/src/abseil-cpp/absl/synchronization/internal/kernel_timeout.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2023 The Abseil Authors |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "absl/synchronization/internal/kernel_timeout.h" |
16 | | |
17 | | #ifndef _WIN32 |
18 | | #include <sys/types.h> |
19 | | #endif |
20 | | |
21 | | #include <algorithm> |
22 | | #include <chrono> // NOLINT(build/c++11) |
23 | | #include <cstdint> |
24 | | #include <cstdlib> |
25 | | #include <cstring> |
26 | | #include <ctime> |
27 | | #include <limits> |
28 | | |
29 | | #include "absl/base/attributes.h" |
30 | | #include "absl/base/call_once.h" |
31 | | #include "absl/base/config.h" |
32 | | #include "absl/time/time.h" |
33 | | |
34 | | namespace absl { |
35 | | ABSL_NAMESPACE_BEGIN |
36 | | namespace synchronization_internal { |
37 | | |
38 | 0 | int64_t KernelTimeout::SteadyClockNow() { |
39 | 0 | if (!SupportsSteadyClock()) { |
40 | 0 | return absl::GetCurrentTimeNanos(); |
41 | 0 | } |
42 | 0 | return std::chrono::duration_cast<std::chrono::nanoseconds>( |
43 | 0 | std::chrono::steady_clock::now().time_since_epoch()) |
44 | 0 | .count(); |
45 | 0 | } |
46 | | |
47 | 0 | KernelTimeout::KernelTimeout(absl::Time t) { |
48 | | // `absl::InfiniteFuture()` is a common "no timeout" value and cheaper to |
49 | | // compare than convert. |
50 | 0 | if (t == absl::InfiniteFuture()) { |
51 | 0 | rep_ = kNoTimeout; |
52 | 0 | return; |
53 | 0 | } |
54 | | |
55 | 0 | int64_t unix_nanos = absl::ToUnixNanos(t); |
56 | | |
57 | | // A timeout that lands before the unix epoch is converted to 0. |
58 | | // In theory implementations should expire these timeouts immediately. |
59 | 0 | if (unix_nanos < 0) { |
60 | 0 | unix_nanos = 0; |
61 | 0 | } |
62 | | |
63 | | // Values greater than or equal to kMaxNanos are converted to infinite. |
64 | 0 | if (unix_nanos >= kMaxNanos) { |
65 | 0 | rep_ = kNoTimeout; |
66 | 0 | return; |
67 | 0 | } |
68 | | |
69 | 0 | rep_ = static_cast<uint64_t>(unix_nanos) << 1; |
70 | 0 | } |
71 | | |
72 | 0 | KernelTimeout::KernelTimeout(absl::Duration d) { |
73 | | // `absl::InfiniteDuration()` is a common "no timeout" value and cheaper to |
74 | | // compare than convert. |
75 | 0 | if (d == absl::InfiniteDuration()) { |
76 | 0 | rep_ = kNoTimeout; |
77 | 0 | return; |
78 | 0 | } |
79 | | |
80 | 0 | int64_t nanos = absl::ToInt64Nanoseconds(d); |
81 | | |
82 | | // Negative durations are normalized to 0. |
83 | | // In theory implementations should expire these timeouts immediately. |
84 | 0 | if (nanos < 0) { |
85 | 0 | nanos = 0; |
86 | 0 | } |
87 | |
|
88 | 0 | int64_t now = SteadyClockNow(); |
89 | 0 | if (nanos > kMaxNanos - now) { |
90 | | // Durations that would be greater than kMaxNanos are converted to infinite. |
91 | 0 | rep_ = kNoTimeout; |
92 | 0 | return; |
93 | 0 | } |
94 | | |
95 | 0 | nanos += now; |
96 | 0 | rep_ = (static_cast<uint64_t>(nanos) << 1) | uint64_t{1}; |
97 | 0 | } |
98 | | |
99 | 0 | int64_t KernelTimeout::MakeAbsNanos() const { |
100 | 0 | if (!has_timeout()) { |
101 | 0 | return kMaxNanos; |
102 | 0 | } |
103 | | |
104 | 0 | int64_t nanos = RawAbsNanos(); |
105 | |
|
106 | 0 | if (is_relative_timeout()) { |
107 | | // We need to change epochs, because the relative timeout might be |
108 | | // represented by an absolute timestamp from another clock. |
109 | 0 | nanos = std::max<int64_t>(nanos - SteadyClockNow(), 0); |
110 | 0 | int64_t now = absl::GetCurrentTimeNanos(); |
111 | 0 | if (nanos > kMaxNanos - now) { |
112 | | // Overflow. |
113 | 0 | nanos = kMaxNanos; |
114 | 0 | } else { |
115 | 0 | nanos += now; |
116 | 0 | } |
117 | 0 | } else if (nanos == 0) { |
118 | | // Some callers have assumed that 0 means no timeout, so instead we return a |
119 | | // time of 1 nanosecond after the epoch. |
120 | 0 | nanos = 1; |
121 | 0 | } |
122 | |
|
123 | 0 | return nanos; |
124 | 0 | } |
125 | | |
126 | 0 | int64_t KernelTimeout::InNanosecondsFromNow() const { |
127 | 0 | if (!has_timeout()) { |
128 | 0 | return kMaxNanos; |
129 | 0 | } |
130 | | |
131 | 0 | int64_t nanos = RawAbsNanos(); |
132 | 0 | if (is_absolute_timeout()) { |
133 | 0 | return std::max<int64_t>(nanos - absl::GetCurrentTimeNanos(), 0); |
134 | 0 | } |
135 | 0 | return std::max<int64_t>(nanos - SteadyClockNow(), 0); |
136 | 0 | } |
137 | | |
138 | 0 | struct timespec KernelTimeout::MakeAbsTimespec() const { |
139 | 0 | return absl::ToTimespec(absl::Nanoseconds(MakeAbsNanos())); |
140 | 0 | } |
141 | | |
142 | 0 | struct timespec KernelTimeout::MakeRelativeTimespec() const { |
143 | 0 | return absl::ToTimespec(absl::Nanoseconds(InNanosecondsFromNow())); |
144 | 0 | } |
145 | | |
146 | | #ifndef _WIN32 |
147 | 0 | struct timespec KernelTimeout::MakeClockAbsoluteTimespec(clockid_t c) const { |
148 | 0 | if (!has_timeout()) { |
149 | 0 | return absl::ToTimespec(absl::Nanoseconds(kMaxNanos)); |
150 | 0 | } |
151 | | |
152 | 0 | int64_t nanos = RawAbsNanos(); |
153 | 0 | if (is_absolute_timeout()) { |
154 | 0 | nanos -= absl::GetCurrentTimeNanos(); |
155 | 0 | } else { |
156 | 0 | nanos -= SteadyClockNow(); |
157 | 0 | } |
158 | |
|
159 | 0 | struct timespec now; |
160 | 0 | ABSL_RAW_CHECK(clock_gettime(c, &now) == 0, "clock_gettime() failed"); |
161 | 0 | absl::Duration from_clock_epoch = |
162 | 0 | absl::DurationFromTimespec(now) + absl::Nanoseconds(nanos); |
163 | 0 | if (from_clock_epoch <= absl::ZeroDuration()) { |
164 | | // Some callers have assumed that 0 means no timeout, so instead we return a |
165 | | // time of 1 nanosecond after the epoch. For safety we also do not return |
166 | | // negative values. |
167 | 0 | return absl::ToTimespec(absl::Nanoseconds(1)); |
168 | 0 | } |
169 | 0 | return absl::ToTimespec(from_clock_epoch); |
170 | 0 | } |
171 | | #endif |
172 | | |
173 | 0 | KernelTimeout::DWord KernelTimeout::InMillisecondsFromNow() const { |
174 | 0 | constexpr DWord kInfinite = std::numeric_limits<DWord>::max(); |
175 | |
|
176 | 0 | if (!has_timeout()) { |
177 | 0 | return kInfinite; |
178 | 0 | } |
179 | | |
180 | 0 | constexpr uint64_t kNanosInMillis = uint64_t{1'000'000}; |
181 | 0 | constexpr uint64_t kMaxValueNanos = |
182 | 0 | std::numeric_limits<int64_t>::max() - kNanosInMillis + 1; |
183 | |
|
184 | 0 | uint64_t ns_from_now = static_cast<uint64_t>(InNanosecondsFromNow()); |
185 | 0 | if (ns_from_now >= kMaxValueNanos) { |
186 | | // Rounding up would overflow. |
187 | 0 | return kInfinite; |
188 | 0 | } |
189 | | // Convert to milliseconds, always rounding up. |
190 | 0 | uint64_t ms_from_now = (ns_from_now + kNanosInMillis - 1) / kNanosInMillis; |
191 | 0 | if (ms_from_now > kInfinite) { |
192 | 0 | return kInfinite; |
193 | 0 | } |
194 | 0 | return static_cast<DWord>(ms_from_now); |
195 | 0 | } |
196 | | |
197 | | std::chrono::time_point<std::chrono::system_clock> |
198 | 0 | KernelTimeout::ToChronoTimePoint() const { |
199 | 0 | if (!has_timeout()) { |
200 | 0 | return std::chrono::time_point<std::chrono::system_clock>::max(); |
201 | 0 | } |
202 | | |
203 | | // The cast to std::microseconds is because (on some platforms) the |
204 | | // std::ratio used by std::chrono::steady_clock doesn't convert to |
205 | | // std::nanoseconds, so it doesn't compile. |
206 | 0 | auto micros = std::chrono::duration_cast<std::chrono::microseconds>( |
207 | 0 | std::chrono::nanoseconds(MakeAbsNanos())); |
208 | 0 | return std::chrono::system_clock::from_time_t(0) + micros; |
209 | 0 | } |
210 | | |
211 | 0 | std::chrono::nanoseconds KernelTimeout::ToChronoDuration() const { |
212 | 0 | if (!has_timeout()) { |
213 | 0 | return std::chrono::nanoseconds::max(); |
214 | 0 | } |
215 | 0 | return std::chrono::nanoseconds(InNanosecondsFromNow()); |
216 | 0 | } |
217 | | |
218 | | } // namespace synchronization_internal |
219 | | ABSL_NAMESPACE_END |
220 | | } // namespace absl |