Coverage Report

Created: 2025-07-11 06:37

/src/abseil-cpp/absl/debugging/internal/stacktrace_x86-inl.inc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// Produce stack trace
16
17
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
18
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
19
20
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
21
#include <ucontext.h>  // for ucontext_t
22
#endif
23
24
#if !defined(_WIN32)
25
#include <unistd.h>
26
#endif
27
28
#include <cassert>
29
#include <cstdint>
30
#include <limits>
31
32
#include "absl/base/attributes.h"
33
#include "absl/base/macros.h"
34
#include "absl/base/port.h"
35
#include "absl/debugging/internal/address_is_readable.h"
36
#include "absl/debugging/internal/addresses.h"
37
#include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems
38
#include "absl/debugging/stacktrace.h"
39
40
using absl::debugging_internal::AddressIsReadable;
41
42
#if defined(__linux__) && defined(__i386__)
43
// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
44
// preceding "syscall" or "sysenter".
45
// If __kernel_vsyscall uses frame pointer, answer 0.
46
//
47
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
48
// to analyze before giving up. Up to kMaxBytes+1 bytes of
49
// instructions could be accessed.
50
//
51
// Here are known __kernel_vsyscall instruction sequences:
52
//
53
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
54
// Used on Intel.
55
//  0xffffe400 <__kernel_vsyscall+0>:       push   %ecx
56
//  0xffffe401 <__kernel_vsyscall+1>:       push   %edx
57
//  0xffffe402 <__kernel_vsyscall+2>:       push   %ebp
58
//  0xffffe403 <__kernel_vsyscall+3>:       mov    %esp,%ebp
59
//  0xffffe405 <__kernel_vsyscall+5>:       sysenter
60
//
61
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
62
// Used on AMD.
63
//  0xffffe400 <__kernel_vsyscall+0>:       push   %ebp
64
//  0xffffe401 <__kernel_vsyscall+1>:       mov    %ecx,%ebp
65
//  0xffffe403 <__kernel_vsyscall+3>:       syscall
66
//
67
68
// The sequence below isn't actually expected in Google fleet,
69
// here only for completeness. Remove this comment from OSS release.
70
71
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
72
//  0xffffe400 <__kernel_vsyscall+0>:       int $0x80
73
//  0xffffe401 <__kernel_vsyscall+1>:       ret
74
//
75
static const int kMaxBytes = 10;
76
77
// We use assert()s instead of DCHECK()s -- this is too low level
78
// for DCHECK().
79
80
static int CountPushInstructions(const unsigned char *const addr) {
81
  int result = 0;
82
  for (int i = 0; i < kMaxBytes; ++i) {
83
    if (addr[i] == 0x89) {
84
      // "mov reg,reg"
85
      if (addr[i + 1] == 0xE5) {
86
        // Found "mov %esp,%ebp".
87
        return 0;
88
      }
89
      ++i;  // Skip register encoding byte.
90
    } else if (addr[i] == 0x0F &&
91
               (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
92
      // Found "sysenter" or "syscall".
93
      return result;
94
    } else if ((addr[i] & 0xF0) == 0x50) {
95
      // Found "push %reg".
96
      ++result;
97
    } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
98
      // Found "int $0x80"
99
      assert(result == 0);
100
      return 0;
101
    } else {
102
      // Unexpected instruction.
103
      assert(false && "unexpected instruction in __kernel_vsyscall");
104
      return 0;
105
    }
106
  }
107
  // Unexpected: didn't find SYSENTER or SYSCALL in
108
  // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
109
  assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
110
  return 0;
111
}
112
#endif
113
114
// Assume stack frames larger than 100,000 bytes are bogus.
115
static const int kMaxFrameBytes = 100000;
116
// Stack end to use when we don't know the actual stack end
117
// (effectively just the end of address space).
118
constexpr uintptr_t kUnknownStackEnd =
119
    std::numeric_limits<size_t>::max() - sizeof(void *);
120
121
// Returns the stack frame pointer from signal context, 0 if unknown.
122
// vuc is a ucontext_t *.  We use void* to avoid the use
123
// of ucontext_t on non-POSIX systems.
124
0
static uintptr_t GetFP(const void *vuc) {
125
#if !defined(__linux__)
126
  static_cast<void>(vuc);  // Avoid an unused argument compiler warning.
127
#else
128
0
  if (vuc != nullptr) {
129
0
    auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
130
#if defined(__i386__)
131
    const auto bp = uc->uc_mcontext.gregs[REG_EBP];
132
    const auto sp = uc->uc_mcontext.gregs[REG_ESP];
133
#elif defined(__x86_64__)
134
    const auto bp = uc->uc_mcontext.gregs[REG_RBP];
135
0
    const auto sp = uc->uc_mcontext.gregs[REG_RSP];
136
#else
137
    const uintptr_t bp = 0;
138
    const uintptr_t sp = 0;
139
#endif
140
    // Sanity-check that the base pointer is valid. It's possible that some
141
    // code in the process is compiled with --copt=-fomit-frame-pointer or
142
    // --copt=-momit-leaf-frame-pointer.
143
    //
144
    // TODO(bcmills): -momit-leaf-frame-pointer is currently the default
145
    // behavior when building with clang.  Talk to the C++ toolchain team about
146
    // fixing that.
147
0
    if (bp >= sp && bp - sp <= kMaxFrameBytes)
148
0
      return static_cast<uintptr_t>(bp);
149
150
    // If bp isn't a plausible frame pointer, return the stack pointer instead.
151
    // If we're lucky, it points to the start of a stack frame; otherwise, we'll
152
    // get one frame of garbage in the stack trace and fail the sanity check on
153
    // the next iteration.
154
0
    return static_cast<uintptr_t>(sp);
155
0
  }
156
0
#endif
157
0
  return 0;
158
0
}
159
160
// Given a pointer to a stack frame, locate and return the calling
161
// stackframe, or return null if no stackframe can be found. Perform sanity
162
// checks (the strictness of which is controlled by the boolean parameter
163
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
164
template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
165
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.
166
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.
167
ABSL_ATTRIBUTE_NO_SANITIZE_THREAD   // May read random elements from stack.
168
static void **NextStackFrame(void **old_fp, const void *uc,
169
21.4k
                             size_t stack_low, size_t stack_high) {
170
21.4k
  void **new_fp = (void **)*old_fp;
171
172
#if defined(__linux__) && defined(__i386__)
173
  if (WITH_CONTEXT && uc != nullptr) {
174
    // How many "push %reg" instructions are there at __kernel_vsyscall?
175
    // This is constant for a given kernel and processor, so compute
176
    // it only once.
177
    static int num_push_instructions = -1;  // Sentinel: not computed yet.
178
    // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
179
    // be there.
180
    static const unsigned char *kernel_rt_sigreturn_address = nullptr;
181
    static const unsigned char *kernel_vsyscall_address = nullptr;
182
    if (num_push_instructions == -1) {
183
#ifdef ABSL_HAVE_VDSO_SUPPORT
184
      absl::debugging_internal::VDSOSupport vdso;
185
      if (vdso.IsPresent()) {
186
        absl::debugging_internal::VDSOSupport::SymbolInfo
187
            rt_sigreturn_symbol_info;
188
        absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
189
        if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
190
                               &rt_sigreturn_symbol_info) ||
191
            !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
192
                               &vsyscall_symbol_info) ||
193
            rt_sigreturn_symbol_info.address == nullptr ||
194
            vsyscall_symbol_info.address == nullptr) {
195
          // Unexpected: 32-bit VDSO is present, yet one of the expected
196
          // symbols is missing or null.
197
          assert(false && "VDSO is present, but doesn't have expected symbols");
198
          num_push_instructions = 0;
199
        } else {
200
          kernel_rt_sigreturn_address =
201
              reinterpret_cast<const unsigned char *>(
202
                  rt_sigreturn_symbol_info.address);
203
          kernel_vsyscall_address =
204
              reinterpret_cast<const unsigned char *>(
205
                  vsyscall_symbol_info.address);
206
          num_push_instructions =
207
              CountPushInstructions(kernel_vsyscall_address);
208
        }
209
      } else {
210
        num_push_instructions = 0;
211
      }
212
#else  // ABSL_HAVE_VDSO_SUPPORT
213
      num_push_instructions = 0;
214
#endif  // ABSL_HAVE_VDSO_SUPPORT
215
    }
216
    if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
217
        old_fp[1] == kernel_rt_sigreturn_address) {
218
      const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
219
      // This kernel does not use frame pointer in its VDSO code,
220
      // and so %ebp is not suitable for unwinding.
221
      void **const reg_ebp =
222
          reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
223
      const unsigned char *const reg_eip =
224
          reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
225
      if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
226
          reg_eip - kernel_vsyscall_address < kMaxBytes) {
227
        // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
228
        // Restore from 'ucv' instead.
229
        void **const reg_esp =
230
            reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
231
        // Check that alleged %esp is not null and is reasonably aligned.
232
        if (reg_esp &&
233
            ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
234
          // Check that alleged %esp is actually readable. This is to prevent
235
          // "double fault" in case we hit the first fault due to e.g. stack
236
          // corruption.
237
          void *const reg_esp2 = reg_esp[num_push_instructions - 1];
238
          if (AddressIsReadable(reg_esp2)) {
239
            // Alleged %esp is readable, use it for further unwinding.
240
            new_fp = reinterpret_cast<void **>(reg_esp2);
241
          }
242
        }
243
      }
244
    }
245
  }
246
#endif
247
248
21.4k
  const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
249
21.4k
  const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
250
251
  // Check that the transition from frame pointer old_fp to frame
252
  // pointer new_fp isn't clearly bogus.  Skip the checks if new_fp
253
  // matches the signal context, so that we don't skip out early when
254
  // using an alternate signal stack.
255
  //
256
  // TODO(bcmills): The GetFP call should be completely unnecessary when
257
  // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
258
  // stack by this point), but it is empirically still needed (e.g. when the
259
  // stack includes a call to abort).  unw_get_reg returns UNW_EBADREG for some
260
  // frames.  Figure out why GetValidFrameAddr and/or libunwind isn't doing what
261
  // it's supposed to.
262
21.4k
  if (STRICT_UNWINDING &&
263
21.4k
      (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
264
    // With the stack growing downwards, older stack frame should be
265
    // at a greater address that the current one. However if we get multiple
266
    // signals handled on altstack the new frame pointer might return to the
267
    // main stack, but be different than the value from the most recent
268
    // ucontext.
269
    // If we get a very large frame size, it may be an indication that we
270
    // guessed frame pointers incorrectly and now risk a paging fault
271
    // dereferencing a wrong frame pointer. Or maybe not because large frames
272
    // are possible as well. The main stack is assumed to be readable,
273
    // so we assume the large frame is legit if we know the real stack bounds
274
    // and are within the stack.
275
21.4k
    if (new_fp_u <= old_fp_u || new_fp_u - old_fp_u > kMaxFrameBytes) {
276
1.18k
      if (stack_high < kUnknownStackEnd &&
277
1.18k
          static_cast<size_t>(getpagesize()) < stack_low) {
278
        // Stack bounds are known.
279
0
        if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
280
          // new_fp_u is not within the known stack.
281
0
          return nullptr;
282
0
        }
283
1.18k
      } else {
284
        // Stack bounds are unknown, prefer truncated stack to possible crash.
285
1.18k
        return nullptr;
286
1.18k
      }
287
1.18k
    }
288
20.2k
    if (stack_low < old_fp_u && old_fp_u <= stack_high) {
289
      // Old BP was in the expected stack region...
290
20.2k
      if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
291
        // ... but new BP is outside of expected stack region.
292
        // It is most likely bogus.
293
0
        return nullptr;
294
0
      }
295
20.2k
    } else {
296
      // We may be here if we are executing in a co-routine with a
297
      // separate stack. We can't do safety checks in this case.
298
0
    }
299
20.2k
  } else {
300
0
    if (new_fp == nullptr) return nullptr;  // skip AddressIsReadable() below
301
    // In the non-strict mode, allow discontiguous stack frames.
302
    // (alternate-signal-stacks for example).
303
0
    if (new_fp == old_fp) return nullptr;
304
0
  }
305
306
20.2k
  if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
307
#ifdef __i386__
308
  // On 32-bit machines, the stack pointer can be very close to
309
  // 0xffffffff, so we explicitly check for a pointer into the
310
  // last two pages in the address space
311
  if (new_fp_u >= 0xffffe000) return nullptr;
312
#endif
313
20.2k
#if !defined(_WIN32)
314
20.2k
  if (!STRICT_UNWINDING) {
315
    // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
316
    // on AMD-based machines with VDSO-enabled kernels.
317
    // Make an extra sanity check to insure new_fp is readable.
318
    // Note: NextStackFrame<false>() is only called while the program
319
    //       is already on its last leg, so it's ok to be slow here.
320
321
0
    if (!AddressIsReadable(new_fp)) {
322
0
      return nullptr;
323
0
    }
324
0
  }
325
20.2k
#endif
326
20.2k
  return new_fp;
327
20.2k
}
stacktrace.cc:void** NextStackFrame<true, false>(void**, void const*, unsigned long, unsigned long)
Line
Count
Source
169
21.4k
                             size_t stack_low, size_t stack_high) {
170
21.4k
  void **new_fp = (void **)*old_fp;
171
172
#if defined(__linux__) && defined(__i386__)
173
  if (WITH_CONTEXT && uc != nullptr) {
174
    // How many "push %reg" instructions are there at __kernel_vsyscall?
175
    // This is constant for a given kernel and processor, so compute
176
    // it only once.
177
    static int num_push_instructions = -1;  // Sentinel: not computed yet.
178
    // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
179
    // be there.
180
    static const unsigned char *kernel_rt_sigreturn_address = nullptr;
181
    static const unsigned char *kernel_vsyscall_address = nullptr;
182
    if (num_push_instructions == -1) {
183
#ifdef ABSL_HAVE_VDSO_SUPPORT
184
      absl::debugging_internal::VDSOSupport vdso;
185
      if (vdso.IsPresent()) {
186
        absl::debugging_internal::VDSOSupport::SymbolInfo
187
            rt_sigreturn_symbol_info;
188
        absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
189
        if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
190
                               &rt_sigreturn_symbol_info) ||
191
            !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
192
                               &vsyscall_symbol_info) ||
193
            rt_sigreturn_symbol_info.address == nullptr ||
194
            vsyscall_symbol_info.address == nullptr) {
195
          // Unexpected: 32-bit VDSO is present, yet one of the expected
196
          // symbols is missing or null.
197
          assert(false && "VDSO is present, but doesn't have expected symbols");
198
          num_push_instructions = 0;
199
        } else {
200
          kernel_rt_sigreturn_address =
201
              reinterpret_cast<const unsigned char *>(
202
                  rt_sigreturn_symbol_info.address);
203
          kernel_vsyscall_address =
204
              reinterpret_cast<const unsigned char *>(
205
                  vsyscall_symbol_info.address);
206
          num_push_instructions =
207
              CountPushInstructions(kernel_vsyscall_address);
208
        }
209
      } else {
210
        num_push_instructions = 0;
211
      }
212
#else  // ABSL_HAVE_VDSO_SUPPORT
213
      num_push_instructions = 0;
214
#endif  // ABSL_HAVE_VDSO_SUPPORT
215
    }
216
    if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
217
        old_fp[1] == kernel_rt_sigreturn_address) {
218
      const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
219
      // This kernel does not use frame pointer in its VDSO code,
220
      // and so %ebp is not suitable for unwinding.
221
      void **const reg_ebp =
222
          reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
223
      const unsigned char *const reg_eip =
224
          reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
225
      if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
226
          reg_eip - kernel_vsyscall_address < kMaxBytes) {
227
        // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
228
        // Restore from 'ucv' instead.
229
        void **const reg_esp =
230
            reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
231
        // Check that alleged %esp is not null and is reasonably aligned.
232
        if (reg_esp &&
233
            ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
234
          // Check that alleged %esp is actually readable. This is to prevent
235
          // "double fault" in case we hit the first fault due to e.g. stack
236
          // corruption.
237
          void *const reg_esp2 = reg_esp[num_push_instructions - 1];
238
          if (AddressIsReadable(reg_esp2)) {
239
            // Alleged %esp is readable, use it for further unwinding.
240
            new_fp = reinterpret_cast<void **>(reg_esp2);
241
          }
242
        }
243
      }
244
    }
245
  }
246
#endif
247
248
21.4k
  const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
249
21.4k
  const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
250
251
  // Check that the transition from frame pointer old_fp to frame
252
  // pointer new_fp isn't clearly bogus.  Skip the checks if new_fp
253
  // matches the signal context, so that we don't skip out early when
254
  // using an alternate signal stack.
255
  //
256
  // TODO(bcmills): The GetFP call should be completely unnecessary when
257
  // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
258
  // stack by this point), but it is empirically still needed (e.g. when the
259
  // stack includes a call to abort).  unw_get_reg returns UNW_EBADREG for some
260
  // frames.  Figure out why GetValidFrameAddr and/or libunwind isn't doing what
261
  // it's supposed to.
262
21.4k
  if (STRICT_UNWINDING &&
263
21.4k
      (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
264
    // With the stack growing downwards, older stack frame should be
265
    // at a greater address that the current one. However if we get multiple
266
    // signals handled on altstack the new frame pointer might return to the
267
    // main stack, but be different than the value from the most recent
268
    // ucontext.
269
    // If we get a very large frame size, it may be an indication that we
270
    // guessed frame pointers incorrectly and now risk a paging fault
271
    // dereferencing a wrong frame pointer. Or maybe not because large frames
272
    // are possible as well. The main stack is assumed to be readable,
273
    // so we assume the large frame is legit if we know the real stack bounds
274
    // and are within the stack.
275
21.4k
    if (new_fp_u <= old_fp_u || new_fp_u - old_fp_u > kMaxFrameBytes) {
276
1.18k
      if (stack_high < kUnknownStackEnd &&
277
1.18k
          static_cast<size_t>(getpagesize()) < stack_low) {
278
        // Stack bounds are known.
279
0
        if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
280
          // new_fp_u is not within the known stack.
281
0
          return nullptr;
282
0
        }
283
1.18k
      } else {
284
        // Stack bounds are unknown, prefer truncated stack to possible crash.
285
1.18k
        return nullptr;
286
1.18k
      }
287
1.18k
    }
288
20.2k
    if (stack_low < old_fp_u && old_fp_u <= stack_high) {
289
      // Old BP was in the expected stack region...
290
20.2k
      if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
291
        // ... but new BP is outside of expected stack region.
292
        // It is most likely bogus.
293
0
        return nullptr;
294
0
      }
295
20.2k
    } else {
296
      // We may be here if we are executing in a co-routine with a
297
      // separate stack. We can't do safety checks in this case.
298
0
    }
299
20.2k
  } else {
300
0
    if (new_fp == nullptr) return nullptr;  // skip AddressIsReadable() below
301
    // In the non-strict mode, allow discontiguous stack frames.
302
    // (alternate-signal-stacks for example).
303
0
    if (new_fp == old_fp) return nullptr;
304
0
  }
305
306
20.2k
  if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
307
#ifdef __i386__
308
  // On 32-bit machines, the stack pointer can be very close to
309
  // 0xffffffff, so we explicitly check for a pointer into the
310
  // last two pages in the address space
311
  if (new_fp_u >= 0xffffe000) return nullptr;
312
#endif
313
20.2k
#if !defined(_WIN32)
314
20.2k
  if (!STRICT_UNWINDING) {
315
    // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
316
    // on AMD-based machines with VDSO-enabled kernels.
317
    // Make an extra sanity check to insure new_fp is readable.
318
    // Note: NextStackFrame<false>() is only called while the program
319
    //       is already on its last leg, so it's ok to be slow here.
320
321
0
    if (!AddressIsReadable(new_fp)) {
322
0
      return nullptr;
323
0
    }
324
0
  }
325
20.2k
#endif
326
20.2k
  return new_fp;
327
20.2k
}
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<true, true>(void**, void const*, unsigned long, unsigned long)
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<false, false>(void**, void const*, unsigned long, unsigned long)
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<false, true>(void**, void const*, unsigned long, unsigned long)
328
329
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
330
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.
331
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.
332
ABSL_ATTRIBUTE_NO_SANITIZE_THREAD   // May read random elements from stack.
333
ABSL_ATTRIBUTE_NOINLINE
334
static int UnwindImpl(void **result, uintptr_t *frames, int *sizes,
335
                      int max_depth, int skip_count, const void *ucp,
336
1.18k
                      int *min_dropped_frames) {
337
1.18k
  int n = 0;
338
1.18k
  void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
339
340
  // Assume that the first page is not stack.
341
1.18k
  size_t stack_low = static_cast<size_t>(getpagesize());
342
1.18k
  size_t stack_high = kUnknownStackEnd;
343
344
22.6k
  while (fp && n < max_depth) {
345
21.4k
    if (*(fp + 1) == reinterpret_cast<void *>(0)) {
346
      // In 64-bit code, we often see a frame that
347
      // points to itself and has a return address of 0.
348
0
      break;
349
0
    }
350
21.4k
    void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
351
21.4k
        fp, ucp, stack_low, stack_high);
352
21.4k
    if (skip_count > 0) {
353
4.74k
      skip_count--;
354
16.7k
    } else {
355
16.7k
      result[n] = *(fp + 1);
356
16.7k
      if (IS_STACK_FRAMES) {
357
0
        if (frames) {
358
0
          frames[n] = absl::debugging_internal::StripPointerMetadata(fp) +
359
0
                      2 * sizeof(void *) /* go past the return address */;
360
0
        }
361
0
        if (sizes) {
362
0
          if (next_fp > fp) {
363
0
            sizes[n] = static_cast<int>(
364
0
                absl::debugging_internal::StripPointerMetadata(next_fp) -
365
0
                absl::debugging_internal::StripPointerMetadata(fp));
366
0
          } else {
367
            // A frame-size of 0 is used to indicate unknown frame size.
368
0
            sizes[n] = 0;
369
0
          }
370
0
        }
371
0
      }
372
16.7k
      n++;
373
16.7k
    }
374
21.4k
    fp = next_fp;
375
21.4k
  }
376
1.18k
  if (min_dropped_frames != nullptr) {
377
    // Implementation detail: we clamp the max of frames we are willing to
378
    // count, so as not to spend too much time in the loop below.
379
0
    const int kMaxUnwind = 1000;
380
0
    int num_dropped_frames = 0;
381
0
    for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) {
382
0
      if (skip_count > 0) {
383
0
        skip_count--;
384
0
      } else {
385
0
        num_dropped_frames++;
386
0
      }
387
0
      fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
388
0
                                                             stack_high);
389
0
    }
390
0
    *min_dropped_frames = num_dropped_frames;
391
0
  }
392
1.18k
  return n;
393
1.18k
}
stacktrace.cc:int UnwindImpl<false, false>(void**, unsigned long*, int*, int, int, void const*, int*)
Line
Count
Source
336
1.18k
                      int *min_dropped_frames) {
337
1.18k
  int n = 0;
338
1.18k
  void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
339
340
  // Assume that the first page is not stack.
341
1.18k
  size_t stack_low = static_cast<size_t>(getpagesize());
342
1.18k
  size_t stack_high = kUnknownStackEnd;
343
344
22.6k
  while (fp && n < max_depth) {
345
21.4k
    if (*(fp + 1) == reinterpret_cast<void *>(0)) {
346
      // In 64-bit code, we often see a frame that
347
      // points to itself and has a return address of 0.
348
0
      break;
349
0
    }
350
21.4k
    void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
351
21.4k
        fp, ucp, stack_low, stack_high);
352
21.4k
    if (skip_count > 0) {
353
4.74k
      skip_count--;
354
16.7k
    } else {
355
16.7k
      result[n] = *(fp + 1);
356
16.7k
      if (IS_STACK_FRAMES) {
357
0
        if (frames) {
358
0
          frames[n] = absl::debugging_internal::StripPointerMetadata(fp) +
359
0
                      2 * sizeof(void *) /* go past the return address */;
360
0
        }
361
0
        if (sizes) {
362
0
          if (next_fp > fp) {
363
0
            sizes[n] = static_cast<int>(
364
0
                absl::debugging_internal::StripPointerMetadata(next_fp) -
365
0
                absl::debugging_internal::StripPointerMetadata(fp));
366
0
          } else {
367
            // A frame-size of 0 is used to indicate unknown frame size.
368
0
            sizes[n] = 0;
369
0
          }
370
0
        }
371
0
      }
372
16.7k
      n++;
373
16.7k
    }
374
21.4k
    fp = next_fp;
375
21.4k
  }
376
1.18k
  if (min_dropped_frames != nullptr) {
377
    // Implementation detail: we clamp the max of frames we are willing to
378
    // count, so as not to spend too much time in the loop below.
379
0
    const int kMaxUnwind = 1000;
380
0
    int num_dropped_frames = 0;
381
0
    for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) {
382
0
      if (skip_count > 0) {
383
0
        skip_count--;
384
0
      } else {
385
0
        num_dropped_frames++;
386
0
      }
387
0
      fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
388
0
                                                             stack_high);
389
0
    }
390
0
    *min_dropped_frames = num_dropped_frames;
391
0
  }
392
1.18k
  return n;
393
1.18k
}
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<false, true>(void**, unsigned long*, int*, int, int, void const*, int*)
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<true, false>(void**, unsigned long*, int*, int, int, void const*, int*)
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<true, true>(void**, unsigned long*, int*, int, int, void const*, int*)
394
395
namespace absl {
396
ABSL_NAMESPACE_BEGIN
397
namespace debugging_internal {
398
0
bool StackTraceWorksForTest() {
399
0
  return true;
400
0
}
401
}  // namespace debugging_internal
402
ABSL_NAMESPACE_END
403
}  // namespace absl
404
405
#endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_