Coverage Report

Created: 2025-07-11 06:37

/src/abseil-cpp/absl/container/internal/raw_hash_set.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// An open-addressing
16
// hashtable with quadratic probing.
17
//
18
// This is a low level hashtable on top of which different interfaces can be
19
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
20
//
21
// The table interface is similar to that of std::unordered_set. Notable
22
// differences are that most member functions support heterogeneous keys when
23
// BOTH the hash and eq functions are marked as transparent. They do so by
24
// providing a typedef called `is_transparent`.
25
//
26
// When heterogeneous lookup is enabled, functions that take key_type act as if
27
// they have an overload set like:
28
//
29
//   iterator find(const key_type& key);
30
//   template <class K>
31
//   iterator find(const K& key);
32
//
33
//   size_type erase(const key_type& key);
34
//   template <class K>
35
//   size_type erase(const K& key);
36
//
37
//   std::pair<iterator, iterator> equal_range(const key_type& key);
38
//   template <class K>
39
//   std::pair<iterator, iterator> equal_range(const K& key);
40
//
41
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
42
// exist.
43
//
44
// In addition the pointer to element and iterator stability guarantees are
45
// weaker: all iterators and pointers are invalidated after a new element is
46
// inserted.
47
//
48
// IMPLEMENTATION DETAILS
49
//
50
// # Table Layout
51
//
52
// A raw_hash_set's backing array consists of control bytes followed by slots
53
// that may or may not contain objects.
54
//
55
// The layout of the backing array, for `capacity` slots, is thus, as a
56
// pseudo-struct:
57
//
58
//   struct BackingArray {
59
//     // Sampling handler. This field isn't present when the sampling is
60
//     // disabled or this allocation hasn't been selected for sampling.
61
//     HashtablezInfoHandle infoz_;
62
//     // The number of elements we can insert before growing the capacity.
63
//     size_t growth_left;
64
//     // Control bytes for the "real" slots.
65
//     ctrl_t ctrl[capacity];
66
//     // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
67
//     // stop and serves no other purpose.
68
//     ctrl_t sentinel;
69
//     // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
70
//     // that if a probe sequence picks a value near the end of `ctrl`,
71
//     // `Group` will have valid control bytes to look at.
72
//     ctrl_t clones[kWidth - 1];
73
//     // The actual slot data.
74
//     slot_type slots[capacity];
75
//   };
76
//
77
// The length of this array is computed by `RawHashSetLayout::alloc_size` below.
78
//
79
// Control bytes (`ctrl_t`) are bytes (collected into groups of a
80
// platform-specific size) that define the state of the corresponding slot in
81
// the slot array. Group manipulation is tightly optimized to be as efficient
82
// as possible: SSE and friends on x86, clever bit operations on other arches.
83
//
84
//      Group 1         Group 2        Group 3
85
// +---------------+---------------+---------------+
86
// | | | | | | | | | | | | | | | | | | | | | | | | |
87
// +---------------+---------------+---------------+
88
//
89
// Each control byte is either a special value for empty slots, deleted slots
90
// (sometimes called *tombstones*), and a special end-of-table marker used by
91
// iterators, or, if occupied, seven bits (H2) from the hash of the value in the
92
// corresponding slot.
93
//
94
// Storing control bytes in a separate array also has beneficial cache effects,
95
// since more logical slots will fit into a cache line.
96
//
97
// # Small Object Optimization (SOO)
98
//
99
// When the size/alignment of the value_type and the capacity of the table are
100
// small, we enable small object optimization and store the values inline in
101
// the raw_hash_set object. This optimization allows us to avoid
102
// allocation/deallocation as well as cache/dTLB misses.
103
//
104
// # Hashing
105
//
106
// We compute two separate hashes, `H1` and `H2`, from the hash of an object.
107
// `H1(hash(x))` is an index into `slots`, and essentially the starting point
108
// for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
109
// objects that cannot possibly be the one we are looking for.
110
//
111
// # Table operations.
112
//
113
// The key operations are `insert`, `find`, and `erase`.
114
//
115
// Since `insert` and `erase` are implemented in terms of `find`, we describe
116
// `find` first. To `find` a value `x`, we compute `hash(x)`. From
117
// `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
118
// group of slots in some interesting order.
119
//
120
// We now walk through these indices. At each index, we select the entire group
121
// starting with that index and extract potential candidates: occupied slots
122
// with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
123
// group, we stop and return an error. Each candidate slot `y` is compared with
124
// `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the
125
// next probe index. Tombstones effectively behave like full slots that never
126
// match the value we're looking for.
127
//
128
// The `H2` bits ensure when we compare a slot to an object with `==`, we are
129
// likely to have actually found the object.  That is, the chance is low that
130
// `==` is called and returns `false`.  Thus, when we search for an object, we
131
// are unlikely to call `==` many times.  This likelyhood can be analyzed as
132
// follows (assuming that H2 is a random enough hash function).
133
//
134
// Let's assume that there are `k` "wrong" objects that must be examined in a
135
// probe sequence.  For example, when doing a `find` on an object that is in the
136
// table, `k` is the number of objects between the start of the probe sequence
137
// and the final found object (not including the final found object).  The
138
// expected number of objects with an H2 match is then `k/128`.  Measurements
139
// and analysis indicate that even at high load factors, `k` is less than 32,
140
// meaning that the number of "false positive" comparisons we must perform is
141
// less than 1/8 per `find`.
142
143
// `insert` is implemented in terms of `unchecked_insert`, which inserts a
144
// value presumed to not be in the table (violating this requirement will cause
145
// the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
146
// it, we construct a `probe_seq` once again, and use it to find the first
147
// group with an unoccupied (empty *or* deleted) slot. We place `x` into the
148
// first such slot in the group and mark it as full with `x`'s H2.
149
//
150
// To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
151
// perform a `find` to see if it's already present; if it is, we're done. If
152
// it's not, we may decide the table is getting overcrowded (i.e. the load
153
// factor is greater than 7/8 for big tables; tables smaller than one probing
154
// group use a max load factor of 1); in this case, we allocate a bigger array,
155
// `unchecked_insert` each element of the table into the new array (we know that
156
// no insertion here will insert an already-present value), and discard the old
157
// backing array. At this point, we may `unchecked_insert` the value `x`.
158
//
159
// Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
160
// presents a viable, initialized slot pointee to the caller.
161
//
162
// `erase` is implemented in terms of `erase_at`, which takes an index to a
163
// slot. Given an offset, we simply create a tombstone and destroy its contents.
164
// If we can prove that the slot would not appear in a probe sequence, we can
165
// make the slot as empty, instead. We can prove this by observing that if a
166
// group has any empty slots, it has never been full (assuming we never create
167
// an empty slot in a group with no empties, which this heuristic guarantees we
168
// never do) and find would stop at this group anyways (since it does not probe
169
// beyond groups with empties).
170
//
171
// `erase` is `erase_at` composed with `find`: if we
172
// have a value `x`, we can perform a `find`, and then `erase_at` the resulting
173
// slot.
174
//
175
// To iterate, we simply traverse the array, skipping empty and deleted slots
176
// and stopping when we hit a `kSentinel`.
177
178
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
179
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
180
181
#include <algorithm>
182
#include <cassert>
183
#include <cmath>
184
#include <cstddef>
185
#include <cstdint>
186
#include <cstring>
187
#include <functional>
188
#include <initializer_list>
189
#include <iterator>
190
#include <limits>
191
#include <memory>
192
#include <tuple>
193
#include <type_traits>
194
#include <utility>
195
196
#include "absl/base/attributes.h"
197
#include "absl/base/casts.h"
198
#include "absl/base/config.h"
199
#include "absl/base/internal/endian.h"
200
#include "absl/base/internal/iterator_traits.h"
201
#include "absl/base/internal/raw_logging.h"
202
#include "absl/base/macros.h"
203
#include "absl/base/optimization.h"
204
#include "absl/base/options.h"
205
#include "absl/base/port.h"
206
#include "absl/base/prefetch.h"
207
#include "absl/container/internal/common.h"  // IWYU pragma: export // for node_handle
208
#include "absl/container/internal/common_policy_traits.h"
209
#include "absl/container/internal/compressed_tuple.h"
210
#include "absl/container/internal/container_memory.h"
211
#include "absl/container/internal/hash_function_defaults.h"
212
#include "absl/container/internal/hash_policy_traits.h"
213
#include "absl/container/internal/hashtable_control_bytes.h"
214
#include "absl/container/internal/hashtable_debug_hooks.h"
215
#include "absl/container/internal/hashtablez_sampler.h"
216
#include "absl/functional/function_ref.h"
217
#include "absl/hash/hash.h"
218
#include "absl/hash/internal/weakly_mixed_integer.h"
219
#include "absl/memory/memory.h"
220
#include "absl/meta/type_traits.h"
221
#include "absl/numeric/bits.h"
222
#include "absl/utility/utility.h"
223
224
namespace absl {
225
ABSL_NAMESPACE_BEGIN
226
namespace container_internal {
227
228
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
229
#error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set
230
#elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) ||   \
231
       defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
232
       defined(ABSL_HAVE_MEMORY_SANITIZER)) &&   \
233
    !defined(NDEBUG_SANITIZER)  // If defined, performance is important.
234
// When compiled in sanitizer mode, we add generation integers to the backing
235
// array and iterators. In the backing array, we store the generation between
236
// the control bytes and the slots. When iterators are dereferenced, we assert
237
// that the container has not been mutated in a way that could cause iterator
238
// invalidation since the iterator was initialized.
239
#define ABSL_SWISSTABLE_ENABLE_GENERATIONS
240
#endif
241
242
#ifdef ABSL_SWISSTABLE_ASSERT
243
#error ABSL_SWISSTABLE_ASSERT cannot be directly set
244
#else
245
// We use this macro for assertions that users may see when the table is in an
246
// invalid state that sanitizers may help diagnose.
247
#define ABSL_SWISSTABLE_ASSERT(CONDITION) \
248
71.1M
  assert((CONDITION) && "Try enabling sanitizers.")
249
#endif
250
251
// We use uint8_t so we don't need to worry about padding.
252
using GenerationType = uint8_t;
253
254
// A sentinel value for empty generations. Using 0 makes it easy to constexpr
255
// initialize an array of this value.
256
203k
constexpr GenerationType SentinelEmptyGeneration() { return 0; }
257
258
203k
constexpr GenerationType NextGeneration(GenerationType generation) {
259
203k
  return ++generation == SentinelEmptyGeneration() ? ++generation : generation;
260
203k
}
261
262
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
263
constexpr bool SwisstableGenerationsEnabled() { return true; }
264
constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); }
265
#else
266
0
constexpr bool SwisstableGenerationsEnabled() { return false; }
267
611k
constexpr size_t NumGenerationBytes() { return 0; }
268
#endif
269
270
// Returns true if we should assert that the table is not accessed after it has
271
// been destroyed or during the destruction of the table.
272
0
constexpr bool SwisstableAssertAccessToDestroyedTable() {
273
0
#ifndef NDEBUG
274
0
  return true;
275
0
#endif
276
0
  return SwisstableGenerationsEnabled();
277
0
}
278
279
template <typename AllocType>
280
void SwapAlloc(AllocType& lhs, AllocType& rhs,
281
               std::true_type /* propagate_on_container_swap */) {
282
  using std::swap;
283
  swap(lhs, rhs);
284
}
285
template <typename AllocType>
286
void SwapAlloc([[maybe_unused]] AllocType& lhs, [[maybe_unused]] AllocType& rhs,
287
               std::false_type /* propagate_on_container_swap */) {
288
  assert(lhs == rhs &&
289
         "It's UB to call swap with unequal non-propagating allocators.");
290
}
291
292
template <typename AllocType>
293
void CopyAlloc(AllocType& lhs, AllocType& rhs,
294
               std::true_type /* propagate_alloc */) {
295
  lhs = rhs;
296
}
297
template <typename AllocType>
298
void CopyAlloc(AllocType&, AllocType&, std::false_type /* propagate_alloc */) {}
299
300
// The state for a probe sequence.
301
//
302
// Currently, the sequence is a triangular progression of the form
303
//
304
//   p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
305
//
306
// The use of `Width` ensures that each probe step does not overlap groups;
307
// the sequence effectively outputs the addresses of *groups* (although not
308
// necessarily aligned to any boundary). The `Group` machinery allows us
309
// to check an entire group with minimal branching.
310
//
311
// Wrapping around at `mask + 1` is important, but not for the obvious reason.
312
// As described above, the first few entries of the control byte array
313
// are mirrored at the end of the array, which `Group` will find and use
314
// for selecting candidates. However, when those candidates' slots are
315
// actually inspected, there are no corresponding slots for the cloned bytes,
316
// so we need to make sure we've treated those offsets as "wrapping around".
317
//
318
// It turns out that this probe sequence visits every group exactly once if the
319
// number of groups is a power of two, since (i^2+i)/2 is a bijection in
320
// Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
321
template <size_t Width>
322
class probe_seq {
323
 public:
324
  // Creates a new probe sequence using `hash` as the initial value of the
325
  // sequence and `mask` (usually the capacity of the table) as the mask to
326
  // apply to each value in the progression.
327
  probe_seq(size_t hash, size_t mask) {
328
    ABSL_SWISSTABLE_ASSERT(((mask + 1) & mask) == 0 && "not a mask");
329
    mask_ = mask;
330
    offset_ = hash & mask_;
331
  }
332
333
  // The offset within the table, i.e., the value `p(i)` above.
334
145M
  size_t offset() const { return offset_; }
335
37.1M
  size_t offset(size_t i) const { return (offset_ + i) & mask_; }
336
337
4.26M
  void next() {
338
4.26M
    index_ += Width;
339
4.26M
    offset_ += index_;
340
4.26M
    offset_ &= mask_;
341
4.26M
  }
342
  // 0-based probe index, a multiple of `Width`.
343
8.74M
  size_t index() const { return index_; }
344
345
 private:
346
  size_t mask_;
347
  size_t offset_;
348
  size_t index_ = 0;
349
};
350
351
template <class ContainerKey, class Hash, class Eq>
352
struct RequireUsableKey {
353
  template <class PassedKey, class... Args>
354
  std::pair<
355
      decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
356
      decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
357
                                         std::declval<const PassedKey&>()))>*
358
  operator()(const PassedKey&, const Args&...) const;
359
};
360
361
template <class E, class Policy, class Hash, class Eq, class... Ts>
362
struct IsDecomposable : std::false_type {};
363
364
template <class Policy, class Hash, class Eq, class... Ts>
365
struct IsDecomposable<
366
    absl::void_t<decltype(Policy::apply(
367
        RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
368
        std::declval<Ts>()...))>,
369
    Policy, Hash, Eq, Ts...> : std::true_type {};
370
371
// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
372
template <class T>
373
constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
374
  using std::swap;
375
  return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
376
}
377
template <class T>
378
constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
379
  return false;
380
}
381
382
ABSL_DLL extern ctrl_t kDefaultIterControl;
383
384
// We use these sentinel capacity values in debug mode to indicate different
385
// classes of bugs.
386
enum InvalidCapacity : size_t {
387
  kAboveMaxValidCapacity = ~size_t{} - 100,
388
  kReentrance,
389
  kDestroyed,
390
391
  // These two must be last because we use `>= kMovedFrom` to mean moved-from.
392
  kMovedFrom,
393
  kSelfMovedFrom,
394
};
395
396
// Returns a pointer to a control byte that can be used by default-constructed
397
// iterators. We don't expect this pointer to be dereferenced.
398
0
inline ctrl_t* DefaultIterControl() { return &kDefaultIterControl; }
399
400
// For use in SOO iterators.
401
// TODO(b/289225379): we could potentially get rid of this by adding an is_soo
402
// bit in iterators. This would add branches but reduce cache misses.
403
ABSL_DLL extern const ctrl_t kSooControl[17];
404
405
// Returns a pointer to a full byte followed by a sentinel byte.
406
259k
inline ctrl_t* SooControl() {
407
  // Const must be cast away here; no uses of this function will actually write
408
  // to it because it is only used for SOO iterators.
409
259k
  return const_cast<ctrl_t*>(kSooControl);
410
259k
}
411
// Whether ctrl is from the SooControl array.
412
0
inline bool IsSooControl(const ctrl_t* ctrl) { return ctrl == SooControl(); }
413
414
// Returns a pointer to a generation to use for an empty hashtable.
415
GenerationType* EmptyGeneration();
416
417
// Returns whether `generation` is a generation for an empty hashtable that
418
// could be returned by EmptyGeneration().
419
0
inline bool IsEmptyGeneration(const GenerationType* generation) {
420
0
  return *generation == SentinelEmptyGeneration();
421
0
}
422
423
// We only allow a maximum of 1 SOO element, which makes the implementation
424
// much simpler. Complications with multiple SOO elements include:
425
// - Satisfying the guarantee that erasing one element doesn't invalidate
426
//   iterators to other elements means we would probably need actual SOO
427
//   control bytes.
428
// - In order to prevent user code from depending on iteration order for small
429
//   tables, we would need to randomize the iteration order somehow.
430
761k
constexpr size_t SooCapacity() { return 1; }
431
// Sentinel type to indicate SOO CommonFields construction.
432
struct soo_tag_t {};
433
// Sentinel type to indicate SOO CommonFields construction with full size.
434
struct full_soo_tag_t {};
435
// Sentinel type to indicate non-SOO CommonFields construction.
436
struct non_soo_tag_t {};
437
// Sentinel value to indicate an uninitialized value explicitly.
438
struct uninitialized_tag_t {};
439
// Sentinel value to indicate creation of an empty table without a seed.
440
struct no_seed_empty_tag_t {};
441
442
// Per table hash salt. This gets mixed into H1 to randomize iteration order
443
// per-table.
444
// The seed is needed to ensure non-determinism of iteration order.
445
class PerTableSeed {
446
 public:
447
  // The number of bits in the seed.
448
  // It is big enough to ensure non-determinism of iteration order.
449
  // We store the seed inside a uint64_t together with size and other metadata.
450
  // Using 16 bits allows us to save one `and` instruction in H1 (we use
451
  // sign-extended move instead of mov+and).
452
  static constexpr size_t kBitCount = 16;
453
  static constexpr size_t kSignBit = uint64_t{1} << (kBitCount - 1);
454
455
  // Returns the seed for the table.
456
76.0M
  size_t seed() const {
457
    // We use a sign-extended load to ensure high bits are non-zero.
458
76.0M
    int16_t seed_signed = absl::bit_cast<int16_t>(seed_);
459
76.0M
    auto seed_sign_extended =
460
76.0M
        static_cast<std::make_signed_t<size_t>>(seed_signed);
461
76.0M
    return absl::bit_cast<size_t>(seed_sign_extended);
462
76.0M
  }
463
464
 private:
465
  friend class HashtableSize;
466
  explicit PerTableSeed(uint16_t seed) : seed_(seed) {
467
    ABSL_SWISSTABLE_ASSERT((seed & kSignBit) != 0 || seed == 0);
468
  }
469
470
  // The most significant bit of the seed is always 1 when there is a non-zero
471
  // seed. This way, when sign-extended the seed has non-zero high bits.
472
  const uint16_t seed_;
473
};
474
475
// Returns next per-table seed.
476
50.7k
inline uint16_t NextSeed() {
477
50.7k
  static_assert(PerTableSeed::kBitCount == 16);
478
50.7k
  thread_local uint16_t seed =
479
50.7k
      static_cast<uint16_t>(reinterpret_cast<uintptr_t>(&seed));
480
50.7k
  seed += uint16_t{0xad53};
481
50.7k
  return seed;
482
50.7k
}
483
484
// The size and also has additionally
485
// 1) one bit that stores whether we have infoz.
486
// 2) PerTableSeed::kBitCount bits for the seed.
487
class HashtableSize {
488
 public:
489
  static constexpr size_t kSizeBitCount = 64 - PerTableSeed::kBitCount - 1;
490
491
0
  explicit HashtableSize(uninitialized_tag_t) {}
492
269k
  explicit HashtableSize(no_seed_empty_tag_t) : data_(0) {}
493
219k
  explicit HashtableSize(full_soo_tag_t) : data_(kSizeOneNoMetadata) {}
494
495
  // Returns actual size of the table.
496
10.2M
  size_t size() const { return static_cast<size_t>(data_ >> kSizeShift); }
497
8.71M
  void increment_size() { data_ += kSizeOneNoMetadata; }
498
0
  void increment_size(size_t size) {
499
0
    data_ += static_cast<uint64_t>(size) * kSizeOneNoMetadata;
500
0
  }
501
0
  void decrement_size() { data_ -= kSizeOneNoMetadata; }
502
  // Returns true if the table is empty.
503
0
  bool empty() const { return data_ < kSizeOneNoMetadata; }
504
  // Sets the size to zero, but keeps all the metadata bits.
505
234k
  void set_size_to_zero_keep_metadata() { data_ = data_ & kMetadataMask; }
506
507
76.0M
  PerTableSeed seed() const {
508
76.0M
    return PerTableSeed(static_cast<size_t>(data_) & kSeedMask);
509
76.0M
  }
510
511
50.7k
  void generate_new_seed() { set_seed(NextSeed()); }
512
513
  // We need to use a constant seed when the table is sampled so that sampled
514
  // hashes use the same seed and can e.g. identify stuck bits accurately.
515
0
  void set_sampled_seed() { set_seed(PerTableSeed::kSignBit); }
516
517
0
  bool is_sampled_seed() const {
518
0
    return (data_ & kSeedMask) == PerTableSeed::kSignBit;
519
0
  }
520
521
  // Returns true if the table has infoz.
522
9.08M
  bool has_infoz() const {
523
9.08M
    return ABSL_PREDICT_FALSE((data_ & kHasInfozMask) != 0);
524
9.08M
  }
525
526
  // Sets the has_infoz bit.
527
0
  void set_has_infoz() { data_ |= kHasInfozMask; }
528
529
0
  void set_no_seed_for_testing() { data_ &= ~kSeedMask; }
530
531
 private:
532
50.7k
  void set_seed(uint16_t seed) {
533
50.7k
    data_ = (data_ & ~kSeedMask) | (seed | PerTableSeed::kSignBit);
534
50.7k
  }
535
  static constexpr size_t kSizeShift = 64 - kSizeBitCount;
536
  static constexpr uint64_t kSizeOneNoMetadata = uint64_t{1} << kSizeShift;
537
  static constexpr uint64_t kMetadataMask = kSizeOneNoMetadata - 1;
538
  static constexpr uint64_t kSeedMask =
539
      (uint64_t{1} << PerTableSeed::kBitCount) - 1;
540
  // The next bit after the seed.
541
  static constexpr uint64_t kHasInfozMask = kSeedMask + 1;
542
  uint64_t data_;
543
};
544
545
// H1 is just the low bits of the hash.
546
75.9M
inline size_t H1(size_t hash) { return hash; }
547
548
// Extracts the H2 portion of a hash: the 7 most significant bits.
549
//
550
// These are used as an occupied control byte.
551
84.6M
inline h2_t H2(size_t hash) { return hash >> (sizeof(size_t) * 8 - 7); }
552
553
// When there is an insertion with no reserved growth, we rehash with
554
// probability `min(1, RehashProbabilityConstant() / capacity())`. Using a
555
// constant divided by capacity ensures that inserting N elements is still O(N)
556
// in the average case. Using the constant 16 means that we expect to rehash ~8
557
// times more often than when generations are disabled. We are adding expected
558
// rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 -
559
// 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth.
560
0
inline size_t RehashProbabilityConstant() { return 16; }
561
562
class CommonFieldsGenerationInfoEnabled {
563
  // A sentinel value for reserved_growth_ indicating that we just ran out of
564
  // reserved growth on the last insertion. When reserve is called and then
565
  // insertions take place, reserved_growth_'s state machine is N, ..., 1,
566
  // kReservedGrowthJustRanOut, 0.
567
  static constexpr size_t kReservedGrowthJustRanOut =
568
      (std::numeric_limits<size_t>::max)();
569
570
 public:
571
  CommonFieldsGenerationInfoEnabled() = default;
572
  CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that)
573
      : reserved_growth_(that.reserved_growth_),
574
        reservation_size_(that.reservation_size_),
575
0
        generation_(that.generation_) {
576
0
    that.reserved_growth_ = 0;
577
0
    that.reservation_size_ = 0;
578
0
    that.generation_ = EmptyGeneration();
579
0
  }
580
  CommonFieldsGenerationInfoEnabled& operator=(
581
      CommonFieldsGenerationInfoEnabled&&) = default;
582
583
  // Whether we should rehash on insert in order to detect bugs of using invalid
584
  // references. We rehash on the first insertion after reserved_growth_ reaches
585
  // 0 after a call to reserve. We also do a rehash with low probability
586
  // whenever reserved_growth_ is zero.
587
  bool should_rehash_for_bug_detection_on_insert(size_t capacity) const;
588
  // Similar to above, except that we don't depend on reserved_growth_.
589
  bool should_rehash_for_bug_detection_on_move(size_t capacity) const;
590
0
  void maybe_increment_generation_on_insert() {
591
0
    if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0;
592
0
593
0
    if (reserved_growth_ > 0) {
594
0
      if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut;
595
0
    } else {
596
0
      increment_generation();
597
0
    }
598
0
  }
599
0
  void increment_generation() { *generation_ = NextGeneration(*generation_); }
600
0
  void reset_reserved_growth(size_t reservation, size_t size) {
601
0
    reserved_growth_ = reservation - size;
602
0
  }
603
0
  size_t reserved_growth() const { return reserved_growth_; }
604
0
  void set_reserved_growth(size_t r) { reserved_growth_ = r; }
605
0
  size_t reservation_size() const { return reservation_size_; }
606
0
  void set_reservation_size(size_t r) { reservation_size_ = r; }
607
0
  GenerationType generation() const { return *generation_; }
608
0
  void set_generation(GenerationType g) { *generation_ = g; }
609
0
  GenerationType* generation_ptr() const { return generation_; }
610
0
  void set_generation_ptr(GenerationType* g) { generation_ = g; }
611
612
 private:
613
  // The number of insertions remaining that are guaranteed to not rehash due to
614
  // a prior call to reserve. Note: we store reserved growth in addition to
615
  // reservation size because calls to erase() decrease size_ but don't decrease
616
  // reserved growth.
617
  size_t reserved_growth_ = 0;
618
  // The maximum argument to reserve() since the container was cleared. We need
619
  // to keep track of this, in addition to reserved growth, because we reset
620
  // reserved growth to this when erase(begin(), end()) is called.
621
  size_t reservation_size_ = 0;
622
  // Pointer to the generation counter, which is used to validate iterators and
623
  // is stored in the backing array between the control bytes and the slots.
624
  // Note that we can't store the generation inside the container itself and
625
  // keep a pointer to the container in the iterators because iterators must
626
  // remain valid when the container is moved.
627
  // Note: we could derive this pointer from the control pointer, but it makes
628
  // the code more complicated, and there's a benefit in having the sizes of
629
  // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different,
630
  // which is that tests are less likely to rely on the size remaining the same.
631
  GenerationType* generation_ = EmptyGeneration();
632
};
633
634
class CommonFieldsGenerationInfoDisabled {
635
 public:
636
  CommonFieldsGenerationInfoDisabled() = default;
637
  CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) =
638
      default;
639
  CommonFieldsGenerationInfoDisabled& operator=(
640
      CommonFieldsGenerationInfoDisabled&&) = default;
641
642
0
  bool should_rehash_for_bug_detection_on_insert(size_t) const { return false; }
643
0
  bool should_rehash_for_bug_detection_on_move(size_t) const { return false; }
644
8.71M
  void maybe_increment_generation_on_insert() {}
645
0
  void increment_generation() {}
646
0
  void reset_reserved_growth(size_t, size_t) {}
647
0
  size_t reserved_growth() const { return 0; }
648
  void set_reserved_growth(size_t) {}
649
0
  size_t reservation_size() const { return 0; }
650
573k
  void set_reservation_size(size_t) {}
651
203k
  GenerationType generation() const { return 0; }
652
203k
  void set_generation(GenerationType) {}
653
  GenerationType* generation_ptr() const { return nullptr; }
654
203k
  void set_generation_ptr(GenerationType*) {}
655
};
656
657
class HashSetIteratorGenerationInfoEnabled {
658
 public:
659
  HashSetIteratorGenerationInfoEnabled() = default;
660
  explicit HashSetIteratorGenerationInfoEnabled(
661
      const GenerationType* generation_ptr)
662
0
      : generation_ptr_(generation_ptr), generation_(*generation_ptr) {}
663
664
0
  GenerationType generation() const { return generation_; }
665
0
  void reset_generation() { generation_ = *generation_ptr_; }
666
0
  const GenerationType* generation_ptr() const { return generation_ptr_; }
667
0
  void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; }
668
669
 private:
670
  const GenerationType* generation_ptr_ = EmptyGeneration();
671
  GenerationType generation_ = *generation_ptr_;
672
};
673
674
class HashSetIteratorGenerationInfoDisabled {
675
 public:
676
  HashSetIteratorGenerationInfoDisabled() = default;
677
  explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {}
678
679
  GenerationType generation() const { return 0; }
680
0
  void reset_generation() {}
681
  const GenerationType* generation_ptr() const { return nullptr; }
682
0
  void set_generation_ptr(const GenerationType*) {}
683
};
684
685
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
686
using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled;
687
using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled;
688
#else
689
using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled;
690
using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled;
691
#endif
692
693
// Stored the information regarding number of slots we can still fill
694
// without needing to rehash.
695
//
696
// We want to ensure sufficient number of empty slots in the table in order
697
// to keep probe sequences relatively short. Empty slot in the probe group
698
// is required to stop probing.
699
//
700
// Tombstones (kDeleted slots) are not included in the growth capacity,
701
// because we'd like to rehash when the table is filled with tombstones and/or
702
// full slots.
703
//
704
// GrowthInfo also stores a bit that encodes whether table may have any
705
// deleted slots.
706
// Most of the tables (>95%) have no deleted slots, so some functions can
707
// be more efficient with this information.
708
//
709
// Callers can also force a rehash via the standard `rehash(0)`,
710
// which will recompute this value as a side-effect.
711
//
712
// See also `CapacityToGrowth()`.
713
class GrowthInfo {
714
 public:
715
  // Leaves data member uninitialized.
716
  GrowthInfo() = default;
717
718
  // Initializes the GrowthInfo assuming we can grow `growth_left` elements
719
  // and there are no kDeleted slots in the table.
720
438k
  void InitGrowthLeftNoDeleted(size_t growth_left) {
721
438k
    growth_left_info_ = growth_left;
722
438k
  }
723
724
  // Overwrites single full slot with an empty slot.
725
0
  void OverwriteFullAsEmpty() { ++growth_left_info_; }
726
727
  // Overwrites single empty slot with a full slot.
728
8.51M
  void OverwriteEmptyAsFull() {
729
8.51M
    ABSL_SWISSTABLE_ASSERT(GetGrowthLeft() > 0);
730
8.51M
    --growth_left_info_;
731
8.51M
  }
732
733
  // Overwrites several empty slots with full slots.
734
0
  void OverwriteManyEmptyAsFull(size_t count) {
735
0
    ABSL_SWISSTABLE_ASSERT(GetGrowthLeft() >= count);
736
0
    growth_left_info_ -= count;
737
0
  }
738
739
  // Overwrites specified control element with full slot.
740
0
  void OverwriteControlAsFull(ctrl_t ctrl) {
741
0
    ABSL_SWISSTABLE_ASSERT(GetGrowthLeft() >=
742
0
                           static_cast<size_t>(IsEmpty(ctrl)));
743
0
    growth_left_info_ -= static_cast<size_t>(IsEmpty(ctrl));
744
0
  }
745
746
  // Overwrites single full slot with a deleted slot.
747
0
  void OverwriteFullAsDeleted() { growth_left_info_ |= kDeletedBit; }
748
749
  // Returns true if table satisfies two properties:
750
  // 1. Guaranteed to have no kDeleted slots.
751
  // 2. There is a place for at least one element to grow.
752
8.81M
  bool HasNoDeletedAndGrowthLeft() const {
753
8.81M
    return static_cast<std::make_signed_t<size_t>>(growth_left_info_) > 0;
754
8.81M
  }
755
756
  // Returns true if the table satisfies two properties:
757
  // 1. Guaranteed to have no kDeleted slots.
758
  // 2. There is no growth left.
759
153k
  bool HasNoGrowthLeftAndNoDeleted() const { return growth_left_info_ == 0; }
760
761
  // Returns true if GetGrowthLeft() == 0, but must be called only if
762
  // HasNoDeleted() is false. It is slightly more efficient.
763
0
  bool HasNoGrowthLeftAssumingMayHaveDeleted() const {
764
0
    ABSL_SWISSTABLE_ASSERT(!HasNoDeleted());
765
0
    return growth_left_info_ == kDeletedBit;
766
0
  }
767
768
  // Returns true if table guaranteed to have no kDeleted slots.
769
153k
  bool HasNoDeleted() const {
770
153k
    return static_cast<std::make_signed_t<size_t>>(growth_left_info_) >= 0;
771
153k
  }
772
773
  // Returns the number of elements left to grow.
774
8.81M
  size_t GetGrowthLeft() const { return growth_left_info_ & kGrowthLeftMask; }
775
776
 private:
777
  static constexpr size_t kGrowthLeftMask = ((~size_t{}) >> 1);
778
  static constexpr size_t kDeletedBit = ~kGrowthLeftMask;
779
  // Topmost bit signal whenever there are deleted slots.
780
  size_t growth_left_info_;
781
};
782
783
static_assert(sizeof(GrowthInfo) == sizeof(size_t), "");
784
static_assert(alignof(GrowthInfo) == alignof(size_t), "");
785
786
// Returns whether `n` is a valid capacity (i.e., number of slots).
787
//
788
// A valid capacity is a non-zero integer `2^m - 1`.
789
948k
constexpr bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
790
791
// Whether a table is small enough that we don't need to hash any keys.
792
290M
constexpr bool IsSmallCapacity(size_t capacity) { return capacity <= 1; }
793
794
// Returns the number of "cloned control bytes".
795
//
796
// This is the number of control bytes that are present both at the beginning
797
// of the control byte array and at the end, such that we can create a
798
// `Group::kWidth`-width probe window starting from any control byte.
799
202M
constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
800
801
// Returns the number of control bytes including cloned.
802
185M
constexpr size_t NumControlBytes(size_t capacity) {
803
185M
  return IsSmallCapacity(capacity) ? 0 : capacity + 1 + NumClonedBytes();
804
185M
}
805
806
// Computes the offset from the start of the backing allocation of control.
807
// infoz and growth_info are stored at the beginning of the backing array.
808
27.4M
constexpr size_t ControlOffset(bool has_infoz) {
809
27.4M
  return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(GrowthInfo);
810
27.4M
}
811
812
// Returns the offset of the next item after `offset` that is aligned to `align`
813
// bytes. `align` must be a power of two.
814
611k
constexpr size_t AlignUpTo(size_t offset, size_t align) {
815
611k
  return (offset + align - 1) & (~align + 1);
816
611k
}
817
818
// Helper class for computing offsets and allocation size of hash set fields.
819
class RawHashSetLayout {
820
 public:
821
  // TODO(b/413062340): maybe don't allocate growth info for capacity 1 tables.
822
  // Doing so may require additional branches/complexity so it might not be
823
  // worth it.
824
  explicit RawHashSetLayout(size_t capacity, size_t slot_size,
825
                            size_t slot_align, bool has_infoz)
826
      : control_offset_(ControlOffset(has_infoz)),
827
        generation_offset_(control_offset_ + NumControlBytes(capacity)),
828
        slot_offset_(
829
            AlignUpTo(generation_offset_ + NumGenerationBytes(), slot_align)),
830
        alloc_size_(slot_offset_ + capacity * slot_size) {
831
    ABSL_SWISSTABLE_ASSERT(IsValidCapacity(capacity));
832
    ABSL_SWISSTABLE_ASSERT(
833
        slot_size <=
834
        ((std::numeric_limits<size_t>::max)() - slot_offset_) / capacity);
835
  }
836
837
  // Returns precomputed offset from the start of the backing allocation of
838
  // control.
839
611k
  size_t control_offset() const { return control_offset_; }
840
841
  // Given the capacity of a table, computes the offset (from the start of the
842
  // backing allocation) of the generation counter (if it exists).
843
203k
  size_t generation_offset() const { return generation_offset_; }
844
845
  // Given the capacity of a table, computes the offset (from the start of the
846
  // backing allocation) at which the slots begin.
847
203k
  size_t slot_offset() const { return slot_offset_; }
848
849
  // Given the capacity of a table, computes the total size of the backing
850
  // array.
851
815k
  size_t alloc_size() const { return alloc_size_; }
852
853
 private:
854
  size_t control_offset_;
855
  size_t generation_offset_;
856
  size_t slot_offset_;
857
  size_t alloc_size_;
858
};
859
860
struct HashtableFreeFunctionsAccess;
861
862
// This allows us to work around an uninitialized memory warning when
863
// constructing begin() iterators in empty hashtables.
864
template <typename T>
865
union MaybeInitializedPtr {
866
303M
  T* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
absl::container_internal::MaybeInitializedPtr<void>::get() const
Line
Count
Source
866
119M
  T* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
absl::container_internal::MaybeInitializedPtr<absl::container_internal::ctrl_t>::get() const
Line
Count
Source
866
184M
  T* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
867
407k
  void set(T* ptr) { p = ptr; }
absl::container_internal::MaybeInitializedPtr<absl::container_internal::ctrl_t>::set(absl::container_internal::ctrl_t*)
Line
Count
Source
867
203k
  void set(T* ptr) { p = ptr; }
absl::container_internal::MaybeInitializedPtr<void>::set(void*)
Line
Count
Source
867
203k
  void set(T* ptr) { p = ptr; }
868
869
  T* p;
870
};
871
872
struct HeapPtrs {
873
  // The control bytes (and, also, a pointer near to the base of the backing
874
  // array).
875
  //
876
  // This contains `capacity + 1 + NumClonedBytes()` entries.
877
  //
878
  // Note that growth_info is stored immediately before this pointer.
879
  // May be uninitialized for small tables.
880
  MaybeInitializedPtr<ctrl_t> control;
881
882
  // The beginning of the slots, located at `SlotOffset()` bytes after
883
  // `control`. May be uninitialized for empty tables.
884
  // Note: we can't use `slots` because Qt defines "slots" as a macro.
885
  MaybeInitializedPtr<void> slot_array;
886
};
887
888
// Returns the maximum size of the SOO slot.
889
0
constexpr size_t MaxSooSlotSize() { return sizeof(HeapPtrs); }
890
891
// Manages the backing array pointers or the SOO slot. When raw_hash_set::is_soo
892
// is true, the SOO slot is stored in `soo_data`. Otherwise, we use `heap`.
893
union HeapOrSoo {
894
203k
  MaybeInitializedPtr<ctrl_t>& control() {
895
203k
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control);
896
203k
  }
897
185M
  MaybeInitializedPtr<ctrl_t> control() const {
898
185M
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control);
899
185M
  }
900
203k
  MaybeInitializedPtr<void>& slot_array() {
901
203k
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array);
902
203k
  }
903
119M
  MaybeInitializedPtr<void> slot_array() const {
904
119M
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array);
905
119M
  }
906
653k
  void* get_soo_data() {
907
653k
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data);
908
653k
  }
909
0
  const void* get_soo_data() const {
910
0
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data);
911
0
  }
912
913
  HeapPtrs heap;
914
  unsigned char soo_data[MaxSooSlotSize()];
915
};
916
917
// Returns a reference to the GrowthInfo object stored immediately before
918
// `control`.
919
17.9M
inline GrowthInfo& GetGrowthInfoFromControl(ctrl_t* control) {
920
17.9M
  auto* gl_ptr = reinterpret_cast<GrowthInfo*>(control) - 1;
921
17.9M
  ABSL_SWISSTABLE_ASSERT(
922
17.9M
      reinterpret_cast<uintptr_t>(gl_ptr) % alignof(GrowthInfo) == 0);
923
17.9M
  return *gl_ptr;
924
17.9M
}
925
926
// CommonFields hold the fields in raw_hash_set that do not depend
927
// on template parameters. This allows us to conveniently pass all
928
// of this state to helper functions as a single argument.
929
class CommonFields : public CommonFieldsGenerationInfo {
930
 public:
931
  explicit CommonFields(soo_tag_t)
932
104k
      : capacity_(SooCapacity()), size_(no_seed_empty_tag_t{}) {}
933
  explicit CommonFields(full_soo_tag_t)
934
0
      : capacity_(SooCapacity()), size_(full_soo_tag_t{}) {}
935
  explicit CommonFields(non_soo_tag_t)
936
0
      : capacity_(0), size_(no_seed_empty_tag_t{}) {}
937
  // For use in swapping.
938
0
  explicit CommonFields(uninitialized_tag_t) : size_(uninitialized_tag_t{}) {}
939
940
  // Not copyable
941
  CommonFields(const CommonFields&) = delete;
942
  CommonFields& operator=(const CommonFields&) = delete;
943
944
  // Copy with guarantee that it is not SOO.
945
  CommonFields(non_soo_tag_t, const CommonFields& that)
946
      : capacity_(that.capacity_),
947
        size_(that.size_),
948
0
        heap_or_soo_(that.heap_or_soo_) {
949
0
  }
950
951
  // Movable
952
  CommonFields(CommonFields&& that) = default;
953
  CommonFields& operator=(CommonFields&&) = default;
954
955
  template <bool kSooEnabled>
956
  static CommonFields CreateDefault() {
957
    return kSooEnabled ? CommonFields{soo_tag_t{}}
958
                       : CommonFields{non_soo_tag_t{}};
959
  }
960
961
  // The inline data for SOO is written on top of control_/slots_.
962
0
  const void* soo_data() const { return heap_or_soo_.get_soo_data(); }
963
653k
  void* soo_data() { return heap_or_soo_.get_soo_data(); }
964
965
  ctrl_t* control() const {
966
    ABSL_SWISSTABLE_ASSERT(capacity() > 0);
967
    // Assume that the control bytes don't alias `this`.
968
    ctrl_t* ctrl = heap_or_soo_.control().get();
969
    [[maybe_unused]] size_t num_control_bytes = NumControlBytes(capacity());
970
    ABSL_ASSUME(reinterpret_cast<uintptr_t>(ctrl + num_control_bytes) <=
971
                    reinterpret_cast<uintptr_t>(this) ||
972
                reinterpret_cast<uintptr_t>(this + 1) <=
973
                    reinterpret_cast<uintptr_t>(ctrl));
974
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(ctrl);
975
  }
976
977
203k
  void set_control(ctrl_t* c) { heap_or_soo_.control().set(c); }
978
979
  // Note: we can't use slots() because Qt defines "slots" as a macro.
980
119M
  void* slot_array() const { return heap_or_soo_.slot_array().get(); }
981
  MaybeInitializedPtr<void> slots_union() const {
982
    return heap_or_soo_.slot_array();
983
  }
984
203k
  void set_slots(void* s) { heap_or_soo_.slot_array().set(s); }
985
986
  // The number of filled slots.
987
10.2M
  size_t size() const { return size_.size(); }
988
  // Sets the size to zero, but keeps hashinfoz bit and seed.
989
234k
  void set_size_to_zero() { size_.set_size_to_zero_keep_metadata(); }
990
  void set_empty_soo() {
991
    AssertInSooMode();
992
    size_ = HashtableSize(no_seed_empty_tag_t{});
993
  }
994
219k
  void set_full_soo() {
995
219k
    AssertInSooMode();
996
219k
    size_ = HashtableSize(full_soo_tag_t{});
997
219k
  }
998
8.71M
  void increment_size() {
999
8.71M
    ABSL_SWISSTABLE_ASSERT(size() < capacity());
1000
8.71M
    size_.increment_size();
1001
8.71M
  }
1002
0
  void increment_size(size_t n) {
1003
0
    ABSL_SWISSTABLE_ASSERT(size() + n <= capacity());
1004
0
    size_.increment_size(n);
1005
0
  }
1006
0
  void decrement_size() {
1007
0
    ABSL_SWISSTABLE_ASSERT(!empty());
1008
0
    size_.decrement_size();
1009
0
  }
1010
0
  bool empty() const { return size_.empty(); }
1011
1012
  // The seed used for the hash function.
1013
76.0M
  PerTableSeed seed() const { return size_.seed(); }
1014
  // Generates a new seed the hash function.
1015
  // The table will be invalidated if `!empty()` because hash is being changed.
1016
  // In such cases, we will need to rehash the table.
1017
50.7k
  void generate_new_seed(bool has_infoz) {
1018
    // Note: we can't use has_infoz() here because we set has_infoz later than
1019
    // we generate the seed.
1020
50.7k
    if (ABSL_PREDICT_FALSE(has_infoz)) {
1021
0
      size_.set_sampled_seed();
1022
0
      return;
1023
0
    }
1024
50.7k
    size_.generate_new_seed();
1025
50.7k
  }
1026
0
  void set_no_seed_for_testing() { size_.set_no_seed_for_testing(); }
1027
1028
  // The total number of available slots.
1029
317M
  size_t capacity() const { return capacity_; }
1030
203k
  void set_capacity(size_t c) {
1031
    // We allow setting above the max valid capacity for debugging purposes.
1032
203k
    ABSL_SWISSTABLE_ASSERT(c == 0 || IsValidCapacity(c) ||
1033
203k
                           c > kAboveMaxValidCapacity);
1034
203k
    capacity_ = c;
1035
203k
  }
1036
104M
  bool is_small() const { return IsSmallCapacity(capacity_); }
1037
1038
  // The number of slots we can still fill without needing to rehash.
1039
  // This is stored in the heap allocation before the control bytes.
1040
  // TODO(b/289225379): experiment with moving growth_info back inline to
1041
  // increase room for SOO.
1042
153k
  size_t growth_left() const { return growth_info().GetGrowthLeft(); }
1043
1044
17.7M
  GrowthInfo& growth_info() {
1045
17.7M
    ABSL_SWISSTABLE_ASSERT(!is_small());
1046
17.7M
    return GetGrowthInfoFromControl(control());
1047
17.7M
  }
1048
153k
  GrowthInfo growth_info() const {
1049
153k
    return const_cast<CommonFields*>(this)->growth_info();
1050
153k
  }
1051
1052
9.08M
  bool has_infoz() const { return size_.has_infoz(); }
1053
0
  void set_has_infoz() {
1054
0
    ABSL_SWISSTABLE_ASSERT(size_.is_sampled_seed());
1055
0
    size_.set_has_infoz();
1056
0
  }
1057
1058
0
  HashtablezInfoHandle* infoz_ptr() const {
1059
    // growth_info is stored before control bytes.
1060
0
    ABSL_SWISSTABLE_ASSERT(
1061
0
        reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0);
1062
0
    ABSL_SWISSTABLE_ASSERT(has_infoz());
1063
0
    return reinterpret_cast<HashtablezInfoHandle*>(
1064
0
        control() - ControlOffset(/*has_infoz=*/true));
1065
0
  }
1066
1067
9.03M
  HashtablezInfoHandle infoz() {
1068
9.03M
    return has_infoz() ? *infoz_ptr() : HashtablezInfoHandle();
1069
9.03M
  }
1070
0
  void set_infoz(HashtablezInfoHandle infoz) {
1071
0
    ABSL_SWISSTABLE_ASSERT(has_infoz());
1072
0
    *infoz_ptr() = infoz;
1073
0
  }
1074
1075
0
  bool should_rehash_for_bug_detection_on_insert() const {
1076
0
    if constexpr (!SwisstableGenerationsEnabled()) {
1077
0
      return false;
1078
0
    }
1079
0
    // As an optimization, we avoid calling ShouldRehashForBugDetection if we
1080
0
    // will end up rehashing anyways.
1081
0
    if (growth_left() == 0) return false;
1082
0
    return CommonFieldsGenerationInfo::
1083
0
        should_rehash_for_bug_detection_on_insert(capacity());
1084
0
  }
1085
0
  bool should_rehash_for_bug_detection_on_move() const {
1086
0
    return CommonFieldsGenerationInfo::should_rehash_for_bug_detection_on_move(
1087
0
        capacity());
1088
0
  }
1089
0
  void reset_reserved_growth(size_t reservation) {
1090
0
    CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size());
1091
0
  }
1092
1093
  // The size of the backing array allocation.
1094
0
  size_t alloc_size(size_t slot_size, size_t slot_align) const {
1095
0
    return RawHashSetLayout(capacity(), slot_size, slot_align, has_infoz())
1096
0
        .alloc_size();
1097
0
  }
1098
1099
  // Move fields other than heap_or_soo_.
1100
0
  void move_non_heap_or_soo_fields(CommonFields& that) {
1101
0
    static_cast<CommonFieldsGenerationInfo&>(*this) =
1102
0
        std::move(static_cast<CommonFieldsGenerationInfo&>(that));
1103
0
    capacity_ = that.capacity_;
1104
0
    size_ = that.size_;
1105
0
  }
1106
1107
  // Returns the number of control bytes set to kDeleted. For testing only.
1108
0
  size_t TombstonesCount() const {
1109
0
    return static_cast<size_t>(
1110
0
        std::count(control(), control() + capacity(), ctrl_t::kDeleted));
1111
0
  }
1112
1113
  // Helper to enable sanitizer mode validation to protect against reentrant
1114
  // calls during element constructor/destructor.
1115
  template <typename F>
1116
  void RunWithReentrancyGuard(F f) {
1117
#ifdef NDEBUG
1118
    f();
1119
    return;
1120
#endif
1121
    const size_t cap = capacity();
1122
    set_capacity(InvalidCapacity::kReentrance);
1123
    f();
1124
    set_capacity(cap);
1125
  }
1126
1127
 private:
1128
  // We store the has_infoz bit in the lowest bit of size_.
1129
0
  static constexpr size_t HasInfozShift() { return 1; }
1130
0
  static constexpr size_t HasInfozMask() {
1131
0
    return (size_t{1} << HasInfozShift()) - 1;
1132
0
  }
1133
1134
  // We can't assert that SOO is enabled because we don't have SooEnabled(), but
1135
  // we assert what we can.
1136
  void AssertInSooMode() const {
1137
    ABSL_SWISSTABLE_ASSERT(capacity() == SooCapacity());
1138
    ABSL_SWISSTABLE_ASSERT(!has_infoz());
1139
  }
1140
1141
  // The number of slots in the backing array. This is always 2^N-1 for an
1142
  // integer N. NOTE: we tried experimenting with compressing the capacity and
1143
  // storing it together with size_: (a) using 6 bits to store the corresponding
1144
  // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of
1145
  // size_ and storing size in the low bits. Both of these experiments were
1146
  // regressions, presumably because we need capacity to do find operations.
1147
  size_t capacity_;
1148
1149
  // TODO(b/289225379): we could put size_ into HeapOrSoo and make capacity_
1150
  // encode the size in SOO case. We would be making size()/capacity() more
1151
  // expensive in order to have more SOO space.
1152
  HashtableSize size_;
1153
1154
  // Either the control/slots pointers or the SOO slot.
1155
  HeapOrSoo heap_or_soo_;
1156
};
1157
1158
template <class Policy, class Hash, class Eq, class Alloc>
1159
class raw_hash_set;
1160
1161
// Returns the next valid capacity after `n`.
1162
153k
constexpr size_t NextCapacity(size_t n) {
1163
153k
  ABSL_SWISSTABLE_ASSERT(IsValidCapacity(n) || n == 0);
1164
153k
  return n * 2 + 1;
1165
153k
}
1166
1167
// Returns the previous valid capacity before `n`.
1168
constexpr size_t PreviousCapacity(size_t n) {
1169
  ABSL_SWISSTABLE_ASSERT(IsValidCapacity(n));
1170
  return n / 2;
1171
}
1172
1173
// Applies the following mapping to every byte in the control array:
1174
//   * kDeleted -> kEmpty
1175
//   * kEmpty -> kEmpty
1176
//   * _ -> kDeleted
1177
// PRECONDITION:
1178
//   IsValidCapacity(capacity)
1179
//   ctrl[capacity] == ctrl_t::kSentinel
1180
//   ctrl[i] != ctrl_t::kSentinel for all i < capacity
1181
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
1182
1183
// Converts `n` into the next valid capacity, per `IsValidCapacity`.
1184
0
constexpr size_t NormalizeCapacity(size_t n) {
1185
0
  return n ? ~size_t{} >> countl_zero(n) : 1;
1186
0
}
1187
1188
// General notes on capacity/growth methods below:
1189
// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
1190
//   average of two empty slots per group.
1191
// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
1192
// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
1193
//   never need to probe (the whole table fits in one group) so we don't need a
1194
//   load factor less than 1.
1195
1196
// Given `capacity`, applies the load factor; i.e., it returns the maximum
1197
// number of values we should put into the table before a resizing rehash.
1198
387k
constexpr size_t CapacityToGrowth(size_t capacity) {
1199
387k
  ABSL_SWISSTABLE_ASSERT(IsValidCapacity(capacity));
1200
  // `capacity*7/8`
1201
387k
  if (Group::kWidth == 8 && capacity == 7) {
1202
    // x-x/8 does not work when x==7.
1203
0
    return 6;
1204
0
  }
1205
387k
  return capacity - capacity / 8;
1206
387k
}
1207
1208
// Given `size`, "unapplies" the load factor to find how large the capacity
1209
// should be to stay within the load factor.
1210
//
1211
// For size == 0, returns 0.
1212
// For other values, returns the same as `NormalizeCapacity(size*8/7)`.
1213
0
constexpr size_t SizeToCapacity(size_t size) {
1214
0
  if (size == 0) {
1215
0
    return 0;
1216
0
  }
1217
  // The minimum possible capacity is NormalizeCapacity(size).
1218
  // Shifting right `~size_t{}` by `leading_zeros` yields
1219
  // NormalizeCapacity(size).
1220
0
  int leading_zeros = absl::countl_zero(size);
1221
0
  constexpr size_t kLast3Bits = size_t{7} << (sizeof(size_t) * 8 - 3);
1222
  // max_size_for_next_capacity = max_load_factor * next_capacity
1223
  //                            = (7/8) * (~size_t{} >> leading_zeros)
1224
  //                            = (7/8*~size_t{}) >> leading_zeros
1225
  //                            = kLast3Bits >> leading_zeros
1226
0
  size_t max_size_for_next_capacity = kLast3Bits >> leading_zeros;
1227
  // Decrease shift if size is too big for the minimum capacity.
1228
0
  leading_zeros -= static_cast<int>(size > max_size_for_next_capacity);
1229
  if constexpr (Group::kWidth == 8) {
1230
    // Formula doesn't work when size==7 for 8-wide groups.
1231
    leading_zeros -= (size == 7);
1232
  }
1233
0
  return (~size_t{}) >> leading_zeros;
1234
0
}
1235
1236
template <class InputIter>
1237
size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
1238
                                     size_t bucket_count) {
1239
  if (bucket_count != 0) {
1240
    return bucket_count;
1241
  }
1242
  if (base_internal::IsAtLeastIterator<std::random_access_iterator_tag,
1243
                                       InputIter>()) {
1244
    return SizeToCapacity(static_cast<size_t>(std::distance(first, last)));
1245
  }
1246
  return 0;
1247
}
1248
1249
0
constexpr bool SwisstableDebugEnabled() {
1250
0
#if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \
1251
0
    ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG)
1252
0
  return true;
1253
0
#else
1254
0
  return false;
1255
0
#endif
1256
0
}
1257
1258
inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation,
1259
                         const GenerationType* generation_ptr,
1260
                         const char* operation) {
1261
  if (!SwisstableDebugEnabled()) return;
1262
  // `SwisstableDebugEnabled()` is also true for release builds with hardening
1263
  // enabled. To minimize their impact in those builds:
1264
  // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
1265
  // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
1266
  //   the chances that the hot paths will be inlined.
1267
  if (ABSL_PREDICT_FALSE(ctrl == nullptr)) {
1268
    ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation);
1269
  }
1270
  if (ABSL_PREDICT_FALSE(ctrl == DefaultIterControl())) {
1271
    ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.",
1272
                 operation);
1273
  }
1274
  if (SwisstableGenerationsEnabled()) {
1275
    if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
1276
      ABSL_RAW_LOG(FATAL,
1277
                   "%s called on invalid iterator. The table could have "
1278
                   "rehashed or moved since this iterator was initialized.",
1279
                   operation);
1280
    }
1281
    if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
1282
      ABSL_RAW_LOG(
1283
          FATAL,
1284
          "%s called on invalid iterator. The element was likely erased.",
1285
          operation);
1286
    }
1287
  } else {
1288
    if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
1289
      ABSL_RAW_LOG(
1290
          FATAL,
1291
          "%s called on invalid iterator. The element might have been erased "
1292
          "or the table might have rehashed. Consider running with "
1293
          "--config=asan to diagnose rehashing issues.",
1294
          operation);
1295
    }
1296
  }
1297
}
1298
1299
// Note that for comparisons, null/end iterators are valid.
1300
inline void AssertIsValidForComparison(const ctrl_t* ctrl,
1301
                                       GenerationType generation,
1302
                                       const GenerationType* generation_ptr) {
1303
  if (!SwisstableDebugEnabled()) return;
1304
  const bool ctrl_is_valid_for_comparison =
1305
      ctrl == nullptr || ctrl == DefaultIterControl() || IsFull(*ctrl);
1306
  if (SwisstableGenerationsEnabled()) {
1307
    if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
1308
      ABSL_RAW_LOG(FATAL,
1309
                   "Invalid iterator comparison. The table could have rehashed "
1310
                   "or moved since this iterator was initialized.");
1311
    }
1312
    if (ABSL_PREDICT_FALSE(!ctrl_is_valid_for_comparison)) {
1313
      ABSL_RAW_LOG(
1314
          FATAL, "Invalid iterator comparison. The element was likely erased.");
1315
    }
1316
  } else {
1317
    ABSL_HARDENING_ASSERT_SLOW(
1318
        ctrl_is_valid_for_comparison &&
1319
        "Invalid iterator comparison. The element might have been erased or "
1320
        "the table might have rehashed. Consider running with --config=asan to "
1321
        "diagnose rehashing issues.");
1322
  }
1323
}
1324
1325
// If the two iterators come from the same container, then their pointers will
1326
// interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa.
1327
// Note: we take slots by reference so that it's not UB if they're uninitialized
1328
// as long as we don't read them (when ctrl is null).
1329
inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a,
1330
                                      const ctrl_t* ctrl_b,
1331
                                      const void* const& slot_a,
1332
0
                                      const void* const& slot_b) {
1333
0
  // If either control byte is null, then we can't tell.
1334
0
  if (ctrl_a == nullptr || ctrl_b == nullptr) return true;
1335
0
  const bool a_is_soo = IsSooControl(ctrl_a);
1336
0
  if (a_is_soo != IsSooControl(ctrl_b)) return false;
1337
0
  if (a_is_soo) return slot_a == slot_b;
1338
0
1339
0
  const void* low_slot = slot_a;
1340
0
  const void* hi_slot = slot_b;
1341
0
  if (ctrl_a > ctrl_b) {
1342
0
    std::swap(ctrl_a, ctrl_b);
1343
0
    std::swap(low_slot, hi_slot);
1344
0
  }
1345
0
  return ctrl_b < low_slot && low_slot <= hi_slot;
1346
0
}
1347
1348
// Asserts that two iterators come from the same container.
1349
// Note: we take slots by reference so that it's not UB if they're uninitialized
1350
// as long as we don't read them (when ctrl is null).
1351
inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b,
1352
                                const void* const& slot_a,
1353
                                const void* const& slot_b,
1354
                                const GenerationType* generation_ptr_a,
1355
                                const GenerationType* generation_ptr_b) {
1356
  if (!SwisstableDebugEnabled()) return;
1357
  // `SwisstableDebugEnabled()` is also true for release builds with hardening
1358
  // enabled. To minimize their impact in those builds:
1359
  // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
1360
  // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
1361
  //   the chances that the hot paths will be inlined.
1362
1363
  // fail_if(is_invalid, message) crashes when is_invalid is true and provides
1364
  // an error message based on `message`.
1365
  const auto fail_if = [](bool is_invalid, const char* message) {
1366
    if (ABSL_PREDICT_FALSE(is_invalid)) {
1367
      ABSL_RAW_LOG(FATAL, "Invalid iterator comparison. %s", message);
1368
    }
1369
  };
1370
1371
  const bool a_is_default = ctrl_a == DefaultIterControl();
1372
  const bool b_is_default = ctrl_b == DefaultIterControl();
1373
  if (a_is_default && b_is_default) return;
1374
  fail_if(a_is_default != b_is_default,
1375
          "Comparing default-constructed hashtable iterator with a "
1376
          "non-default-constructed hashtable iterator.");
1377
1378
  if (SwisstableGenerationsEnabled()) {
1379
    if (ABSL_PREDICT_TRUE(generation_ptr_a == generation_ptr_b)) return;
1380
    // Users don't need to know whether the tables are SOO so don't mention SOO
1381
    // in the debug message.
1382
    const bool a_is_soo = IsSooControl(ctrl_a);
1383
    const bool b_is_soo = IsSooControl(ctrl_b);
1384
    fail_if(a_is_soo != b_is_soo || (a_is_soo && b_is_soo),
1385
            "Comparing iterators from different hashtables.");
1386
1387
    const bool a_is_empty = IsEmptyGeneration(generation_ptr_a);
1388
    const bool b_is_empty = IsEmptyGeneration(generation_ptr_b);
1389
    fail_if(a_is_empty != b_is_empty,
1390
            "Comparing an iterator from an empty hashtable with an iterator "
1391
            "from a non-empty hashtable.");
1392
    fail_if(a_is_empty && b_is_empty,
1393
            "Comparing iterators from different empty hashtables.");
1394
1395
    const bool a_is_end = ctrl_a == nullptr;
1396
    const bool b_is_end = ctrl_b == nullptr;
1397
    fail_if(a_is_end || b_is_end,
1398
            "Comparing iterator with an end() iterator from a different "
1399
            "hashtable.");
1400
    fail_if(true, "Comparing non-end() iterators from different hashtables.");
1401
  } else {
1402
    ABSL_HARDENING_ASSERT_SLOW(
1403
        AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) &&
1404
        "Invalid iterator comparison. The iterators may be from different "
1405
        "containers or the container might have rehashed or moved. Consider "
1406
        "running with --config=asan to diagnose issues.");
1407
  }
1408
}
1409
1410
struct FindInfo {
1411
  size_t offset;
1412
  size_t probe_length;
1413
};
1414
1415
// Whether a table fits entirely into a probing group.
1416
// Arbitrary order of elements in such tables is correct.
1417
274k
constexpr bool is_single_group(size_t capacity) {
1418
274k
  return capacity <= Group::kWidth;
1419
274k
}
1420
1421
// Begins a probing operation on `common.control`, using `hash`.
1422
68.6M
inline probe_seq<Group::kWidth> probe_h1(size_t capacity, size_t h1) {
1423
68.6M
  return probe_seq<Group::kWidth>(h1, capacity);
1424
68.6M
}
1425
68.4M
inline probe_seq<Group::kWidth> probe(size_t capacity, size_t hash) {
1426
68.4M
  return probe_h1(capacity, H1(hash));
1427
68.4M
}
1428
68.4M
inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) {
1429
68.4M
  return probe(common.capacity(), hash);
1430
68.4M
}
1431
1432
constexpr size_t kProbedElementIndexSentinel = ~size_t{};
1433
1434
// Implementation detail of transfer_unprobed_elements_to_next_capacity_fn.
1435
// Tries to find the new index for an element whose hash corresponds to
1436
// `h1` for growth to the next capacity.
1437
// Returns kProbedElementIndexSentinel if full probing is required.
1438
//
1439
// If element is located in the first probing group in the table before growth,
1440
// returns one of two positions: `old_index` or `old_index + old_capacity + 1`.
1441
//
1442
// Otherwise, we will try to insert it into the first probe group of the new
1443
// table. We only attempt to do so if the first probe group is already
1444
// initialized.
1445
template <typename = void>
1446
inline size_t TryFindNewIndexWithoutProbing(size_t h1, size_t old_index,
1447
                                            size_t old_capacity,
1448
                                            ctrl_t* new_ctrl,
1449
                                            size_t new_capacity) {
1450
  size_t index_diff = old_index - h1;
1451
  // The first probe group starts with h1 & capacity.
1452
  // All following groups start at (h1 + Group::kWidth * K) & capacity.
1453
  // We can find an index within the floating group as index_diff modulo
1454
  // Group::kWidth.
1455
  // Both old and new capacity are larger than Group::kWidth so we can avoid
1456
  // computing `& capacity`.
1457
  size_t in_floating_group_index = index_diff & (Group::kWidth - 1);
1458
  // By subtracting we will get the difference between the first probe group
1459
  // and the probe group corresponding to old_index.
1460
  index_diff -= in_floating_group_index;
1461
  if (ABSL_PREDICT_TRUE((index_diff & old_capacity) == 0)) {
1462
    size_t new_index = (h1 + in_floating_group_index) & new_capacity;
1463
    ABSL_ASSUME(new_index != kProbedElementIndexSentinel);
1464
    return new_index;
1465
  }
1466
  ABSL_SWISSTABLE_ASSERT(((old_index - h1) & old_capacity) >= Group::kWidth);
1467
  // Try to insert element into the first probe group.
1468
  // new_ctrl is not yet fully initialized so we can't use regular search via
1469
  // find_first_non_full.
1470
1471
  // We can search in the first probe group only if it is located in already
1472
  // initialized part of the table.
1473
  if (ABSL_PREDICT_FALSE((h1 & old_capacity) >= old_index)) {
1474
    return kProbedElementIndexSentinel;
1475
  }
1476
  size_t offset = h1 & new_capacity;
1477
  Group new_g(new_ctrl + offset);
1478
  if (auto mask = new_g.MaskNonFull(); ABSL_PREDICT_TRUE(mask)) {
1479
    size_t result = offset + mask.LowestBitSet();
1480
    ABSL_ASSUME(result != kProbedElementIndexSentinel);
1481
    return result;
1482
  }
1483
  return kProbedElementIndexSentinel;
1484
}
1485
1486
// Extern template for inline function keeps possibility of inlining.
1487
// When compiler decided to not inline, no symbols will be added to the
1488
// corresponding translation unit.
1489
extern template size_t TryFindNewIndexWithoutProbing(size_t h1,
1490
                                                     size_t old_index,
1491
                                                     size_t old_capacity,
1492
                                                     ctrl_t* new_ctrl,
1493
                                                     size_t new_capacity);
1494
1495
// Sets sanitizer poisoning for slot corresponding to control byte being set.
1496
inline void DoSanitizeOnSetCtrl(const CommonFields& c, size_t i, ctrl_t h,
1497
8.73M
                                size_t slot_size) {
1498
8.73M
  ABSL_SWISSTABLE_ASSERT(i < c.capacity());
1499
8.73M
  auto* slot_i = static_cast<const char*>(c.slot_array()) + i * slot_size;
1500
8.73M
  if (IsFull(h)) {
1501
8.73M
    SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
1502
8.73M
  } else {
1503
0
    SanitizerPoisonMemoryRegion(slot_i, slot_size);
1504
0
  }
1505
8.73M
}
1506
1507
// Sets `ctrl[i]` to `h`.
1508
//
1509
// Unlike setting it directly, this function will perform bounds checks and
1510
// mirror the value to the cloned tail if necessary.
1511
inline void SetCtrl(const CommonFields& c, size_t i, ctrl_t h,
1512
8.51M
                    size_t slot_size) {
1513
8.51M
  ABSL_SWISSTABLE_ASSERT(!c.is_small());
1514
8.51M
  DoSanitizeOnSetCtrl(c, i, h, slot_size);
1515
8.51M
  ctrl_t* ctrl = c.control();
1516
8.51M
  ctrl[i] = h;
1517
8.51M
  ctrl[((i - NumClonedBytes()) & c.capacity()) +
1518
8.51M
       (NumClonedBytes() & c.capacity())] = h;
1519
8.51M
}
1520
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1521
8.51M
inline void SetCtrl(const CommonFields& c, size_t i, h2_t h, size_t slot_size) {
1522
8.51M
  SetCtrl(c, i, static_cast<ctrl_t>(h), slot_size);
1523
8.51M
}
1524
1525
// Like SetCtrl, but in a single group table, we can save some operations when
1526
// setting the cloned control byte.
1527
inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, ctrl_t h,
1528
60.5k
                                      size_t slot_size) {
1529
60.5k
  ABSL_SWISSTABLE_ASSERT(!c.is_small());
1530
60.5k
  ABSL_SWISSTABLE_ASSERT(is_single_group(c.capacity()));
1531
60.5k
  DoSanitizeOnSetCtrl(c, i, h, slot_size);
1532
60.5k
  ctrl_t* ctrl = c.control();
1533
60.5k
  ctrl[i] = h;
1534
60.5k
  ctrl[i + c.capacity() + 1] = h;
1535
60.5k
}
1536
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1537
inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, h2_t h,
1538
60.5k
                                      size_t slot_size) {
1539
60.5k
  SetCtrlInSingleGroupTable(c, i, static_cast<ctrl_t>(h), slot_size);
1540
60.5k
}
1541
1542
// Like SetCtrl, but in a table with capacity >= Group::kWidth - 1,
1543
// we can save some operations when setting the cloned control byte.
1544
inline void SetCtrlInLargeTable(const CommonFields& c, size_t i, ctrl_t h,
1545
162k
                                size_t slot_size) {
1546
162k
  ABSL_SWISSTABLE_ASSERT(c.capacity() >= Group::kWidth - 1);
1547
162k
  DoSanitizeOnSetCtrl(c, i, h, slot_size);
1548
162k
  ctrl_t* ctrl = c.control();
1549
162k
  ctrl[i] = h;
1550
162k
  ctrl[((i - NumClonedBytes()) & c.capacity()) + NumClonedBytes()] = h;
1551
162k
}
1552
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1553
inline void SetCtrlInLargeTable(const CommonFields& c, size_t i, h2_t h,
1554
162k
                                size_t slot_size) {
1555
162k
  SetCtrlInLargeTable(c, i, static_cast<ctrl_t>(h), slot_size);
1556
162k
}
1557
1558
// growth_info (which is a size_t) is stored with the backing array.
1559
0
constexpr size_t BackingArrayAlignment(size_t align_of_slot) {
1560
0
  return (std::max)(align_of_slot, alignof(GrowthInfo));
1561
0
}
1562
1563
// Returns the address of the ith slot in slots where each slot occupies
1564
// slot_size.
1565
292k
inline void* SlotAddress(void* slot_array, size_t slot, size_t slot_size) {
1566
292k
  return static_cast<void*>(static_cast<char*>(slot_array) +
1567
292k
                            (slot * slot_size));
1568
292k
}
1569
1570
// Iterates over all full slots and calls `cb(const ctrl_t*, void*)`.
1571
// No insertion to the table is allowed during `cb` call.
1572
// Erasure is allowed only for the element passed to the callback.
1573
// The table must not be in SOO mode.
1574
void IterateOverFullSlots(const CommonFields& c, size_t slot_size,
1575
                          absl::FunctionRef<void(const ctrl_t*, void*)> cb);
1576
1577
template <typename CharAlloc>
1578
constexpr bool ShouldSampleHashtablezInfoForAlloc() {
1579
  // Folks with custom allocators often make unwarranted assumptions about the
1580
  // behavior of their classes vis-a-vis trivial destructability and what
1581
  // calls they will or won't make.  Avoid sampling for people with custom
1582
  // allocators to get us out of this mess.  This is not a hard guarantee but
1583
  // a workaround while we plan the exact guarantee we want to provide.
1584
  return std::is_same_v<CharAlloc, std::allocator<char>>;
1585
}
1586
1587
// Allocates `n` bytes for a backing array.
1588
template <size_t AlignOfBackingArray, typename Alloc>
1589
ABSL_ATTRIBUTE_NOINLINE void* AllocateBackingArray(void* alloc, size_t n) {
1590
  return Allocate<AlignOfBackingArray>(static_cast<Alloc*>(alloc), n);
1591
}
1592
1593
template <size_t AlignOfBackingArray, typename Alloc>
1594
ABSL_ATTRIBUTE_NOINLINE void DeallocateBackingArray(
1595
    void* alloc, size_t capacity, ctrl_t* ctrl, size_t slot_size,
1596
    size_t slot_align, bool had_infoz) {
1597
  RawHashSetLayout layout(capacity, slot_size, slot_align, had_infoz);
1598
  void* backing_array = ctrl - layout.control_offset();
1599
  // Unpoison before returning the memory to the allocator.
1600
  SanitizerUnpoisonMemoryRegion(backing_array, layout.alloc_size());
1601
  Deallocate<AlignOfBackingArray>(static_cast<Alloc*>(alloc), backing_array,
1602
                                  layout.alloc_size());
1603
}
1604
1605
// PolicyFunctions bundles together some information for a particular
1606
// raw_hash_set<T, ...> instantiation. This information is passed to
1607
// type-erased functions that want to do small amounts of type-specific
1608
// work.
1609
struct PolicyFunctions {
1610
  uint32_t key_size;
1611
  uint32_t value_size;
1612
  uint32_t slot_size;
1613
  uint16_t slot_align;
1614
  bool soo_enabled;
1615
  bool is_hashtablez_eligible;
1616
1617
  // Returns the pointer to the hash function stored in the set.
1618
  void* (*hash_fn)(CommonFields& common);
1619
1620
  // Returns the hash of the pointed-to slot.
1621
  HashSlotFn hash_slot;
1622
1623
  // Transfers the contents of `count` slots from src_slot to dst_slot.
1624
  // We use ability to transfer several slots in single group table growth.
1625
  void (*transfer_n)(void* set, void* dst_slot, void* src_slot, size_t count);
1626
1627
  // Returns the pointer to the CharAlloc stored in the set.
1628
  void* (*get_char_alloc)(CommonFields& common);
1629
1630
  // Allocates n bytes for the backing store for common.
1631
  void* (*alloc)(void* alloc, size_t n);
1632
1633
  // Deallocates the backing store from common.
1634
  void (*dealloc)(void* alloc, size_t capacity, ctrl_t* ctrl, size_t slot_size,
1635
                  size_t slot_align, bool had_infoz);
1636
1637
  // Implementation detail of GrowToNextCapacity.
1638
  // Iterates over all full slots and transfers unprobed elements.
1639
  // Initializes the new control bytes except mirrored bytes and kSentinel.
1640
  // Caller must finish the initialization.
1641
  // All slots corresponding to the full control bytes are transferred.
1642
  // Probed elements are reported by `encode_probed_element` callback.
1643
  // encode_probed_element may overwrite old_ctrl buffer till source_offset.
1644
  // Different encoding is used depending on the capacity of the table.
1645
  // See ProbedItem*Bytes classes for details.
1646
  void (*transfer_unprobed_elements_to_next_capacity)(
1647
      CommonFields& common, const ctrl_t* old_ctrl, void* old_slots,
1648
      // TODO(b/382423690): Try to use absl::FunctionRef here.
1649
      void* probed_storage,
1650
      void (*encode_probed_element)(void* probed_storage, h2_t h2,
1651
                                    size_t source_offset, size_t h1));
1652
1653
407k
  uint8_t soo_capacity() const {
1654
407k
    return static_cast<uint8_t>(soo_enabled ? SooCapacity() : 0);
1655
407k
  }
1656
};
1657
1658
// Returns the maximum valid size for a table with 1-byte slots.
1659
// This function is an utility shared by MaxValidSize and IsAboveValidSize.
1660
// Template parameter is only used to enable testing.
1661
template <size_t kSizeOfSizeT = sizeof(size_t)>
1662
0
constexpr size_t MaxValidSizeFor1ByteSlot() {
1663
0
  if constexpr (kSizeOfSizeT == 8) {
1664
0
    return CapacityToGrowth(
1665
0
        static_cast<size_t>(uint64_t{1} << HashtableSize::kSizeBitCount) - 1);
1666
  } else {
1667
    static_assert(kSizeOfSizeT == 4);
1668
    return CapacityToGrowth((size_t{1} << (kSizeOfSizeT * 8 - 2)) - 1);
1669
  }
1670
0
}
1671
1672
// Returns the maximum valid size for a table with provided slot size.
1673
// Template parameter is only used to enable testing.
1674
template <size_t kSizeOfSizeT = sizeof(size_t)>
1675
0
constexpr size_t MaxValidSize(size_t slot_size) {
1676
0
  if constexpr (kSizeOfSizeT == 8) {
1677
    // For small slot sizes we are limited by HashtableSize::kSizeBitCount.
1678
0
    if (slot_size < size_t{1} << (64 - HashtableSize::kSizeBitCount)) {
1679
0
      return MaxValidSizeFor1ByteSlot<kSizeOfSizeT>();
1680
0
    }
1681
0
    return (size_t{1} << (kSizeOfSizeT * 8 - 2)) / slot_size;
1682
  } else {
1683
    return MaxValidSizeFor1ByteSlot<kSizeOfSizeT>() / slot_size;
1684
  }
1685
0
}
1686
1687
// Returns true if size is larger than the maximum valid size.
1688
// It is an optimization to avoid the division operation in the common case.
1689
// Template parameter is only used to enable testing.
1690
template <size_t kSizeOfSizeT = sizeof(size_t)>
1691
0
constexpr bool IsAboveValidSize(size_t size, size_t slot_size) {
1692
0
  if constexpr (kSizeOfSizeT == 8) {
1693
    // For small slot sizes we are limited by HashtableSize::kSizeBitCount.
1694
0
    if (ABSL_PREDICT_TRUE(slot_size <
1695
0
                          (size_t{1} << (64 - HashtableSize::kSizeBitCount)))) {
1696
0
      return size > MaxValidSizeFor1ByteSlot<kSizeOfSizeT>();
1697
0
    }
1698
0
    return size > MaxValidSize<kSizeOfSizeT>(slot_size);
1699
  } else {
1700
    return uint64_t{size} * slot_size >
1701
           MaxValidSizeFor1ByteSlot<kSizeOfSizeT>();
1702
  }
1703
0
}
1704
1705
// Returns the index of the SOO slot when growing from SOO to non-SOO in a
1706
// single group. See also InitializeSmallControlBytesAfterSoo(). It's important
1707
// to use index 1 so that when resizing from capacity 1 to 3, we can still have
1708
// random iteration order between the first two inserted elements.
1709
// I.e. it allows inserting the second element at either index 0 or 2.
1710
101k
constexpr size_t SooSlotIndex() { return 1; }
1711
1712
// Maximum capacity for the algorithm for small table after SOO.
1713
// Note that typical size after SOO is 3, but we allow up to 7.
1714
// Allowing till 16 would require additional store that can be avoided.
1715
0
constexpr size_t MaxSmallAfterSooCapacity() { return 7; }
1716
1717
// Type erased version of raw_hash_set::reserve.
1718
// Requires: `new_size > policy.soo_capacity`.
1719
void ReserveTableToFitNewSize(CommonFields& common,
1720
                              const PolicyFunctions& policy, size_t new_size);
1721
1722
// Resizes empty non-allocated table to the next valid capacity after
1723
// `bucket_count`. Requires:
1724
//   1. `c.capacity() == policy.soo_capacity`.
1725
//   2. `c.empty()`.
1726
//   3. `new_size > policy.soo_capacity`.
1727
// The table will be attempted to be sampled.
1728
void ReserveEmptyNonAllocatedTableToFitBucketCount(
1729
    CommonFields& common, const PolicyFunctions& policy, size_t bucket_count);
1730
1731
// Type erased version of raw_hash_set::rehash.
1732
void Rehash(CommonFields& common, const PolicyFunctions& policy, size_t n);
1733
1734
// Type erased version of copy constructor.
1735
void Copy(CommonFields& common, const PolicyFunctions& policy,
1736
          const CommonFields& other,
1737
          absl::FunctionRef<void(void*, const void*)> copy_fn);
1738
1739
// Returns the optimal size for memcpy when transferring SOO slot.
1740
// Otherwise, returns the optimal size for memcpy SOO slot transfer
1741
// to SooSlotIndex().
1742
// At the destination we are allowed to copy upto twice more bytes,
1743
// because there is at least one more slot after SooSlotIndex().
1744
// The result must not exceed MaxSooSlotSize().
1745
// Some of the cases are merged to minimize the number of function
1746
// instantiations.
1747
constexpr size_t OptimalMemcpySizeForSooSlotTransfer(
1748
0
    size_t slot_size, size_t max_soo_slot_size = MaxSooSlotSize()) {
1749
0
  static_assert(MaxSooSlotSize() >= 8, "unexpectedly small SOO slot size");
1750
0
  if (slot_size == 1) {
1751
0
    return 1;
1752
0
  }
1753
0
  if (slot_size <= 3) {
1754
0
    return 4;
1755
0
  }
1756
0
  // We are merging 4 and 8 into one case because we expect them to be the
1757
0
  // hottest cases. Copying 8 bytes is as fast on common architectures.
1758
0
  if (slot_size <= 8) {
1759
0
    return 8;
1760
0
  }
1761
0
  if (max_soo_slot_size <= 16) {
1762
0
    return max_soo_slot_size;
1763
0
  }
1764
0
  if (slot_size <= 16) {
1765
0
    return 16;
1766
0
  }
1767
0
  if (max_soo_slot_size <= 24) {
1768
0
    return max_soo_slot_size;
1769
0
  }
1770
0
  static_assert(MaxSooSlotSize() <= 24, "unexpectedly large SOO slot size");
1771
0
  return 24;
1772
0
}
1773
1774
// Resizes SOO table to the NextCapacity(SooCapacity()) and prepares insert for
1775
// the given new_hash. Returns the offset of the new element.
1776
// All possible template combinations are defined in cc file to improve
1777
// compilation time.
1778
template <size_t SooSlotMemcpySize, bool TransferUsesMemcpy>
1779
size_t GrowSooTableToNextCapacityAndPrepareInsert(
1780
    CommonFields& common, const PolicyFunctions& policy,
1781
    absl::FunctionRef<size_t(size_t)> get_hash, bool force_sampling);
1782
1783
// PrepareInsert for small tables (is_small()==true).
1784
// Returns the new control and the new slot.
1785
// Hash is only computed if the table is sampled or grew to large size
1786
// (is_small()==false).
1787
std::pair<ctrl_t*, void*> PrepareInsertSmallNonSoo(
1788
    CommonFields& common, const PolicyFunctions& policy,
1789
    absl::FunctionRef<size_t(size_t)> get_hash);
1790
1791
// Resizes table with allocated slots and change the table seed.
1792
// Tables with SOO enabled must have capacity > policy.soo_capacity.
1793
// No sampling will be performed since table is already allocated.
1794
void ResizeAllocatedTableWithSeedChange(CommonFields& common,
1795
                                        const PolicyFunctions& policy,
1796
                                        size_t new_capacity);
1797
1798
// ClearBackingArray clears the backing array, either modifying it in place,
1799
// or creating a new one based on the value of "reuse".
1800
// REQUIRES: c.capacity > 0
1801
void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
1802
                       void* alloc, bool reuse, bool soo_enabled);
1803
1804
// Type-erased version of raw_hash_set::erase_meta_only.
1805
void EraseMetaOnly(CommonFields& c, const ctrl_t* ctrl, size_t slot_size);
1806
1807
// For trivially relocatable types we use memcpy directly. This allows us to
1808
// share the same function body for raw_hash_set instantiations that have the
1809
// same slot size as long as they are relocatable.
1810
// Separate function for relocating single slot cause significant binary bloat.
1811
template <size_t SizeOfSlot>
1812
ABSL_ATTRIBUTE_NOINLINE void TransferNRelocatable(void*, void* dst, void* src,
1813
                                                  size_t count) {
1814
  // TODO(b/382423690): Experiment with making specialization for power of 2 and
1815
  // non power of 2. This would require passing the size of the slot.
1816
  memcpy(dst, src, SizeOfSlot * count);
1817
}
1818
1819
// Returns a pointer to `common`. This is used to implement type erased
1820
// raw_hash_set::get_hash_ref_fn and raw_hash_set::get_alloc_ref_fn for the
1821
// empty class cases.
1822
void* GetRefForEmptyClass(CommonFields& common);
1823
1824
// Given the hash of a value not currently in the table and the first empty
1825
// slot in the probe sequence, finds a viable slot index to insert it at.
1826
//
1827
// In case there's no space left, the table can be resized or rehashed
1828
// (for tables with deleted slots, see FindInsertPositionWithGrowthOrRehash).
1829
//
1830
// In the case of absence of deleted slots and positive growth_left, the element
1831
// can be inserted in the provided `target` position.
1832
//
1833
// When the table has deleted slots (according to GrowthInfo), the target
1834
// position will be searched one more time using `find_first_non_full`.
1835
//
1836
// REQUIRES: `!common.is_small()`.
1837
// REQUIRES: At least one non-full slot available.
1838
// REQUIRES: `target` is a valid empty position to insert.
1839
size_t PrepareInsertLarge(CommonFields& common, const PolicyFunctions& policy,
1840
                          size_t hash, FindInfo target);
1841
1842
// Same as above, but with generations enabled, we may end up changing the seed,
1843
// which means we need to be able to recompute the hash.
1844
size_t PrepareInsertLargeGenerationsEnabled(
1845
    CommonFields& common, const PolicyFunctions& policy, size_t hash,
1846
    FindInfo target, absl::FunctionRef<size_t(size_t)> recompute_hash);
1847
1848
// A SwissTable.
1849
//
1850
// Policy: a policy defines how to perform different operations on
1851
// the slots of the hashtable (see hash_policy_traits.h for the full interface
1852
// of policy).
1853
//
1854
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
1855
// functor should accept a key and return size_t as hash. For best performance
1856
// it is important that the hash function provides high entropy across all bits
1857
// of the hash.
1858
//
1859
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
1860
// should accept two (of possibly different type) keys and return a bool: true
1861
// if they are equal, false if they are not. If two keys compare equal, then
1862
// their hash values as defined by Hash MUST be equal.
1863
//
1864
// Allocator: an Allocator
1865
// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
1866
// the storage of the hashtable will be allocated and the elements will be
1867
// constructed and destroyed.
1868
template <class Policy, class Hash, class Eq, class Alloc>
1869
class raw_hash_set {
1870
  using PolicyTraits = hash_policy_traits<Policy>;
1871
  using KeyArgImpl =
1872
      KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
1873
1874
 public:
1875
  using init_type = typename PolicyTraits::init_type;
1876
  using key_type = typename PolicyTraits::key_type;
1877
  using allocator_type = Alloc;
1878
  using size_type = size_t;
1879
  using difference_type = ptrdiff_t;
1880
  using hasher = Hash;
1881
  using key_equal = Eq;
1882
  using policy_type = Policy;
1883
  using value_type = typename PolicyTraits::value_type;
1884
  using reference = value_type&;
1885
  using const_reference = const value_type&;
1886
  using pointer = typename absl::allocator_traits<
1887
      allocator_type>::template rebind_traits<value_type>::pointer;
1888
  using const_pointer = typename absl::allocator_traits<
1889
      allocator_type>::template rebind_traits<value_type>::const_pointer;
1890
1891
 private:
1892
  // Alias used for heterogeneous lookup functions.
1893
  // `key_arg<K>` evaluates to `K` when the functors are transparent and to
1894
  // `key_type` otherwise. It permits template argument deduction on `K` for the
1895
  // transparent case.
1896
  template <class K>
1897
  using key_arg = typename KeyArgImpl::template type<K, key_type>;
1898
1899
  using slot_type = typename PolicyTraits::slot_type;
1900
1901
  constexpr static bool kIsDefaultHash =
1902
      std::is_same_v<hasher, absl::Hash<key_type>> ||
1903
      std::is_same_v<hasher, absl::container_internal::StringHash>;
1904
1905
  // TODO(b/289225379): we could add extra SOO space inside raw_hash_set
1906
  // after CommonFields to allow inlining larger slot_types (e.g. std::string),
1907
  // but it's a bit complicated if we want to support incomplete mapped_type in
1908
  // flat_hash_map. We could potentially do this for flat_hash_set and for an
1909
  // allowlist of `mapped_type`s of flat_hash_map that includes e.g. arithmetic
1910
  // types, strings, cords, and pairs/tuples of allowlisted types.
1911
  constexpr static bool SooEnabled() {
1912
    return PolicyTraits::soo_enabled() &&
1913
           sizeof(slot_type) <= sizeof(HeapOrSoo) &&
1914
           alignof(slot_type) <= alignof(HeapOrSoo);
1915
  }
1916
1917
  constexpr static size_t DefaultCapacity() {
1918
    return SooEnabled() ? SooCapacity() : 0;
1919
  }
1920
1921
  // Whether `size` fits in the SOO capacity of this table.
1922
  bool fits_in_soo(size_t size) const {
1923
    return SooEnabled() && size <= SooCapacity();
1924
  }
1925
  // Whether this table is in SOO mode or non-SOO mode.
1926
  bool is_soo() const { return fits_in_soo(capacity()); }
1927
  bool is_full_soo() const { return is_soo() && !empty(); }
1928
1929
  bool is_small() const { return common().is_small(); }
1930
1931
  // Give an early error when key_type is not hashable/eq.
1932
  auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
1933
  auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
1934
1935
  using AllocTraits = absl::allocator_traits<allocator_type>;
1936
  using SlotAlloc = typename absl::allocator_traits<
1937
      allocator_type>::template rebind_alloc<slot_type>;
1938
  // People are often sloppy with the exact type of their allocator (sometimes
1939
  // it has an extra const or is missing the pair, but rebinds made it work
1940
  // anyway).
1941
  using CharAlloc =
1942
      typename absl::allocator_traits<Alloc>::template rebind_alloc<char>;
1943
  using SlotAllocTraits = typename absl::allocator_traits<
1944
      allocator_type>::template rebind_traits<slot_type>;
1945
1946
  static_assert(std::is_lvalue_reference<reference>::value,
1947
                "Policy::element() must return a reference");
1948
1949
  // An enabler for insert(T&&): T must be convertible to init_type or be the
1950
  // same as [cv] value_type [ref].
1951
  template <class T>
1952
  using Insertable = absl::disjunction<
1953
      std::is_same<absl::remove_cvref_t<reference>, absl::remove_cvref_t<T>>,
1954
      std::is_convertible<T, init_type>>;
1955
  template <class T>
1956
  using IsNotBitField = std::is_pointer<T*>;
1957
1958
  // RequiresNotInit is a workaround for gcc prior to 7.1.
1959
  // See https://godbolt.org/g/Y4xsUh.
1960
  template <class T>
1961
  using RequiresNotInit =
1962
      typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
1963
1964
  template <class... Ts>
1965
  using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
1966
1967
  template <class T>
1968
  using IsDecomposableAndInsertable =
1969
      IsDecomposable<std::enable_if_t<Insertable<T>::value, T>>;
1970
1971
  // Evaluates to true if an assignment from the given type would require the
1972
  // source object to remain alive for the life of the element.
1973
  template <class U>
1974
  using IsLifetimeBoundAssignmentFrom = std::conditional_t<
1975
      policy_trait_element_is_owner<Policy>::value, std::false_type,
1976
      type_traits_internal::IsLifetimeBoundAssignment<init_type, U>>;
1977
1978
 public:
1979
  static_assert(std::is_same<pointer, value_type*>::value,
1980
                "Allocators with custom pointer types are not supported");
1981
  static_assert(std::is_same<const_pointer, const value_type*>::value,
1982
                "Allocators with custom pointer types are not supported");
1983
1984
  class iterator : private HashSetIteratorGenerationInfo {
1985
    friend class raw_hash_set;
1986
    friend struct HashtableFreeFunctionsAccess;
1987
1988
   public:
1989
    using iterator_category = std::forward_iterator_tag;
1990
    using value_type = typename raw_hash_set::value_type;
1991
    using reference =
1992
        absl::conditional_t<PolicyTraits::constant_iterators::value,
1993
                            const value_type&, value_type&>;
1994
    using pointer = absl::remove_reference_t<reference>*;
1995
    using difference_type = typename raw_hash_set::difference_type;
1996
1997
    iterator() {}
1998
1999
    // PRECONDITION: not an end() iterator.
2000
    reference operator*() const {
2001
      AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()");
2002
      return unchecked_deref();
2003
    }
2004
2005
    // PRECONDITION: not an end() iterator.
2006
    pointer operator->() const {
2007
      AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->");
2008
      return &operator*();
2009
    }
2010
2011
    // PRECONDITION: not an end() iterator.
2012
    iterator& operator++() {
2013
      AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++");
2014
      ++ctrl_;
2015
      ++slot_;
2016
      skip_empty_or_deleted();
2017
      if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
2018
      return *this;
2019
    }
2020
    // PRECONDITION: not an end() iterator.
2021
    iterator operator++(int) {
2022
      auto tmp = *this;
2023
      ++*this;
2024
      return tmp;
2025
    }
2026
2027
    friend bool operator==(const iterator& a, const iterator& b) {
2028
      AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr());
2029
      AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr());
2030
      AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_,
2031
                          a.generation_ptr(), b.generation_ptr());
2032
      return a.ctrl_ == b.ctrl_;
2033
    }
2034
    friend bool operator!=(const iterator& a, const iterator& b) {
2035
      return !(a == b);
2036
    }
2037
2038
   private:
2039
    iterator(ctrl_t* ctrl, slot_type* slot,
2040
             const GenerationType* generation_ptr)
2041
        : HashSetIteratorGenerationInfo(generation_ptr),
2042
          ctrl_(ctrl),
2043
          slot_(slot) {
2044
      // This assumption helps the compiler know that any non-end iterator is
2045
      // not equal to any end iterator.
2046
      ABSL_ASSUME(ctrl != nullptr);
2047
    }
2048
    // This constructor is used in begin() to avoid an MSan
2049
    // use-of-uninitialized-value error. Delegating from this constructor to
2050
    // the previous one doesn't avoid the error.
2051
    iterator(ctrl_t* ctrl, MaybeInitializedPtr<void> slot,
2052
             const GenerationType* generation_ptr)
2053
        : HashSetIteratorGenerationInfo(generation_ptr),
2054
          ctrl_(ctrl),
2055
          slot_(to_slot(slot.get())) {
2056
      // This assumption helps the compiler know that any non-end iterator is
2057
      // not equal to any end iterator.
2058
      ABSL_ASSUME(ctrl != nullptr);
2059
    }
2060
    // For end() iterators.
2061
    explicit iterator(const GenerationType* generation_ptr)
2062
        : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {}
2063
2064
    // Fixes up `ctrl_` to point to a full or sentinel by advancing `ctrl_` and
2065
    // `slot_` until they reach one.
2066
    void skip_empty_or_deleted() {
2067
      while (IsEmptyOrDeleted(*ctrl_)) {
2068
        auto mask = GroupFullEmptyOrDeleted{ctrl_}.MaskFullOrSentinel();
2069
        // Generally it is possible to compute `shift` branchless.
2070
        // This branch is useful to:
2071
        // 1. Avoid checking `IsEmptyOrDeleted` after the shift for the most
2072
        //    common dense table case.
2073
        // 2. Avoid the cost of `LowestBitSet` for extremely sparse tables.
2074
        if (ABSL_PREDICT_TRUE(mask)) {
2075
          auto shift = mask.LowestBitSet();
2076
          ctrl_ += shift;
2077
          slot_ += shift;
2078
          return;
2079
        }
2080
        ctrl_ += Group::kWidth;
2081
        slot_ += Group::kWidth;
2082
      }
2083
    }
2084
2085
    ctrl_t* control() const { return ctrl_; }
2086
    slot_type* slot() const { return slot_; }
2087
2088
    // We use DefaultIterControl() for default-constructed iterators so that
2089
    // they can be distinguished from end iterators, which have nullptr ctrl_.
2090
    ctrl_t* ctrl_ = DefaultIterControl();
2091
    // To avoid uninitialized member warnings, put slot_ in an anonymous union.
2092
    // The member is not initialized on singleton and end iterators.
2093
    union {
2094
      slot_type* slot_;
2095
    };
2096
2097
    // An equality check which skips ABSL Hardening iterator invalidation
2098
    // checks.
2099
    // Should be used when the lifetimes of the iterators are well-enough
2100
    // understood to prove that they cannot be invalid.
2101
    bool unchecked_equals(const iterator& b) { return ctrl_ == b.control(); }
2102
2103
    // Dereferences the iterator without ABSL Hardening iterator invalidation
2104
    // checks.
2105
    reference unchecked_deref() const { return PolicyTraits::element(slot_); }
2106
  };
2107
2108
  class const_iterator {
2109
    friend class raw_hash_set;
2110
    template <class Container, typename Enabler>
2111
    friend struct absl::container_internal::hashtable_debug_internal::
2112
        HashtableDebugAccess;
2113
2114
   public:
2115
    using iterator_category = typename iterator::iterator_category;
2116
    using value_type = typename raw_hash_set::value_type;
2117
    using reference = typename raw_hash_set::const_reference;
2118
    using pointer = typename raw_hash_set::const_pointer;
2119
    using difference_type = typename raw_hash_set::difference_type;
2120
2121
    const_iterator() = default;
2122
    // Implicit construction from iterator.
2123
    const_iterator(iterator i) : inner_(std::move(i)) {}  // NOLINT
2124
2125
    reference operator*() const { return *inner_; }
2126
    pointer operator->() const { return inner_.operator->(); }
2127
2128
    const_iterator& operator++() {
2129
      ++inner_;
2130
      return *this;
2131
    }
2132
    const_iterator operator++(int) { return inner_++; }
2133
2134
    friend bool operator==(const const_iterator& a, const const_iterator& b) {
2135
      return a.inner_ == b.inner_;
2136
    }
2137
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
2138
      return !(a == b);
2139
    }
2140
2141
   private:
2142
    const_iterator(const ctrl_t* ctrl, const slot_type* slot,
2143
                   const GenerationType* gen)
2144
        : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) {
2145
    }
2146
    ctrl_t* control() const { return inner_.control(); }
2147
    slot_type* slot() const { return inner_.slot(); }
2148
2149
    iterator inner_;
2150
2151
    bool unchecked_equals(const const_iterator& b) {
2152
      return inner_.unchecked_equals(b.inner_);
2153
    }
2154
  };
2155
2156
  using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
2157
  using insert_return_type = InsertReturnType<iterator, node_type>;
2158
2159
  // Note: can't use `= default` due to non-default noexcept (causes
2160
  // problems for some compilers). NOLINTNEXTLINE
2161
  raw_hash_set() noexcept(
2162
      std::is_nothrow_default_constructible<hasher>::value &&
2163
      std::is_nothrow_default_constructible<key_equal>::value &&
2164
      std::is_nothrow_default_constructible<allocator_type>::value) {}
2165
2166
  explicit raw_hash_set(
2167
      size_t bucket_count, const hasher& hash = hasher(),
2168
      const key_equal& eq = key_equal(),
2169
      const allocator_type& alloc = allocator_type())
2170
      : settings_(CommonFields::CreateDefault<SooEnabled()>(), hash, eq,
2171
                  alloc) {
2172
    if (bucket_count > DefaultCapacity()) {
2173
      ReserveEmptyNonAllocatedTableToFitBucketCount(
2174
          common(), GetPolicyFunctions(), bucket_count);
2175
    }
2176
  }
2177
2178
  raw_hash_set(size_t bucket_count, const hasher& hash,
2179
               const allocator_type& alloc)
2180
      : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
2181
2182
  raw_hash_set(size_t bucket_count, const allocator_type& alloc)
2183
      : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
2184
2185
  explicit raw_hash_set(const allocator_type& alloc)
2186
      : raw_hash_set(0, hasher(), key_equal(), alloc) {}
2187
2188
  template <class InputIter>
2189
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
2190
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2191
               const allocator_type& alloc = allocator_type())
2192
      : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
2193
                     hash, eq, alloc) {
2194
    insert(first, last);
2195
  }
2196
2197
  template <class InputIter>
2198
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
2199
               const hasher& hash, const allocator_type& alloc)
2200
      : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
2201
2202
  template <class InputIter>
2203
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
2204
               const allocator_type& alloc)
2205
      : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
2206
2207
  template <class InputIter>
2208
  raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
2209
      : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
2210
2211
  // Instead of accepting std::initializer_list<value_type> as the first
2212
  // argument like std::unordered_set<value_type> does, we have two overloads
2213
  // that accept std::initializer_list<T> and std::initializer_list<init_type>.
2214
  // This is advantageous for performance.
2215
  //
2216
  //   // Turns {"abc", "def"} into std::initializer_list<std::string>, then
2217
  //   // copies the strings into the set.
2218
  //   std::unordered_set<std::string> s = {"abc", "def"};
2219
  //
2220
  //   // Turns {"abc", "def"} into std::initializer_list<const char*>, then
2221
  //   // copies the strings into the set.
2222
  //   absl::flat_hash_set<std::string> s = {"abc", "def"};
2223
  //
2224
  // The same trick is used in insert().
2225
  //
2226
  // The enabler is necessary to prevent this constructor from triggering where
2227
  // the copy constructor is meant to be called.
2228
  //
2229
  //   absl::flat_hash_set<int> a, b{a};
2230
  //
2231
  // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
2232
  template <class T, RequiresNotInit<T> = 0,
2233
            std::enable_if_t<Insertable<T>::value, int> = 0>
2234
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
2235
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2236
               const allocator_type& alloc = allocator_type())
2237
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
2238
2239
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
2240
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2241
               const allocator_type& alloc = allocator_type())
2242
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
2243
2244
  template <class T, RequiresNotInit<T> = 0,
2245
            std::enable_if_t<Insertable<T>::value, int> = 0>
2246
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
2247
               const hasher& hash, const allocator_type& alloc)
2248
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
2249
2250
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
2251
               const hasher& hash, const allocator_type& alloc)
2252
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
2253
2254
  template <class T, RequiresNotInit<T> = 0,
2255
            std::enable_if_t<Insertable<T>::value, int> = 0>
2256
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
2257
               const allocator_type& alloc)
2258
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
2259
2260
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
2261
               const allocator_type& alloc)
2262
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
2263
2264
  template <class T, RequiresNotInit<T> = 0,
2265
            std::enable_if_t<Insertable<T>::value, int> = 0>
2266
  raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
2267
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
2268
2269
  raw_hash_set(std::initializer_list<init_type> init,
2270
               const allocator_type& alloc)
2271
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
2272
2273
  raw_hash_set(const raw_hash_set& that)
2274
      : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
2275
                               allocator_type(that.char_alloc_ref()))) {}
2276
2277
  raw_hash_set(const raw_hash_set& that, const allocator_type& a)
2278
      : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
2279
    that.AssertNotDebugCapacity();
2280
    if (that.empty()) return;
2281
    Copy(common(), GetPolicyFunctions(), that.common(),
2282
         [this](void* dst, const void* src) {
2283
           // TODO(b/413598253): type erase for trivially copyable types via
2284
           // PolicyTraits.
2285
           construct(to_slot(dst),
2286
                     PolicyTraits::element(
2287
                         static_cast<slot_type*>(const_cast<void*>(src))));
2288
         });
2289
  }
2290
2291
  ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept(
2292
      std::is_nothrow_copy_constructible<hasher>::value &&
2293
      std::is_nothrow_copy_constructible<key_equal>::value &&
2294
      std::is_nothrow_copy_constructible<allocator_type>::value)
2295
      :  // Hash, equality and allocator are copied instead of moved because
2296
         // `that` must be left valid. If Hash is std::function<Key>, moving it
2297
         // would create a nullptr functor that cannot be called.
2298
         // Note: we avoid using exchange for better generated code.
2299
        settings_(PolicyTraits::transfer_uses_memcpy() || !that.is_full_soo()
2300
                      ? std::move(that.common())
2301
                      : CommonFields{full_soo_tag_t{}},
2302
                  that.hash_ref(), that.eq_ref(), that.char_alloc_ref()) {
2303
    if (!PolicyTraits::transfer_uses_memcpy() && that.is_full_soo()) {
2304
      transfer(soo_slot(), that.soo_slot());
2305
    }
2306
    that.common() = CommonFields::CreateDefault<SooEnabled()>();
2307
    annotate_for_bug_detection_on_move(that);
2308
  }
2309
2310
  raw_hash_set(raw_hash_set&& that, const allocator_type& a)
2311
      : settings_(CommonFields::CreateDefault<SooEnabled()>(), that.hash_ref(),
2312
                  that.eq_ref(), a) {
2313
    if (CharAlloc(a) == that.char_alloc_ref()) {
2314
      swap_common(that);
2315
      annotate_for_bug_detection_on_move(that);
2316
    } else {
2317
      move_elements_allocs_unequal(std::move(that));
2318
    }
2319
  }
2320
2321
  raw_hash_set& operator=(const raw_hash_set& that) {
2322
    that.AssertNotDebugCapacity();
2323
    if (ABSL_PREDICT_FALSE(this == &that)) return *this;
2324
    constexpr bool propagate_alloc =
2325
        AllocTraits::propagate_on_container_copy_assignment::value;
2326
    // TODO(ezb): maybe avoid allocating a new backing array if this->capacity()
2327
    // is an exact match for that.size(). If this->capacity() is too big, then
2328
    // it would make iteration very slow to reuse the allocation. Maybe we can
2329
    // do the same heuristic as clear() and reuse if it's small enough.
2330
    allocator_type alloc(propagate_alloc ? that.char_alloc_ref()
2331
                                         : char_alloc_ref());
2332
    raw_hash_set tmp(that, alloc);
2333
    // NOLINTNEXTLINE: not returning *this for performance.
2334
    return assign_impl<propagate_alloc>(std::move(tmp));
2335
  }
2336
2337
  raw_hash_set& operator=(raw_hash_set&& that) noexcept(
2338
      absl::allocator_traits<allocator_type>::is_always_equal::value &&
2339
      std::is_nothrow_move_assignable<hasher>::value &&
2340
      std::is_nothrow_move_assignable<key_equal>::value) {
2341
    // TODO(sbenza): We should only use the operations from the noexcept clause
2342
    // to make sure we actually adhere to that contract.
2343
    // NOLINTNEXTLINE: not returning *this for performance.
2344
    return move_assign(
2345
        std::move(that),
2346
        typename AllocTraits::propagate_on_container_move_assignment());
2347
  }
2348
2349
  ~raw_hash_set() {
2350
    destructor_impl();
2351
    if constexpr (SwisstableAssertAccessToDestroyedTable()) {
2352
      common().set_capacity(InvalidCapacity::kDestroyed);
2353
    }
2354
  }
2355
2356
  iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
2357
    if (ABSL_PREDICT_FALSE(empty())) return end();
2358
    if (is_small()) return single_iterator();
2359
    iterator it = {control(), common().slots_union(),
2360
                   common().generation_ptr()};
2361
    it.skip_empty_or_deleted();
2362
    ABSL_SWISSTABLE_ASSERT(IsFull(*it.control()));
2363
    return it;
2364
  }
2365
  iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
2366
    AssertNotDebugCapacity();
2367
    return iterator(common().generation_ptr());
2368
  }
2369
2370
  const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2371
    return const_cast<raw_hash_set*>(this)->begin();
2372
  }
2373
  const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2374
    return const_cast<raw_hash_set*>(this)->end();
2375
  }
2376
  const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2377
    return begin();
2378
  }
2379
  const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
2380
2381
  bool empty() const { return !size(); }
2382
  size_t size() const {
2383
    AssertNotDebugCapacity();
2384
    return common().size();
2385
  }
2386
  size_t capacity() const {
2387
    const size_t cap = common().capacity();
2388
    // Compiler complains when using functions in ASSUME so use local variable.
2389
    [[maybe_unused]] static constexpr size_t kDefaultCapacity =
2390
        DefaultCapacity();
2391
    ABSL_ASSUME(cap >= kDefaultCapacity);
2392
    return cap;
2393
  }
2394
  size_t max_size() const { return MaxValidSize(sizeof(slot_type)); }
2395
2396
  ABSL_ATTRIBUTE_REINITIALIZES void clear() {
2397
    if (SwisstableGenerationsEnabled() &&
2398
        capacity() >= InvalidCapacity::kMovedFrom) {
2399
      common().set_capacity(DefaultCapacity());
2400
    }
2401
    AssertNotDebugCapacity();
2402
    // Iterating over this container is O(bucket_count()). When bucket_count()
2403
    // is much greater than size(), iteration becomes prohibitively expensive.
2404
    // For clear() it is more important to reuse the allocated array when the
2405
    // container is small because allocation takes comparatively long time
2406
    // compared to destruction of the elements of the container. So we pick the
2407
    // largest bucket_count() threshold for which iteration is still fast and
2408
    // past that we simply deallocate the array.
2409
    const size_t cap = capacity();
2410
    if (cap == 0) {
2411
      // Already guaranteed to be empty; so nothing to do.
2412
    } else if (is_small()) {
2413
      if (!empty()) {
2414
        destroy(single_slot());
2415
        decrement_small_size();
2416
      }
2417
    } else {
2418
      destroy_slots();
2419
      clear_backing_array(/*reuse=*/cap < 128);
2420
    }
2421
    common().set_reserved_growth(0);
2422
    common().set_reservation_size(0);
2423
  }
2424
2425
  // This overload kicks in when the argument is an rvalue of insertable and
2426
  // decomposable type other than init_type.
2427
  //
2428
  //   flat_hash_map<std::string, int> m;
2429
  //   m.insert(std::make_pair("abc", 42));
2430
  template <class T,
2431
            int = std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2432
                                       IsNotBitField<T>::value &&
2433
                                       !IsLifetimeBoundAssignmentFrom<T>::value,
2434
                                   int>()>
2435
  std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2436
    return emplace(std::forward<T>(value));
2437
  }
2438
2439
  template <class T, int&...,
2440
            std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2441
                                 IsNotBitField<T>::value &&
2442
                                 IsLifetimeBoundAssignmentFrom<T>::value,
2443
                             int> = 0>
2444
  std::pair<iterator, bool> insert(
2445
      T&& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2446
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2447
    return this->template insert<T, 0>(std::forward<T>(value));
2448
  }
2449
2450
  // This overload kicks in when the argument is a bitfield or an lvalue of
2451
  // insertable and decomposable type.
2452
  //
2453
  //   union { int n : 1; };
2454
  //   flat_hash_set<int> s;
2455
  //   s.insert(n);
2456
  //
2457
  //   flat_hash_set<std::string> s;
2458
  //   const char* p = "hello";
2459
  //   s.insert(p);
2460
  //
2461
  template <class T, int = std::enable_if_t<
2462
                         IsDecomposableAndInsertable<const T&>::value &&
2463
                             !IsLifetimeBoundAssignmentFrom<const T&>::value,
2464
                         int>()>
2465
  std::pair<iterator, bool> insert(const T& value)
2466
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2467
    return emplace(value);
2468
  }
2469
  template <class T, int&...,
2470
            std::enable_if_t<IsDecomposableAndInsertable<const T&>::value &&
2471
                                 IsLifetimeBoundAssignmentFrom<const T&>::value,
2472
                             int> = 0>
2473
  std::pair<iterator, bool> insert(
2474
      const T& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2475
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2476
    return this->template insert<T, 0>(value);
2477
  }
2478
2479
  // This overload kicks in when the argument is an rvalue of init_type. Its
2480
  // purpose is to handle brace-init-list arguments.
2481
  //
2482
  //   flat_hash_map<std::string, int> s;
2483
  //   s.insert({"abc", 42});
2484
  std::pair<iterator, bool> insert(init_type&& value)
2485
      ABSL_ATTRIBUTE_LIFETIME_BOUND
2486
#if __cplusplus >= 202002L
2487
    requires(!IsLifetimeBoundAssignmentFrom<init_type>::value)
2488
#endif
2489
  {
2490
    return emplace(std::move(value));
2491
  }
2492
#if __cplusplus >= 202002L
2493
  std::pair<iterator, bool> insert(
2494
      init_type&& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2495
      ABSL_ATTRIBUTE_LIFETIME_BOUND
2496
    requires(IsLifetimeBoundAssignmentFrom<init_type>::value)
2497
  {
2498
    return emplace(std::move(value));
2499
  }
2500
#endif
2501
2502
  template <class T,
2503
            int = std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2504
                                       IsNotBitField<T>::value &&
2505
                                       !IsLifetimeBoundAssignmentFrom<T>::value,
2506
                                   int>()>
2507
  iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2508
    return insert(std::forward<T>(value)).first;
2509
  }
2510
  template <class T, int&...,
2511
            std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2512
                                 IsNotBitField<T>::value &&
2513
                                 IsLifetimeBoundAssignmentFrom<T>::value,
2514
                             int> = 0>
2515
  iterator insert(const_iterator hint,
2516
                  T&& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2517
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2518
    return this->template insert<T, 0>(hint, std::forward<T>(value));
2519
  }
2520
2521
  template <class T, std::enable_if_t<
2522
                         IsDecomposableAndInsertable<const T&>::value, int> = 0>
2523
  iterator insert(const_iterator,
2524
                  const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2525
    return insert(value).first;
2526
  }
2527
2528
  iterator insert(const_iterator,
2529
                  init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2530
    return insert(std::move(value)).first;
2531
  }
2532
2533
  template <class InputIt>
2534
  void insert(InputIt first, InputIt last) {
2535
    for (; first != last; ++first) emplace(*first);
2536
  }
2537
2538
  template <class T, RequiresNotInit<T> = 0,
2539
            std::enable_if_t<Insertable<const T&>::value, int> = 0>
2540
  void insert(std::initializer_list<T> ilist) {
2541
    insert(ilist.begin(), ilist.end());
2542
  }
2543
2544
  void insert(std::initializer_list<init_type> ilist) {
2545
    insert(ilist.begin(), ilist.end());
2546
  }
2547
2548
  insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2549
    if (!node) return {end(), false, node_type()};
2550
    const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
2551
    auto res = PolicyTraits::apply(
2552
        InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
2553
        elem);
2554
    if (res.second) {
2555
      CommonAccess::Reset(&node);
2556
      return {res.first, true, node_type()};
2557
    } else {
2558
      return {res.first, false, std::move(node)};
2559
    }
2560
  }
2561
2562
  iterator insert(const_iterator,
2563
                  node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2564
    auto res = insert(std::move(node));
2565
    node = std::move(res.node);
2566
    return res.position;
2567
  }
2568
2569
  // This overload kicks in if we can deduce the key from args. This enables us
2570
  // to avoid constructing value_type if an entry with the same key already
2571
  // exists.
2572
  //
2573
  // For example:
2574
  //
2575
  //   flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
2576
  //   // Creates no std::string copies and makes no heap allocations.
2577
  //   m.emplace("abc", "xyz");
2578
  template <class... Args,
2579
            std::enable_if_t<IsDecomposable<Args...>::value, int> = 0>
2580
  std::pair<iterator, bool> emplace(Args&&... args)
2581
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2582
    return PolicyTraits::apply(EmplaceDecomposable{*this},
2583
                               std::forward<Args>(args)...);
2584
  }
2585
2586
  // This overload kicks in if we cannot deduce the key from args. It constructs
2587
  // value_type unconditionally and then either moves it into the table or
2588
  // destroys.
2589
  template <class... Args,
2590
            std::enable_if_t<!IsDecomposable<Args...>::value, int> = 0>
2591
  std::pair<iterator, bool> emplace(Args&&... args)
2592
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2593
    alignas(slot_type) unsigned char raw[sizeof(slot_type)];
2594
    slot_type* slot = to_slot(&raw);
2595
2596
    construct(slot, std::forward<Args>(args)...);
2597
    const auto& elem = PolicyTraits::element(slot);
2598
    return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
2599
  }
2600
2601
  template <class... Args>
2602
  iterator emplace_hint(const_iterator,
2603
                        Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2604
    return emplace(std::forward<Args>(args)...).first;
2605
  }
2606
2607
  // Extension API: support for lazy emplace.
2608
  //
2609
  // Looks up key in the table. If found, returns the iterator to the element.
2610
  // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`,
2611
  // and returns an iterator to the new element.
2612
  //
2613
  // `f` must abide by several restrictions:
2614
  //  - it MUST call `raw_hash_set::constructor` with arguments as if a
2615
  //    `raw_hash_set::value_type` is constructed,
2616
  //  - it MUST NOT access the container before the call to
2617
  //    `raw_hash_set::constructor`, and
2618
  //  - it MUST NOT erase the lazily emplaced element.
2619
  // Doing any of these is undefined behavior.
2620
  //
2621
  // For example:
2622
  //
2623
  //   std::unordered_set<ArenaString> s;
2624
  //   // Makes ArenaStr even if "abc" is in the map.
2625
  //   s.insert(ArenaString(&arena, "abc"));
2626
  //
2627
  //   flat_hash_set<ArenaStr> s;
2628
  //   // Makes ArenaStr only if "abc" is not in the map.
2629
  //   s.lazy_emplace("abc", [&](const constructor& ctor) {
2630
  //     ctor(&arena, "abc");
2631
  //   });
2632
  //
2633
  // WARNING: This API is currently experimental. If there is a way to implement
2634
  // the same thing with the rest of the API, prefer that.
2635
  class constructor {
2636
    friend class raw_hash_set;
2637
2638
   public:
2639
    template <class... Args>
2640
    void operator()(Args&&... args) const {
2641
      ABSL_SWISSTABLE_ASSERT(*slot_);
2642
      PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
2643
      *slot_ = nullptr;
2644
    }
2645
2646
   private:
2647
    constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
2648
2649
    allocator_type* alloc_;
2650
    slot_type** slot_;
2651
  };
2652
2653
  template <class K = key_type, class F>
2654
  iterator lazy_emplace(const key_arg<K>& key,
2655
                        F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2656
    auto res = find_or_prepare_insert(key);
2657
    if (res.second) {
2658
      slot_type* slot = res.first.slot();
2659
      allocator_type alloc(char_alloc_ref());
2660
      std::forward<F>(f)(constructor(&alloc, &slot));
2661
      ABSL_SWISSTABLE_ASSERT(!slot);
2662
    }
2663
    return res.first;
2664
  }
2665
2666
  // Extension API: support for heterogeneous keys.
2667
  //
2668
  //   std::unordered_set<std::string> s;
2669
  //   // Turns "abc" into std::string.
2670
  //   s.erase("abc");
2671
  //
2672
  //   flat_hash_set<std::string> s;
2673
  //   // Uses "abc" directly without copying it into std::string.
2674
  //   s.erase("abc");
2675
  template <class K = key_type>
2676
  size_type erase(const key_arg<K>& key) {
2677
    auto it = find(key);
2678
    if (it == end()) return 0;
2679
    erase(it);
2680
    return 1;
2681
  }
2682
2683
  // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
2684
  // this method returns void to reduce algorithmic complexity to O(1). The
2685
  // iterator is invalidated so any increment should be done before calling
2686
  // erase (e.g. `erase(it++)`).
2687
  void erase(const_iterator cit) { erase(cit.inner_); }
2688
2689
  // This overload is necessary because otherwise erase<K>(const K&) would be
2690
  // a better match if non-const iterator is passed as an argument.
2691
  void erase(iterator it) {
2692
    ABSL_SWISSTABLE_ASSERT(capacity() > 0);
2693
    AssertNotDebugCapacity();
2694
    AssertIsFull(it.control(), it.generation(), it.generation_ptr(), "erase()");
2695
    destroy(it.slot());
2696
    erase_meta_only(it);
2697
  }
2698
2699
  iterator erase(const_iterator first,
2700
                 const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2701
    AssertNotDebugCapacity();
2702
    // We check for empty first because clear_backing_array requires that
2703
    // capacity() > 0 as a precondition.
2704
    if (empty()) return end();
2705
    if (first == last) return last.inner_;
2706
    if (is_small()) {
2707
      destroy(single_slot());
2708
      erase_meta_only(single_iterator());
2709
      return end();
2710
    }
2711
    if (first == begin() && last == end()) {
2712
      // TODO(ezb): we access control bytes in destroy_slots so it could make
2713
      // sense to combine destroy_slots and clear_backing_array to avoid cache
2714
      // misses when the table is large. Note that we also do this in clear().
2715
      destroy_slots();
2716
      clear_backing_array(/*reuse=*/true);
2717
      common().set_reserved_growth(common().reservation_size());
2718
      return end();
2719
    }
2720
    while (first != last) {
2721
      erase(first++);
2722
    }
2723
    return last.inner_;
2724
  }
2725
2726
  // Moves elements from `src` into `this`.
2727
  // If the element already exists in `this`, it is left unmodified in `src`.
2728
  template <typename H, typename E>
2729
  void merge(raw_hash_set<Policy, H, E, Alloc>& src) {  // NOLINT
2730
    AssertNotDebugCapacity();
2731
    src.AssertNotDebugCapacity();
2732
    assert(this != &src);
2733
    // Returns whether insertion took place.
2734
    const auto insert_slot = [this](slot_type* src_slot) {
2735
      return PolicyTraits::apply(InsertSlot<false>{*this, std::move(*src_slot)},
2736
                                 PolicyTraits::element(src_slot))
2737
          .second;
2738
    };
2739
2740
    if (src.is_small()) {
2741
      if (src.empty()) return;
2742
      if (insert_slot(src.single_slot()))
2743
        src.erase_meta_only(src.single_iterator());
2744
      return;
2745
    }
2746
    for (auto it = src.begin(), e = src.end(); it != e;) {
2747
      auto next = std::next(it);
2748
      if (insert_slot(it.slot())) src.erase_meta_only(it);
2749
      it = next;
2750
    }
2751
  }
2752
2753
  template <typename H, typename E>
2754
  void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
2755
    merge(src);
2756
  }
2757
2758
  node_type extract(const_iterator position) {
2759
    AssertNotDebugCapacity();
2760
    AssertIsFull(position.control(), position.inner_.generation(),
2761
                 position.inner_.generation_ptr(), "extract()");
2762
    allocator_type alloc(char_alloc_ref());
2763
    auto node = CommonAccess::Transfer<node_type>(alloc, position.slot());
2764
    erase_meta_only(position);
2765
    return node;
2766
  }
2767
2768
  template <class K = key_type,
2769
            std::enable_if_t<!std::is_same<K, iterator>::value, int> = 0>
2770
  node_type extract(const key_arg<K>& key) {
2771
    auto it = find(key);
2772
    return it == end() ? node_type() : extract(const_iterator{it});
2773
  }
2774
2775
  void swap(raw_hash_set& that) noexcept(
2776
      IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
2777
      IsNoThrowSwappable<allocator_type>(
2778
          typename AllocTraits::propagate_on_container_swap{})) {
2779
    AssertNotDebugCapacity();
2780
    that.AssertNotDebugCapacity();
2781
    using std::swap;
2782
    swap_common(that);
2783
    swap(hash_ref(), that.hash_ref());
2784
    swap(eq_ref(), that.eq_ref());
2785
    SwapAlloc(char_alloc_ref(), that.char_alloc_ref(),
2786
              typename AllocTraits::propagate_on_container_swap{});
2787
  }
2788
2789
  void rehash(size_t n) { Rehash(common(), GetPolicyFunctions(), n); }
2790
2791
  void reserve(size_t n) {
2792
    if (ABSL_PREDICT_TRUE(n > DefaultCapacity())) {
2793
      ReserveTableToFitNewSize(common(), GetPolicyFunctions(), n);
2794
    }
2795
  }
2796
2797
  // Extension API: support for heterogeneous keys.
2798
  //
2799
  //   std::unordered_set<std::string> s;
2800
  //   // Turns "abc" into std::string.
2801
  //   s.count("abc");
2802
  //
2803
  //   ch_set<std::string> s;
2804
  //   // Uses "abc" directly without copying it into std::string.
2805
  //   s.count("abc");
2806
  template <class K = key_type>
2807
  size_t count(const key_arg<K>& key) const {
2808
    return find(key) == end() ? 0 : 1;
2809
  }
2810
2811
  // Issues CPU prefetch instructions for the memory needed to find or insert
2812
  // a key.  Like all lookup functions, this support heterogeneous keys.
2813
  //
2814
  // NOTE: This is a very low level operation and should not be used without
2815
  // specific benchmarks indicating its importance.
2816
  template <class K = key_type>
2817
  void prefetch([[maybe_unused]] const key_arg<K>& key) const {
2818
    if (capacity() == DefaultCapacity()) return;
2819
    // Avoid probing if we won't be able to prefetch the addresses received.
2820
#ifdef ABSL_HAVE_PREFETCH
2821
    prefetch_heap_block();
2822
    if (is_small()) return;
2823
    auto seq = probe(common(), hash_of(key));
2824
    PrefetchToLocalCache(control() + seq.offset());
2825
    PrefetchToLocalCache(slot_array() + seq.offset());
2826
#endif  // ABSL_HAVE_PREFETCH
2827
  }
2828
2829
  template <class K = key_type>
2830
  ABSL_DEPRECATE_AND_INLINE()
2831
  iterator find(const key_arg<K>& key,
2832
                size_t) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2833
    return find(key);
2834
  }
2835
  // The API of find() has one extension: the type of the key argument doesn't
2836
  // have to be key_type. This is so called heterogeneous key support.
2837
  template <class K = key_type>
2838
  iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2839
    AssertOnFind(key);
2840
    if (is_small()) return find_small(key);
2841
    prefetch_heap_block();
2842
    return find_large(key, hash_of(key));
2843
  }
2844
2845
  template <class K = key_type>
2846
  ABSL_DEPRECATE_AND_INLINE()
2847
  const_iterator find(const key_arg<K>& key,
2848
                      size_t) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2849
    return find(key);
2850
  }
2851
  template <class K = key_type>
2852
  const_iterator find(const key_arg<K>& key) const
2853
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2854
    return const_cast<raw_hash_set*>(this)->find(key);
2855
  }
2856
2857
  template <class K = key_type>
2858
  bool contains(const key_arg<K>& key) const {
2859
    // Here neither the iterator returned by `find()` nor `end()` can be invalid
2860
    // outside of potential thread-safety issues.
2861
    // `find()`'s return value is constructed, used, and then destructed
2862
    // all in this context.
2863
    return !find(key).unchecked_equals(end());
2864
  }
2865
2866
  template <class K = key_type>
2867
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
2868
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2869
    auto it = find(key);
2870
    if (it != end()) return {it, std::next(it)};
2871
    return {it, it};
2872
  }
2873
  template <class K = key_type>
2874
  std::pair<const_iterator, const_iterator> equal_range(
2875
      const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2876
    auto it = find(key);
2877
    if (it != end()) return {it, std::next(it)};
2878
    return {it, it};
2879
  }
2880
2881
  size_t bucket_count() const { return capacity(); }
2882
  float load_factor() const {
2883
    return capacity() ? static_cast<double>(size()) / capacity() : 0.0;
2884
  }
2885
  float max_load_factor() const { return 1.0f; }
2886
  void max_load_factor(float) {
2887
    // Does nothing.
2888
  }
2889
2890
  hasher hash_function() const { return hash_ref(); }
2891
  key_equal key_eq() const { return eq_ref(); }
2892
  allocator_type get_allocator() const {
2893
    return allocator_type(char_alloc_ref());
2894
  }
2895
2896
  friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
2897
    if (a.size() != b.size()) return false;
2898
    const raw_hash_set* outer = &a;
2899
    const raw_hash_set* inner = &b;
2900
    if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
2901
    for (const value_type& elem : *outer) {
2902
      auto it = PolicyTraits::apply(FindElement{*inner}, elem);
2903
      if (it == inner->end()) return false;
2904
      // Note: we used key_equal to check for key equality in FindElement, but
2905
      // we may need to do an additional comparison using
2906
      // value_type::operator==. E.g. the keys could be equal and the
2907
      // mapped_types could be unequal in a map or even in a set, key_equal
2908
      // could ignore some fields that aren't ignored by operator==.
2909
      static constexpr bool kKeyEqIsValueEq =
2910
          std::is_same<key_type, value_type>::value &&
2911
          std::is_same<key_equal, hash_default_eq<key_type>>::value;
2912
      if (!kKeyEqIsValueEq && !(*it == elem)) return false;
2913
    }
2914
    return true;
2915
  }
2916
2917
  friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
2918
    return !(a == b);
2919
  }
2920
2921
  template <typename H>
2922
  friend typename std::enable_if<H::template is_hashable<value_type>::value,
2923
                                 H>::type
2924
  AbslHashValue(H h, const raw_hash_set& s) {
2925
    return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
2926
                      hash_internal::WeaklyMixedInteger{s.size()});
2927
  }
2928
2929
  friend void swap(raw_hash_set& a,
2930
                   raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
2931
    a.swap(b);
2932
  }
2933
2934
 private:
2935
  template <class Container, typename Enabler>
2936
  friend struct absl::container_internal::hashtable_debug_internal::
2937
      HashtableDebugAccess;
2938
2939
  friend struct absl::container_internal::HashtableFreeFunctionsAccess;
2940
2941
  struct FindElement {
2942
    template <class K, class... Args>
2943
    const_iterator operator()(const K& key, Args&&...) const {
2944
      return s.find(key);
2945
    }
2946
    const raw_hash_set& s;
2947
  };
2948
2949
  struct EmplaceDecomposable {
2950
    template <class K, class... Args>
2951
    std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
2952
      auto res = s.find_or_prepare_insert(key);
2953
      if (res.second) {
2954
        s.emplace_at(res.first, std::forward<Args>(args)...);
2955
      }
2956
      return res;
2957
    }
2958
    raw_hash_set& s;
2959
  };
2960
2961
  template <bool do_destroy>
2962
  struct InsertSlot {
2963
    template <class K, class... Args>
2964
    std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
2965
      auto res = s.find_or_prepare_insert(key);
2966
      if (res.second) {
2967
        s.transfer(res.first.slot(), &slot);
2968
      } else if (do_destroy) {
2969
        s.destroy(&slot);
2970
      }
2971
      return res;
2972
    }
2973
    raw_hash_set& s;
2974
    // Constructed slot. Either moved into place or destroyed.
2975
    slot_type&& slot;
2976
  };
2977
2978
  template <typename... Args>
2979
  inline void construct(slot_type* slot, Args&&... args) {
2980
    common().RunWithReentrancyGuard([&] {
2981
      allocator_type alloc(char_alloc_ref());
2982
      PolicyTraits::construct(&alloc, slot, std::forward<Args>(args)...);
2983
    });
2984
  }
2985
  inline void destroy(slot_type* slot) {
2986
    common().RunWithReentrancyGuard([&] {
2987
      allocator_type alloc(char_alloc_ref());
2988
      PolicyTraits::destroy(&alloc, slot);
2989
    });
2990
  }
2991
  inline void transfer(slot_type* to, slot_type* from) {
2992
    common().RunWithReentrancyGuard([&] {
2993
      allocator_type alloc(char_alloc_ref());
2994
      PolicyTraits::transfer(&alloc, to, from);
2995
    });
2996
  }
2997
2998
  // TODO(b/289225379): consider having a helper class that has the impls for
2999
  // SOO functionality.
3000
  template <class K = key_type>
3001
  iterator find_small(const key_arg<K>& key) {
3002
    ABSL_SWISSTABLE_ASSERT(is_small());
3003
    return empty() || !equal_to(key, single_slot()) ? end() : single_iterator();
3004
  }
3005
3006
  template <class K = key_type>
3007
  iterator find_large(const key_arg<K>& key, size_t hash) {
3008
    ABSL_SWISSTABLE_ASSERT(!is_small());
3009
    auto seq = probe(common(), hash);
3010
    const h2_t h2 = H2(hash);
3011
    const ctrl_t* ctrl = control();
3012
    while (true) {
3013
#ifndef ABSL_HAVE_MEMORY_SANITIZER
3014
      absl::PrefetchToLocalCache(slot_array() + seq.offset());
3015
#endif
3016
      Group g{ctrl + seq.offset()};
3017
      for (uint32_t i : g.Match(h2)) {
3018
        if (ABSL_PREDICT_TRUE(equal_to(key, slot_array() + seq.offset(i))))
3019
          return iterator_at(seq.offset(i));
3020
      }
3021
      if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
3022
      seq.next();
3023
      ABSL_SWISSTABLE_ASSERT(seq.index() <= capacity() && "full table!");
3024
    }
3025
  }
3026
3027
  // Returns true if the table needs to be sampled.
3028
  // This should be called on insertion into an empty SOO table and in copy
3029
  // construction when the size can fit in SOO capacity.
3030
  bool should_sample_soo() const {
3031
    ABSL_SWISSTABLE_ASSERT(is_soo());
3032
    if (!ShouldSampleHashtablezInfoForAlloc<CharAlloc>()) return false;
3033
    return ABSL_PREDICT_FALSE(ShouldSampleNextTable());
3034
  }
3035
3036
  void clear_backing_array(bool reuse) {
3037
    ABSL_SWISSTABLE_ASSERT(capacity() > DefaultCapacity());
3038
    ClearBackingArray(common(), GetPolicyFunctions(), &char_alloc_ref(), reuse,
3039
                      SooEnabled());
3040
  }
3041
3042
  void destroy_slots() {
3043
    ABSL_SWISSTABLE_ASSERT(!is_small());
3044
    if (PolicyTraits::template destroy_is_trivial<Alloc>()) return;
3045
    auto destroy_slot = [&](const ctrl_t*, void* slot) {
3046
      this->destroy(static_cast<slot_type*>(slot));
3047
    };
3048
    if constexpr (SwisstableAssertAccessToDestroyedTable()) {
3049
      CommonFields common_copy(non_soo_tag_t{}, this->common());
3050
      common().set_capacity(InvalidCapacity::kDestroyed);
3051
      IterateOverFullSlots(common_copy, sizeof(slot_type), destroy_slot);
3052
      common().set_capacity(common_copy.capacity());
3053
    } else {
3054
      IterateOverFullSlots(common(), sizeof(slot_type), destroy_slot);
3055
    }
3056
  }
3057
3058
  void dealloc() {
3059
    ABSL_SWISSTABLE_ASSERT(capacity() > DefaultCapacity());
3060
    // Unpoison before returning the memory to the allocator.
3061
    SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * capacity());
3062
    infoz().Unregister();
3063
    DeallocateBackingArray<BackingArrayAlignment(alignof(slot_type)),
3064
                           CharAlloc>(&char_alloc_ref(), capacity(), control(),
3065
                                      sizeof(slot_type), alignof(slot_type),
3066
                                      common().has_infoz());
3067
  }
3068
3069
  void destructor_impl() {
3070
    if (SwisstableGenerationsEnabled() &&
3071
        capacity() >= InvalidCapacity::kMovedFrom) {
3072
      return;
3073
    }
3074
    if (capacity() == 0) return;
3075
    if (is_small()) {
3076
      if (!empty()) {
3077
        ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(destroy(single_slot()));
3078
      }
3079
      if constexpr (SooEnabled()) return;
3080
    } else {
3081
      destroy_slots();
3082
    }
3083
    dealloc();
3084
  }
3085
3086
  // Erases, but does not destroy, the value pointed to by `it`.
3087
  //
3088
  // This merely updates the pertinent control byte. This can be used in
3089
  // conjunction with Policy::transfer to move the object to another place.
3090
  void erase_meta_only(const_iterator it) {
3091
    if (is_soo()) {
3092
      common().set_empty_soo();
3093
      return;
3094
    }
3095
    EraseMetaOnly(common(), it.control(), sizeof(slot_type));
3096
  }
3097
3098
  template <class K>
3099
  ABSL_ATTRIBUTE_ALWAYS_INLINE bool equal_to(const K& key,
3100
                                             slot_type* slot) const {
3101
    return PolicyTraits::apply(EqualElement<K, key_equal>{key, eq_ref()},
3102
                               PolicyTraits::element(slot));
3103
  }
3104
  template <class K>
3105
  ABSL_ATTRIBUTE_ALWAYS_INLINE size_t hash_of(const K& key) const {
3106
    return HashElement<hasher, kIsDefaultHash>{hash_ref(),
3107
                                               common().seed().seed()}(key);
3108
  }
3109
  ABSL_ATTRIBUTE_ALWAYS_INLINE size_t hash_of(slot_type* slot) const {
3110
    return PolicyTraits::apply(
3111
        HashElement<hasher, kIsDefaultHash>{hash_ref(), common().seed().seed()},
3112
        PolicyTraits::element(slot));
3113
  }
3114
3115
  // Casting directly from e.g. char* to slot_type* can cause compilation errors
3116
  // on objective-C. This function converts to void* first, avoiding the issue.
3117
  static ABSL_ATTRIBUTE_ALWAYS_INLINE slot_type* to_slot(void* buf) {
3118
    return static_cast<slot_type*>(buf);
3119
  }
3120
3121
  // Requires that lhs does not have a full SOO slot.
3122
  static void move_common(bool rhs_is_full_soo, CharAlloc& rhs_alloc,
3123
                          CommonFields& lhs, CommonFields&& rhs) {
3124
    if (PolicyTraits::transfer_uses_memcpy() || !rhs_is_full_soo) {
3125
      lhs = std::move(rhs);
3126
    } else {
3127
      lhs.move_non_heap_or_soo_fields(rhs);
3128
      rhs.RunWithReentrancyGuard([&] {
3129
        lhs.RunWithReentrancyGuard([&] {
3130
          PolicyTraits::transfer(&rhs_alloc, to_slot(lhs.soo_data()),
3131
                                 to_slot(rhs.soo_data()));
3132
        });
3133
      });
3134
    }
3135
  }
3136
3137
  // Swaps common fields making sure to avoid memcpy'ing a full SOO slot if we
3138
  // aren't allowed to do so.
3139
  void swap_common(raw_hash_set& that) {
3140
    using std::swap;
3141
    if (PolicyTraits::transfer_uses_memcpy()) {
3142
      swap(common(), that.common());
3143
      return;
3144
    }
3145
    CommonFields tmp = CommonFields(uninitialized_tag_t{});
3146
    const bool that_is_full_soo = that.is_full_soo();
3147
    move_common(that_is_full_soo, that.char_alloc_ref(), tmp,
3148
                std::move(that.common()));
3149
    move_common(is_full_soo(), char_alloc_ref(), that.common(),
3150
                std::move(common()));
3151
    move_common(that_is_full_soo, that.char_alloc_ref(), common(),
3152
                std::move(tmp));
3153
  }
3154
3155
  void annotate_for_bug_detection_on_move([[maybe_unused]] raw_hash_set& that) {
3156
    // We only enable moved-from validation when generations are enabled (rather
3157
    // than using NDEBUG) to avoid issues in which NDEBUG is enabled in some
3158
    // translation units but not in others.
3159
    if (SwisstableGenerationsEnabled()) {
3160
      that.common().set_capacity(this == &that ? InvalidCapacity::kSelfMovedFrom
3161
                                               : InvalidCapacity::kMovedFrom);
3162
    }
3163
    if (!SwisstableGenerationsEnabled() || capacity() == DefaultCapacity() ||
3164
        capacity() > kAboveMaxValidCapacity) {
3165
      return;
3166
    }
3167
    common().increment_generation();
3168
    if (!empty() && common().should_rehash_for_bug_detection_on_move()) {
3169
      ResizeAllocatedTableWithSeedChange(common(), GetPolicyFunctions(),
3170
                                         capacity());
3171
    }
3172
  }
3173
3174
  template <bool propagate_alloc>
3175
  raw_hash_set& assign_impl(raw_hash_set&& that) {
3176
    // We don't bother checking for this/that aliasing. We just need to avoid
3177
    // breaking the invariants in that case.
3178
    destructor_impl();
3179
    move_common(that.is_full_soo(), that.char_alloc_ref(), common(),
3180
                std::move(that.common()));
3181
    hash_ref() = that.hash_ref();
3182
    eq_ref() = that.eq_ref();
3183
    CopyAlloc(char_alloc_ref(), that.char_alloc_ref(),
3184
              std::integral_constant<bool, propagate_alloc>());
3185
    that.common() = CommonFields::CreateDefault<SooEnabled()>();
3186
    annotate_for_bug_detection_on_move(that);
3187
    return *this;
3188
  }
3189
3190
  raw_hash_set& move_elements_allocs_unequal(raw_hash_set&& that) {
3191
    const size_t size = that.size();
3192
    if (size == 0) return *this;
3193
    reserve(size);
3194
    for (iterator it = that.begin(); it != that.end(); ++it) {
3195
      insert(std::move(PolicyTraits::element(it.slot())));
3196
      that.destroy(it.slot());
3197
    }
3198
    if (!that.is_soo()) that.dealloc();
3199
    that.common() = CommonFields::CreateDefault<SooEnabled()>();
3200
    annotate_for_bug_detection_on_move(that);
3201
    return *this;
3202
  }
3203
3204
  raw_hash_set& move_assign(raw_hash_set&& that,
3205
                            std::true_type /*propagate_alloc*/) {
3206
    return assign_impl<true>(std::move(that));
3207
  }
3208
  raw_hash_set& move_assign(raw_hash_set&& that,
3209
                            std::false_type /*propagate_alloc*/) {
3210
    if (char_alloc_ref() == that.char_alloc_ref()) {
3211
      return assign_impl<false>(std::move(that));
3212
    }
3213
    // Aliasing can't happen here because allocs would compare equal above.
3214
    assert(this != &that);
3215
    destructor_impl();
3216
    // We can't take over that's memory so we need to move each element.
3217
    // While moving elements, this should have that's hash/eq so copy hash/eq
3218
    // before moving elements.
3219
    hash_ref() = that.hash_ref();
3220
    eq_ref() = that.eq_ref();
3221
    return move_elements_allocs_unequal(std::move(that));
3222
  }
3223
3224
  template <class K>
3225
  std::pair<iterator, bool> find_or_prepare_insert_soo(const K& key) {
3226
    ABSL_SWISSTABLE_ASSERT(is_soo());
3227
    bool force_sampling;
3228
    if (empty()) {
3229
      if (!should_sample_soo()) {
3230
        common().set_full_soo();
3231
        return {single_iterator(), true};
3232
      }
3233
      force_sampling = true;
3234
    } else if (equal_to(key, single_slot())) {
3235
      return {single_iterator(), false};
3236
    } else {
3237
      force_sampling = false;
3238
    }
3239
    ABSL_SWISSTABLE_ASSERT(capacity() == 1);
3240
    constexpr bool kUseMemcpy =
3241
        PolicyTraits::transfer_uses_memcpy() && SooEnabled();
3242
    size_t index = GrowSooTableToNextCapacityAndPrepareInsert<
3243
        kUseMemcpy ? OptimalMemcpySizeForSooSlotTransfer(sizeof(slot_type)) : 0,
3244
        kUseMemcpy>(common(), GetPolicyFunctions(),
3245
                    HashKey<hasher, K, kIsDefaultHash>{hash_ref(), key},
3246
                    force_sampling);
3247
    return {iterator_at(index), true};
3248
  }
3249
3250
  template <class K>
3251
  std::pair<iterator, bool> find_or_prepare_insert_small(const K& key) {
3252
    ABSL_SWISSTABLE_ASSERT(is_small());
3253
    if constexpr (SooEnabled()) {
3254
      return find_or_prepare_insert_soo(key);
3255
    }
3256
    if (!empty()) {
3257
      if (equal_to(key, single_slot())) {
3258
        return {single_iterator(), false};
3259
      }
3260
    }
3261
    return {iterator_at_ptr(PrepareInsertSmallNonSoo(
3262
                common(), GetPolicyFunctions(),
3263
                HashKey<hasher, K, kIsDefaultHash>{hash_ref(), key})),
3264
            true};
3265
  }
3266
3267
  template <class K>
3268
  std::pair<iterator, bool> find_or_prepare_insert_large(const K& key) {
3269
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3270
    prefetch_heap_block();
3271
    const size_t hash = hash_of(key);
3272
    auto seq = probe(common(), hash);
3273
    const h2_t h2 = H2(hash);
3274
    const ctrl_t* ctrl = control();
3275
    while (true) {
3276
#ifndef ABSL_HAVE_MEMORY_SANITIZER
3277
      absl::PrefetchToLocalCache(slot_array() + seq.offset());
3278
#endif
3279
      Group g{ctrl + seq.offset()};
3280
      for (uint32_t i : g.Match(h2)) {
3281
        if (ABSL_PREDICT_TRUE(equal_to(key, slot_array() + seq.offset(i))))
3282
          return {iterator_at(seq.offset(i)), false};
3283
      }
3284
      auto mask_empty = g.MaskEmpty();
3285
      if (ABSL_PREDICT_TRUE(mask_empty)) {
3286
        size_t target = seq.offset(mask_empty.LowestBitSet());
3287
        size_t index =
3288
            SwisstableGenerationsEnabled()
3289
                ? PrepareInsertLargeGenerationsEnabled(
3290
                      common(), GetPolicyFunctions(), hash,
3291
                      FindInfo{target, seq.index()},
3292
                      HashKey<hasher, K, kIsDefaultHash>{hash_ref(), key})
3293
                : PrepareInsertLarge(common(), GetPolicyFunctions(), hash,
3294
                                     FindInfo{target, seq.index()});
3295
        return {iterator_at(index), true};
3296
      }
3297
      seq.next();
3298
      ABSL_SWISSTABLE_ASSERT(seq.index() <= capacity() && "full table!");
3299
    }
3300
  }
3301
3302
 protected:
3303
  // Asserts for correctness that we run on find/find_or_prepare_insert.
3304
  template <class K>
3305
  void AssertOnFind([[maybe_unused]] const K& key) {
3306
    AssertHashEqConsistent(key);
3307
    AssertNotDebugCapacity();
3308
  }
3309
3310
  // Asserts that the capacity is not a sentinel invalid value.
3311
  void AssertNotDebugCapacity() const {
3312
#ifdef NDEBUG
3313
    if (!SwisstableGenerationsEnabled()) {
3314
      return;
3315
    }
3316
#endif
3317
    if (ABSL_PREDICT_TRUE(capacity() <
3318
                          InvalidCapacity::kAboveMaxValidCapacity)) {
3319
      return;
3320
    }
3321
    assert(capacity() != InvalidCapacity::kReentrance &&
3322
           "Reentrant container access during element construction/destruction "
3323
           "is not allowed.");
3324
    if constexpr (SwisstableAssertAccessToDestroyedTable()) {
3325
      if (capacity() == InvalidCapacity::kDestroyed) {
3326
        ABSL_RAW_LOG(FATAL, "Use of destroyed hash table.");
3327
      }
3328
    }
3329
    if (SwisstableGenerationsEnabled() &&
3330
        ABSL_PREDICT_FALSE(capacity() >= InvalidCapacity::kMovedFrom)) {
3331
      if (capacity() == InvalidCapacity::kSelfMovedFrom) {
3332
        // If this log triggers, then a hash table was move-assigned to itself
3333
        // and then used again later without being reinitialized.
3334
        ABSL_RAW_LOG(FATAL, "Use of self-move-assigned hash table.");
3335
      }
3336
      ABSL_RAW_LOG(FATAL, "Use of moved-from hash table.");
3337
    }
3338
  }
3339
3340
  // Asserts that hash and equal functors provided by the user are consistent,
3341
  // meaning that `eq(k1, k2)` implies `hash(k1)==hash(k2)`.
3342
  template <class K>
3343
  void AssertHashEqConsistent(const K& key) {
3344
#ifdef NDEBUG
3345
    return;
3346
#endif
3347
    // If the hash/eq functors are known to be consistent, then skip validation.
3348
    if (std::is_same<hasher, absl::container_internal::StringHash>::value &&
3349
        std::is_same<key_equal, absl::container_internal::StringEq>::value) {
3350
      return;
3351
    }
3352
    if (std::is_scalar<key_type>::value &&
3353
        std::is_same<hasher, absl::Hash<key_type>>::value &&
3354
        std::is_same<key_equal, std::equal_to<key_type>>::value) {
3355
      return;
3356
    }
3357
    if (empty()) return;
3358
3359
    const size_t hash_of_arg = hash_of(key);
3360
    const auto assert_consistent = [&](const ctrl_t*, void* slot) {
3361
      const bool is_key_equal = equal_to(key, to_slot(slot));
3362
      if (!is_key_equal) return;
3363
3364
      [[maybe_unused]] const bool is_hash_equal =
3365
          hash_of_arg == hash_of(to_slot(slot));
3366
      assert((!is_key_equal || is_hash_equal) &&
3367
             "eq(k1, k2) must imply that hash(k1) == hash(k2). "
3368
             "hash/eq functors are inconsistent.");
3369
    };
3370
3371
    if (is_small()) {
3372
      assert_consistent(/*unused*/ nullptr, single_slot());
3373
      return;
3374
    }
3375
    // We only do validation for small tables so that it's constant time.
3376
    if (capacity() > 16) return;
3377
    IterateOverFullSlots(common(), sizeof(slot_type), assert_consistent);
3378
  }
3379
3380
  // Attempts to find `key` in the table; if it isn't found, returns an iterator
3381
  // where the value can be inserted into, with the control byte already set to
3382
  // `key`'s H2. Returns a bool indicating whether an insertion can take place.
3383
  template <class K>
3384
  std::pair<iterator, bool> find_or_prepare_insert(const K& key) {
3385
    AssertOnFind(key);
3386
    if (is_small()) return find_or_prepare_insert_small(key);
3387
    return find_or_prepare_insert_large(key);
3388
  }
3389
3390
  // Constructs the value in the space pointed by the iterator. This only works
3391
  // after an unsuccessful find_or_prepare_insert() and before any other
3392
  // modifications happen in the raw_hash_set.
3393
  //
3394
  // PRECONDITION: iter was returned from find_or_prepare_insert(k), where k is
3395
  // the key decomposed from `forward<Args>(args)...`, and the bool returned by
3396
  // find_or_prepare_insert(k) was true.
3397
  // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
3398
  template <class... Args>
3399
  void emplace_at(iterator iter, Args&&... args) {
3400
    construct(iter.slot(), std::forward<Args>(args)...);
3401
3402
    // When is_small, find calls find_small and if size is 0, then it will
3403
    // return an end iterator. This can happen in the raw_hash_set copy ctor.
3404
    assert((is_small() ||
3405
            PolicyTraits::apply(FindElement{*this}, *iter) == iter) &&
3406
           "constructed value does not match the lookup key");
3407
  }
3408
3409
  iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
3410
    return {control() + i, slot_array() + i, common().generation_ptr()};
3411
  }
3412
  const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
3413
    return const_cast<raw_hash_set*>(this)->iterator_at(i);
3414
  }
3415
  iterator iterator_at_ptr(std::pair<ctrl_t*, void*> ptrs)
3416
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
3417
    return {ptrs.first, to_slot(ptrs.second), common().generation_ptr()};
3418
  }
3419
3420
  reference unchecked_deref(iterator it) { return it.unchecked_deref(); }
3421
3422
 private:
3423
  friend struct RawHashSetTestOnlyAccess;
3424
3425
  // The number of slots we can still fill without needing to rehash.
3426
  //
3427
  // This is stored separately due to tombstones: we do not include tombstones
3428
  // in the growth capacity, because we'd like to rehash when the table is
3429
  // otherwise filled with tombstones: otherwise, probe sequences might get
3430
  // unacceptably long without triggering a rehash. Callers can also force a
3431
  // rehash via the standard `rehash(0)`, which will recompute this value as a
3432
  // side-effect.
3433
  //
3434
  // See `CapacityToGrowth()`.
3435
  size_t growth_left() const {
3436
    return common().growth_left();
3437
  }
3438
3439
  GrowthInfo& growth_info() {
3440
    return common().growth_info();
3441
  }
3442
  GrowthInfo growth_info() const {
3443
    return common().growth_info();
3444
  }
3445
3446
  // Prefetch the heap-allocated memory region to resolve potential TLB and
3447
  // cache misses. This is intended to overlap with execution of calculating the
3448
  // hash for a key.
3449
  void prefetch_heap_block() const {
3450
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3451
#if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
3452
    __builtin_prefetch(control(), 0, 1);
3453
#endif
3454
  }
3455
3456
  CommonFields& common() { return settings_.template get<0>(); }
3457
  const CommonFields& common() const { return settings_.template get<0>(); }
3458
3459
  ctrl_t* control() const {
3460
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3461
    return common().control();
3462
  }
3463
  slot_type* slot_array() const {
3464
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3465
    return static_cast<slot_type*>(common().slot_array());
3466
  }
3467
  slot_type* soo_slot() {
3468
    ABSL_SWISSTABLE_ASSERT(is_soo());
3469
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(
3470
        static_cast<slot_type*>(common().soo_data()));
3471
  }
3472
  const slot_type* soo_slot() const {
3473
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(
3474
        const_cast<raw_hash_set*>(this)->soo_slot());
3475
  }
3476
  slot_type* single_slot() {
3477
    ABSL_SWISSTABLE_ASSERT(is_small());
3478
    return SooEnabled() ? soo_slot() : slot_array();
3479
  }
3480
  const slot_type* single_slot() const {
3481
    return const_cast<raw_hash_set*>(this)->single_slot();
3482
  }
3483
  void decrement_small_size() {
3484
    ABSL_SWISSTABLE_ASSERT(is_small());
3485
    SooEnabled() ? common().set_empty_soo() : common().decrement_size();
3486
    if (!SooEnabled()) {
3487
      SanitizerPoisonObject(single_slot());
3488
    }
3489
  }
3490
  iterator single_iterator() {
3491
    return {SooControl(), single_slot(), common().generation_ptr()};
3492
  }
3493
  const_iterator single_iterator() const {
3494
    return const_cast<raw_hash_set*>(this)->single_iterator();
3495
  }
3496
  HashtablezInfoHandle infoz() {
3497
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3498
    return common().infoz();
3499
  }
3500
3501
  hasher& hash_ref() { return settings_.template get<1>(); }
3502
  const hasher& hash_ref() const { return settings_.template get<1>(); }
3503
  key_equal& eq_ref() { return settings_.template get<2>(); }
3504
  const key_equal& eq_ref() const { return settings_.template get<2>(); }
3505
  CharAlloc& char_alloc_ref() { return settings_.template get<3>(); }
3506
  const CharAlloc& char_alloc_ref() const {
3507
    return settings_.template get<3>();
3508
  }
3509
3510
  static void* get_char_alloc_ref_fn(CommonFields& common) {
3511
    auto* h = reinterpret_cast<raw_hash_set*>(&common);
3512
    return &h->char_alloc_ref();
3513
  }
3514
  static void* get_hash_ref_fn(CommonFields& common) {
3515
    auto* h = reinterpret_cast<raw_hash_set*>(&common);
3516
    // TODO(b/397453582): Remove support for const hasher.
3517
    return const_cast<std::remove_const_t<hasher>*>(&h->hash_ref());
3518
  }
3519
  static void transfer_n_slots_fn(void* set, void* dst, void* src,
3520
                                  size_t count) {
3521
    auto* src_slot = to_slot(src);
3522
    auto* dst_slot = to_slot(dst);
3523
3524
    auto* h = static_cast<raw_hash_set*>(set);
3525
    for (; count > 0; --count, ++src_slot, ++dst_slot) {
3526
      h->transfer(dst_slot, src_slot);
3527
    }
3528
  }
3529
3530
  // TODO(b/382423690): Try to type erase entire function or at least type erase
3531
  // by GetKey + Hash for memcpyable types.
3532
  // TODO(b/382423690): Try to type erase for big slots: sizeof(slot_type) > 16.
3533
  static void transfer_unprobed_elements_to_next_capacity_fn(
3534
      CommonFields& common, const ctrl_t* old_ctrl, void* old_slots,
3535
      void* probed_storage,
3536
      void (*encode_probed_element)(void* probed_storage, h2_t h2,
3537
                                    size_t source_offset, size_t h1)) {
3538
    const size_t new_capacity = common.capacity();
3539
    const size_t old_capacity = PreviousCapacity(new_capacity);
3540
    ABSL_ASSUME(old_capacity + 1 >= Group::kWidth);
3541
    ABSL_ASSUME((old_capacity + 1) % Group::kWidth == 0);
3542
3543
    auto* set = reinterpret_cast<raw_hash_set*>(&common);
3544
    slot_type* old_slots_ptr = to_slot(old_slots);
3545
    ctrl_t* new_ctrl = common.control();
3546
    slot_type* new_slots = set->slot_array();
3547
3548
    for (size_t group_index = 0; group_index < old_capacity;
3549
         group_index += Group::kWidth) {
3550
      GroupFullEmptyOrDeleted old_g(old_ctrl + group_index);
3551
      std::memset(new_ctrl + group_index, static_cast<int8_t>(ctrl_t::kEmpty),
3552
                  Group::kWidth);
3553
      std::memset(new_ctrl + group_index + old_capacity + 1,
3554
                  static_cast<int8_t>(ctrl_t::kEmpty), Group::kWidth);
3555
      // TODO(b/382423690): try to type erase everything outside of the loop.
3556
      // We will share a lot of code in expense of one function call per group.
3557
      for (auto in_fixed_group_index : old_g.MaskFull()) {
3558
        size_t old_index = group_index + in_fixed_group_index;
3559
        slot_type* old_slot = old_slots_ptr + old_index;
3560
        // TODO(b/382423690): try to avoid entire hash calculation since we need
3561
        // only one new bit of h1.
3562
        size_t hash = set->hash_of(old_slot);
3563
        size_t h1 = H1(hash);
3564
        h2_t h2 = H2(hash);
3565
        size_t new_index = TryFindNewIndexWithoutProbing(
3566
            h1, old_index, old_capacity, new_ctrl, new_capacity);
3567
        // Note that encode_probed_element is allowed to use old_ctrl buffer
3568
        // till and included the old_index.
3569
        if (ABSL_PREDICT_FALSE(new_index == kProbedElementIndexSentinel)) {
3570
          encode_probed_element(probed_storage, h2, old_index, h1);
3571
          continue;
3572
        }
3573
        ABSL_SWISSTABLE_ASSERT((new_index & old_capacity) <= old_index);
3574
        ABSL_SWISSTABLE_ASSERT(IsEmpty(new_ctrl[new_index]));
3575
        new_ctrl[new_index] = static_cast<ctrl_t>(h2);
3576
        auto* new_slot = new_slots + new_index;
3577
        SanitizerUnpoisonMemoryRegion(new_slot, sizeof(slot_type));
3578
        set->transfer(new_slot, old_slot);
3579
        SanitizerPoisonMemoryRegion(old_slot, sizeof(slot_type));
3580
      }
3581
    }
3582
  }
3583
3584
  static const PolicyFunctions& GetPolicyFunctions() {
3585
    static_assert(sizeof(slot_type) <= (std::numeric_limits<uint32_t>::max)(),
3586
                  "Slot size is too large. Use std::unique_ptr for value type "
3587
                  "or use absl::node_hash_{map,set}.");
3588
    static_assert(alignof(slot_type) <=
3589
                  size_t{(std::numeric_limits<uint16_t>::max)()});
3590
    static_assert(sizeof(key_type) <=
3591
                  size_t{(std::numeric_limits<uint32_t>::max)()});
3592
    static_assert(sizeof(value_type) <=
3593
                  size_t{(std::numeric_limits<uint32_t>::max)()});
3594
    static constexpr size_t kBackingArrayAlignment =
3595
        BackingArrayAlignment(alignof(slot_type));
3596
    static constexpr PolicyFunctions value = {
3597
        static_cast<uint32_t>(sizeof(key_type)),
3598
        static_cast<uint32_t>(sizeof(value_type)),
3599
        static_cast<uint32_t>(sizeof(slot_type)),
3600
        static_cast<uint16_t>(alignof(slot_type)), SooEnabled(),
3601
        ShouldSampleHashtablezInfoForAlloc<CharAlloc>(),
3602
        // TODO(b/328722020): try to type erase
3603
        // for standard layout and alignof(Hash) <= alignof(CommonFields).
3604
        std::is_empty_v<hasher> ? &GetRefForEmptyClass
3605
                                : &raw_hash_set::get_hash_ref_fn,
3606
        PolicyTraits::template get_hash_slot_fn<hasher, kIsDefaultHash>(),
3607
        PolicyTraits::transfer_uses_memcpy()
3608
            ? TransferNRelocatable<sizeof(slot_type)>
3609
            : &raw_hash_set::transfer_n_slots_fn,
3610
        std::is_empty_v<Alloc> ? &GetRefForEmptyClass
3611
                               : &raw_hash_set::get_char_alloc_ref_fn,
3612
        &AllocateBackingArray<kBackingArrayAlignment, CharAlloc>,
3613
        &DeallocateBackingArray<kBackingArrayAlignment, CharAlloc>,
3614
        &raw_hash_set::transfer_unprobed_elements_to_next_capacity_fn};
3615
    return value;
3616
  }
3617
3618
  // Bundle together CommonFields plus other objects which might be empty.
3619
  // CompressedTuple will ensure that sizeof is not affected by any of the empty
3620
  // fields that occur after CommonFields.
3621
  absl::container_internal::CompressedTuple<CommonFields, hasher, key_equal,
3622
                                            CharAlloc>
3623
      settings_{CommonFields::CreateDefault<SooEnabled()>(), hasher{},
3624
                key_equal{}, CharAlloc{}};
3625
};
3626
3627
// Friend access for free functions in raw_hash_set.h.
3628
struct HashtableFreeFunctionsAccess {
3629
  template <class Predicate, typename Set>
3630
  static typename Set::size_type EraseIf(Predicate& pred, Set* c) {
3631
    if (c->empty()) {
3632
      return 0;
3633
    }
3634
    if (c->is_small()) {
3635
      auto it = c->single_iterator();
3636
      if (!pred(*it)) {
3637
        ABSL_SWISSTABLE_ASSERT(c->size() == 1 &&
3638
                               "hash table was modified unexpectedly");
3639
        return 0;
3640
      }
3641
      c->destroy(it.slot());
3642
      c->erase_meta_only(it);
3643
      return 1;
3644
    }
3645
    [[maybe_unused]] const size_t original_size_for_assert = c->size();
3646
    size_t num_deleted = 0;
3647
    using SlotType = typename Set::slot_type;
3648
    IterateOverFullSlots(
3649
        c->common(), sizeof(SlotType),
3650
        [&](const ctrl_t* ctrl, void* slot_void) {
3651
          auto* slot = static_cast<SlotType*>(slot_void);
3652
          if (pred(Set::PolicyTraits::element(slot))) {
3653
            c->destroy(slot);
3654
            EraseMetaOnly(c->common(), ctrl, sizeof(*slot));
3655
            ++num_deleted;
3656
          }
3657
        });
3658
    // NOTE: IterateOverFullSlots allow removal of the current element, so we
3659
    // verify the size additionally here.
3660
    ABSL_SWISSTABLE_ASSERT(original_size_for_assert - num_deleted ==
3661
                               c->size() &&
3662
                           "hash table was modified unexpectedly");
3663
    return num_deleted;
3664
  }
3665
3666
  template <class Callback, typename Set>
3667
  static void ForEach(Callback& cb, Set* c) {
3668
    if (c->empty()) {
3669
      return;
3670
    }
3671
    if (c->is_small()) {
3672
      cb(*c->single_iterator());
3673
      return;
3674
    }
3675
    using SlotType = typename Set::slot_type;
3676
    using ElementTypeWithConstness = decltype(*c->begin());
3677
    IterateOverFullSlots(
3678
        c->common(), sizeof(SlotType), [&cb](const ctrl_t*, void* slot) {
3679
          ElementTypeWithConstness& element =
3680
              Set::PolicyTraits::element(static_cast<SlotType*>(slot));
3681
          cb(element);
3682
        });
3683
  }
3684
};
3685
3686
// Erases all elements that satisfy the predicate `pred` from the container `c`.
3687
template <typename P, typename H, typename E, typename A, typename Predicate>
3688
typename raw_hash_set<P, H, E, A>::size_type EraseIf(
3689
    Predicate& pred, raw_hash_set<P, H, E, A>* c) {
3690
  return HashtableFreeFunctionsAccess::EraseIf(pred, c);
3691
}
3692
3693
// Calls `cb` for all elements in the container `c`.
3694
template <typename P, typename H, typename E, typename A, typename Callback>
3695
void ForEach(Callback& cb, raw_hash_set<P, H, E, A>* c) {
3696
  return HashtableFreeFunctionsAccess::ForEach(cb, c);
3697
}
3698
template <typename P, typename H, typename E, typename A, typename Callback>
3699
void ForEach(Callback& cb, const raw_hash_set<P, H, E, A>* c) {
3700
  return HashtableFreeFunctionsAccess::ForEach(cb, c);
3701
}
3702
3703
namespace hashtable_debug_internal {
3704
template <typename Set>
3705
struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
3706
  using Traits = typename Set::PolicyTraits;
3707
  using Slot = typename Traits::slot_type;
3708
3709
  constexpr static bool kIsDefaultHash = Set::kIsDefaultHash;
3710
3711
  static size_t GetNumProbes(const Set& set,
3712
                             const typename Set::key_type& key) {
3713
    if (set.is_small()) return 0;
3714
    size_t num_probes = 0;
3715
    const size_t hash = set.hash_of(key);
3716
    auto seq = probe(set.common(), hash);
3717
    const h2_t h2 = H2(hash);
3718
    const ctrl_t* ctrl = set.control();
3719
    while (true) {
3720
      container_internal::Group g{ctrl + seq.offset()};
3721
      for (uint32_t i : g.Match(h2)) {
3722
        if (set.equal_to(key, set.slot_array() + seq.offset(i)))
3723
          return num_probes;
3724
        ++num_probes;
3725
      }
3726
      if (g.MaskEmpty()) return num_probes;
3727
      seq.next();
3728
      ++num_probes;
3729
    }
3730
  }
3731
3732
  static size_t AllocatedByteSize(const Set& c) {
3733
    size_t capacity = c.capacity();
3734
    if (capacity == 0) return 0;
3735
    size_t m =
3736
        c.is_soo() ? 0 : c.common().alloc_size(sizeof(Slot), alignof(Slot));
3737
3738
    size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
3739
    if (per_slot != ~size_t{}) {
3740
      m += per_slot * c.size();
3741
    } else {
3742
      for (auto it = c.begin(); it != c.end(); ++it) {
3743
        m += Traits::space_used(it.slot());
3744
      }
3745
    }
3746
    return m;
3747
  }
3748
};
3749
3750
}  // namespace hashtable_debug_internal
3751
3752
// Extern template instantiations reduce binary size and linker input size.
3753
// Function definition is in raw_hash_set.cc.
3754
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<0, false>(
3755
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3756
    bool);
3757
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<1, true>(
3758
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3759
    bool);
3760
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<4, true>(
3761
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3762
    bool);
3763
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<8, true>(
3764
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3765
    bool);
3766
#if UINTPTR_MAX == UINT64_MAX
3767
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<16, true>(
3768
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3769
    bool);
3770
#endif
3771
3772
}  // namespace container_internal
3773
ABSL_NAMESPACE_END
3774
}  // namespace absl
3775
3776
#undef ABSL_SWISSTABLE_ENABLE_GENERATIONS
3777
#undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED
3778
#undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN
3779
#undef ABSL_SWISSTABLE_ASSERT
3780
3781
#endif  // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_