beginning of the fixed array. |
357 | | const_reverse_iterator crend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
358 | | return rend(); |
359 | | } |
360 | | |
361 | | // FixedArray::fill() |
362 | | // |
363 | | // Assigns the given `value` to all elements in the fixed array. |
364 | | void fill(const value_type& val) { std::fill(begin(), end(), val); } |
365 | | |
366 | | // Relational operators. Equality operators are elementwise using |
367 | | // `operator==`, while order operators order FixedArrays lexicographically. |
368 | | friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
369 | | return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
370 | | } |
371 | | |
372 | | friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
373 | | return !(lhs == rhs); |
374 | | } |
375 | | |
376 | | friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
377 | | return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), |
378 | | rhs.end()); |
379 | | } |
380 | | |
381 | | friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
382 | | return rhs < lhs; |
383 | | } |
384 | | |
385 | | friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
386 | | return !(rhs < lhs); |
387 | | } |
388 | | |
389 | | friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
390 | | return !(lhs < rhs); |
391 | | } |
392 | | |
393 | | template <typename H> |
394 | | friend H AbslHashValue(H h, const FixedArray& v) { |
395 | | return H::combine_contiguous(std::move(h), v.data(), v.size()); |
396 | | } |
397 | | |
398 | | private: |
399 | | // StorageElement |
400 | | // |
401 | | // For FixedArrays with a C-style-array value_type, StorageElement is a POD |
402 | | // wrapper struct called StorageElementWrapper that holds the value_type |
403 | | // instance inside. This is needed for construction and destruction of the |
404 | | // entire array regardless of how many dimensions it has. For all other cases, |
405 | | // StorageElement is just an alias of value_type. |
406 | | // |
407 | | // Maintainer's Note: The simpler solution would be to simply wrap value_type |
408 | | // in a struct whether it's an array or not. That causes some paranoid |
409 | | // diagnostics to misfire, believing that 'data()' returns a pointer to a |
410 | | // single element, rather than the packed array that it really is. |
411 | | // e.g.: |
412 | | // |
413 | | // FixedArray<char> buf(1); |
414 | | // sprintf(buf.data(), "foo"); |
415 | | // |
416 | | // error: call to int __builtin___sprintf_chk(etc...) |
417 | | // will always overflow destination buffer [-Werror] |
418 | | // |
419 | | template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>, |
420 | | size_t InnerN = std::extent<OuterT>::value> |
421 | | struct StorageElementWrapper { |
422 | | InnerT array[InnerN]; |
423 | | }; |
424 | | |
425 | | using StorageElement = |
426 | | absl::conditional_t<std::is_array<value_type>::value, |
427 | | StorageElementWrapper<value_type>, value_type>; |
428 | | |
429 | 0 | static pointer AsValueType(pointer ptr) { return ptr; } |
430 | | static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { |
431 | | return std::addressof(ptr->array); |
432 | | } |
433 | | |
434 | | static_assert(sizeof(StorageElement) == sizeof(value_type), ""); |
435 | | static_assert(alignof(StorageElement) == alignof(value_type), ""); |
436 | | |
437 | | class NonEmptyInlinedStorage { |
438 | | public: |
439 | 0 | StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); } |
440 | | void AnnotateConstruct(size_type n); |
441 | | void AnnotateDestruct(size_type n); |
442 | | |
443 | | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
444 | | void* RedzoneBegin() { return &redzone_begin_; } |
445 | | void* RedzoneEnd() { return &redzone_end_ + 1; } |
446 | | #endif // ABSL_HAVE_ADDRESS_SANITIZER |
447 | | |
448 | | private: |
449 | | ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_); |
450 | | alignas(StorageElement) unsigned char buff_[sizeof( |
451 | | StorageElement[inline_elements])]; |
452 | | ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_); |
453 | | }; |
454 | | |
455 | | class EmptyInlinedStorage { |
456 | | public: |
457 | | StorageElement* data() { return nullptr; } |
458 | | void AnnotateConstruct(size_type) {} |
459 | | void AnnotateDestruct(size_type) {} |
460 | | }; |
461 | | |
462 | | using InlinedStorage = |
463 | | absl::conditional_t<inline_elements == 0, EmptyInlinedStorage, |
464 | | NonEmptyInlinedStorage>; |
465 | | |
466 | | // Storage |
467 | | // |
468 | | // An instance of Storage manages the inline and out-of-line memory for |
469 | | // instances of FixedArray. This guarantees that even when construction of |
470 | | // individual elements fails in the FixedArray constructor body, the |
471 | | // destructor for Storage will still be called and out-of-line memory will be |
472 | | // properly deallocated. |
473 | | // |
474 | | class Storage : public InlinedStorage { |
475 | | public: |
476 | | Storage(size_type n, const allocator_type& a) |
477 | 0 | : size_alloc_(n, a), data_(InitializeData()) {} |
478 | | |
479 | 0 | ~Storage() noexcept { |
480 | 0 | if (UsingInlinedStorage(size())) { |
481 | 0 | InlinedStorage::AnnotateDestruct(size()); |
482 | 0 | } else { |
483 | 0 | AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); |
484 | 0 | } |
485 | 0 | } |
486 | | |
487 | 0 | size_type size() const { return size_alloc_.template get<0>(); } |
488 | 0 | StorageElement* begin() const { return data_; } |
489 | 0 | StorageElement* end() const { return begin() + size(); } |
490 | 0 | allocator_type& alloc() { return size_alloc_.template get<1>(); } |
491 | | const allocator_type& alloc() const { |
492 | | return size_alloc_.template get<1>(); |
493 | | } |
494 | | |
495 | | private: |
496 | 0 | static bool UsingInlinedStorage(size_type n) { |
497 | 0 | return n <= inline_elements; |
498 | 0 | } |
499 | | |
500 | | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
501 | | ABSL_ATTRIBUTE_NOINLINE |
502 | | #endif // ABSL_HAVE_ADDRESS_SANITIZER |
503 | 0 | StorageElement* InitializeData() { |
504 | 0 | if (UsingInlinedStorage(size())) { |
505 | 0 | InlinedStorage::AnnotateConstruct(size()); |
506 | 0 | return InlinedStorage::data(); |
507 | 0 | } else { |
508 | 0 | return reinterpret_cast<StorageElement*>( |
509 | 0 | AllocatorTraits::allocate(alloc(), size())); |
510 | 0 | } |
511 | 0 | } |
512 | | |
513 | | // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s |
514 | | container_internal::CompressedTuple<size_type, allocator_type> size_alloc_; |
515 | | StorageElement* data_; |
516 | | }; |
517 | | |
518 | | Storage storage_; |
519 | | }; |
520 | | |
521 | | template <typename T, size_t N, typename A> |
522 | | void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( |
523 | 0 | typename FixedArray<T, N, A>::size_type n) { |
524 | | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
525 | | if (!n) return; |
526 | | ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), |
527 | | data() + n); |
528 | | ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), |
529 | | RedzoneBegin()); |
530 | | #endif // ABSL_HAVE_ADDRESS_SANITIZER |
531 | 0 | static_cast<void>(n); // Mark used when not in asan mode |
532 | 0 | } |
533 | | |
534 | | template <typename T, size_t N, typename A> |
535 | | void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( |
536 | 0 | typename FixedArray<T, N, A>::size_type n) { |
537 | | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
538 | | if (!n) return; |
539 | | ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, |
540 | | RedzoneEnd()); |
541 | | ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), |
542 | | data()); |
543 | | #endif // ABSL_HAVE_ADDRESS_SANITIZER |
544 | 0 | static_cast<void>(n); // Mark used when not in asan mode |
545 | 0 | } |
546 | | ABSL_NAMESPACE_END |
547 | | } // namespace absl |
548 | | |
549 | | #endif // ABSL_CONTAINER_FIXED_ARRAY_H_ |