/src/abseil-cpp/absl/profiling/internal/exponential_biased.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2019 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ |
16 | | #define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ |
17 | | |
18 | | #include <stdint.h> |
19 | | |
20 | | #include "absl/base/config.h" |
21 | | #include "absl/base/macros.h" |
22 | | |
23 | | namespace absl { |
24 | | ABSL_NAMESPACE_BEGIN |
25 | | namespace profiling_internal { |
26 | | |
27 | | // ExponentialBiased provides a small and fast random number generator for a |
28 | | // rounded exponential distribution. This generator manages very little state, |
29 | | // and imposes no synchronization overhead. This makes it useful in specialized |
30 | | // scenarios requiring minimum overhead, such as stride based periodic sampling. |
31 | | // |
32 | | // ExponentialBiased provides two closely related functions, GetSkipCount() and |
33 | | // GetStride(), both returning a rounded integer defining a number of events |
34 | | // required before some event with a given mean probability occurs. |
35 | | // |
36 | | // The distribution is useful to generate a random wait time or some periodic |
37 | | // event with a given mean probability. For example, if an action is supposed to |
38 | | // happen on average once every 'N' events, then we can get a random 'stride' |
39 | | // counting down how long before the event to happen. For example, if we'd want |
40 | | // to sample one in every 1000 'Frobber' calls, our code could look like this: |
41 | | // |
42 | | // Frobber::Frobber() { |
43 | | // stride_ = exponential_biased_.GetStride(1000); |
44 | | // } |
45 | | // |
46 | | // void Frobber::Frob(int arg) { |
47 | | // if (--stride == 0) { |
48 | | // SampleFrob(arg); |
49 | | // stride_ = exponential_biased_.GetStride(1000); |
50 | | // } |
51 | | // ... |
52 | | // } |
53 | | // |
54 | | // The rounding of the return value creates a bias, especially for smaller means |
55 | | // where the distribution of the fraction is not evenly distributed. We correct |
56 | | // this bias by tracking the fraction we rounded up or down on each iteration, |
57 | | // effectively tracking the distance between the cumulative value, and the |
58 | | // rounded cumulative value. For example, given a mean of 2: |
59 | | // |
60 | | // raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923 |
61 | | // raw = 0.14624, cumulative = 1.77701, rounded = 2, bias = 0.14624 |
62 | | // raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805 |
63 | | // raw = 0.24206, cumulative = 6.95101, rounded = 7, bias = 0.24206 |
64 | | // etc... |
65 | | // |
66 | | // Adjusting with rounding bias is relatively trivial: |
67 | | // |
68 | | // double value = bias_ + exponential_distribution(mean)(); |
69 | | // double rounded_value = std::rint(value); |
70 | | // bias_ = value - rounded_value; |
71 | | // return rounded_value; |
72 | | // |
73 | | // This class is thread-compatible. |
74 | | class ExponentialBiased { |
75 | | public: |
76 | | // The number of bits set by NextRandom. |
77 | | static constexpr int kPrngNumBits = 48; |
78 | | |
79 | | // `GetSkipCount()` returns the number of events to skip before some chosen |
80 | | // event happens. For example, randomly tossing a coin, we will on average |
81 | | // throw heads once before we get tails. We can simulate random coin tosses |
82 | | // using GetSkipCount() as: |
83 | | // |
84 | | // ExponentialBiased eb; |
85 | | // for (...) { |
86 | | // int number_of_heads_before_tail = eb.GetSkipCount(1); |
87 | | // for (int flips = 0; flips < number_of_heads_before_tail; ++flips) { |
88 | | // printf("head..."); |
89 | | // } |
90 | | // printf("tail\n"); |
91 | | // } |
92 | | // |
93 | | int64_t GetSkipCount(int64_t mean); |
94 | | |
95 | | // GetStride() returns the number of events required for a specific event to |
96 | | // happen. See the class comments for a usage example. `GetStride()` is |
97 | | // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or |
98 | | // `GetSkipCount()` depends mostly on what best fits the use case. |
99 | | int64_t GetStride(int64_t mean); |
100 | | |
101 | | // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1] |
102 | | // |
103 | | // This is public to enable testing. |
104 | | static uint64_t NextRandom(uint64_t rnd); |
105 | | |
106 | | private: |
107 | | void Initialize(); |
108 | | |
109 | | uint64_t rng_{0}; |
110 | | double bias_{0}; |
111 | | bool initialized_{false}; |
112 | | }; |
113 | | |
114 | | // Returns the next prng value. |
115 | | // pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 |
116 | | // This is the lrand64 generator. |
117 | 0 | inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) { |
118 | 0 | const uint64_t prng_mult = uint64_t{0x5DEECE66D}; |
119 | 0 | const uint64_t prng_add = 0xB; |
120 | 0 | const uint64_t prng_mod_power = 48; |
121 | 0 | const uint64_t prng_mod_mask = |
122 | 0 | ~((~static_cast<uint64_t>(0)) << prng_mod_power); |
123 | 0 | return (prng_mult * rnd + prng_add) & prng_mod_mask; |
124 | 0 | } |
125 | | |
126 | | } // namespace profiling_internal |
127 | | ABSL_NAMESPACE_END |
128 | | } // namespace absl |
129 | | |
130 | | #endif // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ |