Coverage Report

Created: 2026-01-09 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/abseil-cpp/absl/synchronization/mutex.h
Line
Count
Source
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// mutex.h
17
// -----------------------------------------------------------------------------
18
//
19
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20
// most common type of synchronization primitive for facilitating locks on
21
// shared resources. A mutex is used to prevent multiple threads from accessing
22
// and/or writing to a shared resource concurrently.
23
//
24
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25
// features:
26
//   * Conditional predicates intrinsic to the `Mutex` object
27
//   * Shared/reader locks, in addition to standard exclusive/writer locks
28
//   * Deadlock detection and debug support.
29
//
30
// The following helper classes are also defined within this file:
31
//
32
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33
//              write access within the current scope.
34
//
35
//  ReaderMutexLock
36
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37
//              access within the current scope.
38
//
39
//  WriterMutexLock
40
//            - Effectively an alias for `MutexLock` above, designed for use in
41
//              distinguishing reader and writer locks within code.
42
//
43
// In addition to simple mutex locks, this file also defines ways to perform
44
// locking under certain conditions.
45
//
46
//  Condition - (Preferred) Used to wait for a particular predicate that
47
//              depends on state protected by the `Mutex` to become true.
48
//  CondVar   - A lower-level variant of `Condition` that relies on
49
//              application code to explicitly signal the `CondVar` when
50
//              a condition has been met.
51
//
52
// See below for more information on using `Condition` or `CondVar`.
53
//
54
// Mutexes and mutex behavior can be quite complicated. The information within
55
// this header file is limited, as a result. Please consult the Mutex guide for
56
// more complete information and examples.
57
58
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59
#define ABSL_SYNCHRONIZATION_MUTEX_H_
60
61
#include <atomic>
62
#include <cstdint>
63
#include <cstring>
64
65
#include "absl/base/attributes.h"
66
#include "absl/base/config.h"
67
#include "absl/base/const_init.h"
68
#include "absl/base/internal/thread_identity.h"
69
#include "absl/base/internal/tsan_mutex_interface.h"
70
#include "absl/base/macros.h"
71
#include "absl/base/nullability.h"
72
#include "absl/base/thread_annotations.h"
73
#include "absl/meta/type_traits.h"
74
#include "absl/synchronization/internal/kernel_timeout.h"
75
#include "absl/synchronization/internal/per_thread_sem.h"
76
#include "absl/time/time.h"
77
78
namespace absl {
79
ABSL_NAMESPACE_BEGIN
80
81
class Condition;
82
struct SynchWaitParams;
83
84
// -----------------------------------------------------------------------------
85
// Mutex
86
// -----------------------------------------------------------------------------
87
//
88
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
89
// on some resource, typically a variable or data structure with associated
90
// invariants. Proper usage of mutexes prevents concurrent access by different
91
// threads to the same resource.
92
//
93
// A `Mutex` has two basic operations: `Mutex::lock()` and `Mutex::unlock()`.
94
// The `lock()` operation *acquires* a `Mutex` (in a state known as an
95
// *exclusive* -- or *write* -- lock), and the `unlock()` operation *releases* a
96
// Mutex. During the span of time between the lock() and unlock() operations,
97
// a mutex is said to be *held*. By design, all mutexes support exclusive/write
98
// locks, as this is the most common way to use a mutex.
99
//
100
// Mutex operations are only allowed under certain conditions; otherwise an
101
// operation is "invalid", and disallowed by the API. The conditions concern
102
// both the current state of the mutex and the identity of the threads that
103
// are performing the operations.
104
//
105
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
106
//
107
// |                | lock()                 | unlock() |
108
// |----------------+------------------------+----------|
109
// | Free           | Exclusive              | invalid  |
110
// | Exclusive      | blocks, then exclusive | Free     |
111
//
112
// The full conditions are as follows.
113
//
114
// * Calls to `unlock()` require that the mutex be held, and must be made in the
115
//   same thread that performed the corresponding `lock()` operation which
116
//   acquired the mutex; otherwise the call is invalid.
117
//
118
// * The mutex being non-reentrant (or non-recursive) means that a call to
119
//   `lock()` or `try_lock()` must not be made in a thread that already holds
120
//   the mutex; such a call is invalid.
121
//
122
// * In other words, the state of being "held" has both a temporal component
123
//   (from `lock()` until `unlock()`) as well as a thread identity component:
124
//   the mutex is held *by a particular thread*.
125
//
126
// An "invalid" operation has undefined behavior. The `Mutex` implementation
127
// is allowed to do anything on an invalid call, including, but not limited to,
128
// crashing with a useful error message, silently succeeding, or corrupting
129
// data structures. In debug mode, the implementation may crash with a useful
130
// error message.
131
//
132
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
133
// is, however, approximately fair over long periods, and starvation-free for
134
// threads at the same priority.
135
//
136
// The lock/unlock primitives are now annotated with lock annotations
137
// defined in (base/thread_annotations.h). When writing multi-threaded code,
138
// you should use lock annotations whenever possible to document your lock
139
// synchronization policy. Besides acting as documentation, these annotations
140
// also help compilers or static analysis tools to identify and warn about
141
// issues that could potentially result in race conditions and deadlocks.
142
//
143
// For more information about the lock annotations, please see
144
// [Thread Safety
145
// Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
146
// documentation.
147
//
148
// See also `MutexLock`, below, for scoped `Mutex` acquisition.
149
150
class ABSL_LOCKABLE ABSL_ATTRIBUTE_WARN_UNUSED Mutex {
151
 public:
152
  // Creates a `Mutex` that is not held by anyone. This constructor is
153
  // typically used for Mutexes allocated on the heap or the stack.
154
  //
155
  // To create `Mutex` instances with static storage duration
156
  // (e.g. a namespace-scoped or global variable), see
157
  // `Mutex::Mutex(absl::kConstInit)` below instead.
158
  Mutex();
159
160
  // Creates a mutex with static storage duration.  A global variable
161
  // constructed this way avoids the lifetime issues that can occur on program
162
  // startup and shutdown.  (See absl/base/const_init.h.)
163
  //
164
  // For Mutexes allocated on the heap and stack, instead use the default
165
  // constructor, which can interact more fully with the thread sanitizer.
166
  //
167
  // Example usage:
168
  //   namespace foo {
169
  //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
170
  //   }
171
  explicit constexpr Mutex(absl::ConstInitType);
172
173
  ~Mutex();
174
175
  // Mutex::lock()
176
  //
177
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
178
  // then acquires it exclusively. (This lock is also known as a "write lock.")
179
  void lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
180
181
  ABSL_DEPRECATE_AND_INLINE()
182
0
  inline void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { lock(); }
183
184
  // Mutex::unlock()
185
  //
186
  // Releases this `Mutex` and returns it from the exclusive/write state to the
187
  // free state. Calling thread must hold the `Mutex` exclusively.
188
  void unlock() ABSL_UNLOCK_FUNCTION();
189
190
  ABSL_DEPRECATE_AND_INLINE()
191
0
  inline void Unlock() ABSL_UNLOCK_FUNCTION() { unlock(); }
192
193
  // Mutex::try_lock()
194
  //
195
  // If the mutex can be acquired without blocking, does so exclusively and
196
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
197
  // probability if the `Mutex` was free.
198
  [[nodiscard]] bool try_lock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
199
200
  ABSL_DEPRECATE_AND_INLINE()
201
0
  [[nodiscard]] bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
202
0
    return try_lock();
203
0
  }
204
205
  // Mutex::AssertHeld()
206
  //
207
  // Require that the mutex be held exclusively (write mode) by this thread.
208
  //
209
  // If the mutex is not currently held by this thread, this function may report
210
  // an error (typically by crashing with a diagnostic) or it may do nothing.
211
  // This function is intended only as a tool to assist debugging; it doesn't
212
  // guarantee correctness.
213
  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
214
215
  // ---------------------------------------------------------------------------
216
  // Reader-Writer Locking
217
  // ---------------------------------------------------------------------------
218
219
  // A Mutex can also be used as a starvation-free reader-writer lock.
220
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
221
  // potential client programming errors.
222
  //
223
  // The Mutex API provides `Writer*()` aliases for the existing `lock()`,
224
  // `unlock()` and `try_lock()` methods for use within applications mixing
225
  // reader/writer locks. Using `*_shared()` and `Writer*()` operations in this
226
  // manner can make locking behavior clearer when mixing read and write modes.
227
  //
228
  // Introducing reader locks necessarily complicates the `Mutex` state
229
  // machine somewhat. The table below illustrates the allowed state transitions
230
  // of a mutex in such cases. Note that lock_shared() may block even if the
231
  // lock is held in shared mode; this occurs when another thread is blocked on
232
  // a call to lock().
233
  //
234
  // ---------------------------------------------------------------------------
235
  //     Operation: lock()       unlock()  lock_shared() unlock_shared()
236
  // ---------------------------------------------------------------------------
237
  // State
238
  // ---------------------------------------------------------------------------
239
  // Free           Exclusive    invalid   Shared(1)              invalid
240
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
241
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
242
  // Exclusive      blocks       Free      blocks                 invalid
243
  // ---------------------------------------------------------------------------
244
  //
245
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
246
247
  // Mutex::lock_shared()
248
  //
249
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
250
  // or in shared mode, and then acquires a share of it. Note that
251
  // `lock_shared()` will block if some other thread has an exclusive/writer
252
  // lock on the mutex.
253
  void lock_shared() ABSL_SHARED_LOCK_FUNCTION();
254
255
  ABSL_DEPRECATE_AND_INLINE()
256
0
  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION() { lock_shared(); }
257
258
  // Mutex::unlock_shared()
259
  //
260
  // Releases a read share of this `Mutex`. `unlock_shared` may return a mutex
261
  // to the free state if this thread holds the last reader lock on the mutex.
262
  // Note that you cannot call `unlock_shared()` on a mutex held in write mode.
263
  void unlock_shared() ABSL_UNLOCK_FUNCTION();
264
265
  ABSL_DEPRECATE_AND_INLINE()
266
0
  void ReaderUnlock() ABSL_UNLOCK_FUNCTION() { unlock_shared(); }
267
268
  // Mutex::try_lock_shared()
269
  //
270
  // If the mutex can be acquired without blocking, acquires this mutex for
271
  // shared access and returns `true`. Otherwise, returns `false`. Returns
272
  // `true` with high probability if the `Mutex` was free or shared.
273
  [[nodiscard]] bool try_lock_shared() ABSL_SHARED_TRYLOCK_FUNCTION(true);
274
275
  ABSL_DEPRECATE_AND_INLINE()
276
0
  [[nodiscard]] bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true) {
277
0
    return try_lock_shared();
278
0
  }
279
280
  // Mutex::AssertReaderHeld()
281
  //
282
  // Require that the mutex be held at least in shared mode (read mode) by this
283
  // thread.
284
  //
285
  // If the mutex is not currently held by this thread, this function may report
286
  // an error (typically by crashing with a diagnostic) or it may do nothing.
287
  // This function is intended only as a tool to assist debugging; it doesn't
288
  // guarantee correctness.
289
  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
290
291
  // Mutex::WriterLock()
292
  // Mutex::WriterUnlock()
293
  // Mutex::WriterTryLock()
294
  //
295
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
296
  //
297
  // These methods may be used (along with the complementary `Reader*()`
298
  // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
299
  // etc.) from reader/writer lock usage.
300
  ABSL_DEPRECATE_AND_INLINE()
301
0
  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { lock(); }
302
303
  ABSL_DEPRECATE_AND_INLINE()
304
0
  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { unlock(); }
305
306
  ABSL_DEPRECATE_AND_INLINE()
307
0
  [[nodiscard]] bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
308
0
    return try_lock();
309
0
  }
310
311
  // ---------------------------------------------------------------------------
312
  // Conditional Critical Regions
313
  // ---------------------------------------------------------------------------
314
315
  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
316
  //
317
  //   * Use of `Mutex` member functions with `Condition` objects.
318
  //   * Use of the separate `CondVar` abstraction.
319
  //
320
  // In general, prefer use of `Condition` and the `Mutex` member functions
321
  // listed below over `CondVar`. When there are multiple threads waiting on
322
  // distinctly different conditions, however, a battery of `CondVar`s may be
323
  // more efficient. This section discusses use of `Condition` objects.
324
  //
325
  // `Mutex` contains member functions for performing lock operations only under
326
  // certain conditions, of class `Condition`. For correctness, the `Condition`
327
  // must return a boolean that is a pure function, only of state protected by
328
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
329
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
330
  // always be invoked with the mutex held in at least read mode, so you should
331
  // not block it for long periods or sleep it on a timer.
332
  //
333
  // Since a condition must not depend directly on the current time, use
334
  // `*WithTimeout()` member function variants to make your condition
335
  // effectively true after a given duration, or `*WithDeadline()` variants to
336
  // make your condition effectively true after a given time.
337
  //
338
  // The condition function should have no side-effects aside from debug
339
  // logging; as a special exception, the function may acquire other mutexes
340
  // provided it releases all those that it acquires.  (This exception was
341
  // required to allow logging.)
342
343
  // Mutex::Await()
344
  //
345
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
346
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
347
  // same mode in which it was previously held. If the condition is initially
348
  // `true`, `Await()` *may* skip the release/re-acquire step.
349
  //
350
  // `Await()` requires that this thread holds this `Mutex` in some mode.
351
0
  void Await(const Condition& cond) {
352
0
    AwaitCommon(cond, synchronization_internal::KernelTimeout::Never());
353
0
  }
354
355
  // Mutex::LockWhen()
356
  // Mutex::ReaderLockWhen()
357
  // Mutex::WriterLockWhen()
358
  //
359
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
360
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
361
  // logically equivalent to `*Lock(); Await();` though they may have different
362
  // performance characteristics.
363
0
  void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
364
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
365
0
                   true);
366
0
  }
367
368
0
  void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION() {
369
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
370
0
                   false);
371
0
  }
372
373
0
  void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
374
0
    this->LockWhen(cond);
375
0
  }
376
377
  // ---------------------------------------------------------------------------
378
  // Mutex Variants with Timeouts/Deadlines
379
  // ---------------------------------------------------------------------------
380
381
  // Mutex::AwaitWithTimeout()
382
  // Mutex::AwaitWithDeadline()
383
  //
384
  // Unlocks this `Mutex` and blocks until simultaneously:
385
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
386
  //     and
387
  //   - this `Mutex` can be reacquired,
388
  // then reacquire this `Mutex` in the same mode in which it was previously
389
  // held, returning `true` iff `cond` is `true` on return.
390
  //
391
  // If the condition is initially `true`, the implementation *may* skip the
392
  // release/re-acquire step and return immediately.
393
  //
394
  // Deadlines in the past are equivalent to an immediate deadline.
395
  // Negative timeouts are equivalent to a zero timeout.
396
  //
397
  // This method requires that this thread holds this `Mutex` in some mode.
398
0
  bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout) {
399
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout});
400
0
  }
401
402
0
  bool AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
403
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline});
404
0
  }
405
406
  // Mutex::LockWhenWithTimeout()
407
  // Mutex::ReaderLockWhenWithTimeout()
408
  // Mutex::WriterLockWhenWithTimeout()
409
  //
410
  // Blocks until simultaneously both:
411
  //   - either `cond` is `true` or the timeout has expired, and
412
  //   - this `Mutex` can be acquired,
413
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
414
  // `true` on return.
415
  //
416
  // Negative timeouts are equivalent to a zero timeout.
417
  bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
418
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
419
0
    return LockWhenCommon(
420
0
        cond, synchronization_internal::KernelTimeout{timeout}, true);
421
0
  }
422
  bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
423
0
      ABSL_SHARED_LOCK_FUNCTION() {
424
0
    return LockWhenCommon(
425
0
        cond, synchronization_internal::KernelTimeout{timeout}, false);
426
0
  }
427
  bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
428
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
429
0
    return this->LockWhenWithTimeout(cond, timeout);
430
0
  }
431
432
  // Mutex::LockWhenWithDeadline()
433
  // Mutex::ReaderLockWhenWithDeadline()
434
  // Mutex::WriterLockWhenWithDeadline()
435
  //
436
  // Blocks until simultaneously both:
437
  //   - either `cond` is `true` or the deadline has been passed, and
438
  //   - this `Mutex` can be acquired,
439
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
440
  // on return.
441
  //
442
  // Deadlines in the past are equivalent to an immediate deadline.
443
  bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline)
444
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
445
0
    return LockWhenCommon(
446
0
        cond, synchronization_internal::KernelTimeout{deadline}, true);
447
0
  }
448
  bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
449
0
      ABSL_SHARED_LOCK_FUNCTION() {
450
0
    return LockWhenCommon(
451
0
        cond, synchronization_internal::KernelTimeout{deadline}, false);
452
0
  }
453
  bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
454
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
455
0
    return this->LockWhenWithDeadline(cond, deadline);
456
0
  }
457
458
  // ---------------------------------------------------------------------------
459
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
460
  // ---------------------------------------------------------------------------
461
462
  // Mutex::EnableInvariantDebugging()
463
  //
464
  // If `invariant`!=null and if invariant debugging has been enabled globally,
465
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
466
  // this `Mutex` should hold (for example: just after acquire, just before
467
  // release).
468
  //
469
  // The routine `invariant` should have no side-effects since it is not
470
  // guaranteed how many times it will be called; it should check the invariant
471
  // and crash if it does not hold. Enabling global invariant debugging may
472
  // substantially reduce `Mutex` performance; it should be set only for
473
  // non-production runs.  Optimization options may also disable invariant
474
  // checks.
475
  void EnableInvariantDebugging(
476
      void (*absl_nullable invariant)(void* absl_nullability_unknown),
477
      void* absl_nullability_unknown arg);
478
479
  // Mutex::EnableDebugLog()
480
  //
481
  // Cause all subsequent uses of this `Mutex` to be logged via
482
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
483
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
484
  //
485
  // Note: This method substantially reduces `Mutex` performance.
486
  void EnableDebugLog(const char* absl_nullable name);
487
488
  // Deadlock detection
489
490
  // Mutex::ForgetDeadlockInfo()
491
  //
492
  // Forget any deadlock-detection information previously gathered
493
  // about this `Mutex`. Call this method in debug mode when the lock ordering
494
  // of a `Mutex` changes.
495
  void ForgetDeadlockInfo();
496
497
  // Mutex::AssertNotHeld()
498
  //
499
  // Return immediately if this thread does not hold this `Mutex` in any
500
  // mode; otherwise, may report an error (typically by crashing with a
501
  // diagnostic), or may return immediately.
502
  //
503
  // Currently this check is performed only if all of:
504
  //    - in debug mode
505
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
506
  //    - number of locks concurrently held by this thread is not large.
507
  // are true.
508
  void AssertNotHeld() const;
509
510
  // Special cases.
511
512
  // A `MuHow` is a constant that indicates how a lock should be acquired.
513
  // Internal implementation detail.  Clients should ignore.
514
  typedef const struct MuHowS* MuHow;
515
516
  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
517
  //
518
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
519
  // future use of `Mutex` within a fatal signal handler. This method is
520
  // intended for use only for last-ditch attempts to log crash information.
521
  // It does not guarantee that attempts to use Mutexes within the handler will
522
  // not deadlock; it merely makes other faults less likely.
523
  //
524
  // WARNING:  This routine must be invoked from a signal handler, and the
525
  // signal handler must either loop forever or terminate the process.
526
  // Attempts to return from (or `longjmp` out of) the signal handler once this
527
  // call has been made may cause arbitrary program behaviour including
528
  // crashes and deadlocks.
529
  static void InternalAttemptToUseMutexInFatalSignalHandler();
530
531
 private:
532
  std::atomic<intptr_t> mu_;  // The Mutex state.
533
534
  // Post()/Wait() versus associated PerThreadSem; in class for required
535
  // friendship with PerThreadSem.
536
  static void IncrementSynchSem(Mutex* absl_nonnull mu,
537
                                base_internal::PerThreadSynch* absl_nonnull w);
538
  static bool DecrementSynchSem(Mutex* absl_nonnull mu,
539
                                base_internal::PerThreadSynch* absl_nonnull w,
540
                                synchronization_internal::KernelTimeout t);
541
542
  // slow path acquire
543
  void LockSlowLoop(SynchWaitParams* absl_nonnull waitp, int flags);
544
  // wrappers around LockSlowLoop()
545
  bool LockSlowWithDeadline(MuHow absl_nonnull how,
546
                            const Condition* absl_nullable cond,
547
                            synchronization_internal::KernelTimeout t,
548
                            int flags);
549
  void LockSlow(MuHow absl_nonnull how, const Condition* absl_nullable cond,
550
                int flags) ABSL_ATTRIBUTE_COLD;
551
  // slow path release
552
  void UnlockSlow(SynchWaitParams* absl_nullable waitp) ABSL_ATTRIBUTE_COLD;
553
  // TryLock slow path.
554
  bool TryLockSlow();
555
  // ReaderTryLock slow path.
556
  bool ReaderTryLockSlow();
557
  // Common code between Await() and AwaitWithTimeout/Deadline()
558
  bool AwaitCommon(const Condition& cond,
559
                   synchronization_internal::KernelTimeout t);
560
  bool LockWhenCommon(const Condition& cond,
561
                      synchronization_internal::KernelTimeout t, bool write);
562
  // Attempt to remove thread s from queue.
563
  void TryRemove(base_internal::PerThreadSynch* absl_nonnull s);
564
  // Block a thread on mutex.
565
  void Block(base_internal::PerThreadSynch* absl_nonnull s);
566
  // Wake a thread; return successor.
567
  base_internal::PerThreadSynch* absl_nullable Wakeup(
568
      base_internal::PerThreadSynch* absl_nonnull w);
569
  void Dtor();
570
571
  friend class CondVar;                // for access to Trans()/Fer().
572
  void Trans(MuHow absl_nonnull how);  // used for CondVar->Mutex transfer
573
  void Fer(base_internal::PerThreadSynch* absl_nonnull
574
               w);  // used for CondVar->Mutex transfer
575
576
  // Catch the error of writing Mutex when intending MutexLock.
577
0
  explicit Mutex(const volatile Mutex* absl_nullable /*ignored*/) {}
578
579
  Mutex(const Mutex&) = delete;
580
  Mutex& operator=(const Mutex&) = delete;
581
};
582
583
// -----------------------------------------------------------------------------
584
// Mutex RAII Wrappers
585
// -----------------------------------------------------------------------------
586
587
// MutexLock
588
//
589
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
590
// RAII.
591
//
592
// Example:
593
//
594
// Class Foo {
595
//  public:
596
//   Foo::Bar* Baz() {
597
//     MutexLock lock(mu_);
598
//     ...
599
//     return bar;
600
//   }
601
//
602
// private:
603
//   Mutex mu_;
604
// };
605
class ABSL_SCOPED_LOCKABLE MutexLock {
606
 public:
607
  // Constructors
608
609
  // Calls `mu.lock()` and returns when that call returns. That is, `mu` is
610
  // guaranteed to be locked when this object is constructed.
611
  explicit MutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
612
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
613
0
      : mu_(mu) {
614
0
    this->mu_.lock();
615
0
  }
616
617
  // Calls `mu->lock()` and returns when that call returns. That is, `*mu` is
618
  // guaranteed to be locked when this object is constructed. Requires that
619
  // `mu` be dereferenceable.
620
  [[deprecated("Use the constructor that takes a reference instead")]]
621
  ABSL_REFACTOR_INLINE
622
  explicit MutexLock(Mutex* absl_nonnull mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
623
0
      : MutexLock(*mu) {}
624
625
  // Like above, but calls `mu.LockWhen(cond)` instead. That is, in addition to
626
  // the above, the condition given by `cond` is also guaranteed to hold when
627
  // this object is constructed.
628
  explicit MutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
629
                     const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
630
0
      : mu_(mu) {
631
0
    this->mu_.LockWhen(cond);
632
0
  }
633
634
  [[deprecated("Use the constructor that takes a reference instead")]]
635
  ABSL_REFACTOR_INLINE
636
  explicit MutexLock(Mutex* absl_nonnull mu, const Condition& cond)
637
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
638
0
      : MutexLock(*mu, cond) {}
639
640
  MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
641
  MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
642
  MutexLock& operator=(const MutexLock&) = delete;
643
  MutexLock& operator=(MutexLock&&) = delete;
644
645
0
  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_.unlock(); }
646
647
 private:
648
  Mutex& mu_;
649
};
650
651
// ReaderMutexLock
652
//
653
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
654
// releases a shared lock on a `Mutex` via RAII.
655
class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
656
 public:
657
  explicit ReaderMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
658
      ABSL_SHARED_LOCK_FUNCTION(mu)
659
0
      : mu_(mu) {
660
0
    mu.lock_shared();
661
0
  }
662
663
  [[deprecated("Use the constructor that takes a reference instead")]]
664
  ABSL_REFACTOR_INLINE
665
  explicit ReaderMutexLock(Mutex* absl_nonnull mu) ABSL_SHARED_LOCK_FUNCTION(mu)
666
0
      : ReaderMutexLock(*mu) {}
667
668
  explicit ReaderMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
669
                           const Condition& cond) ABSL_SHARED_LOCK_FUNCTION(mu)
670
0
      : mu_(mu) {
671
0
    mu.ReaderLockWhen(cond);
672
0
  }
673
674
  [[deprecated("Use the constructor that takes a reference instead")]]
675
  ABSL_REFACTOR_INLINE
676
  explicit ReaderMutexLock(Mutex* absl_nonnull mu, const Condition& cond)
677
      ABSL_SHARED_LOCK_FUNCTION(mu)
678
0
      : ReaderMutexLock(*mu, cond) {}
679
680
  ReaderMutexLock(const ReaderMutexLock&) = delete;
681
  ReaderMutexLock(ReaderMutexLock&&) = delete;
682
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
683
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
684
685
0
  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_.unlock_shared(); }
686
687
 private:
688
  Mutex& mu_;
689
};
690
691
// WriterMutexLock
692
//
693
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
694
// releases a write (exclusive) lock on a `Mutex` via RAII.
695
class ABSL_SCOPED_LOCKABLE WriterMutexLock {
696
 public:
697
  explicit WriterMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
698
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
699
0
      : mu_(mu) {
700
0
    mu.lock();
701
0
  }
702
703
  [[deprecated("Use the constructor that takes a reference instead")]]
704
  ABSL_REFACTOR_INLINE
705
  explicit WriterMutexLock(Mutex* absl_nonnull mu)
706
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
707
0
      : WriterMutexLock(*mu) {}
708
709
  explicit WriterMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
710
                           const Condition& cond)
711
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
712
0
      : mu_(mu) {
713
0
    mu.WriterLockWhen(cond);
714
0
  }
715
716
  [[deprecated("Use the constructor that takes a reference instead")]]
717
  ABSL_REFACTOR_INLINE
718
  explicit WriterMutexLock(Mutex* absl_nonnull mu, const Condition& cond)
719
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
720
0
      : WriterMutexLock(*mu, cond) {}
721
722
  WriterMutexLock(const WriterMutexLock&) = delete;
723
  WriterMutexLock(WriterMutexLock&&) = delete;
724
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
725
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
726
727
0
  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_.unlock(); }
728
729
 private:
730
  Mutex& mu_;
731
};
732
733
// -----------------------------------------------------------------------------
734
// Condition
735
// -----------------------------------------------------------------------------
736
//
737
// `Mutex` contains a number of member functions which take a `Condition` as an
738
// argument; clients can wait for conditions to become `true` before attempting
739
// to acquire the mutex. These sections are known as "condition critical"
740
// sections. To use a `Condition`, you simply need to construct it, and use
741
// within an appropriate `Mutex` member function; everything else in the
742
// `Condition` class is an implementation detail.
743
//
744
// A `Condition` is specified as a function pointer which returns a boolean.
745
// `Condition` functions should be pure functions -- their results should depend
746
// only on passed arguments, should not consult any external state (such as
747
// clocks), and should have no side-effects, aside from debug logging. Any
748
// objects that the function may access should be limited to those which are
749
// constant while the mutex is blocked on the condition (e.g. a stack variable),
750
// or objects of state protected explicitly by the mutex.
751
//
752
// No matter which construction is used for `Condition`, the underlying
753
// function pointer / functor / callable must not throw any
754
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
755
// the face of a throwing `Condition`. (When Abseil is allowed to depend
756
// on C++17, these function pointers will be explicitly marked
757
// `noexcept`; until then this requirement cannot be enforced in the
758
// type system.)
759
//
760
// Note: to use a `Condition`, you need only construct it and pass it to a
761
// suitable `Mutex' member function, such as `Mutex::Await()`, or to the
762
// constructor of one of the scope guard classes.
763
//
764
// Example using LockWhen/Unlock:
765
//
766
//   // assume count_ is not internal reference count
767
//   int count_ ABSL_GUARDED_BY(mu_);
768
//   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
769
//
770
//   mu_.LockWhen(count_is_zero);
771
//   // ...
772
//   mu_.Unlock();
773
//
774
// Example using a scope guard:
775
//
776
//   {
777
//     MutexLock lock(mu_, count_is_zero);
778
//     // ...
779
//   }
780
//
781
// When multiple threads are waiting on exactly the same condition, make sure
782
// that they are constructed with the same parameters (same pointer to function
783
// + arg, or same pointer to object + method), so that the mutex implementation
784
// can avoid redundantly evaluating the same condition for each thread.
785
class Condition {
786
 public:
787
  // A Condition that returns the result of "(*func)(arg)"
788
  Condition(bool (*absl_nonnull func)(void* absl_nullability_unknown),
789
            void* absl_nullability_unknown arg);
790
791
  // Templated version for people who are averse to casts.
792
  //
793
  // To use a lambda, prepend it with unary plus, which converts the lambda
794
  // into a function pointer:
795
  //     Condition(+[](T* t) { return ...; }, arg).
796
  //
797
  // Note: lambdas in this case must contain no bound variables.
798
  //
799
  // See class comment for performance advice.
800
  template <typename T>
801
  Condition(bool (*absl_nonnull func)(T* absl_nullability_unknown),
802
            T* absl_nullability_unknown arg);
803
804
  // Same as above, but allows for cases where `arg` comes from a pointer that
805
  // is convertible to the function parameter type `T*` but not an exact match.
806
  //
807
  // For example, the argument might be `X*` but the function takes `const X*`,
808
  // or the argument might be `Derived*` while the function takes `Base*`, and
809
  // so on for cases where the argument pointer can be implicitly converted.
810
  //
811
  // Implementation notes: This constructor overload is required in addition to
812
  // the one above to allow deduction of `T` from `arg` for cases such as where
813
  // a function template is passed as `func`. Also, the dummy `typename = void`
814
  // template parameter exists just to work around a MSVC mangling bug.
815
  template <typename T, typename = void>
816
  Condition(
817
      bool (*absl_nonnull func)(T* absl_nullability_unknown),
818
      typename absl::type_identity<T>::type* absl_nullability_unknown
819
          arg);
820
821
  // Templated version for invoking a method that returns a `bool`.
822
  //
823
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
824
  // `object->Method()`.
825
  //
826
  // Implementation Note: `absl::type_identity` is used to allow
827
  // methods to come from base classes. A simpler signature like
828
  // `Condition(T*, bool (T::*)())` does not suffice.
829
  template <typename T>
830
  Condition(
831
      T* absl_nonnull object,
832
      bool (absl::type_identity<T>::type::* absl_nonnull method)());
833
834
  // Same as above, for const members
835
  template <typename T>
836
  Condition(
837
      const T* absl_nonnull object,
838
      bool (absl::type_identity<T>::type::* absl_nonnull method)()
839
          const);
840
841
  // A Condition that returns the value of `*cond`
842
  explicit Condition(const bool* absl_nonnull cond);
843
844
  // Templated version for invoking a functor that returns a `bool`.
845
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
846
  // the result of` std::bind` and user-defined functors that define
847
  // `bool F::operator()() const`.
848
  //
849
  // Example:
850
  //
851
  //   auto reached = [this, current]() {
852
  //     mu_.AssertReaderHeld();                // For annotalysis.
853
  //     return processed_ >= current;
854
  //   };
855
  //   mu_.Await(Condition(&reached));
856
  //
857
  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
858
  // the lambda as it may be called when the mutex is being unlocked from a
859
  // scope holding only a reader lock, which will make the assertion not
860
  // fulfilled and crash the binary.
861
862
  // See class comment for performance advice. In particular, if there
863
  // might be more than one waiter for the same condition, make sure
864
  // that all waiters construct the condition with the same pointers.
865
866
  // Implementation note: The second template parameter ensures that this
867
  // constructor doesn't participate in overload resolution if T doesn't have
868
  // `bool operator() const`.
869
  template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
870
                            &T::operator()))>
871
  explicit Condition(const T* absl_nonnull obj)
872
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
873
874
  // A Condition that always returns `true`.
875
  // kTrue is only useful in a narrow set of circumstances, mostly when
876
  // it's passed conditionally. For example:
877
  //
878
  //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
879
  //
880
  // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
881
  // don't return immediately when the timeout happens, they still block until
882
  // the Mutex becomes available. The return value of these methods does
883
  // not indicate if the timeout was reached; rather it indicates whether or
884
  // not the condition is true.
885
  ABSL_CONST_INIT static const Condition kTrue;
886
887
  // Evaluates the condition.
888
  bool Eval() const;
889
890
  // Returns `true` if the two conditions are guaranteed to return the same
891
  // value if evaluated at the same time, `false` if the evaluation *may* return
892
  // different results.
893
  //
894
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
895
  // components are the same. A null pointer is equivalent to a `true`
896
  // condition.
897
  static bool GuaranteedEqual(const Condition* absl_nullable a,
898
                              const Condition* absl_nullable b);
899
900
 private:
901
  // Sizing an allocation for a method pointer can be subtle. In the Itanium
902
  // specifications, a method pointer has a predictable, uniform size. On the
903
  // other hand, MSVC ABI, method pointer sizes vary based on the
904
  // inheritance of the class. Specifically, method pointers from classes with
905
  // multiple inheritance are bigger than those of classes with single
906
  // inheritance. Other variations also exist.
907
908
#ifndef _MSC_VER
909
  // Allocation for a function pointer or method pointer.
910
  // The {0} initializer ensures that all unused bytes of this buffer are
911
  // always zeroed out.  This is necessary, because GuaranteedEqual() compares
912
  // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
913
  using MethodPtr = bool (Condition::*)();
914
  char callback_[sizeof(MethodPtr)] = {0};
915
#else
916
  // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
917
  // may be the largest known pointer-to-member of any platform. For this
918
  // reason we will allocate 24 bytes for MSVC platform toolchains.
919
  char callback_[24] = {0};
920
#endif
921
922
  // Function with which to evaluate callbacks and/or arguments.
923
  bool (*absl_nullable eval_)(const Condition* absl_nonnull) = nullptr;
924
925
  // Either an argument for a function call or an object for a method call.
926
  void* absl_nullable arg_ = nullptr;
927
928
  // Various functions eval_ can point to:
929
  static bool CallVoidPtrFunction(const Condition* absl_nonnull c);
930
  template <typename T>
931
  static bool CastAndCallFunction(const Condition* absl_nonnull c);
932
  template <typename T, typename ConditionMethodPtr>
933
  static bool CastAndCallMethod(const Condition* absl_nonnull c);
934
935
  // Helper methods for storing, validating, and reading callback arguments.
936
  template <typename T>
937
0
  inline void StoreCallback(T callback) {
938
0
    static_assert(
939
0
        sizeof(callback) <= sizeof(callback_),
940
0
        "An overlarge pointer was passed as a callback to Condition.");
941
0
    std::memcpy(callback_, &callback, sizeof(callback));
942
0
  }
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(absl::SynchEvent*)>(bool (*)(absl::SynchEvent*))
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(void*)>(bool (*)(void*))
943
944
  template <typename T>
945
0
  inline void ReadCallback(T* absl_nonnull callback) const {
946
0
    std::memcpy(callback, callback_, sizeof(*callback));
947
0
  }
948
949
0
  static bool AlwaysTrue(const Condition* absl_nullable) { return true; }
950
951
  // Used only to create kTrue.
952
0
  constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {}
953
};
954
955
// -----------------------------------------------------------------------------
956
// CondVar
957
// -----------------------------------------------------------------------------
958
//
959
// A condition variable, reflecting state evaluated separately outside of the
960
// `Mutex` object, which can be signaled to wake callers.
961
// This class is not normally needed; use `Mutex` member functions such as
962
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
963
// with many threads and many conditions, `CondVar` may be faster.
964
//
965
// The implementation may deliver signals to any condition variable at
966
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
967
// result, upon being awoken, you must check the logical condition you have
968
// been waiting upon.
969
//
970
// Examples:
971
//
972
// Usage for a thread waiting for some condition C protected by mutex mu:
973
//       mu.Lock();
974
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
975
//       //  C holds; process data
976
//       mu.Unlock();
977
//
978
// Usage to wake T is:
979
//       mu.Lock();
980
//       // process data, possibly establishing C
981
//       if (C) { cv->Signal(); }
982
//       mu.Unlock();
983
//
984
// If C may be useful to more than one waiter, use `SignalAll()` instead of
985
// `Signal()`.
986
//
987
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
988
// the locked region; this usage can make reasoning about your program easier.
989
//
990
class CondVar {
991
 public:
992
  // A `CondVar` allocated on the heap or on the stack can use the this
993
  // constructor.
994
  CondVar();
995
996
  // CondVar::Wait()
997
  //
998
  // Atomically releases a `Mutex` and blocks on this condition variable.
999
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
1000
  // spurious wakeup), then reacquires the `Mutex` and returns.
1001
  //
1002
  // Requires and ensures that the current thread holds the `Mutex`.
1003
0
  void Wait(Mutex* absl_nonnull mu) {
1004
0
    WaitCommon(mu, synchronization_internal::KernelTimeout::Never());
1005
0
  }
1006
1007
  // CondVar::WaitWithTimeout()
1008
  //
1009
  // Atomically releases a `Mutex` and blocks on this condition variable.
1010
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
1011
  // spurious wakeup), or until the timeout has expired, then reacquires
1012
  // the `Mutex` and returns.
1013
  //
1014
  // Returns true if the timeout has expired without this `CondVar`
1015
  // being signalled in any manner. If both the timeout has expired
1016
  // and this `CondVar` has been signalled, the implementation is free
1017
  // to return `true` or `false`.
1018
  //
1019
  // Requires and ensures that the current thread holds the `Mutex`.
1020
0
  bool WaitWithTimeout(Mutex* absl_nonnull mu, absl::Duration timeout) {
1021
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout));
1022
0
  }
1023
1024
  // CondVar::WaitWithDeadline()
1025
  //
1026
  // Atomically releases a `Mutex` and blocks on this condition variable.
1027
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
1028
  // spurious wakeup), or until the deadline has passed, then reacquires
1029
  // the `Mutex` and returns.
1030
  //
1031
  // Deadlines in the past are equivalent to an immediate deadline.
1032
  //
1033
  // Returns true if the deadline has passed without this `CondVar`
1034
  // being signalled in any manner. If both the deadline has passed
1035
  // and this `CondVar` has been signalled, the implementation is free
1036
  // to return `true` or `false`.
1037
  //
1038
  // Requires and ensures that the current thread holds the `Mutex`.
1039
0
  bool WaitWithDeadline(Mutex* absl_nonnull mu, absl::Time deadline) {
1040
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline));
1041
0
  }
1042
1043
  // CondVar::Signal()
1044
  //
1045
  // Signal this `CondVar`; wake at least one waiter if one exists.
1046
  void Signal();
1047
1048
  // CondVar::SignalAll()
1049
  //
1050
  // Signal this `CondVar`; wake all waiters.
1051
  void SignalAll();
1052
1053
  // CondVar::EnableDebugLog()
1054
  //
1055
  // Causes all subsequent uses of this `CondVar` to be logged via
1056
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
1057
  // Note: this method substantially reduces `CondVar` performance.
1058
  void EnableDebugLog(const char* absl_nullable name);
1059
1060
 private:
1061
  bool WaitCommon(Mutex* absl_nonnull mutex,
1062
                  synchronization_internal::KernelTimeout t);
1063
  void Remove(base_internal::PerThreadSynch* absl_nonnull s);
1064
  std::atomic<intptr_t> cv_;  // Condition variable state.
1065
  CondVar(const CondVar&) = delete;
1066
  CondVar& operator=(const CondVar&) = delete;
1067
};
1068
1069
// Variants of MutexLock.
1070
//
1071
// If you find yourself using one of these, consider instead using
1072
// Mutex::Unlock() and/or if-statements for clarity.
1073
1074
// MutexLockMaybe
1075
//
1076
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
1077
class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
1078
 public:
1079
  explicit MutexLockMaybe(Mutex* absl_nullable mu)
1080
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1081
0
      : mu_(mu) {
1082
0
    if (this->mu_ != nullptr) {
1083
0
      this->mu_->lock();
1084
0
    }
1085
0
  }
1086
1087
  explicit MutexLockMaybe(Mutex* absl_nullable mu, const Condition& cond)
1088
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1089
0
      : mu_(mu) {
1090
0
    if (this->mu_ != nullptr) {
1091
0
      this->mu_->LockWhen(cond);
1092
0
    }
1093
0
  }
1094
1095
0
  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
1096
0
    if (this->mu_ != nullptr) {
1097
0
      this->mu_->unlock();
1098
0
    }
1099
0
  }
1100
1101
 private:
1102
  Mutex* absl_nullable const mu_;
1103
  MutexLockMaybe(const MutexLockMaybe&) = delete;
1104
  MutexLockMaybe(MutexLockMaybe&&) = delete;
1105
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
1106
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
1107
};
1108
1109
// ReleasableMutexLock
1110
//
1111
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
1112
// mutex before destruction. `Release()` may be called at most once.
1113
class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
1114
 public:
1115
  explicit ReleasableMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(
1116
      this)) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1117
0
      : mu_(&mu) {
1118
0
    this->mu_->lock();
1119
0
  }
1120
1121
  [[deprecated("Use the constructor that takes a reference instead")]]
1122
  ABSL_REFACTOR_INLINE
1123
  explicit ReleasableMutexLock(Mutex* absl_nonnull mu)
1124
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1125
0
      : ReleasableMutexLock(*mu) {}
1126
1127
  explicit ReleasableMutexLock(
1128
      Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
1129
      const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1130
0
      : mu_(&mu) {
1131
0
    this->mu_->LockWhen(cond);
1132
0
  }
1133
1134
  [[deprecated("Use the constructor that takes a reference instead")]]
1135
  ABSL_REFACTOR_INLINE
1136
  explicit ReleasableMutexLock(Mutex* absl_nonnull mu, const Condition& cond)
1137
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1138
0
      : ReleasableMutexLock(*mu, cond) {}
1139
1140
0
  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
1141
0
    if (this->mu_ != nullptr) {
1142
0
      this->mu_->unlock();
1143
0
    }
1144
0
  }
1145
1146
  void Release() ABSL_UNLOCK_FUNCTION();
1147
1148
 private:
1149
  Mutex* absl_nullable mu_;
1150
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
1151
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
1152
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
1153
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
1154
};
1155
1156
0
inline Mutex::Mutex() : mu_(0) {
1157
0
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
1158
0
}
1159
1160
inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
1161
1162
#if !defined(__APPLE__) && !defined(ABSL_BUILD_DLL)
1163
ABSL_ATTRIBUTE_ALWAYS_INLINE
1164
0
inline Mutex::~Mutex() { Dtor(); }
1165
#endif
1166
1167
#if defined(NDEBUG) && !defined(ABSL_HAVE_THREAD_SANITIZER) && \
1168
    !defined(ABSL_BUILD_DLL)
1169
// Under NDEBUG and without TSAN, Dtor is normally fully inlined for
1170
// performance. However, when building Abseil as a shared library
1171
// (ABSL_BUILD_DLL), we must provide an out-of-line definition. This ensures the
1172
// Mutex::Dtor symbol is exported from the DLL, maintaining ABI compatibility
1173
// with clients that might be built in debug mode and thus expect the symbol.
1174
ABSL_ATTRIBUTE_ALWAYS_INLINE
1175
inline void Mutex::Dtor() {}
1176
#endif
1177
1178
inline CondVar::CondVar() : cv_(0) {}
1179
1180
// static
1181
template <typename T, typename ConditionMethodPtr>
1182
bool Condition::CastAndCallMethod(const Condition* absl_nonnull c) {
1183
  T* object = static_cast<T*>(c->arg_);
1184
  ConditionMethodPtr condition_method_pointer;
1185
  c->ReadCallback(&condition_method_pointer);
1186
  return (object->*condition_method_pointer)();
1187
}
1188
1189
// static
1190
template <typename T>
1191
0
bool Condition::CastAndCallFunction(const Condition* absl_nonnull c) {
1192
0
  bool (*function)(T*);
1193
0
  c->ReadCallback(&function);
1194
0
  T* argument = static_cast<T*>(c->arg_);
1195
0
  return (*function)(argument);
1196
0
}
1197
1198
template <typename T>
1199
inline Condition::Condition(
1200
    bool (*absl_nonnull func)(T* absl_nullability_unknown),
1201
    T* absl_nullability_unknown arg)
1202
0
    : eval_(&CastAndCallFunction<T>),
1203
0
      arg_(const_cast<void*>(static_cast<const void*>(arg))) {
1204
0
  static_assert(sizeof(&func) <= sizeof(callback_),
1205
0
                "An overlarge function pointer was passed to Condition.");
1206
0
  StoreCallback(func);
1207
0
}
1208
1209
template <typename T, typename>
1210
inline Condition::Condition(
1211
    bool (*absl_nonnull func)(T* absl_nullability_unknown),
1212
    typename absl::type_identity<T>::type* absl_nullability_unknown
1213
        arg)
1214
    // Just delegate to the overload above.
1215
    : Condition(func, arg) {}
1216
1217
template <typename T>
1218
inline Condition::Condition(
1219
    T* absl_nonnull object,
1220
    bool (absl::type_identity<T>::type::* absl_nonnull method)())
1221
    : eval_(&CastAndCallMethod<T, decltype(method)>), arg_(object) {
1222
  static_assert(sizeof(&method) <= sizeof(callback_),
1223
                "An overlarge method pointer was passed to Condition.");
1224
  StoreCallback(method);
1225
}
1226
1227
template <typename T>
1228
inline Condition::Condition(
1229
    const T* absl_nonnull object,
1230
    bool (absl::type_identity<T>::type::* absl_nonnull method)()
1231
        const)
1232
    : eval_(&CastAndCallMethod<const T, decltype(method)>),
1233
      arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
1234
  StoreCallback(method);
1235
}
1236
1237
// Register hooks for profiling support.
1238
//
1239
// The function pointer registered here will be called whenever a mutex is
1240
// contended.  The callback is given the cycles for which waiting happened (as
1241
// measured by //absl/base/internal/cycleclock.h, and which may not
1242
// be real "cycle" counts.)
1243
//
1244
// There is no ordering guarantee between when the hook is registered and when
1245
// callbacks will begin.  Only a single profiler can be installed in a running
1246
// binary; if this function is called a second time with a different function
1247
// pointer, the value is ignored (and will cause an assertion failure in debug
1248
// mode.)
1249
void RegisterMutexProfiler(void (*absl_nonnull fn)(int64_t wait_cycles));
1250
1251
// Register a hook for Mutex tracing.
1252
//
1253
// The function pointer registered here will be called whenever a mutex is
1254
// contended.  The callback is given an opaque handle to the contended mutex,
1255
// an event name, and the number of wait cycles (as measured by
1256
// //absl/base/internal/cycleclock.h, and which may not be real
1257
// "cycle" counts.)
1258
//
1259
// The only event name currently sent is "slow release".
1260
//
1261
// This has the same ordering and single-use limitations as
1262
// RegisterMutexProfiler() above.
1263
void RegisterMutexTracer(void (*absl_nonnull fn)(const char* absl_nonnull msg,
1264
                                                 const void* absl_nonnull obj,
1265
                                                 int64_t wait_cycles));
1266
1267
// Register a hook for CondVar tracing.
1268
//
1269
// The function pointer registered here will be called here on various CondVar
1270
// events.  The callback is given an opaque handle to the CondVar object and
1271
// a string identifying the event.  This is thread-safe, but only a single
1272
// tracer can be registered.
1273
//
1274
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1275
// "SignalAll wakeup".
1276
//
1277
// This has the same ordering and single-use limitations as
1278
// RegisterMutexProfiler() above.
1279
void RegisterCondVarTracer(void (*absl_nonnull fn)(
1280
    const char* absl_nonnull msg, const void* absl_nonnull cv));
1281
1282
// EnableMutexInvariantDebugging()
1283
//
1284
// Enable or disable global support for Mutex invariant debugging.  If enabled,
1285
// then invariant predicates can be registered per-Mutex for debug checking.
1286
// See Mutex::EnableInvariantDebugging().
1287
void EnableMutexInvariantDebugging(bool enabled);
1288
1289
// When in debug mode, and when the feature has been enabled globally, the
1290
// implementation will keep track of lock ordering and complain (or optionally
1291
// crash) if a cycle is detected in the acquired-before graph.
1292
1293
// Possible modes of operation for the deadlock detector in debug mode.
1294
enum class OnDeadlockCycle {
1295
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1296
  kReport,  // Report lock cycles to stderr when detected
1297
  kAbort,   // Report lock cycles to stderr when detected, then abort
1298
};
1299
1300
// SetMutexDeadlockDetectionMode()
1301
//
1302
// Enable or disable global support for detection of potential deadlocks
1303
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1304
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1305
// will be maintained internally, and detected cycles will be reported in
1306
// the manner chosen here.
1307
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1308
1309
ABSL_NAMESPACE_END
1310
}  // namespace absl
1311
1312
// In some build configurations we pass --detect-odr-violations to the
1313
// gold linker.  This causes it to flag weak symbol overrides as ODR
1314
// violations.  Because ODR only applies to C++ and not C,
1315
// --detect-odr-violations ignores symbols not mangled with C++ names.
1316
// By changing our extension points to be extern "C", we dodge this
1317
// check.
1318
extern "C" {
1319
void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1320
}  // extern "C"
1321
1322
#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_