Coverage Report

Created: 2025-07-17 06:14

/src/abseil-cpp/absl/container/internal/raw_hash_set.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// An open-addressing
16
// hashtable with quadratic probing.
17
//
18
// This is a low level hashtable on top of which different interfaces can be
19
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
20
//
21
// The table interface is similar to that of std::unordered_set. Notable
22
// differences are that most member functions support heterogeneous keys when
23
// BOTH the hash and eq functions are marked as transparent. They do so by
24
// providing a typedef called `is_transparent`.
25
//
26
// When heterogeneous lookup is enabled, functions that take key_type act as if
27
// they have an overload set like:
28
//
29
//   iterator find(const key_type& key);
30
//   template <class K>
31
//   iterator find(const K& key);
32
//
33
//   size_type erase(const key_type& key);
34
//   template <class K>
35
//   size_type erase(const K& key);
36
//
37
//   std::pair<iterator, iterator> equal_range(const key_type& key);
38
//   template <class K>
39
//   std::pair<iterator, iterator> equal_range(const K& key);
40
//
41
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
42
// exist.
43
//
44
// In addition the pointer to element and iterator stability guarantees are
45
// weaker: all iterators and pointers are invalidated after a new element is
46
// inserted.
47
//
48
// IMPLEMENTATION DETAILS
49
//
50
// # Table Layout
51
//
52
// A raw_hash_set's backing array consists of control bytes followed by slots
53
// that may or may not contain objects.
54
//
55
// The layout of the backing array, for `capacity` slots, is thus, as a
56
// pseudo-struct:
57
//
58
//   struct BackingArray {
59
//     // Sampling handler. This field isn't present when the sampling is
60
//     // disabled or this allocation hasn't been selected for sampling.
61
//     HashtablezInfoHandle infoz_;
62
//     // The number of elements we can insert before growing the capacity.
63
//     size_t growth_left;
64
//     // Control bytes for the "real" slots.
65
//     ctrl_t ctrl[capacity];
66
//     // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
67
//     // stop and serves no other purpose.
68
//     ctrl_t sentinel;
69
//     // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
70
//     // that if a probe sequence picks a value near the end of `ctrl`,
71
//     // `Group` will have valid control bytes to look at.
72
//     ctrl_t clones[kWidth - 1];
73
//     // The actual slot data.
74
//     slot_type slots[capacity];
75
//   };
76
//
77
// The length of this array is computed by `RawHashSetLayout::alloc_size` below.
78
//
79
// Control bytes (`ctrl_t`) are bytes (collected into groups of a
80
// platform-specific size) that define the state of the corresponding slot in
81
// the slot array. Group manipulation is tightly optimized to be as efficient
82
// as possible: SSE and friends on x86, clever bit operations on other arches.
83
//
84
//      Group 1         Group 2        Group 3
85
// +---------------+---------------+---------------+
86
// | | | | | | | | | | | | | | | | | | | | | | | | |
87
// +---------------+---------------+---------------+
88
//
89
// Each control byte is either a special value for empty slots, deleted slots
90
// (sometimes called *tombstones*), and a special end-of-table marker used by
91
// iterators, or, if occupied, seven bits (H2) from the hash of the value in the
92
// corresponding slot.
93
//
94
// Storing control bytes in a separate array also has beneficial cache effects,
95
// since more logical slots will fit into a cache line.
96
//
97
// # Small Object Optimization (SOO)
98
//
99
// When the size/alignment of the value_type and the capacity of the table are
100
// small, we enable small object optimization and store the values inline in
101
// the raw_hash_set object. This optimization allows us to avoid
102
// allocation/deallocation as well as cache/dTLB misses.
103
//
104
// # Hashing
105
//
106
// We compute two separate hashes, `H1` and `H2`, from the hash of an object.
107
// `H1(hash(x))` is an index into `slots`, and essentially the starting point
108
// for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
109
// objects that cannot possibly be the one we are looking for.
110
//
111
// # Table operations.
112
//
113
// The key operations are `insert`, `find`, and `erase`.
114
//
115
// Since `insert` and `erase` are implemented in terms of `find`, we describe
116
// `find` first. To `find` a value `x`, we compute `hash(x)`. From
117
// `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
118
// group of slots in some interesting order.
119
//
120
// We now walk through these indices. At each index, we select the entire group
121
// starting with that index and extract potential candidates: occupied slots
122
// with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
123
// group, we stop and return an error. Each candidate slot `y` is compared with
124
// `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the
125
// next probe index. Tombstones effectively behave like full slots that never
126
// match the value we're looking for.
127
//
128
// The `H2` bits ensure when we compare a slot to an object with `==`, we are
129
// likely to have actually found the object.  That is, the chance is low that
130
// `==` is called and returns `false`.  Thus, when we search for an object, we
131
// are unlikely to call `==` many times.  This likelyhood can be analyzed as
132
// follows (assuming that H2 is a random enough hash function).
133
//
134
// Let's assume that there are `k` "wrong" objects that must be examined in a
135
// probe sequence.  For example, when doing a `find` on an object that is in the
136
// table, `k` is the number of objects between the start of the probe sequence
137
// and the final found object (not including the final found object).  The
138
// expected number of objects with an H2 match is then `k/128`.  Measurements
139
// and analysis indicate that even at high load factors, `k` is less than 32,
140
// meaning that the number of "false positive" comparisons we must perform is
141
// less than 1/8 per `find`.
142
143
// `insert` is implemented in terms of `unchecked_insert`, which inserts a
144
// value presumed to not be in the table (violating this requirement will cause
145
// the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
146
// it, we construct a `probe_seq` once again, and use it to find the first
147
// group with an unoccupied (empty *or* deleted) slot. We place `x` into the
148
// first such slot in the group and mark it as full with `x`'s H2.
149
//
150
// To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
151
// perform a `find` to see if it's already present; if it is, we're done. If
152
// it's not, we may decide the table is getting overcrowded (i.e. the load
153
// factor is greater than 7/8 for big tables; tables smaller than one probing
154
// group use a max load factor of 1); in this case, we allocate a bigger array,
155
// `unchecked_insert` each element of the table into the new array (we know that
156
// no insertion here will insert an already-present value), and discard the old
157
// backing array. At this point, we may `unchecked_insert` the value `x`.
158
//
159
// Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
160
// presents a viable, initialized slot pointee to the caller.
161
//
162
// `erase` is implemented in terms of `erase_at`, which takes an index to a
163
// slot. Given an offset, we simply create a tombstone and destroy its contents.
164
// If we can prove that the slot would not appear in a probe sequence, we can
165
// make the slot as empty, instead. We can prove this by observing that if a
166
// group has any empty slots, it has never been full (assuming we never create
167
// an empty slot in a group with no empties, which this heuristic guarantees we
168
// never do) and find would stop at this group anyways (since it does not probe
169
// beyond groups with empties).
170
//
171
// `erase` is `erase_at` composed with `find`: if we
172
// have a value `x`, we can perform a `find`, and then `erase_at` the resulting
173
// slot.
174
//
175
// To iterate, we simply traverse the array, skipping empty and deleted slots
176
// and stopping when we hit a `kSentinel`.
177
178
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
179
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
180
181
#include <algorithm>
182
#include <cassert>
183
#include <cmath>
184
#include <cstddef>
185
#include <cstdint>
186
#include <cstring>
187
#include <functional>
188
#include <initializer_list>
189
#include <iterator>
190
#include <limits>
191
#include <memory>
192
#include <tuple>
193
#include <type_traits>
194
#include <utility>
195
196
#include "absl/base/attributes.h"
197
#include "absl/base/casts.h"
198
#include "absl/base/config.h"
199
#include "absl/base/internal/endian.h"
200
#include "absl/base/internal/iterator_traits.h"
201
#include "absl/base/internal/raw_logging.h"
202
#include "absl/base/macros.h"
203
#include "absl/base/optimization.h"
204
#include "absl/base/options.h"
205
#include "absl/base/port.h"
206
#include "absl/base/prefetch.h"
207
#include "absl/container/internal/common.h"  // IWYU pragma: export // for node_handle
208
#include "absl/container/internal/common_policy_traits.h"
209
#include "absl/container/internal/compressed_tuple.h"
210
#include "absl/container/internal/container_memory.h"
211
#include "absl/container/internal/hash_function_defaults.h"
212
#include "absl/container/internal/hash_policy_traits.h"
213
#include "absl/container/internal/hashtable_control_bytes.h"
214
#include "absl/container/internal/hashtable_debug_hooks.h"
215
#include "absl/container/internal/hashtablez_sampler.h"
216
#include "absl/functional/function_ref.h"
217
#include "absl/hash/hash.h"
218
#include "absl/hash/internal/weakly_mixed_integer.h"
219
#include "absl/memory/memory.h"
220
#include "absl/meta/type_traits.h"
221
#include "absl/numeric/bits.h"
222
#include "absl/utility/utility.h"
223
224
namespace absl {
225
ABSL_NAMESPACE_BEGIN
226
namespace container_internal {
227
228
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
229
#error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set
230
#elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) ||   \
231
       defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
232
       defined(ABSL_HAVE_MEMORY_SANITIZER)) &&   \
233
    !defined(NDEBUG_SANITIZER)  // If defined, performance is important.
234
// When compiled in sanitizer mode, we add generation integers to the backing
235
// array and iterators. In the backing array, we store the generation between
236
// the control bytes and the slots. When iterators are dereferenced, we assert
237
// that the container has not been mutated in a way that could cause iterator
238
// invalidation since the iterator was initialized.
239
#define ABSL_SWISSTABLE_ENABLE_GENERATIONS
240
#endif
241
242
#ifdef ABSL_SWISSTABLE_ASSERT
243
#error ABSL_SWISSTABLE_ASSERT cannot be directly set
244
#else
245
// We use this macro for assertions that users may see when the table is in an
246
// invalid state that sanitizers may help diagnose.
247
#define ABSL_SWISSTABLE_ASSERT(CONDITION) \
248
71.9M
  assert((CONDITION) && "Try enabling sanitizers.")
249
#endif
250
251
// We use uint8_t so we don't need to worry about padding.
252
using GenerationType = uint8_t;
253
254
// A sentinel value for empty generations. Using 0 makes it easy to constexpr
255
// initialize an array of this value.
256
223k
constexpr GenerationType SentinelEmptyGeneration() { return 0; }
257
258
223k
constexpr GenerationType NextGeneration(GenerationType generation) {
259
223k
  return ++generation == SentinelEmptyGeneration() ? ++generation : generation;
260
223k
}
261
262
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
263
constexpr bool SwisstableGenerationsEnabled() { return true; }
264
constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); }
265
#else
266
0
constexpr bool SwisstableGenerationsEnabled() { return false; }
267
669k
constexpr size_t NumGenerationBytes() { return 0; }
268
#endif
269
270
// Returns true if we should assert that the table is not accessed after it has
271
// been destroyed or during the destruction of the table.
272
0
constexpr bool SwisstableAssertAccessToDestroyedTable() {
273
0
#ifndef NDEBUG
274
0
  return true;
275
0
#endif
276
0
  return SwisstableGenerationsEnabled();
277
0
}
278
279
template <typename AllocType>
280
void SwapAlloc(AllocType& lhs, AllocType& rhs,
281
               std::true_type /* propagate_on_container_swap */) {
282
  using std::swap;
283
  swap(lhs, rhs);
284
}
285
template <typename AllocType>
286
void SwapAlloc([[maybe_unused]] AllocType& lhs, [[maybe_unused]] AllocType& rhs,
287
               std::false_type /* propagate_on_container_swap */) {
288
  assert(lhs == rhs &&
289
         "It's UB to call swap with unequal non-propagating allocators.");
290
}
291
292
template <typename AllocType>
293
void CopyAlloc(AllocType& lhs, AllocType& rhs,
294
               std::true_type /* propagate_alloc */) {
295
  lhs = rhs;
296
}
297
template <typename AllocType>
298
void CopyAlloc(AllocType&, AllocType&, std::false_type /* propagate_alloc */) {}
299
300
// The state for a probe sequence.
301
//
302
// Currently, the sequence is a triangular progression of the form
303
//
304
//   p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
305
//
306
// The use of `Width` ensures that each probe step does not overlap groups;
307
// the sequence effectively outputs the addresses of *groups* (although not
308
// necessarily aligned to any boundary). The `Group` machinery allows us
309
// to check an entire group with minimal branching.
310
//
311
// Wrapping around at `mask + 1` is important, but not for the obvious reason.
312
// As described above, the first few entries of the control byte array
313
// are mirrored at the end of the array, which `Group` will find and use
314
// for selecting candidates. However, when those candidates' slots are
315
// actually inspected, there are no corresponding slots for the cloned bytes,
316
// so we need to make sure we've treated those offsets as "wrapping around".
317
//
318
// It turns out that this probe sequence visits every group exactly once if the
319
// number of groups is a power of two, since (i^2+i)/2 is a bijection in
320
// Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
321
template <size_t Width>
322
class probe_seq {
323
 public:
324
  // Creates a new probe sequence using `hash` as the initial value of the
325
  // sequence and `mask` (usually the capacity of the table) as the mask to
326
  // apply to each value in the progression.
327
  probe_seq(size_t hash, size_t mask) {
328
    ABSL_SWISSTABLE_ASSERT(((mask + 1) & mask) == 0 && "not a mask");
329
    mask_ = mask;
330
    offset_ = hash & mask_;
331
  }
332
333
  // The offset within the table, i.e., the value `p(i)` above.
334
156M
  size_t offset() const { return offset_; }
335
40.3M
  size_t offset(size_t i) const { return (offset_ + i) & mask_; }
336
337
4.62M
  void next() {
338
4.62M
    index_ += Width;
339
4.62M
    offset_ += index_;
340
4.62M
    offset_ &= mask_;
341
4.62M
  }
342
  // 0-based probe index, a multiple of `Width`.
343
8.85M
  size_t index() const { return index_; }
344
345
 private:
346
  size_t mask_;
347
  size_t offset_;
348
  size_t index_ = 0;
349
};
350
351
template <class ContainerKey, class Hash, class Eq>
352
struct RequireUsableKey {
353
  template <class PassedKey, class... Args>
354
  std::pair<
355
      decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
356
      decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
357
                                         std::declval<const PassedKey&>()))>*
358
  operator()(const PassedKey&, const Args&...) const;
359
};
360
361
template <class E, class Policy, class Hash, class Eq, class... Ts>
362
struct IsDecomposable : std::false_type {};
363
364
template <class Policy, class Hash, class Eq, class... Ts>
365
struct IsDecomposable<
366
    absl::void_t<decltype(Policy::apply(
367
        RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
368
        std::declval<Ts>()...))>,
369
    Policy, Hash, Eq, Ts...> : std::true_type {};
370
371
ABSL_DLL extern ctrl_t kDefaultIterControl;
372
373
// We use these sentinel capacity values in debug mode to indicate different
374
// classes of bugs.
375
enum InvalidCapacity : size_t {
376
  kAboveMaxValidCapacity = ~size_t{} - 100,
377
  kReentrance,
378
  kDestroyed,
379
380
  // These two must be last because we use `>= kMovedFrom` to mean moved-from.
381
  kMovedFrom,
382
  kSelfMovedFrom,
383
};
384
385
// Returns a pointer to a control byte that can be used by default-constructed
386
// iterators. We don't expect this pointer to be dereferenced.
387
0
inline ctrl_t* DefaultIterControl() { return &kDefaultIterControl; }
388
389
// For use in SOO iterators.
390
// TODO(b/289225379): we could potentially get rid of this by adding an is_soo
391
// bit in iterators. This would add branches but reduce cache misses.
392
ABSL_DLL extern const ctrl_t kSooControl[2];
393
394
// Returns a pointer to a full byte followed by a sentinel byte.
395
300k
inline ctrl_t* SooControl() {
396
  // Const must be cast away here; no uses of this function will actually write
397
  // to it because it is only used for SOO iterators.
398
300k
  return const_cast<ctrl_t*>(kSooControl);
399
300k
}
400
// Whether ctrl is from the SooControl array.
401
0
inline bool IsSooControl(const ctrl_t* ctrl) { return ctrl == SooControl(); }
402
403
// Returns a pointer to a generation to use for an empty hashtable.
404
GenerationType* EmptyGeneration();
405
406
// Returns whether `generation` is a generation for an empty hashtable that
407
// could be returned by EmptyGeneration().
408
0
inline bool IsEmptyGeneration(const GenerationType* generation) {
409
0
  return *generation == SentinelEmptyGeneration();
410
0
}
411
412
// We only allow a maximum of 1 SOO element, which makes the implementation
413
// much simpler. Complications with multiple SOO elements include:
414
// - Satisfying the guarantee that erasing one element doesn't invalidate
415
//   iterators to other elements means we would probably need actual SOO
416
//   control bytes.
417
// - In order to prevent user code from depending on iteration order for small
418
//   tables, we would need to randomize the iteration order somehow.
419
760k
constexpr size_t SooCapacity() { return 1; }
420
// Sentinel type to indicate SOO CommonFields construction.
421
struct soo_tag_t {};
422
// Sentinel type to indicate SOO CommonFields construction with full size.
423
struct full_soo_tag_t {};
424
// Sentinel type to indicate non-SOO CommonFields construction.
425
struct non_soo_tag_t {};
426
// Sentinel value to indicate an uninitialized value explicitly.
427
struct uninitialized_tag_t {};
428
// Sentinel value to indicate creation of an empty table without a seed.
429
struct no_seed_empty_tag_t {};
430
431
// Per table hash salt. This gets mixed into H1 to randomize iteration order
432
// per-table.
433
// The seed is needed to ensure non-determinism of iteration order.
434
class PerTableSeed {
435
 public:
436
  // The number of bits in the seed.
437
  // It is big enough to ensure non-determinism of iteration order.
438
  // We store the seed inside a uint64_t together with size and other metadata.
439
  // Using 16 bits allows us to save one `and` instruction in H1 (we use
440
  // sign-extended move instead of mov+and).
441
  static constexpr size_t kBitCount = 16;
442
  static constexpr size_t kSignBit = uint64_t{1} << (kBitCount - 1);
443
444
  // Returns the seed for the table.
445
81.6M
  size_t seed() const {
446
    // We use a sign-extended load to ensure high bits are non-zero.
447
81.6M
    int16_t seed_signed = absl::bit_cast<int16_t>(seed_);
448
81.6M
    auto seed_sign_extended =
449
81.6M
        static_cast<std::make_signed_t<size_t>>(seed_signed);
450
81.6M
    return absl::bit_cast<size_t>(seed_sign_extended);
451
81.6M
  }
452
453
 private:
454
  friend class HashtableSize;
455
  explicit PerTableSeed(uint16_t seed) : seed_(seed) {
456
    ABSL_SWISSTABLE_ASSERT((seed & kSignBit) != 0 || seed == 0);
457
  }
458
459
  // The most significant bit of the seed is always 1 when there is a non-zero
460
  // seed. This way, when sign-extended the seed has non-zero high bits.
461
  const uint16_t seed_;
462
};
463
464
// Returns next per-table seed.
465
55.0k
inline uint16_t NextSeed() {
466
55.0k
  static_assert(PerTableSeed::kBitCount == 16);
467
55.0k
  thread_local uint16_t seed =
468
55.0k
      static_cast<uint16_t>(reinterpret_cast<uintptr_t>(&seed));
469
55.0k
  seed += uint16_t{0xad53};
470
55.0k
  return seed;
471
55.0k
}
472
473
// The size and also has additionally
474
// 1) one bit that stores whether we have infoz.
475
// 2) PerTableSeed::kBitCount bits for the seed.
476
class HashtableSize {
477
 public:
478
  static constexpr size_t kSizeBitCount = 64 - PerTableSeed::kBitCount - 1;
479
480
0
  explicit HashtableSize(uninitialized_tag_t) {}
481
310k
  explicit HashtableSize(no_seed_empty_tag_t) : data_(0) {}
482
256k
  explicit HashtableSize(full_soo_tag_t) : data_(kSizeOneNoMetadata) {}
483
484
  // Returns actual size of the table.
485
10.5M
  size_t size() const { return static_cast<size_t>(data_ >> kSizeShift); }
486
8.82M
  void increment_size() { data_ += kSizeOneNoMetadata; }
487
0
  void increment_size(size_t size) {
488
0
    data_ += static_cast<uint64_t>(size) * kSizeOneNoMetadata;
489
0
  }
490
0
  void decrement_size() { data_ -= kSizeOneNoMetadata; }
491
  // Returns true if the table is empty.
492
0
  bool empty() const { return data_ < kSizeOneNoMetadata; }
493
  // Sets the size to zero, but keeps all the metadata bits.
494
185k
  void set_size_to_zero_keep_metadata() { data_ = data_ & kMetadataMask; }
495
496
81.6M
  PerTableSeed seed() const {
497
81.6M
    return PerTableSeed(static_cast<size_t>(data_) & kSeedMask);
498
81.6M
  }
499
500
55.0k
  void generate_new_seed() { set_seed(NextSeed()); }
501
502
  // We need to use a constant seed when the table is sampled so that sampled
503
  // hashes use the same seed and can e.g. identify stuck bits accurately.
504
0
  void set_sampled_seed() { set_seed(PerTableSeed::kSignBit); }
505
506
0
  bool is_sampled_seed() const {
507
0
    return (data_ & kSeedMask) == PerTableSeed::kSignBit;
508
0
  }
509
510
  // Returns true if the table has infoz.
511
9.15M
  bool has_infoz() const {
512
9.15M
    return ABSL_PREDICT_FALSE((data_ & kHasInfozMask) != 0);
513
9.15M
  }
514
515
  // Sets the has_infoz bit.
516
0
  void set_has_infoz() { data_ |= kHasInfozMask; }
517
518
0
  void set_no_seed_for_testing() { data_ &= ~kSeedMask; }
519
520
 private:
521
55.0k
  void set_seed(uint16_t seed) {
522
55.0k
    data_ = (data_ & ~kSeedMask) | (seed | PerTableSeed::kSignBit);
523
55.0k
  }
524
  static constexpr size_t kSizeShift = 64 - kSizeBitCount;
525
  static constexpr uint64_t kSizeOneNoMetadata = uint64_t{1} << kSizeShift;
526
  static constexpr uint64_t kMetadataMask = kSizeOneNoMetadata - 1;
527
  static constexpr uint64_t kSeedMask =
528
      (uint64_t{1} << PerTableSeed::kBitCount) - 1;
529
  // The next bit after the seed.
530
  static constexpr uint64_t kHasInfozMask = kSeedMask + 1;
531
  uint64_t data_;
532
};
533
534
// H1 is just the low bits of the hash.
535
81.4M
inline size_t H1(size_t hash) { return hash; }
536
537
// Extracts the H2 portion of a hash: the 7 most significant bits.
538
//
539
// These are used as an occupied control byte.
540
90.2M
inline h2_t H2(size_t hash) { return hash >> (sizeof(size_t) * 8 - 7); }
541
542
// When there is an insertion with no reserved growth, we rehash with
543
// probability `min(1, RehashProbabilityConstant() / capacity())`. Using a
544
// constant divided by capacity ensures that inserting N elements is still O(N)
545
// in the average case. Using the constant 16 means that we expect to rehash ~8
546
// times more often than when generations are disabled. We are adding expected
547
// rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 -
548
// 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth.
549
0
inline size_t RehashProbabilityConstant() { return 16; }
550
551
class CommonFieldsGenerationInfoEnabled {
552
  // A sentinel value for reserved_growth_ indicating that we just ran out of
553
  // reserved growth on the last insertion. When reserve is called and then
554
  // insertions take place, reserved_growth_'s state machine is N, ..., 1,
555
  // kReservedGrowthJustRanOut, 0.
556
  static constexpr size_t kReservedGrowthJustRanOut =
557
      (std::numeric_limits<size_t>::max)();
558
559
 public:
560
  CommonFieldsGenerationInfoEnabled() = default;
561
  CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that)
562
      : reserved_growth_(that.reserved_growth_),
563
        reservation_size_(that.reservation_size_),
564
0
        generation_(that.generation_) {
565
0
    that.reserved_growth_ = 0;
566
0
    that.reservation_size_ = 0;
567
0
    that.generation_ = EmptyGeneration();
568
0
  }
569
  CommonFieldsGenerationInfoEnabled& operator=(
570
      CommonFieldsGenerationInfoEnabled&&) = default;
571
572
  // Whether we should rehash on insert in order to detect bugs of using invalid
573
  // references. We rehash on the first insertion after reserved_growth_ reaches
574
  // 0 after a call to reserve. We also do a rehash with low probability
575
  // whenever reserved_growth_ is zero.
576
  bool should_rehash_for_bug_detection_on_insert(size_t capacity) const;
577
  // Similar to above, except that we don't depend on reserved_growth_.
578
  bool should_rehash_for_bug_detection_on_move(size_t capacity) const;
579
0
  void maybe_increment_generation_on_insert() {
580
0
    if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0;
581
0
582
0
    if (reserved_growth_ > 0) {
583
0
      if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut;
584
0
    } else {
585
0
      increment_generation();
586
0
    }
587
0
  }
588
0
  void increment_generation() { *generation_ = NextGeneration(*generation_); }
589
0
  void reset_reserved_growth(size_t reservation, size_t size) {
590
0
    reserved_growth_ = reservation - size;
591
0
  }
592
0
  size_t reserved_growth() const { return reserved_growth_; }
593
0
  void set_reserved_growth(size_t r) { reserved_growth_ = r; }
594
0
  size_t reservation_size() const { return reservation_size_; }
595
0
  void set_reservation_size(size_t r) { reservation_size_ = r; }
596
0
  GenerationType generation() const { return *generation_; }
597
0
  void set_generation(GenerationType g) { *generation_ = g; }
598
0
  GenerationType* generation_ptr() const { return generation_; }
599
0
  void set_generation_ptr(GenerationType* g) { generation_ = g; }
600
601
 private:
602
  // The number of insertions remaining that are guaranteed to not rehash due to
603
  // a prior call to reserve. Note: we store reserved growth in addition to
604
  // reservation size because calls to erase() decrease size_ but don't decrease
605
  // reserved growth.
606
  size_t reserved_growth_ = 0;
607
  // The maximum argument to reserve() since the container was cleared. We need
608
  // to keep track of this, in addition to reserved growth, because we reset
609
  // reserved growth to this when erase(begin(), end()) is called.
610
  size_t reservation_size_ = 0;
611
  // Pointer to the generation counter, which is used to validate iterators and
612
  // is stored in the backing array between the control bytes and the slots.
613
  // Note that we can't store the generation inside the container itself and
614
  // keep a pointer to the container in the iterators because iterators must
615
  // remain valid when the container is moved.
616
  // Note: we could derive this pointer from the control pointer, but it makes
617
  // the code more complicated, and there's a benefit in having the sizes of
618
  // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different,
619
  // which is that tests are less likely to rely on the size remaining the same.
620
  GenerationType* generation_ = EmptyGeneration();
621
};
622
623
class CommonFieldsGenerationInfoDisabled {
624
 public:
625
  CommonFieldsGenerationInfoDisabled() = default;
626
  CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) =
627
      default;
628
  CommonFieldsGenerationInfoDisabled& operator=(
629
      CommonFieldsGenerationInfoDisabled&&) = default;
630
631
0
  bool should_rehash_for_bug_detection_on_insert(size_t) const { return false; }
632
0
  bool should_rehash_for_bug_detection_on_move(size_t) const { return false; }
633
8.82M
  void maybe_increment_generation_on_insert() {}
634
0
  void increment_generation() {}
635
0
  void reset_reserved_growth(size_t, size_t) {}
636
0
  size_t reserved_growth() const { return 0; }
637
  void set_reserved_growth(size_t) {}
638
0
  size_t reservation_size() const { return 0; }
639
579k
  void set_reservation_size(size_t) {}
640
223k
  GenerationType generation() const { return 0; }
641
223k
  void set_generation(GenerationType) {}
642
  GenerationType* generation_ptr() const { return nullptr; }
643
223k
  void set_generation_ptr(GenerationType*) {}
644
};
645
646
class HashSetIteratorGenerationInfoEnabled {
647
 public:
648
  HashSetIteratorGenerationInfoEnabled() = default;
649
  explicit HashSetIteratorGenerationInfoEnabled(
650
      const GenerationType* generation_ptr)
651
0
      : generation_ptr_(generation_ptr), generation_(*generation_ptr) {}
652
653
0
  GenerationType generation() const { return generation_; }
654
0
  void reset_generation() { generation_ = *generation_ptr_; }
655
0
  const GenerationType* generation_ptr() const { return generation_ptr_; }
656
0
  void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; }
657
658
 private:
659
  const GenerationType* generation_ptr_ = EmptyGeneration();
660
  GenerationType generation_ = *generation_ptr_;
661
};
662
663
class HashSetIteratorGenerationInfoDisabled {
664
 public:
665
  HashSetIteratorGenerationInfoDisabled() = default;
666
  explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {}
667
668
  GenerationType generation() const { return 0; }
669
0
  void reset_generation() {}
670
  const GenerationType* generation_ptr() const { return nullptr; }
671
0
  void set_generation_ptr(const GenerationType*) {}
672
};
673
674
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
675
using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled;
676
using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled;
677
#else
678
using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled;
679
using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled;
680
#endif
681
682
// Stored the information regarding number of slots we can still fill
683
// without needing to rehash.
684
//
685
// We want to ensure sufficient number of empty slots in the table in order
686
// to keep probe sequences relatively short. Empty slot in the probe group
687
// is required to stop probing.
688
//
689
// Tombstones (kDeleted slots) are not included in the growth capacity,
690
// because we'd like to rehash when the table is filled with tombstones and/or
691
// full slots.
692
//
693
// GrowthInfo also stores a bit that encodes whether table may have any
694
// deleted slots.
695
// Most of the tables (>95%) have no deleted slots, so some functions can
696
// be more efficient with this information.
697
//
698
// Callers can also force a rehash via the standard `rehash(0)`,
699
// which will recompute this value as a side-effect.
700
//
701
// See also `CapacityToGrowth()`.
702
class GrowthInfo {
703
 public:
704
  // Leaves data member uninitialized.
705
  GrowthInfo() = default;
706
707
  // Initializes the GrowthInfo assuming we can grow `growth_left` elements
708
  // and there are no kDeleted slots in the table.
709
409k
  void InitGrowthLeftNoDeleted(size_t growth_left) {
710
409k
    growth_left_info_ = growth_left;
711
409k
  }
712
713
  // Overwrites single full slot with an empty slot.
714
0
  void OverwriteFullAsEmpty() { ++growth_left_info_; }
715
716
  // Overwrites single empty slot with a full slot.
717
8.60M
  void OverwriteEmptyAsFull() {
718
8.60M
    ABSL_SWISSTABLE_ASSERT(GetGrowthLeft() > 0);
719
8.60M
    --growth_left_info_;
720
8.60M
  }
721
722
  // Overwrites several empty slots with full slots.
723
0
  void OverwriteManyEmptyAsFull(size_t count) {
724
0
    ABSL_SWISSTABLE_ASSERT(GetGrowthLeft() >= count);
725
0
    growth_left_info_ -= count;
726
0
  }
727
728
  // Overwrites specified control element with full slot.
729
0
  void OverwriteControlAsFull(ctrl_t ctrl) {
730
0
    ABSL_SWISSTABLE_ASSERT(GetGrowthLeft() >=
731
0
                           static_cast<size_t>(IsEmpty(ctrl)));
732
0
    growth_left_info_ -= static_cast<size_t>(IsEmpty(ctrl));
733
0
  }
734
735
  // Overwrites single full slot with a deleted slot.
736
0
  void OverwriteFullAsDeleted() { growth_left_info_ |= kDeletedBit; }
737
738
  // Returns true if table satisfies two properties:
739
  // 1. Guaranteed to have no kDeleted slots.
740
  // 2. There is a place for at least one element to grow.
741
8.93M
  bool HasNoDeletedAndGrowthLeft() const {
742
8.93M
    return static_cast<std::make_signed_t<size_t>>(growth_left_info_) > 0;
743
8.93M
  }
744
745
  // Returns true if the table satisfies two properties:
746
  // 1. Guaranteed to have no kDeleted slots.
747
  // 2. There is no growth left.
748
168k
  bool HasNoGrowthLeftAndNoDeleted() const { return growth_left_info_ == 0; }
749
750
  // Returns true if GetGrowthLeft() == 0, but must be called only if
751
  // HasNoDeleted() is false. It is slightly more efficient.
752
0
  bool HasNoGrowthLeftAssumingMayHaveDeleted() const {
753
0
    ABSL_SWISSTABLE_ASSERT(!HasNoDeleted());
754
0
    return growth_left_info_ == kDeletedBit;
755
0
  }
756
757
  // Returns true if table guaranteed to have no kDeleted slots.
758
168k
  bool HasNoDeleted() const {
759
168k
    return static_cast<std::make_signed_t<size_t>>(growth_left_info_) >= 0;
760
168k
  }
761
762
  // Returns the number of elements left to grow.
763
8.93M
  size_t GetGrowthLeft() const { return growth_left_info_ & kGrowthLeftMask; }
764
765
 private:
766
  static constexpr size_t kGrowthLeftMask = ((~size_t{}) >> 1);
767
  static constexpr size_t kDeletedBit = ~kGrowthLeftMask;
768
  // Topmost bit signal whenever there are deleted slots.
769
  size_t growth_left_info_;
770
};
771
772
static_assert(sizeof(GrowthInfo) == sizeof(size_t), "");
773
static_assert(alignof(GrowthInfo) == alignof(size_t), "");
774
775
// Returns whether `n` is a valid capacity (i.e., number of slots).
776
//
777
// A valid capacity is a non-zero integer `2^m - 1`.
778
968k
constexpr bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
779
780
// Whether a table is small enough that we don't need to hash any keys.
781
306M
constexpr bool IsSmallCapacity(size_t capacity) { return capacity <= 1; }
782
783
// Returns the number of "cloned control bytes".
784
//
785
// This is the number of control bytes that are present both at the beginning
786
// of the control byte array and at the end, such that we can create a
787
// `Group::kWidth`-width probe window starting from any control byte.
788
213M
constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
789
790
// Returns the number of control bytes including cloned.
791
196M
constexpr size_t NumControlBytes(size_t capacity) {
792
196M
  return IsSmallCapacity(capacity) ? 0 : capacity + 1 + NumClonedBytes();
793
196M
}
794
795
// Computes the offset from the start of the backing allocation of control.
796
// infoz and growth_info are stored at the beginning of the backing array.
797
27.7M
constexpr size_t ControlOffset(bool has_infoz) {
798
27.7M
  return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(GrowthInfo);
799
27.7M
}
800
801
// Returns the offset of the next item after `offset` that is aligned to `align`
802
// bytes. `align` must be a power of two.
803
669k
constexpr size_t AlignUpTo(size_t offset, size_t align) {
804
669k
  return (offset + align - 1) & (~align + 1);
805
669k
}
806
807
// Helper class for computing offsets and allocation size of hash set fields.
808
class RawHashSetLayout {
809
 public:
810
  // TODO(b/413062340): maybe don't allocate growth info for capacity 1 tables.
811
  // Doing so may require additional branches/complexity so it might not be
812
  // worth it.
813
  explicit RawHashSetLayout(size_t capacity, size_t slot_size,
814
                            size_t slot_align, bool has_infoz)
815
      : control_offset_(ControlOffset(has_infoz)),
816
        generation_offset_(control_offset_ + NumControlBytes(capacity)),
817
        slot_offset_(
818
            AlignUpTo(generation_offset_ + NumGenerationBytes(), slot_align)),
819
        alloc_size_(slot_offset_ + capacity * slot_size) {
820
    ABSL_SWISSTABLE_ASSERT(IsValidCapacity(capacity));
821
    ABSL_SWISSTABLE_ASSERT(
822
        slot_size <=
823
        ((std::numeric_limits<size_t>::max)() - slot_offset_) / capacity);
824
  }
825
826
  // Returns precomputed offset from the start of the backing allocation of
827
  // control.
828
669k
  size_t control_offset() const { return control_offset_; }
829
830
  // Given the capacity of a table, computes the offset (from the start of the
831
  // backing allocation) of the generation counter (if it exists).
832
223k
  size_t generation_offset() const { return generation_offset_; }
833
834
  // Given the capacity of a table, computes the offset (from the start of the
835
  // backing allocation) at which the slots begin.
836
223k
  size_t slot_offset() const { return slot_offset_; }
837
838
  // Given the capacity of a table, computes the total size of the backing
839
  // array.
840
893k
  size_t alloc_size() const { return alloc_size_; }
841
842
 private:
843
  size_t control_offset_;
844
  size_t generation_offset_;
845
  size_t slot_offset_;
846
  size_t alloc_size_;
847
};
848
849
struct HashtableFreeFunctionsAccess;
850
851
// This allows us to work around an uninitialized memory warning when
852
// constructing begin() iterators in empty hashtables.
853
template <typename T>
854
union MaybeInitializedPtr {
855
323M
  T* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
absl::container_internal::MaybeInitializedPtr<void>::get() const
Line
Count
Source
855
127M
  T* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
absl::container_internal::MaybeInitializedPtr<absl::container_internal::ctrl_t>::get() const
Line
Count
Source
855
195M
  T* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
856
446k
  void set(T* ptr) { p = ptr; }
absl::container_internal::MaybeInitializedPtr<absl::container_internal::ctrl_t>::set(absl::container_internal::ctrl_t*)
Line
Count
Source
856
223k
  void set(T* ptr) { p = ptr; }
absl::container_internal::MaybeInitializedPtr<void>::set(void*)
Line
Count
Source
856
223k
  void set(T* ptr) { p = ptr; }
857
858
  T* p;
859
};
860
861
struct HeapPtrs {
862
  // The control bytes (and, also, a pointer near to the base of the backing
863
  // array).
864
  //
865
  // This contains `capacity + 1 + NumClonedBytes()` entries.
866
  //
867
  // Note that growth_info is stored immediately before this pointer.
868
  // May be uninitialized for small tables.
869
  MaybeInitializedPtr<ctrl_t> control;
870
871
  // The beginning of the slots, located at `SlotOffset()` bytes after
872
  // `control`. May be uninitialized for empty tables.
873
  // Note: we can't use `slots` because Qt defines "slots" as a macro.
874
  MaybeInitializedPtr<void> slot_array;
875
};
876
877
// Returns the maximum size of the SOO slot.
878
0
constexpr size_t MaxSooSlotSize() { return sizeof(HeapPtrs); }
879
880
// Manages the backing array pointers or the SOO slot. When raw_hash_set::is_soo
881
// is true, the SOO slot is stored in `soo_data`. Otherwise, we use `heap`.
882
union HeapOrSoo {
883
223k
  MaybeInitializedPtr<ctrl_t>& control() {
884
223k
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control);
885
223k
  }
886
196M
  MaybeInitializedPtr<ctrl_t> control() const {
887
196M
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control);
888
196M
  }
889
223k
  MaybeInitializedPtr<void>& slot_array() {
890
223k
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array);
891
223k
  }
892
127M
  MaybeInitializedPtr<void> slot_array() const {
893
127M
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array);
894
127M
  }
895
745k
  void* get_soo_data() {
896
745k
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data);
897
745k
  }
898
0
  const void* get_soo_data() const {
899
0
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data);
900
0
  }
901
902
  HeapPtrs heap;
903
  unsigned char soo_data[MaxSooSlotSize()];
904
};
905
906
// Returns a reference to the GrowthInfo object stored immediately before
907
// `control`.
908
18.1M
inline GrowthInfo& GetGrowthInfoFromControl(ctrl_t* control) {
909
18.1M
  auto* gl_ptr = reinterpret_cast<GrowthInfo*>(control) - 1;
910
18.1M
  ABSL_SWISSTABLE_ASSERT(
911
18.1M
      reinterpret_cast<uintptr_t>(gl_ptr) % alignof(GrowthInfo) == 0);
912
18.1M
  return *gl_ptr;
913
18.1M
}
914
915
// CommonFields hold the fields in raw_hash_set that do not depend
916
// on template parameters. This allows us to conveniently pass all
917
// of this state to helper functions as a single argument.
918
class CommonFields : public CommonFieldsGenerationInfo {
919
 public:
920
  explicit CommonFields(soo_tag_t)
921
112k
      : capacity_(SooCapacity()), size_(no_seed_empty_tag_t{}) {}
922
  explicit CommonFields(full_soo_tag_t)
923
0
      : capacity_(SooCapacity()), size_(full_soo_tag_t{}) {}
924
  explicit CommonFields(non_soo_tag_t)
925
0
      : capacity_(0), size_(no_seed_empty_tag_t{}) {}
926
  // For use in swapping.
927
0
  explicit CommonFields(uninitialized_tag_t) : size_(uninitialized_tag_t{}) {}
928
929
  // Not copyable
930
  CommonFields(const CommonFields&) = delete;
931
  CommonFields& operator=(const CommonFields&) = delete;
932
933
  // Copy with guarantee that it is not SOO.
934
  CommonFields(non_soo_tag_t, const CommonFields& that)
935
      : capacity_(that.capacity_),
936
        size_(that.size_),
937
0
        heap_or_soo_(that.heap_or_soo_) {
938
0
  }
939
940
  // Movable
941
  CommonFields(CommonFields&& that) = default;
942
  CommonFields& operator=(CommonFields&&) = default;
943
944
  template <bool kSooEnabled>
945
  static CommonFields CreateDefault() {
946
    return kSooEnabled ? CommonFields{soo_tag_t{}}
947
                       : CommonFields{non_soo_tag_t{}};
948
  }
949
950
  // The inline data for SOO is written on top of control_/slots_.
951
0
  const void* soo_data() const { return heap_or_soo_.get_soo_data(); }
952
745k
  void* soo_data() { return heap_or_soo_.get_soo_data(); }
953
954
  ctrl_t* control() const {
955
    ABSL_SWISSTABLE_ASSERT(capacity() > 0);
956
    // Assume that the control bytes don't alias `this`.
957
    ctrl_t* ctrl = heap_or_soo_.control().get();
958
    [[maybe_unused]] size_t num_control_bytes = NumControlBytes(capacity());
959
    ABSL_ASSUME(reinterpret_cast<uintptr_t>(ctrl + num_control_bytes) <=
960
                    reinterpret_cast<uintptr_t>(this) ||
961
                reinterpret_cast<uintptr_t>(this + 1) <=
962
                    reinterpret_cast<uintptr_t>(ctrl));
963
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(ctrl);
964
  }
965
966
223k
  void set_control(ctrl_t* c) { heap_or_soo_.control().set(c); }
967
968
  // Note: we can't use slots() because Qt defines "slots" as a macro.
969
127M
  void* slot_array() const { return heap_or_soo_.slot_array().get(); }
970
  MaybeInitializedPtr<void> slots_union() const {
971
    return heap_or_soo_.slot_array();
972
  }
973
223k
  void set_slots(void* s) { heap_or_soo_.slot_array().set(s); }
974
975
  // The number of filled slots.
976
10.5M
  size_t size() const { return size_.size(); }
977
  // Sets the size to zero, but keeps hashinfoz bit and seed.
978
185k
  void set_size_to_zero() { size_.set_size_to_zero_keep_metadata(); }
979
198k
  void set_empty_soo() {
980
198k
    AssertInSooMode();
981
198k
    size_ = HashtableSize(no_seed_empty_tag_t{});
982
198k
  }
983
256k
  void set_full_soo() {
984
256k
    AssertInSooMode();
985
256k
    size_ = HashtableSize(full_soo_tag_t{});
986
256k
  }
987
8.82M
  void increment_size() {
988
8.82M
    ABSL_SWISSTABLE_ASSERT(size() < capacity());
989
8.82M
    size_.increment_size();
990
8.82M
  }
991
0
  void increment_size(size_t n) {
992
0
    ABSL_SWISSTABLE_ASSERT(size() + n <= capacity());
993
0
    size_.increment_size(n);
994
0
  }
995
0
  void decrement_size() {
996
0
    ABSL_SWISSTABLE_ASSERT(!empty());
997
0
    size_.decrement_size();
998
0
  }
999
0
  bool empty() const { return size_.empty(); }
1000
1001
  // The seed used for the hash function.
1002
81.6M
  PerTableSeed seed() const { return size_.seed(); }
1003
  // Generates a new seed the hash function.
1004
  // The table will be invalidated if `!empty()` because hash is being changed.
1005
  // In such cases, we will need to rehash the table.
1006
55.0k
  void generate_new_seed(bool has_infoz) {
1007
    // Note: we can't use has_infoz() here because we set has_infoz later than
1008
    // we generate the seed.
1009
55.0k
    if (ABSL_PREDICT_FALSE(has_infoz)) {
1010
0
      size_.set_sampled_seed();
1011
0
      return;
1012
0
    }
1013
55.0k
    size_.generate_new_seed();
1014
55.0k
  }
1015
0
  void set_no_seed_for_testing() { size_.set_no_seed_for_testing(); }
1016
1017
  // The total number of available slots.
1018
334M
  size_t capacity() const { return capacity_; }
1019
223k
  void set_capacity(size_t c) {
1020
    // We allow setting above the max valid capacity for debugging purposes.
1021
223k
    ABSL_SWISSTABLE_ASSERT(c == 0 || IsValidCapacity(c) ||
1022
223k
                           c > kAboveMaxValidCapacity);
1023
223k
    capacity_ = c;
1024
223k
  }
1025
109M
  bool is_small() const { return IsSmallCapacity(capacity_); }
1026
1027
  // The number of slots we can still fill without needing to rehash.
1028
  // This is stored in the heap allocation before the control bytes.
1029
  // TODO(b/289225379): experiment with moving growth_info back inline to
1030
  // increase room for SOO.
1031
168k
  size_t growth_left() const { return growth_info().GetGrowthLeft(); }
1032
1033
17.8M
  GrowthInfo& growth_info() {
1034
17.8M
    ABSL_SWISSTABLE_ASSERT(!is_small());
1035
17.8M
    return GetGrowthInfoFromControl(control());
1036
17.8M
  }
1037
168k
  GrowthInfo growth_info() const {
1038
168k
    return const_cast<CommonFields*>(this)->growth_info();
1039
168k
  }
1040
1041
9.15M
  bool has_infoz() const { return size_.has_infoz(); }
1042
0
  void set_has_infoz() {
1043
0
    ABSL_SWISSTABLE_ASSERT(size_.is_sampled_seed());
1044
0
    size_.set_has_infoz();
1045
0
  }
1046
1047
0
  HashtablezInfoHandle* infoz_ptr() const {
1048
    // growth_info is stored before control bytes.
1049
0
    ABSL_SWISSTABLE_ASSERT(
1050
0
        reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0);
1051
0
    ABSL_SWISSTABLE_ASSERT(has_infoz());
1052
0
    return reinterpret_cast<HashtablezInfoHandle*>(
1053
0
        control() - ControlOffset(/*has_infoz=*/true));
1054
0
  }
1055
1056
9.09M
  HashtablezInfoHandle infoz() {
1057
9.09M
    return has_infoz() ? *infoz_ptr() : HashtablezInfoHandle();
1058
9.09M
  }
1059
0
  void set_infoz(HashtablezInfoHandle infoz) {
1060
0
    ABSL_SWISSTABLE_ASSERT(has_infoz());
1061
0
    *infoz_ptr() = infoz;
1062
0
  }
1063
1064
0
  bool should_rehash_for_bug_detection_on_insert() const {
1065
0
    if constexpr (!SwisstableGenerationsEnabled()) {
1066
0
      return false;
1067
0
    }
1068
0
    // As an optimization, we avoid calling ShouldRehashForBugDetection if we
1069
0
    // will end up rehashing anyways.
1070
0
    if (growth_left() == 0) return false;
1071
0
    return CommonFieldsGenerationInfo::
1072
0
        should_rehash_for_bug_detection_on_insert(capacity());
1073
0
  }
1074
0
  bool should_rehash_for_bug_detection_on_move() const {
1075
0
    return CommonFieldsGenerationInfo::should_rehash_for_bug_detection_on_move(
1076
0
        capacity());
1077
0
  }
1078
0
  void reset_reserved_growth(size_t reservation) {
1079
0
    CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size());
1080
0
  }
1081
1082
  // The size of the backing array allocation.
1083
0
  size_t alloc_size(size_t slot_size, size_t slot_align) const {
1084
0
    return RawHashSetLayout(capacity(), slot_size, slot_align, has_infoz())
1085
0
        .alloc_size();
1086
0
  }
1087
1088
  // Move fields other than heap_or_soo_.
1089
0
  void move_non_heap_or_soo_fields(CommonFields& that) {
1090
0
    static_cast<CommonFieldsGenerationInfo&>(*this) =
1091
0
        std::move(static_cast<CommonFieldsGenerationInfo&>(that));
1092
0
    capacity_ = that.capacity_;
1093
0
    size_ = that.size_;
1094
0
  }
1095
1096
  // Returns the number of control bytes set to kDeleted. For testing only.
1097
0
  size_t TombstonesCount() const {
1098
0
    return static_cast<size_t>(
1099
0
        std::count(control(), control() + capacity(), ctrl_t::kDeleted));
1100
0
  }
1101
1102
  // Helper to enable sanitizer mode validation to protect against reentrant
1103
  // calls during element constructor/destructor.
1104
  template <typename F>
1105
  void RunWithReentrancyGuard(F f) {
1106
#ifdef NDEBUG
1107
    f();
1108
    return;
1109
#endif
1110
    const size_t cap = capacity();
1111
    set_capacity(InvalidCapacity::kReentrance);
1112
    f();
1113
    set_capacity(cap);
1114
  }
1115
1116
 private:
1117
  // We store the has_infoz bit in the lowest bit of size_.
1118
0
  static constexpr size_t HasInfozShift() { return 1; }
1119
0
  static constexpr size_t HasInfozMask() {
1120
0
    return (size_t{1} << HasInfozShift()) - 1;
1121
0
  }
1122
1123
  // We can't assert that SOO is enabled because we don't have SooEnabled(), but
1124
  // we assert what we can.
1125
  void AssertInSooMode() const {
1126
    ABSL_SWISSTABLE_ASSERT(capacity() == SooCapacity());
1127
    ABSL_SWISSTABLE_ASSERT(!has_infoz());
1128
  }
1129
1130
  // The number of slots in the backing array. This is always 2^N-1 for an
1131
  // integer N. NOTE: we tried experimenting with compressing the capacity and
1132
  // storing it together with size_: (a) using 6 bits to store the corresponding
1133
  // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of
1134
  // size_ and storing size in the low bits. Both of these experiments were
1135
  // regressions, presumably because we need capacity to do find operations.
1136
  size_t capacity_;
1137
1138
  // TODO(b/289225379): we could put size_ into HeapOrSoo and make capacity_
1139
  // encode the size in SOO case. We would be making size()/capacity() more
1140
  // expensive in order to have more SOO space.
1141
  HashtableSize size_;
1142
1143
  // Either the control/slots pointers or the SOO slot.
1144
  HeapOrSoo heap_or_soo_;
1145
};
1146
1147
template <class Policy, class Hash, class Eq, class Alloc>
1148
class raw_hash_set;
1149
1150
// Returns the next valid capacity after `n`.
1151
168k
constexpr size_t NextCapacity(size_t n) {
1152
168k
  ABSL_SWISSTABLE_ASSERT(IsValidCapacity(n) || n == 0);
1153
168k
  return n * 2 + 1;
1154
168k
}
1155
1156
// Returns the previous valid capacity before `n`.
1157
constexpr size_t PreviousCapacity(size_t n) {
1158
  ABSL_SWISSTABLE_ASSERT(IsValidCapacity(n));
1159
  return n / 2;
1160
}
1161
1162
// Applies the following mapping to every byte in the control array:
1163
//   * kDeleted -> kEmpty
1164
//   * kEmpty -> kEmpty
1165
//   * _ -> kDeleted
1166
// PRECONDITION:
1167
//   IsValidCapacity(capacity)
1168
//   ctrl[capacity] == ctrl_t::kSentinel
1169
//   ctrl[i] != ctrl_t::kSentinel for all i < capacity
1170
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
1171
1172
// Converts `n` into the next valid capacity, per `IsValidCapacity`.
1173
0
constexpr size_t NormalizeCapacity(size_t n) {
1174
0
  return n ? ~size_t{} >> countl_zero(n) : 1;
1175
0
}
1176
1177
// General notes on capacity/growth methods below:
1178
// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
1179
//   average of two empty slots per group.
1180
// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
1181
// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
1182
//   never need to probe (the whole table fits in one group) so we don't need a
1183
//   load factor less than 1.
1184
1185
// Given `capacity`, applies the load factor; i.e., it returns the maximum
1186
// number of values we should put into the table before a resizing rehash.
1187
354k
constexpr size_t CapacityToGrowth(size_t capacity) {
1188
354k
  ABSL_SWISSTABLE_ASSERT(IsValidCapacity(capacity));
1189
  // `capacity*7/8`
1190
354k
  if (Group::kWidth == 8 && capacity == 7) {
1191
    // x-x/8 does not work when x==7.
1192
0
    return 6;
1193
0
  }
1194
354k
  return capacity - capacity / 8;
1195
354k
}
1196
1197
// Given `size`, "unapplies" the load factor to find how large the capacity
1198
// should be to stay within the load factor.
1199
//
1200
// For size == 0, returns 0.
1201
// For other values, returns the same as `NormalizeCapacity(size*8/7)`.
1202
0
constexpr size_t SizeToCapacity(size_t size) {
1203
0
  if (size == 0) {
1204
0
    return 0;
1205
0
  }
1206
  // The minimum possible capacity is NormalizeCapacity(size).
1207
  // Shifting right `~size_t{}` by `leading_zeros` yields
1208
  // NormalizeCapacity(size).
1209
0
  int leading_zeros = absl::countl_zero(size);
1210
0
  constexpr size_t kLast3Bits = size_t{7} << (sizeof(size_t) * 8 - 3);
1211
  // max_size_for_next_capacity = max_load_factor * next_capacity
1212
  //                            = (7/8) * (~size_t{} >> leading_zeros)
1213
  //                            = (7/8*~size_t{}) >> leading_zeros
1214
  //                            = kLast3Bits >> leading_zeros
1215
0
  size_t max_size_for_next_capacity = kLast3Bits >> leading_zeros;
1216
  // Decrease shift if size is too big for the minimum capacity.
1217
0
  leading_zeros -= static_cast<int>(size > max_size_for_next_capacity);
1218
  if constexpr (Group::kWidth == 8) {
1219
    // Formula doesn't work when size==7 for 8-wide groups.
1220
    leading_zeros -= (size == 7);
1221
  }
1222
0
  return (~size_t{}) >> leading_zeros;
1223
0
}
1224
1225
template <class InputIter>
1226
size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
1227
                                     size_t bucket_count) {
1228
  if (bucket_count != 0) {
1229
    return bucket_count;
1230
  }
1231
  if (base_internal::IsAtLeastIterator<std::random_access_iterator_tag,
1232
                                       InputIter>()) {
1233
    return SizeToCapacity(static_cast<size_t>(std::distance(first, last)));
1234
  }
1235
  return 0;
1236
}
1237
1238
0
constexpr bool SwisstableDebugEnabled() {
1239
0
#if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \
1240
0
    ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG)
1241
0
  return true;
1242
0
#else
1243
0
  return false;
1244
0
#endif
1245
0
}
1246
1247
inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation,
1248
                         const GenerationType* generation_ptr,
1249
                         const char* operation) {
1250
  if (!SwisstableDebugEnabled()) return;
1251
  // `SwisstableDebugEnabled()` is also true for release builds with hardening
1252
  // enabled. To minimize their impact in those builds:
1253
  // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
1254
  // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
1255
  //   the chances that the hot paths will be inlined.
1256
  if (ABSL_PREDICT_FALSE(ctrl == nullptr)) {
1257
    ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation);
1258
  }
1259
  if (ABSL_PREDICT_FALSE(ctrl == DefaultIterControl())) {
1260
    ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.",
1261
                 operation);
1262
  }
1263
  if (SwisstableGenerationsEnabled()) {
1264
    if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
1265
      ABSL_RAW_LOG(FATAL,
1266
                   "%s called on invalid iterator. The table could have "
1267
                   "rehashed or moved since this iterator was initialized.",
1268
                   operation);
1269
    }
1270
    if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
1271
      ABSL_RAW_LOG(
1272
          FATAL,
1273
          "%s called on invalid iterator. The element was likely erased.",
1274
          operation);
1275
    }
1276
  } else {
1277
    if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
1278
      ABSL_RAW_LOG(
1279
          FATAL,
1280
          "%s called on invalid iterator. The element might have been erased "
1281
          "or the table might have rehashed. Consider running with "
1282
          "--config=asan to diagnose rehashing issues.",
1283
          operation);
1284
    }
1285
  }
1286
}
1287
1288
// Note that for comparisons, null/end iterators are valid.
1289
inline void AssertIsValidForComparison(const ctrl_t* ctrl,
1290
                                       GenerationType generation,
1291
                                       const GenerationType* generation_ptr) {
1292
  if (!SwisstableDebugEnabled()) return;
1293
  const bool ctrl_is_valid_for_comparison =
1294
      ctrl == nullptr || ctrl == DefaultIterControl() || IsFull(*ctrl);
1295
  if (SwisstableGenerationsEnabled()) {
1296
    if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
1297
      ABSL_RAW_LOG(FATAL,
1298
                   "Invalid iterator comparison. The table could have rehashed "
1299
                   "or moved since this iterator was initialized.");
1300
    }
1301
    if (ABSL_PREDICT_FALSE(!ctrl_is_valid_for_comparison)) {
1302
      ABSL_RAW_LOG(
1303
          FATAL, "Invalid iterator comparison. The element was likely erased.");
1304
    }
1305
  } else {
1306
    ABSL_HARDENING_ASSERT_SLOW(
1307
        ctrl_is_valid_for_comparison &&
1308
        "Invalid iterator comparison. The element might have been erased or "
1309
        "the table might have rehashed. Consider running with --config=asan to "
1310
        "diagnose rehashing issues.");
1311
  }
1312
}
1313
1314
// If the two iterators come from the same container, then their pointers will
1315
// interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa.
1316
// Note: we take slots by reference so that it's not UB if they're uninitialized
1317
// as long as we don't read them (when ctrl is null).
1318
inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a,
1319
                                      const ctrl_t* ctrl_b,
1320
                                      const void* const& slot_a,
1321
0
                                      const void* const& slot_b) {
1322
0
  // If either control byte is null, then we can't tell.
1323
0
  if (ctrl_a == nullptr || ctrl_b == nullptr) return true;
1324
0
  const bool a_is_soo = IsSooControl(ctrl_a);
1325
0
  if (a_is_soo != IsSooControl(ctrl_b)) return false;
1326
0
  if (a_is_soo) return slot_a == slot_b;
1327
0
1328
0
  const void* low_slot = slot_a;
1329
0
  const void* hi_slot = slot_b;
1330
0
  if (ctrl_a > ctrl_b) {
1331
0
    std::swap(ctrl_a, ctrl_b);
1332
0
    std::swap(low_slot, hi_slot);
1333
0
  }
1334
0
  return ctrl_b < low_slot && low_slot <= hi_slot;
1335
0
}
1336
1337
// Asserts that two iterators come from the same container.
1338
// Note: we take slots by reference so that it's not UB if they're uninitialized
1339
// as long as we don't read them (when ctrl is null).
1340
inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b,
1341
                                const void* const& slot_a,
1342
                                const void* const& slot_b,
1343
                                const GenerationType* generation_ptr_a,
1344
                                const GenerationType* generation_ptr_b) {
1345
  if (!SwisstableDebugEnabled()) return;
1346
  // `SwisstableDebugEnabled()` is also true for release builds with hardening
1347
  // enabled. To minimize their impact in those builds:
1348
  // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
1349
  // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
1350
  //   the chances that the hot paths will be inlined.
1351
1352
  // fail_if(is_invalid, message) crashes when is_invalid is true and provides
1353
  // an error message based on `message`.
1354
  const auto fail_if = [](bool is_invalid, const char* message) {
1355
    if (ABSL_PREDICT_FALSE(is_invalid)) {
1356
      ABSL_RAW_LOG(FATAL, "Invalid iterator comparison. %s", message);
1357
    }
1358
  };
1359
1360
  const bool a_is_default = ctrl_a == DefaultIterControl();
1361
  const bool b_is_default = ctrl_b == DefaultIterControl();
1362
  if (a_is_default && b_is_default) return;
1363
  fail_if(a_is_default != b_is_default,
1364
          "Comparing default-constructed hashtable iterator with a "
1365
          "non-default-constructed hashtable iterator.");
1366
1367
  if (SwisstableGenerationsEnabled()) {
1368
    if (ABSL_PREDICT_TRUE(generation_ptr_a == generation_ptr_b)) return;
1369
    const bool a_is_empty = IsEmptyGeneration(generation_ptr_a);
1370
    const bool b_is_empty = IsEmptyGeneration(generation_ptr_b);
1371
    fail_if(a_is_empty != b_is_empty,
1372
            "Comparing an iterator from an empty hashtable with an iterator "
1373
            "from a non-empty hashtable.");
1374
    fail_if(a_is_empty && b_is_empty,
1375
            "Comparing iterators from different empty hashtables.");
1376
1377
    const bool a_is_end = ctrl_a == nullptr;
1378
    const bool b_is_end = ctrl_b == nullptr;
1379
    fail_if(a_is_end || b_is_end,
1380
            "Comparing iterator with an end() iterator from a different "
1381
            "hashtable.");
1382
    fail_if(true, "Comparing non-end() iterators from different hashtables.");
1383
  } else {
1384
    ABSL_HARDENING_ASSERT_SLOW(
1385
        AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) &&
1386
        "Invalid iterator comparison. The iterators may be from different "
1387
        "containers or the container might have rehashed or moved. Consider "
1388
        "running with --config=asan to diagnose issues.");
1389
  }
1390
}
1391
1392
struct FindInfo {
1393
  size_t offset;
1394
  size_t probe_length;
1395
};
1396
1397
// Whether a table fits entirely into a probing group.
1398
// Arbitrary order of elements in such tables is correct.
1399
300k
constexpr bool is_single_group(size_t capacity) {
1400
300k
  return capacity <= Group::kWidth;
1401
300k
}
1402
1403
// Begins a probing operation on `common.control`, using `hash`.
1404
73.3M
inline probe_seq<Group::kWidth> probe_h1(size_t capacity, size_t h1) {
1405
73.3M
  return probe_seq<Group::kWidth>(h1, capacity);
1406
73.3M
}
1407
73.1M
inline probe_seq<Group::kWidth> probe(size_t capacity, size_t hash) {
1408
73.1M
  return probe_h1(capacity, H1(hash));
1409
73.1M
}
1410
73.1M
inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) {
1411
73.1M
  return probe(common.capacity(), hash);
1412
73.1M
}
1413
1414
constexpr size_t kProbedElementIndexSentinel = ~size_t{};
1415
1416
// Implementation detail of transfer_unprobed_elements_to_next_capacity_fn.
1417
// Tries to find the new index for an element whose hash corresponds to
1418
// `h1` for growth to the next capacity.
1419
// Returns kProbedElementIndexSentinel if full probing is required.
1420
//
1421
// If element is located in the first probing group in the table before growth,
1422
// returns one of two positions: `old_index` or `old_index + old_capacity + 1`.
1423
//
1424
// Otherwise, we will try to insert it into the first probe group of the new
1425
// table. We only attempt to do so if the first probe group is already
1426
// initialized.
1427
template <typename = void>
1428
inline size_t TryFindNewIndexWithoutProbing(size_t h1, size_t old_index,
1429
                                            size_t old_capacity,
1430
                                            ctrl_t* new_ctrl,
1431
                                            size_t new_capacity) {
1432
  size_t index_diff = old_index - h1;
1433
  // The first probe group starts with h1 & capacity.
1434
  // All following groups start at (h1 + Group::kWidth * K) & capacity.
1435
  // We can find an index within the floating group as index_diff modulo
1436
  // Group::kWidth.
1437
  // Both old and new capacity are larger than Group::kWidth so we can avoid
1438
  // computing `& capacity`.
1439
  size_t in_floating_group_index = index_diff & (Group::kWidth - 1);
1440
  // By subtracting we will get the difference between the first probe group
1441
  // and the probe group corresponding to old_index.
1442
  index_diff -= in_floating_group_index;
1443
  if (ABSL_PREDICT_TRUE((index_diff & old_capacity) == 0)) {
1444
    size_t new_index = (h1 + in_floating_group_index) & new_capacity;
1445
    ABSL_ASSUME(new_index != kProbedElementIndexSentinel);
1446
    return new_index;
1447
  }
1448
  ABSL_SWISSTABLE_ASSERT(((old_index - h1) & old_capacity) >= Group::kWidth);
1449
  // Try to insert element into the first probe group.
1450
  // new_ctrl is not yet fully initialized so we can't use regular search via
1451
  // find_first_non_full.
1452
1453
  // We can search in the first probe group only if it is located in already
1454
  // initialized part of the table.
1455
  if (ABSL_PREDICT_FALSE((h1 & old_capacity) >= old_index)) {
1456
    return kProbedElementIndexSentinel;
1457
  }
1458
  size_t offset = h1 & new_capacity;
1459
  Group new_g(new_ctrl + offset);
1460
  if (auto mask = new_g.MaskNonFull(); ABSL_PREDICT_TRUE(mask)) {
1461
    size_t result = offset + mask.LowestBitSet();
1462
    ABSL_ASSUME(result != kProbedElementIndexSentinel);
1463
    return result;
1464
  }
1465
  return kProbedElementIndexSentinel;
1466
}
1467
1468
// Extern template for inline function keeps possibility of inlining.
1469
// When compiler decided to not inline, no symbols will be added to the
1470
// corresponding translation unit.
1471
extern template size_t TryFindNewIndexWithoutProbing(size_t h1,
1472
                                                     size_t old_index,
1473
                                                     size_t old_capacity,
1474
                                                     ctrl_t* new_ctrl,
1475
                                                     size_t new_capacity);
1476
1477
// Sets sanitizer poisoning for slot corresponding to control byte being set.
1478
inline void DoSanitizeOnSetCtrl(const CommonFields& c, size_t i, ctrl_t h,
1479
8.84M
                                size_t slot_size) {
1480
8.84M
  ABSL_SWISSTABLE_ASSERT(i < c.capacity());
1481
8.84M
  auto* slot_i = static_cast<const char*>(c.slot_array()) + i * slot_size;
1482
8.84M
  if (IsFull(h)) {
1483
8.84M
    SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
1484
8.84M
  } else {
1485
0
    SanitizerPoisonMemoryRegion(slot_i, slot_size);
1486
0
  }
1487
8.84M
}
1488
1489
// Sets `ctrl[i]` to `h`.
1490
//
1491
// Unlike setting it directly, this function will perform bounds checks and
1492
// mirror the value to the cloned tail if necessary.
1493
inline void SetCtrl(const CommonFields& c, size_t i, ctrl_t h,
1494
8.60M
                    size_t slot_size) {
1495
8.60M
  ABSL_SWISSTABLE_ASSERT(!c.is_small());
1496
8.60M
  DoSanitizeOnSetCtrl(c, i, h, slot_size);
1497
8.60M
  ctrl_t* ctrl = c.control();
1498
8.60M
  ctrl[i] = h;
1499
8.60M
  ctrl[((i - NumClonedBytes()) & c.capacity()) +
1500
8.60M
       (NumClonedBytes() & c.capacity())] = h;
1501
8.60M
}
1502
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1503
8.60M
inline void SetCtrl(const CommonFields& c, size_t i, h2_t h, size_t slot_size) {
1504
8.60M
  SetCtrl(c, i, static_cast<ctrl_t>(h), slot_size);
1505
8.60M
}
1506
1507
// Like SetCtrl, but in a single group table, we can save some operations when
1508
// setting the cloned control byte.
1509
inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, ctrl_t h,
1510
66.0k
                                      size_t slot_size) {
1511
66.0k
  ABSL_SWISSTABLE_ASSERT(!c.is_small());
1512
66.0k
  ABSL_SWISSTABLE_ASSERT(is_single_group(c.capacity()));
1513
66.0k
  DoSanitizeOnSetCtrl(c, i, h, slot_size);
1514
66.0k
  ctrl_t* ctrl = c.control();
1515
66.0k
  ctrl[i] = h;
1516
66.0k
  ctrl[i + c.capacity() + 1] = h;
1517
66.0k
}
1518
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1519
inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, h2_t h,
1520
66.0k
                                      size_t slot_size) {
1521
66.0k
  SetCtrlInSingleGroupTable(c, i, static_cast<ctrl_t>(h), slot_size);
1522
66.0k
}
1523
1524
// Like SetCtrl, but in a table with capacity >= Group::kWidth - 1,
1525
// we can save some operations when setting the cloned control byte.
1526
inline void SetCtrlInLargeTable(const CommonFields& c, size_t i, ctrl_t h,
1527
178k
                                size_t slot_size) {
1528
178k
  ABSL_SWISSTABLE_ASSERT(c.capacity() >= Group::kWidth - 1);
1529
178k
  DoSanitizeOnSetCtrl(c, i, h, slot_size);
1530
178k
  ctrl_t* ctrl = c.control();
1531
178k
  ctrl[i] = h;
1532
178k
  ctrl[((i - NumClonedBytes()) & c.capacity()) + NumClonedBytes()] = h;
1533
178k
}
1534
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1535
inline void SetCtrlInLargeTable(const CommonFields& c, size_t i, h2_t h,
1536
178k
                                size_t slot_size) {
1537
178k
  SetCtrlInLargeTable(c, i, static_cast<ctrl_t>(h), slot_size);
1538
178k
}
1539
1540
// growth_info (which is a size_t) is stored with the backing array.
1541
0
constexpr size_t BackingArrayAlignment(size_t align_of_slot) {
1542
0
  return (std::max)(align_of_slot, alignof(GrowthInfo));
1543
0
}
1544
1545
// Returns the address of the ith slot in slots where each slot occupies
1546
// slot_size.
1547
318k
inline void* SlotAddress(void* slot_array, size_t slot, size_t slot_size) {
1548
318k
  return static_cast<void*>(static_cast<char*>(slot_array) +
1549
318k
                            (slot * slot_size));
1550
318k
}
1551
1552
// Iterates over all full slots and calls `cb(const ctrl_t*, void*)`.
1553
// No insertion to the table is allowed during `cb` call.
1554
// Erasure is allowed only for the element passed to the callback.
1555
// The table must not be in SOO mode.
1556
void IterateOverFullSlots(const CommonFields& c, size_t slot_size,
1557
                          absl::FunctionRef<void(const ctrl_t*, void*)> cb);
1558
1559
template <typename CharAlloc>
1560
constexpr bool ShouldSampleHashtablezInfoForAlloc() {
1561
  // Folks with custom allocators often make unwarranted assumptions about the
1562
  // behavior of their classes vis-a-vis trivial destructability and what
1563
  // calls they will or won't make.  Avoid sampling for people with custom
1564
  // allocators to get us out of this mess.  This is not a hard guarantee but
1565
  // a workaround while we plan the exact guarantee we want to provide.
1566
  return std::is_same_v<CharAlloc, std::allocator<char>>;
1567
}
1568
1569
// Allocates `n` bytes for a backing array.
1570
template <size_t AlignOfBackingArray, typename Alloc>
1571
ABSL_ATTRIBUTE_NOINLINE void* AllocateBackingArray(void* alloc, size_t n) {
1572
  return Allocate<AlignOfBackingArray>(static_cast<Alloc*>(alloc), n);
1573
}
1574
1575
template <size_t AlignOfBackingArray, typename Alloc>
1576
ABSL_ATTRIBUTE_NOINLINE void DeallocateBackingArray(
1577
    void* alloc, size_t capacity, ctrl_t* ctrl, size_t slot_size,
1578
    size_t slot_align, bool had_infoz) {
1579
  RawHashSetLayout layout(capacity, slot_size, slot_align, had_infoz);
1580
  void* backing_array = ctrl - layout.control_offset();
1581
  // Unpoison before returning the memory to the allocator.
1582
  SanitizerUnpoisonMemoryRegion(backing_array, layout.alloc_size());
1583
  Deallocate<AlignOfBackingArray>(static_cast<Alloc*>(alloc), backing_array,
1584
                                  layout.alloc_size());
1585
}
1586
1587
// PolicyFunctions bundles together some information for a particular
1588
// raw_hash_set<T, ...> instantiation. This information is passed to
1589
// type-erased functions that want to do small amounts of type-specific
1590
// work.
1591
struct PolicyFunctions {
1592
  uint32_t key_size;
1593
  uint32_t value_size;
1594
  uint32_t slot_size;
1595
  uint16_t slot_align;
1596
  bool soo_enabled;
1597
  bool is_hashtablez_eligible;
1598
1599
  // Returns the pointer to the hash function stored in the set.
1600
  void* (*hash_fn)(CommonFields& common);
1601
1602
  // Returns the hash of the pointed-to slot.
1603
  HashSlotFn hash_slot;
1604
1605
  // Transfers the contents of `count` slots from src_slot to dst_slot.
1606
  // We use ability to transfer several slots in single group table growth.
1607
  void (*transfer_n)(void* set, void* dst_slot, void* src_slot, size_t count);
1608
1609
  // Returns the pointer to the CharAlloc stored in the set.
1610
  void* (*get_char_alloc)(CommonFields& common);
1611
1612
  // Allocates n bytes for the backing store for common.
1613
  void* (*alloc)(void* alloc, size_t n);
1614
1615
  // Deallocates the backing store from common.
1616
  void (*dealloc)(void* alloc, size_t capacity, ctrl_t* ctrl, size_t slot_size,
1617
                  size_t slot_align, bool had_infoz);
1618
1619
  // Implementation detail of GrowToNextCapacity.
1620
  // Iterates over all full slots and transfers unprobed elements.
1621
  // Initializes the new control bytes except mirrored bytes and kSentinel.
1622
  // Caller must finish the initialization.
1623
  // All slots corresponding to the full control bytes are transferred.
1624
  // Probed elements are reported by `encode_probed_element` callback.
1625
  // encode_probed_element may overwrite old_ctrl buffer till source_offset.
1626
  // Different encoding is used depending on the capacity of the table.
1627
  // See ProbedItem*Bytes classes for details.
1628
  void (*transfer_unprobed_elements_to_next_capacity)(
1629
      CommonFields& common, const ctrl_t* old_ctrl, void* old_slots,
1630
      // TODO(b/382423690): Try to use absl::FunctionRef here.
1631
      void* probed_storage,
1632
      void (*encode_probed_element)(void* probed_storage, h2_t h2,
1633
                                    size_t source_offset, size_t h1));
1634
1635
446k
  uint8_t soo_capacity() const {
1636
446k
    return static_cast<uint8_t>(soo_enabled ? SooCapacity() : 0);
1637
446k
  }
1638
};
1639
1640
// Returns the maximum valid size for a table with 1-byte slots.
1641
// This function is an utility shared by MaxValidSize and IsAboveValidSize.
1642
// Template parameter is only used to enable testing.
1643
template <size_t kSizeOfSizeT = sizeof(size_t)>
1644
0
constexpr size_t MaxValidSizeFor1ByteSlot() {
1645
0
  if constexpr (kSizeOfSizeT == 8) {
1646
0
    return CapacityToGrowth(
1647
0
        static_cast<size_t>(uint64_t{1} << HashtableSize::kSizeBitCount) - 1);
1648
  } else {
1649
    static_assert(kSizeOfSizeT == 4);
1650
    return CapacityToGrowth((size_t{1} << (kSizeOfSizeT * 8 - 2)) - 1);
1651
  }
1652
0
}
1653
1654
// Returns the maximum valid size for a table with provided slot size.
1655
// Template parameter is only used to enable testing.
1656
template <size_t kSizeOfSizeT = sizeof(size_t)>
1657
0
constexpr size_t MaxValidSize(size_t slot_size) {
1658
0
  if constexpr (kSizeOfSizeT == 8) {
1659
    // For small slot sizes we are limited by HashtableSize::kSizeBitCount.
1660
0
    if (slot_size < size_t{1} << (64 - HashtableSize::kSizeBitCount)) {
1661
0
      return MaxValidSizeFor1ByteSlot<kSizeOfSizeT>();
1662
0
    }
1663
0
    return (size_t{1} << (kSizeOfSizeT * 8 - 2)) / slot_size;
1664
  } else {
1665
    return MaxValidSizeFor1ByteSlot<kSizeOfSizeT>() / slot_size;
1666
  }
1667
0
}
1668
1669
// Returns true if size is larger than the maximum valid size.
1670
// It is an optimization to avoid the division operation in the common case.
1671
// Template parameter is only used to enable testing.
1672
template <size_t kSizeOfSizeT = sizeof(size_t)>
1673
0
constexpr bool IsAboveValidSize(size_t size, size_t slot_size) {
1674
0
  if constexpr (kSizeOfSizeT == 8) {
1675
    // For small slot sizes we are limited by HashtableSize::kSizeBitCount.
1676
0
    if (ABSL_PREDICT_TRUE(slot_size <
1677
0
                          (size_t{1} << (64 - HashtableSize::kSizeBitCount)))) {
1678
0
      return size > MaxValidSizeFor1ByteSlot<kSizeOfSizeT>();
1679
0
    }
1680
0
    return size > MaxValidSize<kSizeOfSizeT>(slot_size);
1681
  } else {
1682
    return uint64_t{size} * slot_size >
1683
           MaxValidSizeFor1ByteSlot<kSizeOfSizeT>();
1684
  }
1685
0
}
1686
1687
// Returns the index of the SOO slot when growing from SOO to non-SOO in a
1688
// single group. See also InitializeSmallControlBytesAfterSoo(). It's important
1689
// to use index 1 so that when resizing from capacity 1 to 3, we can still have
1690
// random iteration order between the first two inserted elements.
1691
// I.e. it allows inserting the second element at either index 0 or 2.
1692
110k
constexpr size_t SooSlotIndex() { return 1; }
1693
1694
// Maximum capacity for the algorithm for small table after SOO.
1695
// Note that typical size after SOO is 3, but we allow up to 7.
1696
// Allowing till 16 would require additional store that can be avoided.
1697
0
constexpr size_t MaxSmallAfterSooCapacity() { return 7; }
1698
1699
// Type erased version of raw_hash_set::reserve.
1700
// Requires: `new_size > policy.soo_capacity`.
1701
void ReserveTableToFitNewSize(CommonFields& common,
1702
                              const PolicyFunctions& policy, size_t new_size);
1703
1704
// Resizes empty non-allocated table to the next valid capacity after
1705
// `bucket_count`. Requires:
1706
//   1. `c.capacity() == policy.soo_capacity`.
1707
//   2. `c.empty()`.
1708
//   3. `new_size > policy.soo_capacity`.
1709
// The table will be attempted to be sampled.
1710
void ReserveEmptyNonAllocatedTableToFitBucketCount(
1711
    CommonFields& common, const PolicyFunctions& policy, size_t bucket_count);
1712
1713
// Type erased version of raw_hash_set::rehash.
1714
void Rehash(CommonFields& common, const PolicyFunctions& policy, size_t n);
1715
1716
// Type erased version of copy constructor.
1717
void Copy(CommonFields& common, const PolicyFunctions& policy,
1718
          const CommonFields& other,
1719
          absl::FunctionRef<void(void*, const void*)> copy_fn);
1720
1721
// Returns the optimal size for memcpy when transferring SOO slot.
1722
// Otherwise, returns the optimal size for memcpy SOO slot transfer
1723
// to SooSlotIndex().
1724
// At the destination we are allowed to copy upto twice more bytes,
1725
// because there is at least one more slot after SooSlotIndex().
1726
// The result must not exceed MaxSooSlotSize().
1727
// Some of the cases are merged to minimize the number of function
1728
// instantiations.
1729
constexpr size_t OptimalMemcpySizeForSooSlotTransfer(
1730
0
    size_t slot_size, size_t max_soo_slot_size = MaxSooSlotSize()) {
1731
0
  static_assert(MaxSooSlotSize() >= 8, "unexpectedly small SOO slot size");
1732
0
  if (slot_size == 1) {
1733
0
    return 1;
1734
0
  }
1735
0
  if (slot_size <= 3) {
1736
0
    return 4;
1737
0
  }
1738
0
  // We are merging 4 and 8 into one case because we expect them to be the
1739
0
  // hottest cases. Copying 8 bytes is as fast on common architectures.
1740
0
  if (slot_size <= 8) {
1741
0
    return 8;
1742
0
  }
1743
0
  if (max_soo_slot_size <= 16) {
1744
0
    return max_soo_slot_size;
1745
0
  }
1746
0
  if (slot_size <= 16) {
1747
0
    return 16;
1748
0
  }
1749
0
  if (max_soo_slot_size <= 24) {
1750
0
    return max_soo_slot_size;
1751
0
  }
1752
0
  static_assert(MaxSooSlotSize() <= 24, "unexpectedly large SOO slot size");
1753
0
  return 24;
1754
0
}
1755
1756
// Resizes SOO table to the NextCapacity(SooCapacity()) and prepares insert for
1757
// the given new_hash. Returns the offset of the new element.
1758
// All possible template combinations are defined in cc file to improve
1759
// compilation time.
1760
template <size_t SooSlotMemcpySize, bool TransferUsesMemcpy>
1761
size_t GrowSooTableToNextCapacityAndPrepareInsert(
1762
    CommonFields& common, const PolicyFunctions& policy,
1763
    absl::FunctionRef<size_t(size_t)> get_hash, bool force_sampling);
1764
1765
// PrepareInsert for small tables (is_small()==true).
1766
// Returns the new control and the new slot.
1767
// Hash is only computed if the table is sampled or grew to large size
1768
// (is_small()==false).
1769
std::pair<ctrl_t*, void*> PrepareInsertSmallNonSoo(
1770
    CommonFields& common, const PolicyFunctions& policy,
1771
    absl::FunctionRef<size_t(size_t)> get_hash);
1772
1773
// Resizes table with allocated slots and change the table seed.
1774
// Tables with SOO enabled must have capacity > policy.soo_capacity.
1775
// No sampling will be performed since table is already allocated.
1776
void ResizeAllocatedTableWithSeedChange(CommonFields& common,
1777
                                        const PolicyFunctions& policy,
1778
                                        size_t new_capacity);
1779
1780
// ClearBackingArray clears the backing array, either modifying it in place,
1781
// or creating a new one based on the value of "reuse".
1782
// REQUIRES: c.capacity > 0
1783
void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
1784
                       void* alloc, bool reuse, bool soo_enabled);
1785
1786
// Type-erased versions of raw_hash_set::erase_meta_only_{small,large}.
1787
void EraseMetaOnlySmall(CommonFields& c, bool soo_enabled, size_t slot_size);
1788
void EraseMetaOnlyLarge(CommonFields& c, const ctrl_t* ctrl, size_t slot_size);
1789
1790
// For trivially relocatable types we use memcpy directly. This allows us to
1791
// share the same function body for raw_hash_set instantiations that have the
1792
// same slot size as long as they are relocatable.
1793
// Separate function for relocating single slot cause significant binary bloat.
1794
template <size_t SizeOfSlot>
1795
ABSL_ATTRIBUTE_NOINLINE void TransferNRelocatable(void*, void* dst, void* src,
1796
                                                  size_t count) {
1797
  // TODO(b/382423690): Experiment with making specialization for power of 2 and
1798
  // non power of 2. This would require passing the size of the slot.
1799
  memcpy(dst, src, SizeOfSlot * count);
1800
}
1801
1802
// Returns a pointer to `common`. This is used to implement type erased
1803
// raw_hash_set::get_hash_ref_fn and raw_hash_set::get_alloc_ref_fn for the
1804
// empty class cases.
1805
void* GetRefForEmptyClass(CommonFields& common);
1806
1807
// Given the hash of a value not currently in the table and the first empty
1808
// slot in the probe sequence, finds a viable slot index to insert it at.
1809
//
1810
// In case there's no space left, the table can be resized or rehashed
1811
// (for tables with deleted slots, see FindInsertPositionWithGrowthOrRehash).
1812
//
1813
// In the case of absence of deleted slots and positive growth_left, the element
1814
// can be inserted in the provided `target` position.
1815
//
1816
// When the table has deleted slots (according to GrowthInfo), the target
1817
// position will be searched one more time using `find_first_non_full`.
1818
//
1819
// REQUIRES: `!common.is_small()`.
1820
// REQUIRES: At least one non-full slot available.
1821
// REQUIRES: `target` is a valid empty position to insert.
1822
size_t PrepareInsertLarge(CommonFields& common, const PolicyFunctions& policy,
1823
                          size_t hash, FindInfo target);
1824
1825
// Same as above, but with generations enabled, we may end up changing the seed,
1826
// which means we need to be able to recompute the hash.
1827
size_t PrepareInsertLargeGenerationsEnabled(
1828
    CommonFields& common, const PolicyFunctions& policy, size_t hash,
1829
    FindInfo target, absl::FunctionRef<size_t(size_t)> recompute_hash);
1830
1831
// A SwissTable.
1832
//
1833
// Policy: a policy defines how to perform different operations on
1834
// the slots of the hashtable (see hash_policy_traits.h for the full interface
1835
// of policy).
1836
//
1837
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
1838
// functor should accept a key and return size_t as hash. For best performance
1839
// it is important that the hash function provides high entropy across all bits
1840
// of the hash.
1841
//
1842
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
1843
// should accept two (of possibly different type) keys and return a bool: true
1844
// if they are equal, false if they are not. If two keys compare equal, then
1845
// their hash values as defined by Hash MUST be equal.
1846
//
1847
// Allocator: an Allocator
1848
// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
1849
// the storage of the hashtable will be allocated and the elements will be
1850
// constructed and destroyed.
1851
template <class Policy, class Hash, class Eq, class Alloc>
1852
class raw_hash_set {
1853
  using PolicyTraits = hash_policy_traits<Policy>;
1854
  using KeyArgImpl =
1855
      KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
1856
1857
 public:
1858
  using init_type = typename PolicyTraits::init_type;
1859
  using key_type = typename PolicyTraits::key_type;
1860
  using allocator_type = Alloc;
1861
  using size_type = size_t;
1862
  using difference_type = ptrdiff_t;
1863
  using hasher = Hash;
1864
  using key_equal = Eq;
1865
  using policy_type = Policy;
1866
  using value_type = typename PolicyTraits::value_type;
1867
  using reference = value_type&;
1868
  using const_reference = const value_type&;
1869
  using pointer = typename absl::allocator_traits<
1870
      allocator_type>::template rebind_traits<value_type>::pointer;
1871
  using const_pointer = typename absl::allocator_traits<
1872
      allocator_type>::template rebind_traits<value_type>::const_pointer;
1873
1874
 private:
1875
  // Alias used for heterogeneous lookup functions.
1876
  // `key_arg<K>` evaluates to `K` when the functors are transparent and to
1877
  // `key_type` otherwise. It permits template argument deduction on `K` for the
1878
  // transparent case.
1879
  template <class K>
1880
  using key_arg = typename KeyArgImpl::template type<K, key_type>;
1881
1882
  using slot_type = typename PolicyTraits::slot_type;
1883
1884
  constexpr static bool kIsDefaultHash =
1885
      std::is_same_v<hasher, absl::Hash<key_type>> ||
1886
      std::is_same_v<hasher, absl::container_internal::StringHash>;
1887
1888
  // TODO(b/289225379): we could add extra SOO space inside raw_hash_set
1889
  // after CommonFields to allow inlining larger slot_types (e.g. std::string),
1890
  // but it's a bit complicated if we want to support incomplete mapped_type in
1891
  // flat_hash_map. We could potentially do this for flat_hash_set and for an
1892
  // allowlist of `mapped_type`s of flat_hash_map that includes e.g. arithmetic
1893
  // types, strings, cords, and pairs/tuples of allowlisted types.
1894
  constexpr static bool SooEnabled() {
1895
    return PolicyTraits::soo_enabled() &&
1896
           sizeof(slot_type) <= sizeof(HeapOrSoo) &&
1897
           alignof(slot_type) <= alignof(HeapOrSoo);
1898
  }
1899
1900
  constexpr static size_t DefaultCapacity() {
1901
    return SooEnabled() ? SooCapacity() : 0;
1902
  }
1903
1904
  // Whether `size` fits in the SOO capacity of this table.
1905
  bool fits_in_soo(size_t size) const {
1906
    return SooEnabled() && size <= SooCapacity();
1907
  }
1908
  // Whether this table is in SOO mode or non-SOO mode.
1909
  bool is_soo() const { return fits_in_soo(capacity()); }
1910
  bool is_full_soo() const { return is_soo() && !empty(); }
1911
1912
  bool is_small() const { return common().is_small(); }
1913
1914
  // Give an early error when key_type is not hashable/eq.
1915
  auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
1916
  auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
1917
1918
  using AllocTraits = absl::allocator_traits<allocator_type>;
1919
  using SlotAlloc = typename absl::allocator_traits<
1920
      allocator_type>::template rebind_alloc<slot_type>;
1921
  // People are often sloppy with the exact type of their allocator (sometimes
1922
  // it has an extra const or is missing the pair, but rebinds made it work
1923
  // anyway).
1924
  using CharAlloc =
1925
      typename absl::allocator_traits<Alloc>::template rebind_alloc<char>;
1926
  using SlotAllocTraits = typename absl::allocator_traits<
1927
      allocator_type>::template rebind_traits<slot_type>;
1928
1929
  static_assert(std::is_lvalue_reference<reference>::value,
1930
                "Policy::element() must return a reference");
1931
1932
  // An enabler for insert(T&&): T must be convertible to init_type or be the
1933
  // same as [cv] value_type [ref].
1934
  template <class T>
1935
  using Insertable = absl::disjunction<
1936
      std::is_same<absl::remove_cvref_t<reference>, absl::remove_cvref_t<T>>,
1937
      std::is_convertible<T, init_type>>;
1938
  template <class T>
1939
  using IsNotBitField = std::is_pointer<T*>;
1940
1941
  // RequiresNotInit is a workaround for gcc prior to 7.1.
1942
  // See https://godbolt.org/g/Y4xsUh.
1943
  template <class T>
1944
  using RequiresNotInit =
1945
      typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
1946
1947
  template <class... Ts>
1948
  using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
1949
1950
  template <class T>
1951
  using IsDecomposableAndInsertable =
1952
      IsDecomposable<std::enable_if_t<Insertable<T>::value, T>>;
1953
1954
  // Evaluates to true if an assignment from the given type would require the
1955
  // source object to remain alive for the life of the element.
1956
  template <class U>
1957
  using IsLifetimeBoundAssignmentFrom = std::conditional_t<
1958
      policy_trait_element_is_owner<Policy>::value, std::false_type,
1959
      type_traits_internal::IsLifetimeBoundAssignment<init_type, U>>;
1960
1961
 public:
1962
  static_assert(std::is_same<pointer, value_type*>::value,
1963
                "Allocators with custom pointer types are not supported");
1964
  static_assert(std::is_same<const_pointer, const value_type*>::value,
1965
                "Allocators with custom pointer types are not supported");
1966
1967
  class iterator : private HashSetIteratorGenerationInfo {
1968
    friend class raw_hash_set;
1969
    friend struct HashtableFreeFunctionsAccess;
1970
1971
   public:
1972
    using iterator_category = std::forward_iterator_tag;
1973
    using value_type = typename raw_hash_set::value_type;
1974
    using reference =
1975
        absl::conditional_t<PolicyTraits::constant_iterators::value,
1976
                            const value_type&, value_type&>;
1977
    using pointer = absl::remove_reference_t<reference>*;
1978
    using difference_type = typename raw_hash_set::difference_type;
1979
1980
    iterator() {}
1981
1982
    // PRECONDITION: not an end() iterator.
1983
    reference operator*() const {
1984
      assert_is_full("operator*()");
1985
      return unchecked_deref();
1986
    }
1987
1988
    // PRECONDITION: not an end() iterator.
1989
    pointer operator->() const {
1990
      assert_is_full("operator->");
1991
      return &operator*();
1992
    }
1993
1994
    // PRECONDITION: not an end() iterator.
1995
    iterator& operator++() {
1996
      assert_is_full("operator++");
1997
      ++ctrl_;
1998
      ++slot_;
1999
      skip_empty_or_deleted();
2000
      if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
2001
      return *this;
2002
    }
2003
    // PRECONDITION: not an end() iterator.
2004
    iterator operator++(int) {
2005
      auto tmp = *this;
2006
      ++*this;
2007
      return tmp;
2008
    }
2009
2010
    friend bool operator==(const iterator& a, const iterator& b) {
2011
      AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr());
2012
      AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr());
2013
      AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_,
2014
                          a.generation_ptr(), b.generation_ptr());
2015
      return a.ctrl_ == b.ctrl_;
2016
    }
2017
    friend bool operator!=(const iterator& a, const iterator& b) {
2018
      return !(a == b);
2019
    }
2020
2021
   private:
2022
    iterator(ctrl_t* ctrl, slot_type* slot,
2023
             const GenerationType* generation_ptr)
2024
        : HashSetIteratorGenerationInfo(generation_ptr),
2025
          ctrl_(ctrl),
2026
          slot_(slot) {
2027
      // This assumption helps the compiler know that any non-end iterator is
2028
      // not equal to any end iterator.
2029
      ABSL_ASSUME(ctrl != nullptr);
2030
    }
2031
    // This constructor is used in begin() to avoid an MSan
2032
    // use-of-uninitialized-value error. Delegating from this constructor to
2033
    // the previous one doesn't avoid the error.
2034
    iterator(ctrl_t* ctrl, MaybeInitializedPtr<void> slot,
2035
             const GenerationType* generation_ptr)
2036
        : HashSetIteratorGenerationInfo(generation_ptr),
2037
          ctrl_(ctrl),
2038
          slot_(to_slot(slot.get())) {
2039
      // This assumption helps the compiler know that any non-end iterator is
2040
      // not equal to any end iterator.
2041
      ABSL_ASSUME(ctrl != nullptr);
2042
    }
2043
    // For end() iterators.
2044
    explicit iterator(const GenerationType* generation_ptr)
2045
        : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {}
2046
2047
    void assert_is_full(const char* operation) const {
2048
      AssertIsFull(ctrl_, generation(), generation_ptr(), operation);
2049
    }
2050
2051
    // Fixes up `ctrl_` to point to a full or sentinel by advancing `ctrl_` and
2052
    // `slot_` until they reach one.
2053
    void skip_empty_or_deleted() {
2054
      while (IsEmptyOrDeleted(*ctrl_)) {
2055
        ++ctrl_;
2056
        ++slot_;
2057
      }
2058
    }
2059
2060
    // An equality check which skips ABSL Hardening iterator invalidation
2061
    // checks.
2062
    // Should be used when the lifetimes of the iterators are well-enough
2063
    // understood to prove that they cannot be invalid.
2064
    bool unchecked_equals(const iterator& b) const {
2065
      return ctrl_ == b.control();
2066
    }
2067
2068
    // Dereferences the iterator without ABSL Hardening iterator invalidation
2069
    // checks.
2070
    reference unchecked_deref() const { return PolicyTraits::element(slot_); }
2071
2072
    ctrl_t* control() const { return ctrl_; }
2073
    slot_type* slot() const { return slot_; }
2074
2075
    // We use DefaultIterControl() for default-constructed iterators so that
2076
    // they can be distinguished from end iterators, which have nullptr ctrl_.
2077
    ctrl_t* ctrl_ = DefaultIterControl();
2078
    // To avoid uninitialized member warnings, put slot_ in an anonymous union.
2079
    // The member is not initialized on singleton and end iterators.
2080
    union {
2081
      slot_type* slot_;
2082
    };
2083
  };
2084
2085
  class const_iterator {
2086
    friend class raw_hash_set;
2087
    template <class Container, typename Enabler>
2088
    friend struct absl::container_internal::hashtable_debug_internal::
2089
        HashtableDebugAccess;
2090
2091
   public:
2092
    using iterator_category = typename iterator::iterator_category;
2093
    using value_type = typename raw_hash_set::value_type;
2094
    using reference = typename raw_hash_set::const_reference;
2095
    using pointer = typename raw_hash_set::const_pointer;
2096
    using difference_type = typename raw_hash_set::difference_type;
2097
2098
    const_iterator() = default;
2099
    // Implicit construction from iterator.
2100
    const_iterator(iterator i) : inner_(std::move(i)) {}  // NOLINT
2101
2102
    reference operator*() const { return *inner_; }
2103
    pointer operator->() const { return inner_.operator->(); }
2104
2105
    const_iterator& operator++() {
2106
      ++inner_;
2107
      return *this;
2108
    }
2109
    const_iterator operator++(int) { return inner_++; }
2110
2111
    friend bool operator==(const const_iterator& a, const const_iterator& b) {
2112
      return a.inner_ == b.inner_;
2113
    }
2114
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
2115
      return !(a == b);
2116
    }
2117
2118
   private:
2119
    const_iterator(const ctrl_t* ctrl, const slot_type* slot,
2120
                   const GenerationType* gen)
2121
        : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) {
2122
    }
2123
    bool unchecked_equals(const const_iterator& b) const {
2124
      return inner_.unchecked_equals(b.inner_);
2125
    }
2126
    ctrl_t* control() const { return inner_.control(); }
2127
    slot_type* slot() const { return inner_.slot(); }
2128
2129
    iterator inner_;
2130
  };
2131
2132
  using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
2133
  using insert_return_type = InsertReturnType<iterator, node_type>;
2134
2135
  // Note: can't use `= default` due to non-default noexcept (causes
2136
  // problems for some compilers). NOLINTNEXTLINE
2137
  raw_hash_set() noexcept(
2138
      std::is_nothrow_default_constructible<hasher>::value &&
2139
      std::is_nothrow_default_constructible<key_equal>::value &&
2140
      std::is_nothrow_default_constructible<allocator_type>::value) {}
2141
2142
  explicit raw_hash_set(
2143
      size_t bucket_count, const hasher& hash = hasher(),
2144
      const key_equal& eq = key_equal(),
2145
      const allocator_type& alloc = allocator_type())
2146
      : settings_(CommonFields::CreateDefault<SooEnabled()>(), hash, eq,
2147
                  alloc) {
2148
    if (bucket_count > DefaultCapacity()) {
2149
      ReserveEmptyNonAllocatedTableToFitBucketCount(
2150
          common(), GetPolicyFunctions(), bucket_count);
2151
    }
2152
  }
2153
2154
  raw_hash_set(size_t bucket_count, const hasher& hash,
2155
               const allocator_type& alloc)
2156
      : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
2157
2158
  raw_hash_set(size_t bucket_count, const allocator_type& alloc)
2159
      : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
2160
2161
  explicit raw_hash_set(const allocator_type& alloc)
2162
      : raw_hash_set(0, hasher(), key_equal(), alloc) {}
2163
2164
  template <class InputIter>
2165
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
2166
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2167
               const allocator_type& alloc = allocator_type())
2168
      : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
2169
                     hash, eq, alloc) {
2170
    insert(first, last);
2171
  }
2172
2173
  template <class InputIter>
2174
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
2175
               const hasher& hash, const allocator_type& alloc)
2176
      : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
2177
2178
  template <class InputIter>
2179
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
2180
               const allocator_type& alloc)
2181
      : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
2182
2183
  template <class InputIter>
2184
  raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
2185
      : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
2186
2187
  // Instead of accepting std::initializer_list<value_type> as the first
2188
  // argument like std::unordered_set<value_type> does, we have two overloads
2189
  // that accept std::initializer_list<T> and std::initializer_list<init_type>.
2190
  // This is advantageous for performance.
2191
  //
2192
  //   // Turns {"abc", "def"} into std::initializer_list<std::string>, then
2193
  //   // copies the strings into the set.
2194
  //   std::unordered_set<std::string> s = {"abc", "def"};
2195
  //
2196
  //   // Turns {"abc", "def"} into std::initializer_list<const char*>, then
2197
  //   // copies the strings into the set.
2198
  //   absl::flat_hash_set<std::string> s = {"abc", "def"};
2199
  //
2200
  // The same trick is used in insert().
2201
  //
2202
  // The enabler is necessary to prevent this constructor from triggering where
2203
  // the copy constructor is meant to be called.
2204
  //
2205
  //   absl::flat_hash_set<int> a, b{a};
2206
  //
2207
  // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
2208
  template <class T, RequiresNotInit<T> = 0,
2209
            std::enable_if_t<Insertable<T>::value, int> = 0>
2210
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
2211
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2212
               const allocator_type& alloc = allocator_type())
2213
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
2214
2215
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
2216
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2217
               const allocator_type& alloc = allocator_type())
2218
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
2219
2220
  template <class T, RequiresNotInit<T> = 0,
2221
            std::enable_if_t<Insertable<T>::value, int> = 0>
2222
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
2223
               const hasher& hash, const allocator_type& alloc)
2224
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
2225
2226
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
2227
               const hasher& hash, const allocator_type& alloc)
2228
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
2229
2230
  template <class T, RequiresNotInit<T> = 0,
2231
            std::enable_if_t<Insertable<T>::value, int> = 0>
2232
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
2233
               const allocator_type& alloc)
2234
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
2235
2236
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
2237
               const allocator_type& alloc)
2238
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
2239
2240
  template <class T, RequiresNotInit<T> = 0,
2241
            std::enable_if_t<Insertable<T>::value, int> = 0>
2242
  raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
2243
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
2244
2245
  raw_hash_set(std::initializer_list<init_type> init,
2246
               const allocator_type& alloc)
2247
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
2248
2249
  raw_hash_set(const raw_hash_set& that)
2250
      : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
2251
                               allocator_type(that.char_alloc_ref()))) {}
2252
2253
  raw_hash_set(const raw_hash_set& that, const allocator_type& a)
2254
      : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
2255
    that.AssertNotDebugCapacity();
2256
    if (that.empty()) return;
2257
    Copy(common(), GetPolicyFunctions(), that.common(),
2258
         [this](void* dst, const void* src) {
2259
           // TODO(b/413598253): type erase for trivially copyable types via
2260
           // PolicyTraits.
2261
           construct(to_slot(dst),
2262
                     PolicyTraits::element(
2263
                         static_cast<slot_type*>(const_cast<void*>(src))));
2264
         });
2265
  }
2266
2267
  ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept(
2268
      std::is_nothrow_copy_constructible<hasher>::value &&
2269
      std::is_nothrow_copy_constructible<key_equal>::value &&
2270
      std::is_nothrow_copy_constructible<allocator_type>::value)
2271
      :  // Hash, equality and allocator are copied instead of moved because
2272
         // `that` must be left valid. If Hash is std::function<Key>, moving it
2273
         // would create a nullptr functor that cannot be called.
2274
         // Note: we avoid using exchange for better generated code.
2275
        settings_(PolicyTraits::transfer_uses_memcpy() || !that.is_full_soo()
2276
                      ? std::move(that.common())
2277
                      : CommonFields{full_soo_tag_t{}},
2278
                  that.hash_ref(), that.eq_ref(), that.char_alloc_ref()) {
2279
    if (!PolicyTraits::transfer_uses_memcpy() && that.is_full_soo()) {
2280
      transfer(soo_slot(), that.soo_slot());
2281
    }
2282
    that.common() = CommonFields::CreateDefault<SooEnabled()>();
2283
    annotate_for_bug_detection_on_move(that);
2284
  }
2285
2286
  raw_hash_set(raw_hash_set&& that, const allocator_type& a)
2287
      : settings_(CommonFields::CreateDefault<SooEnabled()>(), that.hash_ref(),
2288
                  that.eq_ref(), a) {
2289
    if (CharAlloc(a) == that.char_alloc_ref()) {
2290
      swap_common(that);
2291
      annotate_for_bug_detection_on_move(that);
2292
    } else {
2293
      move_elements_allocs_unequal(std::move(that));
2294
    }
2295
  }
2296
2297
  raw_hash_set& operator=(const raw_hash_set& that) {
2298
    that.AssertNotDebugCapacity();
2299
    if (ABSL_PREDICT_FALSE(this == &that)) return *this;
2300
    constexpr bool propagate_alloc =
2301
        AllocTraits::propagate_on_container_copy_assignment::value;
2302
    // TODO(ezb): maybe avoid allocating a new backing array if this->capacity()
2303
    // is an exact match for that.size(). If this->capacity() is too big, then
2304
    // it would make iteration very slow to reuse the allocation. Maybe we can
2305
    // do the same heuristic as clear() and reuse if it's small enough.
2306
    allocator_type alloc(propagate_alloc ? that.char_alloc_ref()
2307
                                         : char_alloc_ref());
2308
    raw_hash_set tmp(that, alloc);
2309
    // NOLINTNEXTLINE: not returning *this for performance.
2310
    return assign_impl<propagate_alloc>(std::move(tmp));
2311
  }
2312
2313
  raw_hash_set& operator=(raw_hash_set&& that) noexcept(
2314
      AllocTraits::is_always_equal::value &&
2315
      std::is_nothrow_move_assignable<hasher>::value &&
2316
      std::is_nothrow_move_assignable<key_equal>::value) {
2317
    // TODO(sbenza): We should only use the operations from the noexcept clause
2318
    // to make sure we actually adhere to that contract.
2319
    // NOLINTNEXTLINE: not returning *this for performance.
2320
    return move_assign(
2321
        std::move(that),
2322
        typename AllocTraits::propagate_on_container_move_assignment());
2323
  }
2324
2325
  ~raw_hash_set() {
2326
    destructor_impl();
2327
    if constexpr (SwisstableAssertAccessToDestroyedTable()) {
2328
      common().set_capacity(InvalidCapacity::kDestroyed);
2329
    }
2330
  }
2331
2332
  iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
2333
    if (ABSL_PREDICT_FALSE(empty())) return end();
2334
    if (is_small()) return single_iterator();
2335
    iterator it = {control(), common().slots_union(),
2336
                   common().generation_ptr()};
2337
    it.skip_empty_or_deleted();
2338
    ABSL_SWISSTABLE_ASSERT(IsFull(*it.control()));
2339
    return it;
2340
  }
2341
  iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
2342
    AssertNotDebugCapacity();
2343
    return iterator(common().generation_ptr());
2344
  }
2345
2346
  const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2347
    return const_cast<raw_hash_set*>(this)->begin();
2348
  }
2349
  const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2350
    return const_cast<raw_hash_set*>(this)->end();
2351
  }
2352
  const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2353
    return begin();
2354
  }
2355
  const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
2356
2357
  bool empty() const { return !size(); }
2358
  size_t size() const {
2359
    AssertNotDebugCapacity();
2360
    return common().size();
2361
  }
2362
  size_t capacity() const {
2363
    const size_t cap = common().capacity();
2364
    // Compiler complains when using functions in ASSUME so use local variable.
2365
    [[maybe_unused]] static constexpr size_t kDefaultCapacity =
2366
        DefaultCapacity();
2367
    ABSL_ASSUME(cap >= kDefaultCapacity);
2368
    return cap;
2369
  }
2370
  size_t max_size() const { return MaxValidSize(sizeof(slot_type)); }
2371
2372
  ABSL_ATTRIBUTE_REINITIALIZES void clear() {
2373
    if (SwisstableGenerationsEnabled() &&
2374
        capacity() >= InvalidCapacity::kMovedFrom) {
2375
      common().set_capacity(DefaultCapacity());
2376
    }
2377
    AssertNotDebugCapacity();
2378
    // Iterating over this container is O(bucket_count()). When bucket_count()
2379
    // is much greater than size(), iteration becomes prohibitively expensive.
2380
    // For clear() it is more important to reuse the allocated array when the
2381
    // container is small because allocation takes comparatively long time
2382
    // compared to destruction of the elements of the container. So we pick the
2383
    // largest bucket_count() threshold for which iteration is still fast and
2384
    // past that we simply deallocate the array.
2385
    const size_t cap = capacity();
2386
    if (cap == 0) {
2387
      // Already guaranteed to be empty; so nothing to do.
2388
    } else if (is_small()) {
2389
      if (!empty()) {
2390
        destroy(single_slot());
2391
        decrement_small_size();
2392
      }
2393
    } else {
2394
      destroy_slots();
2395
      clear_backing_array(/*reuse=*/cap < 128);
2396
    }
2397
    common().set_reserved_growth(0);
2398
    common().set_reservation_size(0);
2399
  }
2400
2401
  // This overload kicks in when the argument is an rvalue of insertable and
2402
  // decomposable type other than init_type.
2403
  //
2404
  //   flat_hash_map<std::string, int> m;
2405
  //   m.insert(std::make_pair("abc", 42));
2406
  template <class T,
2407
            int = std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2408
                                       IsNotBitField<T>::value &&
2409
                                       !IsLifetimeBoundAssignmentFrom<T>::value,
2410
                                   int>()>
2411
  std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2412
    return emplace(std::forward<T>(value));
2413
  }
2414
2415
  template <class T, int&...,
2416
            std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2417
                                 IsNotBitField<T>::value &&
2418
                                 IsLifetimeBoundAssignmentFrom<T>::value,
2419
                             int> = 0>
2420
  std::pair<iterator, bool> insert(
2421
      T&& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2422
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2423
    return this->template insert<T, 0>(std::forward<T>(value));
2424
  }
2425
2426
  // This overload kicks in when the argument is a bitfield or an lvalue of
2427
  // insertable and decomposable type.
2428
  //
2429
  //   union { int n : 1; };
2430
  //   flat_hash_set<int> s;
2431
  //   s.insert(n);
2432
  //
2433
  //   flat_hash_set<std::string> s;
2434
  //   const char* p = "hello";
2435
  //   s.insert(p);
2436
  //
2437
  template <class T, int = std::enable_if_t<
2438
                         IsDecomposableAndInsertable<const T&>::value &&
2439
                             !IsLifetimeBoundAssignmentFrom<const T&>::value,
2440
                         int>()>
2441
  std::pair<iterator, bool> insert(const T& value)
2442
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2443
    return emplace(value);
2444
  }
2445
  template <class T, int&...,
2446
            std::enable_if_t<IsDecomposableAndInsertable<const T&>::value &&
2447
                                 IsLifetimeBoundAssignmentFrom<const T&>::value,
2448
                             int> = 0>
2449
  std::pair<iterator, bool> insert(
2450
      const T& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2451
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2452
    return this->template insert<T, 0>(value);
2453
  }
2454
2455
  // This overload kicks in when the argument is an rvalue of init_type. Its
2456
  // purpose is to handle brace-init-list arguments.
2457
  //
2458
  //   flat_hash_map<std::string, int> s;
2459
  //   s.insert({"abc", 42});
2460
  std::pair<iterator, bool> insert(init_type&& value)
2461
      ABSL_ATTRIBUTE_LIFETIME_BOUND
2462
#if __cplusplus >= 202002L
2463
    requires(!IsLifetimeBoundAssignmentFrom<init_type>::value)
2464
#endif
2465
  {
2466
    return emplace(std::move(value));
2467
  }
2468
#if __cplusplus >= 202002L
2469
  std::pair<iterator, bool> insert(
2470
      init_type&& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2471
      ABSL_ATTRIBUTE_LIFETIME_BOUND
2472
    requires(IsLifetimeBoundAssignmentFrom<init_type>::value)
2473
  {
2474
    return emplace(std::move(value));
2475
  }
2476
#endif
2477
2478
  template <class T,
2479
            int = std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2480
                                       IsNotBitField<T>::value &&
2481
                                       !IsLifetimeBoundAssignmentFrom<T>::value,
2482
                                   int>()>
2483
  iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2484
    return insert(std::forward<T>(value)).first;
2485
  }
2486
  template <class T, int&...,
2487
            std::enable_if_t<IsDecomposableAndInsertable<T>::value &&
2488
                                 IsNotBitField<T>::value &&
2489
                                 IsLifetimeBoundAssignmentFrom<T>::value,
2490
                             int> = 0>
2491
  iterator insert(const_iterator hint,
2492
                  T&& value ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
2493
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2494
    return this->template insert<T, 0>(hint, std::forward<T>(value));
2495
  }
2496
2497
  template <class T, std::enable_if_t<
2498
                         IsDecomposableAndInsertable<const T&>::value, int> = 0>
2499
  iterator insert(const_iterator,
2500
                  const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2501
    return insert(value).first;
2502
  }
2503
2504
  iterator insert(const_iterator,
2505
                  init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2506
    return insert(std::move(value)).first;
2507
  }
2508
2509
  template <class InputIt>
2510
  void insert(InputIt first, InputIt last) {
2511
    for (; first != last; ++first) emplace(*first);
2512
  }
2513
2514
  template <class T, RequiresNotInit<T> = 0,
2515
            std::enable_if_t<Insertable<const T&>::value, int> = 0>
2516
  void insert(std::initializer_list<T> ilist) {
2517
    insert(ilist.begin(), ilist.end());
2518
  }
2519
2520
  void insert(std::initializer_list<init_type> ilist) {
2521
    insert(ilist.begin(), ilist.end());
2522
  }
2523
2524
  insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2525
    if (!node) return {end(), false, node_type()};
2526
    const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
2527
    auto res = PolicyTraits::apply(
2528
        InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
2529
        elem);
2530
    if (res.second) {
2531
      CommonAccess::Reset(&node);
2532
      return {res.first, true, node_type()};
2533
    } else {
2534
      return {res.first, false, std::move(node)};
2535
    }
2536
  }
2537
2538
  iterator insert(const_iterator,
2539
                  node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2540
    auto res = insert(std::move(node));
2541
    node = std::move(res.node);
2542
    return res.position;
2543
  }
2544
2545
  // This overload kicks in if we can deduce the key from args. This enables us
2546
  // to avoid constructing value_type if an entry with the same key already
2547
  // exists.
2548
  //
2549
  // For example:
2550
  //
2551
  //   flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
2552
  //   // Creates no std::string copies and makes no heap allocations.
2553
  //   m.emplace("abc", "xyz");
2554
  template <class... Args,
2555
            std::enable_if_t<IsDecomposable<Args...>::value, int> = 0>
2556
  std::pair<iterator, bool> emplace(Args&&... args)
2557
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2558
    return PolicyTraits::apply(EmplaceDecomposable{*this},
2559
                               std::forward<Args>(args)...);
2560
  }
2561
2562
  // This overload kicks in if we cannot deduce the key from args. It constructs
2563
  // value_type unconditionally and then either moves it into the table or
2564
  // destroys.
2565
  template <class... Args,
2566
            std::enable_if_t<!IsDecomposable<Args...>::value, int> = 0>
2567
  std::pair<iterator, bool> emplace(Args&&... args)
2568
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2569
    alignas(slot_type) unsigned char raw[sizeof(slot_type)];
2570
    slot_type* slot = to_slot(&raw);
2571
2572
    construct(slot, std::forward<Args>(args)...);
2573
    const auto& elem = PolicyTraits::element(slot);
2574
    return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
2575
  }
2576
2577
  template <class... Args>
2578
  iterator emplace_hint(const_iterator,
2579
                        Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2580
    return emplace(std::forward<Args>(args)...).first;
2581
  }
2582
2583
  // Extension API: support for lazy emplace.
2584
  //
2585
  // Looks up key in the table. If found, returns the iterator to the element.
2586
  // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`,
2587
  // and returns an iterator to the new element.
2588
  //
2589
  // `f` must abide by several restrictions:
2590
  //  - it MUST call `raw_hash_set::constructor` with arguments as if a
2591
  //    `raw_hash_set::value_type` is constructed,
2592
  //  - it MUST NOT access the container before the call to
2593
  //    `raw_hash_set::constructor`, and
2594
  //  - it MUST NOT erase the lazily emplaced element.
2595
  // Doing any of these is undefined behavior.
2596
  //
2597
  // For example:
2598
  //
2599
  //   std::unordered_set<ArenaString> s;
2600
  //   // Makes ArenaStr even if "abc" is in the map.
2601
  //   s.insert(ArenaString(&arena, "abc"));
2602
  //
2603
  //   flat_hash_set<ArenaStr> s;
2604
  //   // Makes ArenaStr only if "abc" is not in the map.
2605
  //   s.lazy_emplace("abc", [&](const constructor& ctor) {
2606
  //     ctor(&arena, "abc");
2607
  //   });
2608
  //
2609
  // WARNING: This API is currently experimental. If there is a way to implement
2610
  // the same thing with the rest of the API, prefer that.
2611
  class constructor {
2612
    friend class raw_hash_set;
2613
2614
   public:
2615
    template <class... Args>
2616
    void operator()(Args&&... args) const {
2617
      ABSL_SWISSTABLE_ASSERT(*slot_);
2618
      PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
2619
      *slot_ = nullptr;
2620
    }
2621
2622
   private:
2623
    constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
2624
2625
    allocator_type* alloc_;
2626
    slot_type** slot_;
2627
  };
2628
2629
  template <class K = key_type, class F>
2630
  iterator lazy_emplace(const key_arg<K>& key,
2631
                        F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2632
    auto res = find_or_prepare_insert(key);
2633
    if (res.second) {
2634
      slot_type* slot = res.first.slot();
2635
      allocator_type alloc(char_alloc_ref());
2636
      std::forward<F>(f)(constructor(&alloc, &slot));
2637
      ABSL_SWISSTABLE_ASSERT(!slot);
2638
    }
2639
    return res.first;
2640
  }
2641
2642
  // Extension API: support for heterogeneous keys.
2643
  //
2644
  //   std::unordered_set<std::string> s;
2645
  //   // Turns "abc" into std::string.
2646
  //   s.erase("abc");
2647
  //
2648
  //   flat_hash_set<std::string> s;
2649
  //   // Uses "abc" directly without copying it into std::string.
2650
  //   s.erase("abc");
2651
  template <class K = key_type>
2652
  size_type erase(const key_arg<K>& key) {
2653
    auto it = find(key);
2654
    if (it == end()) return 0;
2655
    erase(it);
2656
    return 1;
2657
  }
2658
2659
  // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
2660
  // this method returns void to reduce algorithmic complexity to O(1). The
2661
  // iterator is invalidated so any increment should be done before calling
2662
  // erase (e.g. `erase(it++)`).
2663
  void erase(const_iterator cit) { erase(cit.inner_); }
2664
2665
  // This overload is necessary because otherwise erase<K>(const K&) would be
2666
  // a better match if non-const iterator is passed as an argument.
2667
  void erase(iterator it) {
2668
    ABSL_SWISSTABLE_ASSERT(capacity() > 0);
2669
    AssertNotDebugCapacity();
2670
    it.assert_is_full("erase()");
2671
    destroy(it.slot());
2672
    erase_meta_only(it);
2673
  }
2674
2675
  iterator erase(const_iterator first,
2676
                 const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2677
    AssertNotDebugCapacity();
2678
    // We check for empty first because clear_backing_array requires that
2679
    // capacity() > 0 as a precondition.
2680
    if (empty()) return end();
2681
    if (first == last) return last.inner_;
2682
    if (is_small()) {
2683
      destroy(single_slot());
2684
      erase_meta_only_small();
2685
      return end();
2686
    }
2687
    if (first == begin() && last == end()) {
2688
      // TODO(ezb): we access control bytes in destroy_slots so it could make
2689
      // sense to combine destroy_slots and clear_backing_array to avoid cache
2690
      // misses when the table is large. Note that we also do this in clear().
2691
      destroy_slots();
2692
      clear_backing_array(/*reuse=*/true);
2693
      common().set_reserved_growth(common().reservation_size());
2694
      return end();
2695
    }
2696
    while (first != last) {
2697
      erase(first++);
2698
    }
2699
    return last.inner_;
2700
  }
2701
2702
  // Moves elements from `src` into `this`.
2703
  // If the element already exists in `this`, it is left unmodified in `src`.
2704
  template <typename H, typename E>
2705
  void merge(raw_hash_set<Policy, H, E, Alloc>& src) {  // NOLINT
2706
    AssertNotDebugCapacity();
2707
    src.AssertNotDebugCapacity();
2708
    assert(this != &src);
2709
    // Returns whether insertion took place.
2710
    const auto insert_slot = [this](slot_type* src_slot) {
2711
      return PolicyTraits::apply(InsertSlot<false>{*this, std::move(*src_slot)},
2712
                                 PolicyTraits::element(src_slot))
2713
          .second;
2714
    };
2715
2716
    if (src.is_small()) {
2717
      if (src.empty()) return;
2718
      if (insert_slot(src.single_slot()))
2719
        src.erase_meta_only_small();
2720
      return;
2721
    }
2722
    for (auto it = src.begin(), e = src.end(); it != e;) {
2723
      auto next = std::next(it);
2724
      if (insert_slot(it.slot())) src.erase_meta_only_large(it);
2725
      it = next;
2726
    }
2727
  }
2728
2729
  template <typename H, typename E>
2730
  void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
2731
    merge(src);
2732
  }
2733
2734
  node_type extract(const_iterator position) {
2735
    AssertNotDebugCapacity();
2736
    position.inner_.assert_is_full("extract()");
2737
    allocator_type alloc(char_alloc_ref());
2738
    auto node = CommonAccess::Transfer<node_type>(alloc, position.slot());
2739
    erase_meta_only(position);
2740
    return node;
2741
  }
2742
2743
  template <class K = key_type,
2744
            std::enable_if_t<!std::is_same<K, iterator>::value, int> = 0>
2745
  node_type extract(const key_arg<K>& key) {
2746
    auto it = find(key);
2747
    return it == end() ? node_type() : extract(const_iterator{it});
2748
  }
2749
2750
  void swap(raw_hash_set& that) noexcept(
2751
      AllocTraits::is_always_equal::value &&
2752
      std::is_nothrow_swappable<hasher>::value &&
2753
      std::is_nothrow_swappable<key_equal>::value) {
2754
    AssertNotDebugCapacity();
2755
    that.AssertNotDebugCapacity();
2756
    using std::swap;
2757
    swap_common(that);
2758
    swap(hash_ref(), that.hash_ref());
2759
    swap(eq_ref(), that.eq_ref());
2760
    SwapAlloc(char_alloc_ref(), that.char_alloc_ref(),
2761
              typename AllocTraits::propagate_on_container_swap{});
2762
  }
2763
2764
  void rehash(size_t n) { Rehash(common(), GetPolicyFunctions(), n); }
2765
2766
  void reserve(size_t n) {
2767
    if (ABSL_PREDICT_TRUE(n > DefaultCapacity())) {
2768
      ReserveTableToFitNewSize(common(), GetPolicyFunctions(), n);
2769
    }
2770
  }
2771
2772
  // Extension API: support for heterogeneous keys.
2773
  //
2774
  //   std::unordered_set<std::string> s;
2775
  //   // Turns "abc" into std::string.
2776
  //   s.count("abc");
2777
  //
2778
  //   ch_set<std::string> s;
2779
  //   // Uses "abc" directly without copying it into std::string.
2780
  //   s.count("abc");
2781
  template <class K = key_type>
2782
  size_t count(const key_arg<K>& key) const {
2783
    return find(key) == end() ? 0 : 1;
2784
  }
2785
2786
  // Issues CPU prefetch instructions for the memory needed to find or insert
2787
  // a key.  Like all lookup functions, this support heterogeneous keys.
2788
  //
2789
  // NOTE: This is a very low level operation and should not be used without
2790
  // specific benchmarks indicating its importance.
2791
  template <class K = key_type>
2792
  void prefetch([[maybe_unused]] const key_arg<K>& key) const {
2793
    if (capacity() == DefaultCapacity()) return;
2794
    // Avoid probing if we won't be able to prefetch the addresses received.
2795
#ifdef ABSL_HAVE_PREFETCH
2796
    prefetch_heap_block();
2797
    if (is_small()) return;
2798
    auto seq = probe(common(), hash_of(key));
2799
    PrefetchToLocalCache(control() + seq.offset());
2800
    PrefetchToLocalCache(slot_array() + seq.offset());
2801
#endif  // ABSL_HAVE_PREFETCH
2802
  }
2803
2804
  template <class K = key_type>
2805
  ABSL_DEPRECATE_AND_INLINE()
2806
  iterator find(const key_arg<K>& key,
2807
                size_t) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2808
    return find(key);
2809
  }
2810
  // The API of find() has one extension: the type of the key argument doesn't
2811
  // have to be key_type. This is so called heterogeneous key support.
2812
  template <class K = key_type>
2813
  iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2814
    AssertOnFind(key);
2815
    if (is_small()) return find_small(key);
2816
    prefetch_heap_block();
2817
    return find_large(key, hash_of(key));
2818
  }
2819
2820
  template <class K = key_type>
2821
  ABSL_DEPRECATE_AND_INLINE()
2822
  const_iterator find(const key_arg<K>& key,
2823
                      size_t) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2824
    return find(key);
2825
  }
2826
  template <class K = key_type>
2827
  const_iterator find(const key_arg<K>& key) const
2828
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2829
    return const_cast<raw_hash_set*>(this)->find(key);
2830
  }
2831
2832
  template <class K = key_type>
2833
  bool contains(const key_arg<K>& key) const {
2834
    // Here neither the iterator returned by `find()` nor `end()` can be invalid
2835
    // outside of potential thread-safety issues.
2836
    // `find()`'s return value is constructed, used, and then destructed
2837
    // all in this context.
2838
    return !find(key).unchecked_equals(end());
2839
  }
2840
2841
  template <class K = key_type>
2842
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
2843
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
2844
    auto it = find(key);
2845
    if (it != end()) return {it, std::next(it)};
2846
    return {it, it};
2847
  }
2848
  template <class K = key_type>
2849
  std::pair<const_iterator, const_iterator> equal_range(
2850
      const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2851
    auto it = find(key);
2852
    if (it != end()) return {it, std::next(it)};
2853
    return {it, it};
2854
  }
2855
2856
  size_t bucket_count() const { return capacity(); }
2857
  float load_factor() const {
2858
    return capacity() ? static_cast<double>(size()) / capacity() : 0.0;
2859
  }
2860
  float max_load_factor() const { return 1.0f; }
2861
  void max_load_factor(float) {
2862
    // Does nothing.
2863
  }
2864
2865
  hasher hash_function() const { return hash_ref(); }
2866
  key_equal key_eq() const { return eq_ref(); }
2867
  allocator_type get_allocator() const {
2868
    return allocator_type(char_alloc_ref());
2869
  }
2870
2871
  friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
2872
    if (a.size() != b.size()) return false;
2873
    const raw_hash_set* outer = &a;
2874
    const raw_hash_set* inner = &b;
2875
    if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
2876
    for (const value_type& elem : *outer) {
2877
      auto it = PolicyTraits::apply(FindElement{*inner}, elem);
2878
      if (it == inner->end()) return false;
2879
      // Note: we used key_equal to check for key equality in FindElement, but
2880
      // we may need to do an additional comparison using
2881
      // value_type::operator==. E.g. the keys could be equal and the
2882
      // mapped_types could be unequal in a map or even in a set, key_equal
2883
      // could ignore some fields that aren't ignored by operator==.
2884
      static constexpr bool kKeyEqIsValueEq =
2885
          std::is_same<key_type, value_type>::value &&
2886
          std::is_same<key_equal, hash_default_eq<key_type>>::value;
2887
      if (!kKeyEqIsValueEq && !(*it == elem)) return false;
2888
    }
2889
    return true;
2890
  }
2891
2892
  friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
2893
    return !(a == b);
2894
  }
2895
2896
  template <typename H>
2897
  friend typename std::enable_if<H::template is_hashable<value_type>::value,
2898
                                 H>::type
2899
  AbslHashValue(H h, const raw_hash_set& s) {
2900
    return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
2901
                      hash_internal::WeaklyMixedInteger{s.size()});
2902
  }
2903
2904
  friend void swap(raw_hash_set& a,
2905
                   raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
2906
    a.swap(b);
2907
  }
2908
2909
 private:
2910
  template <class Container, typename Enabler>
2911
  friend struct absl::container_internal::hashtable_debug_internal::
2912
      HashtableDebugAccess;
2913
2914
  friend struct absl::container_internal::HashtableFreeFunctionsAccess;
2915
2916
  struct FindElement {
2917
    template <class K, class... Args>
2918
    const_iterator operator()(const K& key, Args&&...) const {
2919
      return s.find(key);
2920
    }
2921
    const raw_hash_set& s;
2922
  };
2923
2924
  struct EmplaceDecomposable {
2925
    template <class K, class... Args>
2926
    std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
2927
      auto res = s.find_or_prepare_insert(key);
2928
      if (res.second) {
2929
        s.emplace_at(res.first, std::forward<Args>(args)...);
2930
      }
2931
      return res;
2932
    }
2933
    raw_hash_set& s;
2934
  };
2935
2936
  template <bool do_destroy>
2937
  struct InsertSlot {
2938
    template <class K, class... Args>
2939
    std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
2940
      auto res = s.find_or_prepare_insert(key);
2941
      if (res.second) {
2942
        s.transfer(res.first.slot(), &slot);
2943
      } else if (do_destroy) {
2944
        s.destroy(&slot);
2945
      }
2946
      return res;
2947
    }
2948
    raw_hash_set& s;
2949
    // Constructed slot. Either moved into place or destroyed.
2950
    slot_type&& slot;
2951
  };
2952
2953
  template <typename... Args>
2954
  inline void construct(slot_type* slot, Args&&... args) {
2955
    common().RunWithReentrancyGuard([&] {
2956
      allocator_type alloc(char_alloc_ref());
2957
      PolicyTraits::construct(&alloc, slot, std::forward<Args>(args)...);
2958
    });
2959
  }
2960
  inline void destroy(slot_type* slot) {
2961
    common().RunWithReentrancyGuard([&] {
2962
      allocator_type alloc(char_alloc_ref());
2963
      PolicyTraits::destroy(&alloc, slot);
2964
    });
2965
  }
2966
  inline void transfer(slot_type* to, slot_type* from) {
2967
    common().RunWithReentrancyGuard([&] {
2968
      allocator_type alloc(char_alloc_ref());
2969
      PolicyTraits::transfer(&alloc, to, from);
2970
    });
2971
  }
2972
2973
  // TODO(b/289225379): consider having a helper class that has the impls for
2974
  // SOO functionality.
2975
  template <class K = key_type>
2976
  iterator find_small(const key_arg<K>& key) {
2977
    ABSL_SWISSTABLE_ASSERT(is_small());
2978
    return empty() || !equal_to(key, single_slot()) ? end() : single_iterator();
2979
  }
2980
2981
  template <class K = key_type>
2982
  iterator find_large(const key_arg<K>& key, size_t hash) {
2983
    ABSL_SWISSTABLE_ASSERT(!is_small());
2984
    auto seq = probe(common(), hash);
2985
    const h2_t h2 = H2(hash);
2986
    const ctrl_t* ctrl = control();
2987
    while (true) {
2988
#ifndef ABSL_HAVE_MEMORY_SANITIZER
2989
      absl::PrefetchToLocalCache(slot_array() + seq.offset());
2990
#endif
2991
      Group g{ctrl + seq.offset()};
2992
      for (uint32_t i : g.Match(h2)) {
2993
        if (ABSL_PREDICT_TRUE(equal_to(key, slot_array() + seq.offset(i))))
2994
          return iterator_at(seq.offset(i));
2995
      }
2996
      if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
2997
      seq.next();
2998
      ABSL_SWISSTABLE_ASSERT(seq.index() <= capacity() && "full table!");
2999
    }
3000
  }
3001
3002
  // Returns true if the table needs to be sampled.
3003
  // This should be called on insertion into an empty SOO table and in copy
3004
  // construction when the size can fit in SOO capacity.
3005
  bool should_sample_soo() const {
3006
    ABSL_SWISSTABLE_ASSERT(is_soo());
3007
    if (!ShouldSampleHashtablezInfoForAlloc<CharAlloc>()) return false;
3008
    return ABSL_PREDICT_FALSE(ShouldSampleNextTable());
3009
  }
3010
3011
  void clear_backing_array(bool reuse) {
3012
    ABSL_SWISSTABLE_ASSERT(capacity() > DefaultCapacity());
3013
    ClearBackingArray(common(), GetPolicyFunctions(), &char_alloc_ref(), reuse,
3014
                      SooEnabled());
3015
  }
3016
3017
  void destroy_slots() {
3018
    ABSL_SWISSTABLE_ASSERT(!is_small());
3019
    if (PolicyTraits::template destroy_is_trivial<Alloc>()) return;
3020
    auto destroy_slot = [&](const ctrl_t*, void* slot) {
3021
      this->destroy(static_cast<slot_type*>(slot));
3022
    };
3023
    if constexpr (SwisstableAssertAccessToDestroyedTable()) {
3024
      CommonFields common_copy(non_soo_tag_t{}, this->common());
3025
      common().set_capacity(InvalidCapacity::kDestroyed);
3026
      IterateOverFullSlots(common_copy, sizeof(slot_type), destroy_slot);
3027
      common().set_capacity(common_copy.capacity());
3028
    } else {
3029
      IterateOverFullSlots(common(), sizeof(slot_type), destroy_slot);
3030
    }
3031
  }
3032
3033
  void dealloc() {
3034
    ABSL_SWISSTABLE_ASSERT(capacity() > DefaultCapacity());
3035
    // Unpoison before returning the memory to the allocator.
3036
    SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * capacity());
3037
    infoz().Unregister();
3038
    DeallocateBackingArray<BackingArrayAlignment(alignof(slot_type)),
3039
                           CharAlloc>(&char_alloc_ref(), capacity(), control(),
3040
                                      sizeof(slot_type), alignof(slot_type),
3041
                                      common().has_infoz());
3042
  }
3043
3044
  void destructor_impl() {
3045
    if (SwisstableGenerationsEnabled() &&
3046
        capacity() >= InvalidCapacity::kMovedFrom) {
3047
      return;
3048
    }
3049
    if (capacity() == 0) return;
3050
    if (is_small()) {
3051
      if (!empty()) {
3052
        ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(destroy(single_slot()));
3053
      }
3054
      if constexpr (SooEnabled()) return;
3055
    } else {
3056
      destroy_slots();
3057
    }
3058
    dealloc();
3059
  }
3060
3061
  // Erases, but does not destroy, the value pointed to by `it`.
3062
  //
3063
  // This merely updates the pertinent control byte. This can be used in
3064
  // conjunction with Policy::transfer to move the object to another place.
3065
  void erase_meta_only(const_iterator it) {
3066
    if (is_small()) {
3067
      erase_meta_only_small();
3068
      return;
3069
    }
3070
    erase_meta_only_large(it);
3071
  }
3072
  void erase_meta_only_small() {
3073
    EraseMetaOnlySmall(common(), SooEnabled(), sizeof(slot_type));
3074
  }
3075
  void erase_meta_only_large(const_iterator it) {
3076
    EraseMetaOnlyLarge(common(), it.control(), sizeof(slot_type));
3077
  }
3078
3079
  template <class K>
3080
  ABSL_ATTRIBUTE_ALWAYS_INLINE bool equal_to(const K& key,
3081
                                             slot_type* slot) const {
3082
    return PolicyTraits::apply(EqualElement<K, key_equal>{key, eq_ref()},
3083
                               PolicyTraits::element(slot));
3084
  }
3085
  template <class K>
3086
  ABSL_ATTRIBUTE_ALWAYS_INLINE size_t hash_of(const K& key) const {
3087
    return HashElement<hasher, kIsDefaultHash>{hash_ref(),
3088
                                               common().seed().seed()}(key);
3089
  }
3090
  ABSL_ATTRIBUTE_ALWAYS_INLINE size_t hash_of(slot_type* slot) const {
3091
    return PolicyTraits::apply(
3092
        HashElement<hasher, kIsDefaultHash>{hash_ref(), common().seed().seed()},
3093
        PolicyTraits::element(slot));
3094
  }
3095
3096
  // Casting directly from e.g. char* to slot_type* can cause compilation errors
3097
  // on objective-C. This function converts to void* first, avoiding the issue.
3098
  static ABSL_ATTRIBUTE_ALWAYS_INLINE slot_type* to_slot(void* buf) {
3099
    return static_cast<slot_type*>(buf);
3100
  }
3101
3102
  // Requires that lhs does not have a full SOO slot.
3103
  static void move_common(bool rhs_is_full_soo, CharAlloc& rhs_alloc,
3104
                          CommonFields& lhs, CommonFields&& rhs) {
3105
    if (PolicyTraits::transfer_uses_memcpy() || !rhs_is_full_soo) {
3106
      lhs = std::move(rhs);
3107
    } else {
3108
      lhs.move_non_heap_or_soo_fields(rhs);
3109
      rhs.RunWithReentrancyGuard([&] {
3110
        lhs.RunWithReentrancyGuard([&] {
3111
          PolicyTraits::transfer(&rhs_alloc, to_slot(lhs.soo_data()),
3112
                                 to_slot(rhs.soo_data()));
3113
        });
3114
      });
3115
    }
3116
  }
3117
3118
  // Swaps common fields making sure to avoid memcpy'ing a full SOO slot if we
3119
  // aren't allowed to do so.
3120
  void swap_common(raw_hash_set& that) {
3121
    using std::swap;
3122
    if (PolicyTraits::transfer_uses_memcpy()) {
3123
      swap(common(), that.common());
3124
      return;
3125
    }
3126
    CommonFields tmp = CommonFields(uninitialized_tag_t{});
3127
    const bool that_is_full_soo = that.is_full_soo();
3128
    move_common(that_is_full_soo, that.char_alloc_ref(), tmp,
3129
                std::move(that.common()));
3130
    move_common(is_full_soo(), char_alloc_ref(), that.common(),
3131
                std::move(common()));
3132
    move_common(that_is_full_soo, that.char_alloc_ref(), common(),
3133
                std::move(tmp));
3134
  }
3135
3136
  void annotate_for_bug_detection_on_move([[maybe_unused]] raw_hash_set& that) {
3137
    // We only enable moved-from validation when generations are enabled (rather
3138
    // than using NDEBUG) to avoid issues in which NDEBUG is enabled in some
3139
    // translation units but not in others.
3140
    if (SwisstableGenerationsEnabled()) {
3141
      that.common().set_capacity(this == &that ? InvalidCapacity::kSelfMovedFrom
3142
                                               : InvalidCapacity::kMovedFrom);
3143
    }
3144
    if (!SwisstableGenerationsEnabled() || capacity() == DefaultCapacity() ||
3145
        capacity() > kAboveMaxValidCapacity) {
3146
      return;
3147
    }
3148
    common().increment_generation();
3149
    if (!empty() && common().should_rehash_for_bug_detection_on_move()) {
3150
      ResizeAllocatedTableWithSeedChange(common(), GetPolicyFunctions(),
3151
                                         capacity());
3152
    }
3153
  }
3154
3155
  template <bool propagate_alloc>
3156
  raw_hash_set& assign_impl(raw_hash_set&& that) {
3157
    // We don't bother checking for this/that aliasing. We just need to avoid
3158
    // breaking the invariants in that case.
3159
    destructor_impl();
3160
    move_common(that.is_full_soo(), that.char_alloc_ref(), common(),
3161
                std::move(that.common()));
3162
    hash_ref() = that.hash_ref();
3163
    eq_ref() = that.eq_ref();
3164
    CopyAlloc(char_alloc_ref(), that.char_alloc_ref(),
3165
              std::integral_constant<bool, propagate_alloc>());
3166
    that.common() = CommonFields::CreateDefault<SooEnabled()>();
3167
    annotate_for_bug_detection_on_move(that);
3168
    return *this;
3169
  }
3170
3171
  raw_hash_set& move_elements_allocs_unequal(raw_hash_set&& that) {
3172
    const size_t size = that.size();
3173
    if (size == 0) return *this;
3174
    reserve(size);
3175
    for (iterator it = that.begin(); it != that.end(); ++it) {
3176
      insert(std::move(PolicyTraits::element(it.slot())));
3177
      that.destroy(it.slot());
3178
    }
3179
    if (!that.is_soo()) that.dealloc();
3180
    that.common() = CommonFields::CreateDefault<SooEnabled()>();
3181
    annotate_for_bug_detection_on_move(that);
3182
    return *this;
3183
  }
3184
3185
  raw_hash_set& move_assign(raw_hash_set&& that,
3186
                            std::true_type /*propagate_alloc*/) {
3187
    return assign_impl<true>(std::move(that));
3188
  }
3189
  raw_hash_set& move_assign(raw_hash_set&& that,
3190
                            std::false_type /*propagate_alloc*/) {
3191
    if (char_alloc_ref() == that.char_alloc_ref()) {
3192
      return assign_impl<false>(std::move(that));
3193
    }
3194
    // Aliasing can't happen here because allocs would compare equal above.
3195
    assert(this != &that);
3196
    destructor_impl();
3197
    // We can't take over that's memory so we need to move each element.
3198
    // While moving elements, this should have that's hash/eq so copy hash/eq
3199
    // before moving elements.
3200
    hash_ref() = that.hash_ref();
3201
    eq_ref() = that.eq_ref();
3202
    return move_elements_allocs_unequal(std::move(that));
3203
  }
3204
3205
  template <class K>
3206
  std::pair<iterator, bool> find_or_prepare_insert_soo(const K& key) {
3207
    ABSL_SWISSTABLE_ASSERT(is_soo());
3208
    bool force_sampling;
3209
    if (empty()) {
3210
      if (!should_sample_soo()) {
3211
        common().set_full_soo();
3212
        return {single_iterator(), true};
3213
      }
3214
      force_sampling = true;
3215
    } else if (equal_to(key, single_slot())) {
3216
      return {single_iterator(), false};
3217
    } else {
3218
      force_sampling = false;
3219
    }
3220
    ABSL_SWISSTABLE_ASSERT(capacity() == 1);
3221
    constexpr bool kUseMemcpy =
3222
        PolicyTraits::transfer_uses_memcpy() && SooEnabled();
3223
    size_t index = GrowSooTableToNextCapacityAndPrepareInsert<
3224
        kUseMemcpy ? OptimalMemcpySizeForSooSlotTransfer(sizeof(slot_type)) : 0,
3225
        kUseMemcpy>(common(), GetPolicyFunctions(),
3226
                    HashKey<hasher, K, kIsDefaultHash>{hash_ref(), key},
3227
                    force_sampling);
3228
    return {iterator_at(index), true};
3229
  }
3230
3231
  template <class K>
3232
  std::pair<iterator, bool> find_or_prepare_insert_small(const K& key) {
3233
    ABSL_SWISSTABLE_ASSERT(is_small());
3234
    if constexpr (SooEnabled()) {
3235
      return find_or_prepare_insert_soo(key);
3236
    }
3237
    if (!empty()) {
3238
      if (equal_to(key, single_slot())) {
3239
        return {single_iterator(), false};
3240
      }
3241
    }
3242
    return {iterator_at_ptr(PrepareInsertSmallNonSoo(
3243
                common(), GetPolicyFunctions(),
3244
                HashKey<hasher, K, kIsDefaultHash>{hash_ref(), key})),
3245
            true};
3246
  }
3247
3248
  template <class K>
3249
  std::pair<iterator, bool> find_or_prepare_insert_large(const K& key) {
3250
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3251
    prefetch_heap_block();
3252
    const size_t hash = hash_of(key);
3253
    auto seq = probe(common(), hash);
3254
    const h2_t h2 = H2(hash);
3255
    const ctrl_t* ctrl = control();
3256
    while (true) {
3257
#ifndef ABSL_HAVE_MEMORY_SANITIZER
3258
      absl::PrefetchToLocalCache(slot_array() + seq.offset());
3259
#endif
3260
      Group g{ctrl + seq.offset()};
3261
      for (uint32_t i : g.Match(h2)) {
3262
        if (ABSL_PREDICT_TRUE(equal_to(key, slot_array() + seq.offset(i))))
3263
          return {iterator_at(seq.offset(i)), false};
3264
      }
3265
      auto mask_empty = g.MaskEmpty();
3266
      if (ABSL_PREDICT_TRUE(mask_empty)) {
3267
        size_t target = seq.offset(mask_empty.LowestBitSet());
3268
        size_t index =
3269
            SwisstableGenerationsEnabled()
3270
                ? PrepareInsertLargeGenerationsEnabled(
3271
                      common(), GetPolicyFunctions(), hash,
3272
                      FindInfo{target, seq.index()},
3273
                      HashKey<hasher, K, kIsDefaultHash>{hash_ref(), key})
3274
                : PrepareInsertLarge(common(), GetPolicyFunctions(), hash,
3275
                                     FindInfo{target, seq.index()});
3276
        return {iterator_at(index), true};
3277
      }
3278
      seq.next();
3279
      ABSL_SWISSTABLE_ASSERT(seq.index() <= capacity() && "full table!");
3280
    }
3281
  }
3282
3283
 protected:
3284
  // Asserts for correctness that we run on find/find_or_prepare_insert.
3285
  template <class K>
3286
  void AssertOnFind([[maybe_unused]] const K& key) {
3287
    AssertHashEqConsistent(key);
3288
    AssertNotDebugCapacity();
3289
  }
3290
3291
  // Asserts that the capacity is not a sentinel invalid value.
3292
  void AssertNotDebugCapacity() const {
3293
#ifdef NDEBUG
3294
    if (!SwisstableGenerationsEnabled()) {
3295
      return;
3296
    }
3297
#endif
3298
    if (ABSL_PREDICT_TRUE(capacity() <
3299
                          InvalidCapacity::kAboveMaxValidCapacity)) {
3300
      return;
3301
    }
3302
    assert(capacity() != InvalidCapacity::kReentrance &&
3303
           "Reentrant container access during element construction/destruction "
3304
           "is not allowed.");
3305
    if constexpr (SwisstableAssertAccessToDestroyedTable()) {
3306
      if (capacity() == InvalidCapacity::kDestroyed) {
3307
        ABSL_RAW_LOG(FATAL, "Use of destroyed hash table.");
3308
      }
3309
    }
3310
    if (SwisstableGenerationsEnabled() &&
3311
        ABSL_PREDICT_FALSE(capacity() >= InvalidCapacity::kMovedFrom)) {
3312
      if (capacity() == InvalidCapacity::kSelfMovedFrom) {
3313
        // If this log triggers, then a hash table was move-assigned to itself
3314
        // and then used again later without being reinitialized.
3315
        ABSL_RAW_LOG(FATAL, "Use of self-move-assigned hash table.");
3316
      }
3317
      ABSL_RAW_LOG(FATAL, "Use of moved-from hash table.");
3318
    }
3319
  }
3320
3321
  // Asserts that hash and equal functors provided by the user are consistent,
3322
  // meaning that `eq(k1, k2)` implies `hash(k1)==hash(k2)`.
3323
  template <class K>
3324
  void AssertHashEqConsistent(const K& key) {
3325
#ifdef NDEBUG
3326
    return;
3327
#endif
3328
    // If the hash/eq functors are known to be consistent, then skip validation.
3329
    if (std::is_same<hasher, absl::container_internal::StringHash>::value &&
3330
        std::is_same<key_equal, absl::container_internal::StringEq>::value) {
3331
      return;
3332
    }
3333
    if (std::is_scalar<key_type>::value &&
3334
        std::is_same<hasher, absl::Hash<key_type>>::value &&
3335
        std::is_same<key_equal, std::equal_to<key_type>>::value) {
3336
      return;
3337
    }
3338
    if (empty()) return;
3339
3340
    const size_t hash_of_arg = hash_of(key);
3341
    const auto assert_consistent = [&](const ctrl_t*, void* slot) {
3342
      const bool is_key_equal = equal_to(key, to_slot(slot));
3343
      if (!is_key_equal) return;
3344
3345
      [[maybe_unused]] const bool is_hash_equal =
3346
          hash_of_arg == hash_of(to_slot(slot));
3347
      assert((!is_key_equal || is_hash_equal) &&
3348
             "eq(k1, k2) must imply that hash(k1) == hash(k2). "
3349
             "hash/eq functors are inconsistent.");
3350
    };
3351
3352
    if (is_small()) {
3353
      assert_consistent(/*unused*/ nullptr, single_slot());
3354
      return;
3355
    }
3356
    // We only do validation for small tables so that it's constant time.
3357
    if (capacity() > 16) return;
3358
    IterateOverFullSlots(common(), sizeof(slot_type), assert_consistent);
3359
  }
3360
3361
  // Attempts to find `key` in the table; if it isn't found, returns an iterator
3362
  // where the value can be inserted into, with the control byte already set to
3363
  // `key`'s H2. Returns a bool indicating whether an insertion can take place.
3364
  template <class K>
3365
  std::pair<iterator, bool> find_or_prepare_insert(const K& key) {
3366
    AssertOnFind(key);
3367
    if (is_small()) return find_or_prepare_insert_small(key);
3368
    return find_or_prepare_insert_large(key);
3369
  }
3370
3371
  // Constructs the value in the space pointed by the iterator. This only works
3372
  // after an unsuccessful find_or_prepare_insert() and before any other
3373
  // modifications happen in the raw_hash_set.
3374
  //
3375
  // PRECONDITION: iter was returned from find_or_prepare_insert(k), where k is
3376
  // the key decomposed from `forward<Args>(args)...`, and the bool returned by
3377
  // find_or_prepare_insert(k) was true.
3378
  // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
3379
  template <class... Args>
3380
  void emplace_at(iterator iter, Args&&... args) {
3381
    construct(iter.slot(), std::forward<Args>(args)...);
3382
3383
    // When is_small, find calls find_small and if size is 0, then it will
3384
    // return an end iterator. This can happen in the raw_hash_set copy ctor.
3385
    assert((is_small() ||
3386
            PolicyTraits::apply(FindElement{*this}, *iter) == iter) &&
3387
           "constructed value does not match the lookup key");
3388
  }
3389
3390
  iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
3391
    return {control() + i, slot_array() + i, common().generation_ptr()};
3392
  }
3393
  const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
3394
    return const_cast<raw_hash_set*>(this)->iterator_at(i);
3395
  }
3396
  iterator iterator_at_ptr(std::pair<ctrl_t*, void*> ptrs)
3397
      ABSL_ATTRIBUTE_LIFETIME_BOUND {
3398
    return {ptrs.first, to_slot(ptrs.second), common().generation_ptr()};
3399
  }
3400
3401
  reference unchecked_deref(iterator it) { return it.unchecked_deref(); }
3402
3403
 private:
3404
  friend struct RawHashSetTestOnlyAccess;
3405
3406
  // The number of slots we can still fill without needing to rehash.
3407
  //
3408
  // This is stored separately due to tombstones: we do not include tombstones
3409
  // in the growth capacity, because we'd like to rehash when the table is
3410
  // otherwise filled with tombstones: otherwise, probe sequences might get
3411
  // unacceptably long without triggering a rehash. Callers can also force a
3412
  // rehash via the standard `rehash(0)`, which will recompute this value as a
3413
  // side-effect.
3414
  //
3415
  // See `CapacityToGrowth()`.
3416
  size_t growth_left() const {
3417
    return common().growth_left();
3418
  }
3419
3420
  GrowthInfo& growth_info() {
3421
    return common().growth_info();
3422
  }
3423
  GrowthInfo growth_info() const {
3424
    return common().growth_info();
3425
  }
3426
3427
  // Prefetch the heap-allocated memory region to resolve potential TLB and
3428
  // cache misses. This is intended to overlap with execution of calculating the
3429
  // hash for a key.
3430
  void prefetch_heap_block() const {
3431
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3432
#if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
3433
    __builtin_prefetch(control(), 0, 1);
3434
#endif
3435
  }
3436
3437
  CommonFields& common() { return settings_.template get<0>(); }
3438
  const CommonFields& common() const { return settings_.template get<0>(); }
3439
3440
  ctrl_t* control() const {
3441
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3442
    return common().control();
3443
  }
3444
  slot_type* slot_array() const {
3445
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3446
    return static_cast<slot_type*>(common().slot_array());
3447
  }
3448
  slot_type* soo_slot() {
3449
    ABSL_SWISSTABLE_ASSERT(is_soo());
3450
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(
3451
        static_cast<slot_type*>(common().soo_data()));
3452
  }
3453
  const slot_type* soo_slot() const {
3454
    ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(
3455
        const_cast<raw_hash_set*>(this)->soo_slot());
3456
  }
3457
  slot_type* single_slot() {
3458
    ABSL_SWISSTABLE_ASSERT(is_small());
3459
    return SooEnabled() ? soo_slot() : slot_array();
3460
  }
3461
  const slot_type* single_slot() const {
3462
    return const_cast<raw_hash_set*>(this)->single_slot();
3463
  }
3464
  void decrement_small_size() {
3465
    ABSL_SWISSTABLE_ASSERT(is_small());
3466
    SooEnabled() ? common().set_empty_soo() : common().decrement_size();
3467
    if (!SooEnabled()) {
3468
      SanitizerPoisonObject(single_slot());
3469
    }
3470
  }
3471
  iterator single_iterator() {
3472
    return {SooControl(), single_slot(), common().generation_ptr()};
3473
  }
3474
  const_iterator single_iterator() const {
3475
    return const_cast<raw_hash_set*>(this)->single_iterator();
3476
  }
3477
  HashtablezInfoHandle infoz() {
3478
    ABSL_SWISSTABLE_ASSERT(!is_soo());
3479
    return common().infoz();
3480
  }
3481
3482
  hasher& hash_ref() { return settings_.template get<1>(); }
3483
  const hasher& hash_ref() const { return settings_.template get<1>(); }
3484
  key_equal& eq_ref() { return settings_.template get<2>(); }
3485
  const key_equal& eq_ref() const { return settings_.template get<2>(); }
3486
  CharAlloc& char_alloc_ref() { return settings_.template get<3>(); }
3487
  const CharAlloc& char_alloc_ref() const {
3488
    return settings_.template get<3>();
3489
  }
3490
3491
  static void* get_char_alloc_ref_fn(CommonFields& common) {
3492
    auto* h = reinterpret_cast<raw_hash_set*>(&common);
3493
    return &h->char_alloc_ref();
3494
  }
3495
  static void* get_hash_ref_fn(CommonFields& common) {
3496
    auto* h = reinterpret_cast<raw_hash_set*>(&common);
3497
    // TODO(b/397453582): Remove support for const hasher.
3498
    return const_cast<std::remove_const_t<hasher>*>(&h->hash_ref());
3499
  }
3500
  static void transfer_n_slots_fn(void* set, void* dst, void* src,
3501
                                  size_t count) {
3502
    auto* src_slot = to_slot(src);
3503
    auto* dst_slot = to_slot(dst);
3504
3505
    auto* h = static_cast<raw_hash_set*>(set);
3506
    for (; count > 0; --count, ++src_slot, ++dst_slot) {
3507
      h->transfer(dst_slot, src_slot);
3508
    }
3509
  }
3510
3511
  // TODO(b/382423690): Try to type erase entire function or at least type erase
3512
  // by GetKey + Hash for memcpyable types.
3513
  // TODO(b/382423690): Try to type erase for big slots: sizeof(slot_type) > 16.
3514
  static void transfer_unprobed_elements_to_next_capacity_fn(
3515
      CommonFields& common, const ctrl_t* old_ctrl, void* old_slots,
3516
      void* probed_storage,
3517
      void (*encode_probed_element)(void* probed_storage, h2_t h2,
3518
                                    size_t source_offset, size_t h1)) {
3519
    const size_t new_capacity = common.capacity();
3520
    const size_t old_capacity = PreviousCapacity(new_capacity);
3521
    ABSL_ASSUME(old_capacity + 1 >= Group::kWidth);
3522
    ABSL_ASSUME((old_capacity + 1) % Group::kWidth == 0);
3523
3524
    auto* set = reinterpret_cast<raw_hash_set*>(&common);
3525
    slot_type* old_slots_ptr = to_slot(old_slots);
3526
    ctrl_t* new_ctrl = common.control();
3527
    slot_type* new_slots = set->slot_array();
3528
3529
    for (size_t group_index = 0; group_index < old_capacity;
3530
         group_index += Group::kWidth) {
3531
      GroupFullEmptyOrDeleted old_g(old_ctrl + group_index);
3532
      std::memset(new_ctrl + group_index, static_cast<int8_t>(ctrl_t::kEmpty),
3533
                  Group::kWidth);
3534
      std::memset(new_ctrl + group_index + old_capacity + 1,
3535
                  static_cast<int8_t>(ctrl_t::kEmpty), Group::kWidth);
3536
      // TODO(b/382423690): try to type erase everything outside of the loop.
3537
      // We will share a lot of code in expense of one function call per group.
3538
      for (auto in_fixed_group_index : old_g.MaskFull()) {
3539
        size_t old_index = group_index + in_fixed_group_index;
3540
        slot_type* old_slot = old_slots_ptr + old_index;
3541
        // TODO(b/382423690): try to avoid entire hash calculation since we need
3542
        // only one new bit of h1.
3543
        size_t hash = set->hash_of(old_slot);
3544
        size_t h1 = H1(hash);
3545
        h2_t h2 = H2(hash);
3546
        size_t new_index = TryFindNewIndexWithoutProbing(
3547
            h1, old_index, old_capacity, new_ctrl, new_capacity);
3548
        // Note that encode_probed_element is allowed to use old_ctrl buffer
3549
        // till and included the old_index.
3550
        if (ABSL_PREDICT_FALSE(new_index == kProbedElementIndexSentinel)) {
3551
          encode_probed_element(probed_storage, h2, old_index, h1);
3552
          continue;
3553
        }
3554
        ABSL_SWISSTABLE_ASSERT((new_index & old_capacity) <= old_index);
3555
        ABSL_SWISSTABLE_ASSERT(IsEmpty(new_ctrl[new_index]));
3556
        new_ctrl[new_index] = static_cast<ctrl_t>(h2);
3557
        auto* new_slot = new_slots + new_index;
3558
        SanitizerUnpoisonMemoryRegion(new_slot, sizeof(slot_type));
3559
        set->transfer(new_slot, old_slot);
3560
        SanitizerPoisonMemoryRegion(old_slot, sizeof(slot_type));
3561
      }
3562
    }
3563
  }
3564
3565
  static const PolicyFunctions& GetPolicyFunctions() {
3566
    static_assert(sizeof(slot_type) <= (std::numeric_limits<uint32_t>::max)(),
3567
                  "Slot size is too large. Use std::unique_ptr for value type "
3568
                  "or use absl::node_hash_{map,set}.");
3569
    static_assert(alignof(slot_type) <=
3570
                  size_t{(std::numeric_limits<uint16_t>::max)()});
3571
    static_assert(sizeof(key_type) <=
3572
                  size_t{(std::numeric_limits<uint32_t>::max)()});
3573
    static_assert(sizeof(value_type) <=
3574
                  size_t{(std::numeric_limits<uint32_t>::max)()});
3575
    static constexpr size_t kBackingArrayAlignment =
3576
        BackingArrayAlignment(alignof(slot_type));
3577
    static constexpr PolicyFunctions value = {
3578
        static_cast<uint32_t>(sizeof(key_type)),
3579
        static_cast<uint32_t>(sizeof(value_type)),
3580
        static_cast<uint32_t>(sizeof(slot_type)),
3581
        static_cast<uint16_t>(alignof(slot_type)), SooEnabled(),
3582
        ShouldSampleHashtablezInfoForAlloc<CharAlloc>(),
3583
        // TODO(b/328722020): try to type erase
3584
        // for standard layout and alignof(Hash) <= alignof(CommonFields).
3585
        std::is_empty_v<hasher> ? &GetRefForEmptyClass
3586
                                : &raw_hash_set::get_hash_ref_fn,
3587
        PolicyTraits::template get_hash_slot_fn<hasher, kIsDefaultHash>(),
3588
        PolicyTraits::transfer_uses_memcpy()
3589
            ? TransferNRelocatable<sizeof(slot_type)>
3590
            : &raw_hash_set::transfer_n_slots_fn,
3591
        std::is_empty_v<Alloc> ? &GetRefForEmptyClass
3592
                               : &raw_hash_set::get_char_alloc_ref_fn,
3593
        &AllocateBackingArray<kBackingArrayAlignment, CharAlloc>,
3594
        &DeallocateBackingArray<kBackingArrayAlignment, CharAlloc>,
3595
        &raw_hash_set::transfer_unprobed_elements_to_next_capacity_fn};
3596
    return value;
3597
  }
3598
3599
  // Bundle together CommonFields plus other objects which might be empty.
3600
  // CompressedTuple will ensure that sizeof is not affected by any of the empty
3601
  // fields that occur after CommonFields.
3602
  absl::container_internal::CompressedTuple<CommonFields, hasher, key_equal,
3603
                                            CharAlloc>
3604
      settings_{CommonFields::CreateDefault<SooEnabled()>(), hasher{},
3605
                key_equal{}, CharAlloc{}};
3606
};
3607
3608
// Friend access for free functions in raw_hash_set.h.
3609
struct HashtableFreeFunctionsAccess {
3610
  template <class Predicate, typename Set>
3611
  static typename Set::size_type EraseIf(Predicate& pred, Set* c) {
3612
    if (c->empty()) {
3613
      return 0;
3614
    }
3615
    if (c->is_small()) {
3616
      auto it = c->single_iterator();
3617
      if (!pred(*it)) {
3618
        ABSL_SWISSTABLE_ASSERT(c->size() == 1 &&
3619
                               "hash table was modified unexpectedly");
3620
        return 0;
3621
      }
3622
      c->destroy(it.slot());
3623
      c->erase_meta_only_small();
3624
      return 1;
3625
    }
3626
    [[maybe_unused]] const size_t original_size_for_assert = c->size();
3627
    size_t num_deleted = 0;
3628
    using SlotType = typename Set::slot_type;
3629
    IterateOverFullSlots(
3630
        c->common(), sizeof(SlotType),
3631
        [&](const ctrl_t* ctrl, void* slot_void) {
3632
          auto* slot = static_cast<SlotType*>(slot_void);
3633
          if (pred(Set::PolicyTraits::element(slot))) {
3634
            c->destroy(slot);
3635
            EraseMetaOnlyLarge(c->common(), ctrl, sizeof(*slot));
3636
            ++num_deleted;
3637
          }
3638
        });
3639
    // NOTE: IterateOverFullSlots allow removal of the current element, so we
3640
    // verify the size additionally here.
3641
    ABSL_SWISSTABLE_ASSERT(original_size_for_assert - num_deleted ==
3642
                               c->size() &&
3643
                           "hash table was modified unexpectedly");
3644
    return num_deleted;
3645
  }
3646
3647
  template <class Callback, typename Set>
3648
  static void ForEach(Callback& cb, Set* c) {
3649
    if (c->empty()) {
3650
      return;
3651
    }
3652
    if (c->is_small()) {
3653
      cb(*c->single_iterator());
3654
      return;
3655
    }
3656
    using SlotType = typename Set::slot_type;
3657
    using ElementTypeWithConstness = decltype(*c->begin());
3658
    IterateOverFullSlots(
3659
        c->common(), sizeof(SlotType), [&cb](const ctrl_t*, void* slot) {
3660
          ElementTypeWithConstness& element =
3661
              Set::PolicyTraits::element(static_cast<SlotType*>(slot));
3662
          cb(element);
3663
        });
3664
  }
3665
};
3666
3667
// Erases all elements that satisfy the predicate `pred` from the container `c`.
3668
template <typename P, typename H, typename E, typename A, typename Predicate>
3669
typename raw_hash_set<P, H, E, A>::size_type EraseIf(
3670
    Predicate& pred, raw_hash_set<P, H, E, A>* c) {
3671
  return HashtableFreeFunctionsAccess::EraseIf(pred, c);
3672
}
3673
3674
// Calls `cb` for all elements in the container `c`.
3675
template <typename P, typename H, typename E, typename A, typename Callback>
3676
void ForEach(Callback& cb, raw_hash_set<P, H, E, A>* c) {
3677
  return HashtableFreeFunctionsAccess::ForEach(cb, c);
3678
}
3679
template <typename P, typename H, typename E, typename A, typename Callback>
3680
void ForEach(Callback& cb, const raw_hash_set<P, H, E, A>* c) {
3681
  return HashtableFreeFunctionsAccess::ForEach(cb, c);
3682
}
3683
3684
namespace hashtable_debug_internal {
3685
template <typename Set>
3686
struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
3687
  using Traits = typename Set::PolicyTraits;
3688
  using Slot = typename Traits::slot_type;
3689
3690
  constexpr static bool kIsDefaultHash = Set::kIsDefaultHash;
3691
3692
  static size_t GetNumProbes(const Set& set,
3693
                             const typename Set::key_type& key) {
3694
    if (set.is_small()) return 0;
3695
    size_t num_probes = 0;
3696
    const size_t hash = set.hash_of(key);
3697
    auto seq = probe(set.common(), hash);
3698
    const h2_t h2 = H2(hash);
3699
    const ctrl_t* ctrl = set.control();
3700
    while (true) {
3701
      container_internal::Group g{ctrl + seq.offset()};
3702
      for (uint32_t i : g.Match(h2)) {
3703
        if (set.equal_to(key, set.slot_array() + seq.offset(i)))
3704
          return num_probes;
3705
        ++num_probes;
3706
      }
3707
      if (g.MaskEmpty()) return num_probes;
3708
      seq.next();
3709
      ++num_probes;
3710
    }
3711
  }
3712
3713
  static size_t AllocatedByteSize(const Set& c) {
3714
    size_t capacity = c.capacity();
3715
    if (capacity == 0) return 0;
3716
    size_t m =
3717
        c.is_soo() ? 0 : c.common().alloc_size(sizeof(Slot), alignof(Slot));
3718
3719
    size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
3720
    if (per_slot != ~size_t{}) {
3721
      m += per_slot * c.size();
3722
    } else {
3723
      for (auto it = c.begin(); it != c.end(); ++it) {
3724
        m += Traits::space_used(it.slot());
3725
      }
3726
    }
3727
    return m;
3728
  }
3729
};
3730
3731
}  // namespace hashtable_debug_internal
3732
3733
// Extern template instantiations reduce binary size and linker input size.
3734
// Function definition is in raw_hash_set.cc.
3735
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<0, false>(
3736
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3737
    bool);
3738
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<1, true>(
3739
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3740
    bool);
3741
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<4, true>(
3742
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3743
    bool);
3744
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<8, true>(
3745
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3746
    bool);
3747
#if UINTPTR_MAX == UINT64_MAX
3748
extern template size_t GrowSooTableToNextCapacityAndPrepareInsert<16, true>(
3749
    CommonFields&, const PolicyFunctions&, absl::FunctionRef<size_t(size_t)>,
3750
    bool);
3751
#endif
3752
3753
}  // namespace container_internal
3754
ABSL_NAMESPACE_END
3755
}  // namespace absl
3756
3757
#undef ABSL_SWISSTABLE_ENABLE_GENERATIONS
3758
#undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED
3759
#undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN
3760
#undef ABSL_SWISSTABLE_ASSERT
3761
3762
#endif  // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_