Coverage Report

Created: 2025-10-10 06:28

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/zerovec-0.11.4/src/cow.rs
Line
Count
Source
1
// This file is part of ICU4X. For terms of use, please see the file
2
// called LICENSE at the top level of the ICU4X source tree
3
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5
use crate::ule::{EncodeAsVarULE, UleError, VarULE};
6
#[cfg(feature = "alloc")]
7
use alloc::boxed::Box;
8
use core::fmt;
9
use core::marker::PhantomData;
10
#[cfg(feature = "alloc")]
11
use core::mem::ManuallyDrop;
12
use core::ops::Deref;
13
use core::ptr::NonNull;
14
use zerofrom::ZeroFrom;
15
16
/// Copy-on-write type that efficiently represents [`VarULE`] types as their bitstream representation.
17
///
18
/// The primary use case for [`VarULE`] types is the ability to store complex variable-length datastructures
19
/// inside variable-length collections like [`crate::VarZeroVec`].
20
///
21
/// Underlying this ability is the fact that [`VarULE`] types can be efficiently represented as a flat
22
/// bytestream.
23
///
24
/// In zero-copy cases, sometimes one wishes to unconditionally use this bytestream representation, for example
25
/// to save stack size. A struct with five `Cow<'a, str>`s is not as stack-efficient as a single `Cow` containing
26
/// the bytestream representation of, say, `Tuple5VarULE<str, str, str, str, str>`.
27
///
28
/// This type helps in this case: It is logically a `Cow<'a, V>`, with some optimizations, that is guaranteed
29
/// to serialize as a byte stream in machine-readable scenarios.
30
///
31
/// During human-readable serialization, it will fall back to the serde impls on `V`, which ought to have
32
/// a human-readable variant.
33
pub struct VarZeroCow<'a, V: ?Sized> {
34
    /// Safety invariant: Contained slice must be a valid V
35
    /// It may or may not have a lifetime valid for 'a, it must be valid for as long as this type is around.
36
    raw: RawVarZeroCow,
37
    marker1: PhantomData<&'a V>,
38
    #[cfg(feature = "alloc")]
39
    marker2: PhantomData<Box<V>>,
40
}
41
42
/// VarZeroCow without the `V` to simulate a dropck eyepatch
43
/// (i.e., prove to rustc that the dtor is not able to observe V or 'a)
44
///
45
/// This is effectively `Cow<'a, [u8]>`, with the lifetime managed externally
46
struct RawVarZeroCow {
47
    /// Pointer to data
48
    ///
49
    /// # Safety Invariants
50
    ///
51
    /// 1. This slice must always be valid as a byte slice
52
    /// 2. If `owned` is true, this slice can be freed.
53
    /// 3. VarZeroCow, the only user of this type, will impose an additional invariant that the buffer is a valid V
54
    buf: NonNull<[u8]>,
55
    /// The buffer is `Box<[u8]>` if true
56
    #[cfg(feature = "alloc")]
57
    owned: bool,
58
    // Safety: We do not need any PhantomDatas here, since the Drop impl does not observe borrowed data
59
    // if there is any.
60
}
61
62
#[cfg(feature = "alloc")]
63
impl Drop for RawVarZeroCow {
64
0
    fn drop(&mut self) {
65
        // Note: this drop impl NEVER observes borrowed data (which may have already been cleaned up by the time the impl is called)
66
0
        if self.owned {
67
0
            unsafe {
68
0
                // Safety: (Invariant 2 on buf)
69
0
                // since owned is true, this is a valid Box<[u8]> and can be cleaned up
70
0
                let _ = Box::<[u8]>::from_raw(self.buf.as_ptr());
71
0
            }
72
0
        }
73
0
    }
74
}
75
76
// This is mostly just a `Cow<[u8]>`, safe to implement Send and Sync on
77
unsafe impl Send for RawVarZeroCow {}
78
unsafe impl Sync for RawVarZeroCow {}
79
80
impl Clone for RawVarZeroCow {
81
0
    fn clone(&self) -> Self {
82
        #[cfg(feature = "alloc")]
83
0
        if self.is_owned() {
84
            // This clones the box
85
0
            let b: Box<[u8]> = self.as_bytes().into();
86
0
            let b = ManuallyDrop::new(b);
87
0
            let buf: NonNull<[u8]> = (&**b).into();
88
0
            return Self {
89
0
                // Invariants upheld:
90
0
                // 1 & 3: The bytes came from `self` so they're a valid value and byte slice
91
0
                // 2: This is owned (we cloned it), so we set owned to true.
92
0
                buf,
93
0
                owned: true,
94
0
            };
95
0
        }
96
        // Unfortunately we can't just use `new_borrowed(self.deref())` since the lifetime is shorter
97
0
        Self {
98
0
            // Invariants upheld:
99
0
            // 1 & 3: The bytes came from `self` so they're a valid value and byte slice
100
0
            // 2: This is borrowed (we're sharing a borrow), so we set owned to false.
101
0
            buf: self.buf,
102
0
            #[cfg(feature = "alloc")]
103
0
            owned: false,
104
0
        }
105
0
    }
106
}
107
108
impl<'a, V: ?Sized> Clone for VarZeroCow<'a, V> {
109
0
    fn clone(&self) -> Self {
110
0
        let raw = self.raw.clone();
111
        // Invariant upheld: raw came from a valid VarZeroCow, so it
112
        // is a valid V
113
0
        unsafe { Self::from_raw(raw) }
114
0
    }
115
}
116
117
impl<'a, V: VarULE + ?Sized> VarZeroCow<'a, V> {
118
    /// Construct from a slice. Errors if the slice doesn't represent a valid `V`
119
0
    pub fn parse_bytes(bytes: &'a [u8]) -> Result<Self, UleError> {
120
0
        let val = V::parse_bytes(bytes)?;
121
0
        Ok(Self::new_borrowed(val))
122
0
    }
123
124
    /// Construct from an owned slice. Errors if the slice doesn't represent a valid `V`
125
    #[cfg(feature = "alloc")]
126
0
    pub fn parse_owned_bytes(bytes: Box<[u8]>) -> Result<Self, UleError> {
127
0
        V::validate_bytes(&bytes)?;
128
0
        let bytes = ManuallyDrop::new(bytes);
129
0
        let buf: NonNull<[u8]> = (&**bytes).into();
130
0
        let raw = RawVarZeroCow {
131
0
            // Invariants upheld:
132
0
            // 1 & 3: The bytes came from `val` so they're a valid value and byte slice
133
0
            // 2: This is owned, so we set owned to true.
134
0
            buf,
135
0
            owned: true,
136
0
        };
137
0
        Ok(Self {
138
0
            raw,
139
0
            marker1: PhantomData,
140
0
            #[cfg(feature = "alloc")]
141
0
            marker2: PhantomData,
142
0
        })
143
0
    }
144
145
    /// Construct from a slice that is known to represent a valid `V`
146
    ///
147
    /// # Safety
148
    ///
149
    /// `bytes` must be a valid `V`, i.e. it must successfully pass through
150
    /// `V::parse_bytes()` or `V::validate_bytes()`.
151
0
    pub const unsafe fn from_bytes_unchecked(bytes: &'a [u8]) -> Self {
152
        unsafe {
153
            // Safety: bytes is an &T which is always non-null
154
0
            let buf: NonNull<[u8]> = NonNull::new_unchecked(bytes as *const [u8] as *mut [u8]);
155
0
            let raw = RawVarZeroCow {
156
0
                // Invariants upheld:
157
0
                // 1 & 3: Passed upstream to caller
158
0
                // 2: This is borrowed, so we set owned to false.
159
0
                buf,
160
0
                #[cfg(feature = "alloc")]
161
0
                owned: false,
162
0
            };
163
            // Invariant passed upstream to caller
164
0
            Self::from_raw(raw)
165
        }
166
0
    }
167
168
    /// Construct this from an [`EncodeAsVarULE`] version of the contained type
169
    ///
170
    /// Will always construct an owned version
171
    #[cfg(feature = "alloc")]
172
0
    pub fn from_encodeable<E: EncodeAsVarULE<V>>(encodeable: &E) -> Self {
173
0
        let b = crate::ule::encode_varule_to_box(encodeable);
174
0
        Self::new_owned(b)
175
0
    }
176
177
    /// Construct a new borrowed version of this
178
0
    pub fn new_borrowed(val: &'a V) -> Self {
179
        unsafe {
180
            // Safety: val is a valid V, by type
181
0
            Self::from_bytes_unchecked(val.as_bytes())
182
        }
183
0
    }
184
185
    /// Construct a new borrowed version of this
186
    #[cfg(feature = "alloc")]
187
0
    pub fn new_owned(val: Box<V>) -> Self {
188
0
        let val = ManuallyDrop::new(val);
189
0
        let buf: NonNull<[u8]> = val.as_bytes().into();
190
0
        let raw = RawVarZeroCow {
191
0
            // Invariants upheld:
192
0
            // 1 & 3: The bytes came from `val` so they're a valid value and byte slice
193
0
            // 2: This is owned, so we set owned to true.
194
0
            buf,
195
0
            #[cfg(feature = "alloc")]
196
0
            owned: true,
197
0
        };
198
        // The bytes came from `val`, so it's a valid value
199
0
        unsafe { Self::from_raw(raw) }
200
0
    }
201
}
202
203
impl<'a, V: ?Sized> VarZeroCow<'a, V> {
204
    /// Whether or not this is owned
205
0
    pub fn is_owned(&self) -> bool {
206
0
        self.raw.is_owned()
207
0
    }
208
209
    /// Get the byte representation of this type
210
    ///
211
    /// Is also always a valid `V` and can be passed to
212
    /// `V::from_bytes_unchecked()`
213
0
    pub fn as_bytes(&self) -> &[u8] {
214
        // The valid V invariant comes from Invariant 2
215
0
        self.raw.as_bytes()
216
0
    }
217
218
    /// Invariant: `raw` must wrap a valid V, either owned or borrowed for 'a
219
0
    const unsafe fn from_raw(raw: RawVarZeroCow) -> Self {
220
0
        Self {
221
0
            // Invariant passed up to caller
222
0
            raw,
223
0
            marker1: PhantomData,
224
0
            #[cfg(feature = "alloc")]
225
0
            marker2: PhantomData,
226
0
        }
227
0
    }
228
}
229
230
impl RawVarZeroCow {
231
    /// Whether or not this is owned
232
    #[inline]
233
0
    pub fn is_owned(&self) -> bool {
234
        #[cfg(feature = "alloc")]
235
0
        return self.owned;
236
        #[cfg(not(feature = "alloc"))]
237
        return false;
238
0
    }
239
240
    /// Get the byte representation of this type
241
    #[inline]
242
0
    pub fn as_bytes(&self) -> &[u8] {
243
        // Safety: Invariant 1 on self.buf
244
0
        unsafe { self.buf.as_ref() }
245
0
    }
246
}
247
248
impl<'a, V: VarULE + ?Sized> Deref for VarZeroCow<'a, V> {
249
    type Target = V;
250
0
    fn deref(&self) -> &V {
251
        // Safety: From invariant 2 on self.buf
252
0
        unsafe { V::from_bytes_unchecked(self.as_bytes()) }
253
0
    }
254
}
255
256
impl<'a, V: VarULE + ?Sized> From<&'a V> for VarZeroCow<'a, V> {
257
0
    fn from(other: &'a V) -> Self {
258
0
        Self::new_borrowed(other)
259
0
    }
260
}
261
262
#[cfg(feature = "alloc")]
263
impl<'a, V: VarULE + ?Sized> From<Box<V>> for VarZeroCow<'a, V> {
264
0
    fn from(other: Box<V>) -> Self {
265
0
        Self::new_owned(other)
266
0
    }
267
}
268
269
impl<'a, V: VarULE + ?Sized + fmt::Debug> fmt::Debug for VarZeroCow<'a, V> {
270
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
271
0
        self.deref().fmt(f)
272
0
    }
273
}
274
275
// We need manual impls since `#[derive()]` is disallowed on packed types
276
impl<'a, V: VarULE + ?Sized + PartialEq> PartialEq for VarZeroCow<'a, V> {
277
0
    fn eq(&self, other: &Self) -> bool {
278
0
        self.deref().eq(other.deref())
279
0
    }
280
}
281
282
impl<'a, V: VarULE + ?Sized + Eq> Eq for VarZeroCow<'a, V> {}
283
284
impl<'a, V: VarULE + ?Sized + PartialOrd> PartialOrd for VarZeroCow<'a, V> {
285
0
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
286
0
        self.deref().partial_cmp(other.deref())
287
0
    }
288
}
289
290
impl<'a, V: VarULE + ?Sized + Ord> Ord for VarZeroCow<'a, V> {
291
0
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
292
0
        self.deref().cmp(other.deref())
293
0
    }
294
}
295
296
// # Safety
297
//
298
// encode_var_ule_len: Produces the length of the contained bytes, which are known to be a valid V by invariant
299
//
300
// encode_var_ule_write: Writes the contained bytes, which are known to be a valid V by invariant
301
unsafe impl<'a, V: VarULE + ?Sized> EncodeAsVarULE<V> for VarZeroCow<'a, V> {
302
0
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
303
        // unnecessary if the other two are implemented
304
0
        unreachable!()
305
    }
306
307
    #[inline]
308
0
    fn encode_var_ule_len(&self) -> usize {
309
0
        self.as_bytes().len()
310
0
    }
311
312
    #[inline]
313
0
    fn encode_var_ule_write(&self, dst: &mut [u8]) {
314
0
        dst.copy_from_slice(self.as_bytes())
315
0
    }
316
}
317
318
#[cfg(feature = "serde")]
319
impl<'a, V: VarULE + ?Sized + serde::Serialize> serde::Serialize for VarZeroCow<'a, V> {
320
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
321
    where
322
        S: serde::Serializer,
323
    {
324
        if serializer.is_human_readable() {
325
            <V as serde::Serialize>::serialize(self.deref(), serializer)
326
        } else {
327
            serializer.serialize_bytes(self.as_bytes())
328
        }
329
    }
330
}
331
332
#[cfg(feature = "serde")]
333
impl<'a, 'de: 'a, V: VarULE + ?Sized> serde::Deserialize<'de> for VarZeroCow<'a, V>
334
where
335
    Box<V>: serde::Deserialize<'de>,
336
{
337
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
338
    where
339
        Des: serde::Deserializer<'de>,
340
    {
341
        if deserializer.is_human_readable() {
342
            let b = Box::<V>::deserialize(deserializer)?;
343
            Ok(Self::new_owned(b))
344
        } else {
345
            let bytes = <&[u8]>::deserialize(deserializer)?;
346
            Self::parse_bytes(bytes).map_err(serde::de::Error::custom)
347
        }
348
    }
349
}
350
351
#[cfg(feature = "databake")]
352
impl<'a, V: VarULE + ?Sized> databake::Bake for VarZeroCow<'a, V> {
353
    fn bake(&self, env: &databake::CrateEnv) -> databake::TokenStream {
354
        env.insert("zerovec");
355
        let bytes = self.as_bytes().bake(env);
356
        databake::quote! {
357
            // Safety: Known to come from a valid V since self.as_bytes() is always a valid V
358
            unsafe {
359
                zerovec::VarZeroCow::from_bytes_unchecked(#bytes)
360
            }
361
        }
362
    }
363
}
364
365
#[cfg(feature = "databake")]
366
impl<'a, V: VarULE + ?Sized> databake::BakeSize for VarZeroCow<'a, V> {
367
    fn borrows_size(&self) -> usize {
368
        self.as_bytes().len()
369
    }
370
}
371
372
impl<'a, V: VarULE + ?Sized> ZeroFrom<'a, V> for VarZeroCow<'a, V> {
373
    #[inline]
374
0
    fn zero_from(other: &'a V) -> Self {
375
0
        Self::new_borrowed(other)
376
0
    }
377
}
378
379
impl<'a, 'b, V: VarULE + ?Sized> ZeroFrom<'a, VarZeroCow<'b, V>> for VarZeroCow<'a, V> {
380
    #[inline]
381
0
    fn zero_from(other: &'a VarZeroCow<'b, V>) -> Self {
382
0
        Self::new_borrowed(other)
383
0
    }
384
}
385
386
#[cfg(test)]
387
mod tests {
388
    use super::VarZeroCow;
389
    use crate::ule::tuplevar::Tuple3VarULE;
390
    use crate::vecs::VarZeroSlice;
391
    #[test]
392
    fn test_cow_roundtrip() {
393
        type Messy = Tuple3VarULE<str, [u8], VarZeroSlice<str>>;
394
        let vec = vec!["one", "two", "three"];
395
        let messy: VarZeroCow<Messy> =
396
            VarZeroCow::from_encodeable(&("hello", &b"g\xFF\xFFdbye"[..], vec));
397
398
        assert_eq!(messy.a(), "hello");
399
        assert_eq!(messy.b(), b"g\xFF\xFFdbye");
400
        assert_eq!(&messy.c()[1], "two");
401
402
        #[cfg(feature = "serde")]
403
        {
404
            let bincode = bincode::serialize(&messy).unwrap();
405
            let deserialized: VarZeroCow<Messy> = bincode::deserialize(&bincode).unwrap();
406
            assert_eq!(
407
                messy, deserialized,
408
                "Single element roundtrips with bincode"
409
            );
410
            assert!(!deserialized.is_owned());
411
412
            let json = serde_json::to_string(&messy).unwrap();
413
            let deserialized: VarZeroCow<Messy> = serde_json::from_str(&json).unwrap();
414
            assert_eq!(messy, deserialized, "Single element roundtrips with serde");
415
        }
416
    }
417
418
    struct TwoCows<'a> {
419
        cow1: VarZeroCow<'a, str>,
420
        cow2: VarZeroCow<'a, str>,
421
    }
422
423
    #[test]
424
    fn test_eyepatch_works() {
425
        // This code should compile
426
        let mut two = TwoCows {
427
            cow1: VarZeroCow::new_borrowed("hello"),
428
            cow2: VarZeroCow::new_owned("world".into()),
429
        };
430
        let three = VarZeroCow::new_borrowed(&*two.cow2);
431
        two.cow1 = three;
432
433
        // Without the eyepatch, dropck will be worried that the dtor of two.cow1 can observe the
434
        // data it borrowed from two.cow2, which may have already been deleted
435
436
        // This test will fail if you add an empty `impl<'a, V: ?Sized> Drop for VarZeroCow<'a, V>`
437
    }
438
}