Coverage Report

Created: 2025-07-11 06:37

/src/abseil-cpp/absl/profiling/internal/exponential_biased.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2019 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
16
#define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
17
18
#include <stdint.h>
19
20
#include "absl/base/config.h"
21
#include "absl/base/macros.h"
22
23
namespace absl {
24
ABSL_NAMESPACE_BEGIN
25
namespace profiling_internal {
26
27
// ExponentialBiased provides a small and fast random number generator for a
28
// rounded exponential distribution. This generator manages very little state,
29
// and imposes no synchronization overhead. This makes it useful in specialized
30
// scenarios requiring minimum overhead, such as stride based periodic sampling.
31
//
32
// ExponentialBiased provides two closely related functions, GetSkipCount() and
33
// GetStride(), both returning a rounded integer defining a number of events
34
// required before some event with a given mean probability occurs.
35
//
36
// The distribution is useful to generate a random wait time or some periodic
37
// event with a given mean probability. For example, if an action is supposed to
38
// happen on average once every 'N' events, then we can get a random 'stride'
39
// counting down how long before the event to happen. For example, if we'd want
40
// to sample one in every 1000 'Frobber' calls, our code could look like this:
41
//
42
//   Frobber::Frobber() {
43
//     stride_ = exponential_biased_.GetStride(1000);
44
//   }
45
//
46
//   void Frobber::Frob(int arg) {
47
//     if (--stride == 0) {
48
//       SampleFrob(arg);
49
//       stride_ = exponential_biased_.GetStride(1000);
50
//     }
51
//     ...
52
//   }
53
//
54
// The rounding of the return value creates a bias, especially for smaller means
55
// where the distribution of the fraction is not evenly distributed. We correct
56
// this bias by tracking the fraction we rounded up or down on each iteration,
57
// effectively tracking the distance between the cumulative value, and the
58
// rounded cumulative value. For example, given a mean of 2:
59
//
60
//   raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923
61
//   raw = 0.14624, cumulative = 1.77701, rounded = 2, bias =  0.14624
62
//   raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805
63
//   raw = 0.24206, cumulative = 6.95101, rounded = 7, bias =  0.24206
64
//   etc...
65
//
66
// Adjusting with rounding bias is relatively trivial:
67
//
68
//    double value = bias_ + exponential_distribution(mean)();
69
//    double rounded_value = std::rint(value);
70
//    bias_ = value - rounded_value;
71
//    return rounded_value;
72
//
73
// This class is thread-compatible.
74
class ExponentialBiased {
75
 public:
76
  // The number of bits set by NextRandom.
77
  static constexpr int kPrngNumBits = 48;
78
79
  // `GetSkipCount()` returns the number of events to skip before some chosen
80
  // event happens. For example, randomly tossing a coin, we will on average
81
  // throw heads once before we get tails. We can simulate random coin tosses
82
  // using GetSkipCount() as:
83
  //
84
  //   ExponentialBiased eb;
85
  //   for (...) {
86
  //     int number_of_heads_before_tail = eb.GetSkipCount(1);
87
  //     for (int flips = 0; flips < number_of_heads_before_tail; ++flips) {
88
  //       printf("head...");
89
  //     }
90
  //     printf("tail\n");
91
  //   }
92
  //
93
  int64_t GetSkipCount(int64_t mean);
94
95
  // GetStride() returns the number of events required for a specific event to
96
  // happen. See the class comments for a usage example. `GetStride()` is
97
  // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or
98
  // `GetSkipCount()` depends mostly on what best fits the use case.
99
  int64_t GetStride(int64_t mean);
100
101
  // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
102
  //
103
  // This is public to enable testing.
104
  static uint64_t NextRandom(uint64_t rnd);
105
106
 private:
107
  void Initialize();
108
109
  uint64_t rng_{0};
110
  double bias_{0};
111
  bool initialized_{false};
112
};
113
114
// Returns the next prng value.
115
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
116
// This is the lrand64 generator.
117
0
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
118
0
  const uint64_t prng_mult = uint64_t{0x5DEECE66D};
119
0
  const uint64_t prng_add = 0xB;
120
0
  const uint64_t prng_mod_power = 48;
121
0
  const uint64_t prng_mod_mask =
122
0
      ~((~static_cast<uint64_t>(0)) << prng_mod_power);
123
0
  return (prng_mult * rnd + prng_add) & prng_mod_mask;
124
0
}
125
126
}  // namespace profiling_internal
127
ABSL_NAMESPACE_END
128
}  // namespace absl
129
130
#endif  // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_