Coverage Report

Created: 2025-10-10 06:28

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/zerovec-0.11.4/src/zerovec/mod.rs
Line
Count
Source
1
// This file is part of ICU4X. For terms of use, please see the file
2
// called LICENSE at the top level of the ICU4X source tree
3
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5
#[cfg(feature = "databake")]
6
mod databake;
7
8
#[cfg(feature = "serde")]
9
mod serde;
10
11
mod slice;
12
13
pub use slice::ZeroSlice;
14
pub use slice::ZeroSliceIter;
15
16
use crate::ule::*;
17
#[cfg(feature = "alloc")]
18
use alloc::borrow::Cow;
19
#[cfg(feature = "alloc")]
20
use alloc::vec::Vec;
21
use core::cmp::{Ord, Ordering, PartialOrd};
22
use core::fmt;
23
#[cfg(feature = "alloc")]
24
use core::iter::FromIterator;
25
use core::marker::PhantomData;
26
use core::num::NonZeroUsize;
27
use core::ops::Deref;
28
use core::ptr::NonNull;
29
30
/// A zero-copy, byte-aligned vector for fixed-width types.
31
///
32
/// `ZeroVec<T>` is designed as a drop-in replacement for `Vec<T>` in situations where it is
33
/// desirable to borrow data from an unaligned byte slice, such as zero-copy deserialization.
34
///
35
/// `T` must implement [`AsULE`], which is auto-implemented for a number of built-in types,
36
/// including all fixed-width multibyte integers. For variable-width types like [`str`],
37
/// see [`VarZeroVec`](crate::VarZeroVec). [`zerovec::make_ule`](crate::make_ule) may
38
/// be used to automatically implement [`AsULE`] for a type and generate the underlying [`ULE`] type.
39
///
40
/// Typically, the zero-copy equivalent of a `Vec<T>` will simply be `ZeroVec<'a, T>`.
41
///
42
/// Most of the methods on `ZeroVec<'a, T>` come from its [`Deref`] implementation to [`ZeroSlice<T>`](ZeroSlice).
43
///
44
/// For creating zero-copy vectors of fixed-size types, see [`VarZeroVec`](crate::VarZeroVec).
45
///
46
/// `ZeroVec<T>` behaves much like [`Cow`](alloc::borrow::Cow), where it can be constructed from
47
/// owned data (and then mutated!) but can also borrow from some buffer.
48
///
49
/// # Example
50
///
51
/// ```
52
/// use zerovec::ZeroVec;
53
///
54
/// // The little-endian bytes correspond to the numbers on the following line.
55
/// let nums: &[u16] = &[211, 281, 421, 461];
56
///
57
/// #[derive(serde::Serialize, serde::Deserialize)]
58
/// struct Data<'a> {
59
///     #[serde(borrow)]
60
///     nums: ZeroVec<'a, u16>,
61
/// }
62
///
63
/// // The owned version will allocate
64
/// let data = Data {
65
///     nums: ZeroVec::alloc_from_slice(nums),
66
/// };
67
/// let bincode_bytes =
68
///     bincode::serialize(&data).expect("Serialization should be successful");
69
///
70
/// // Will deserialize without allocations
71
/// let deserialized: Data = bincode::deserialize(&bincode_bytes)
72
///     .expect("Deserialization should be successful");
73
///
74
/// // This deserializes without allocation!
75
/// assert!(!deserialized.nums.is_owned());
76
/// assert_eq!(deserialized.nums.get(2), Some(421));
77
/// assert_eq!(deserialized.nums, nums);
78
/// ```
79
///
80
/// [`ule`]: crate::ule
81
///
82
/// # How it Works
83
///
84
/// `ZeroVec<T>` represents a slice of `T` as a slice of `T::ULE`. The difference between `T` and
85
/// `T::ULE` is that `T::ULE` must be encoded in little-endian with 1-byte alignment. When accessing
86
/// items from `ZeroVec<T>`, we fetch the `T::ULE`, convert it on the fly to `T`, and return `T` by
87
/// value.
88
///
89
/// Benchmarks can be found in the project repository, with some results found in the [crate-level documentation](crate).
90
///
91
/// See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for more details.
92
pub struct ZeroVec<'a, T>
93
where
94
    T: AsULE,
95
{
96
    vector: EyepatchHackVector<T::ULE>,
97
98
    /// Marker type, signalling variance and dropck behavior
99
    /// by containing all potential types this type represents
100
    marker1: PhantomData<T::ULE>,
101
    marker2: PhantomData<&'a T::ULE>,
102
}
103
104
// Send inherits as long as all fields are Send, but also references are Send only
105
// when their contents are Sync (this is the core purpose of Sync), so
106
// we need a Send+Sync bound since this struct can logically be a vector or a slice.
107
unsafe impl<'a, T: AsULE> Send for ZeroVec<'a, T> where T::ULE: Send + Sync {}
108
// Sync typically inherits as long as all fields are Sync
109
unsafe impl<'a, T: AsULE> Sync for ZeroVec<'a, T> where T::ULE: Sync {}
110
111
impl<'a, T: AsULE> Deref for ZeroVec<'a, T> {
112
    type Target = ZeroSlice<T>;
113
    #[inline]
114
0
    fn deref(&self) -> &Self::Target {
115
0
        self.as_slice()
116
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::props::JoiningType> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::props::BidiClass> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::props::gc::GeneralCategory> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<zerovec::ule::niche::NichedOption<icu_locale_core::subtags::script::Script, 4>> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::script::ScriptWithExt> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<char> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u32> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<potential_utf::uchar::PotentialCodePoint> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u8> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16> as core::ops::deref::Deref>::deref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_> as core::ops::deref::Deref>::deref
117
}
118
119
// Represents an unsafe potentially-owned vector/slice type, without a lifetime
120
// working around dropck limitations.
121
//
122
// Must either be constructed by deconstructing a Vec<U>, or from &[U] with capacity set to
123
// zero. Should not outlive its source &[U] in the borrowed case; this type does not in
124
// and of itself uphold this guarantee, but the .as_slice() method assumes it.
125
//
126
// After https://github.com/rust-lang/rust/issues/34761 stabilizes,
127
// we should remove this type and use #[may_dangle]
128
struct EyepatchHackVector<U> {
129
    /// Pointer to data
130
    /// This pointer is *always* valid, the reason it is represented as a raw pointer
131
    /// is that it may logically represent an `&[T::ULE]` or the ptr,len of a `Vec<T::ULE>`
132
    buf: NonNull<[U]>,
133
    #[cfg(feature = "alloc")]
134
    /// Borrowed if zero. Capacity of buffer above if not
135
    capacity: usize,
136
}
137
138
impl<U> EyepatchHackVector<U> {
139
    // Return a slice to the inner data for an arbitrary caller-specified lifetime
140
    #[inline]
141
0
    unsafe fn as_arbitrary_slice<'a>(&self) -> &'a [U] {
142
0
        self.buf.as_ref()
143
0
    }
144
    // Return a slice to the inner data
145
    #[inline]
146
0
    const fn as_slice<'a>(&'a self) -> &'a [U] {
147
        // Note: self.buf.as_ref() is not const until 1.73
148
0
        unsafe { &*(self.buf.as_ptr() as *const [U]) }
149
0
    }
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::niche::NichedOptionULE<icu_locale_core::subtags::script::Script, 4>>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<icu_properties::props::gc::GeneralCategoryULE>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<4>>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::chars::CharULE>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<2>>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<3>>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<u8>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<_>>::as_slice
150
151
    /// Return this type as a vector
152
    ///
153
    /// Data MUST be known to be owned beforehand
154
    ///
155
    /// Because this borrows self, this is effectively creating two owners to the same
156
    /// data, make sure that `self` is cleaned up after this
157
    ///
158
    /// (this does not simply take `self` since then it wouldn't be usable from the Drop impl)
159
    #[cfg(feature = "alloc")]
160
0
    unsafe fn get_vec(&self) -> Vec<U> {
161
0
        debug_assert!(self.capacity != 0);
162
0
        let slice: &[U] = self.as_slice();
163
0
        let len = slice.len();
164
        // Safety: we are assuming owned, and in owned cases
165
        // this always represents a valid vector
166
0
        Vec::from_raw_parts(self.buf.as_ptr() as *mut U, len, self.capacity)
167
0
    }
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::niche::NichedOptionULE<icu_locale_core::subtags::script::Script, 4>>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<icu_properties::props::gc::GeneralCategoryULE>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<4>>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::chars::CharULE>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<2>>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<3>>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<u8>>::get_vec
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<_>>::get_vec
168
169
0
    fn truncate(&mut self, max: usize) {
170
        // SAFETY: The elements in buf are `ULE`, so they don't need to be dropped
171
        // even if we own them.
172
0
        self.buf = unsafe {
173
0
            NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
174
0
                self.buf.as_mut().as_mut_ptr(),
175
0
                core::cmp::min(max, self.buf.as_ref().len()),
176
0
            ))
177
0
        };
178
0
    }
179
}
180
181
#[cfg(feature = "alloc")]
182
impl<U> Drop for EyepatchHackVector<U> {
183
    #[inline]
184
0
    fn drop(&mut self) {
185
0
        if self.capacity != 0 {
186
0
            unsafe {
187
0
                // we don't need to clean up self here since we're already in a Drop impl
188
0
                let _ = self.get_vec();
189
0
            }
190
0
        }
191
0
    }
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::niche::NichedOptionULE<icu_locale_core::subtags::script::Script, 4>> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<icu_properties::props::gc::GeneralCategoryULE> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<4>> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::chars::CharULE> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<2>> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<zerovec::ule::plain::RawBytesULE<3>> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<u8> as core::ops::drop::Drop>::drop
Unexecuted instantiation: <zerovec::zerovec::EyepatchHackVector<_> as core::ops::drop::Drop>::drop
192
}
193
194
impl<'a, T: AsULE> Clone for ZeroVec<'a, T> {
195
0
    fn clone(&self) -> Self {
196
        #[cfg(feature = "alloc")]
197
0
        if self.is_owned() {
198
0
            return ZeroVec::new_owned(self.as_ule_slice().into());
199
0
        }
200
0
        Self {
201
0
            vector: EyepatchHackVector {
202
0
                buf: self.vector.buf,
203
0
                #[cfg(feature = "alloc")]
204
0
                capacity: 0,
205
0
            },
206
0
            marker1: PhantomData,
207
0
            marker2: PhantomData,
208
0
        }
209
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16> as core::clone::Clone>::clone
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_> as core::clone::Clone>::clone
210
}
211
212
impl<'a, T: AsULE> AsRef<ZeroSlice<T>> for ZeroVec<'a, T> {
213
0
    fn as_ref(&self) -> &ZeroSlice<T> {
214
0
        self.as_slice()
215
0
    }
216
}
217
218
impl<T> fmt::Debug for ZeroVec<'_, T>
219
where
220
    T: AsULE + fmt::Debug,
221
{
222
0
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
223
0
        write!(f, "ZeroVec([")?;
224
0
        let mut first = true;
225
0
        for el in self.iter() {
226
0
            if !first {
227
0
                write!(f, ", ")?;
228
0
            }
229
0
            write!(f, "{el:?}")?;
230
0
            first = false;
231
        }
232
0
        write!(f, "])")
233
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<potential_utf::uchar::PotentialCodePoint> as core::fmt::Debug>::fmt
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_> as core::fmt::Debug>::fmt
234
}
235
236
impl<T> Eq for ZeroVec<'_, T> where T: AsULE + Eq {}
237
238
impl<'a, 'b, T> PartialEq<ZeroVec<'b, T>> for ZeroVec<'a, T>
239
where
240
    T: AsULE + PartialEq,
241
{
242
    #[inline]
243
0
    fn eq(&self, other: &ZeroVec<'b, T>) -> bool {
244
        // Note: T implements PartialEq but not T::ULE
245
0
        self.iter().eq(other.iter())
246
0
    }
247
}
248
249
impl<T> PartialEq<&[T]> for ZeroVec<'_, T>
250
where
251
    T: AsULE + PartialEq,
252
{
253
    #[inline]
254
0
    fn eq(&self, other: &&[T]) -> bool {
255
0
        self.iter().eq(other.iter().copied())
256
0
    }
257
}
258
259
impl<T, const N: usize> PartialEq<[T; N]> for ZeroVec<'_, T>
260
where
261
    T: AsULE + PartialEq,
262
{
263
    #[inline]
264
0
    fn eq(&self, other: &[T; N]) -> bool {
265
0
        self.iter().eq(other.iter().copied())
266
0
    }
267
}
268
269
impl<'a, T: AsULE> Default for ZeroVec<'a, T> {
270
    #[inline]
271
0
    fn default() -> Self {
272
0
        Self::new()
273
0
    }
274
}
275
276
impl<'a, T: AsULE + PartialOrd> PartialOrd for ZeroVec<'a, T> {
277
0
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
278
0
        self.iter().partial_cmp(other.iter())
279
0
    }
280
}
281
282
impl<'a, T: AsULE + Ord> Ord for ZeroVec<'a, T> {
283
0
    fn cmp(&self, other: &Self) -> Ordering {
284
0
        self.iter().cmp(other.iter())
285
0
    }
286
}
287
288
impl<'a, T: AsULE> AsRef<[T::ULE]> for ZeroVec<'a, T> {
289
0
    fn as_ref(&self) -> &[T::ULE] {
290
0
        self.as_ule_slice()
291
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u8> as core::convert::AsRef<[u8]>>::as_ref
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_> as core::convert::AsRef<[<_ as zerovec::ule::AsULE>::ULE]>>::as_ref
292
}
293
294
impl<'a, T: AsULE> From<&'a [T::ULE]> for ZeroVec<'a, T> {
295
0
    fn from(other: &'a [T::ULE]) -> Self {
296
0
        ZeroVec::new_borrowed(other)
297
0
    }
298
}
299
300
#[cfg(feature = "alloc")]
301
impl<'a, T: AsULE> From<Vec<T::ULE>> for ZeroVec<'a, T> {
302
0
    fn from(other: Vec<T::ULE>) -> Self {
303
0
        ZeroVec::new_owned(other)
304
0
    }
305
}
306
307
impl<'a, T: AsULE> ZeroVec<'a, T> {
308
    /// Creates a new, borrowed, empty `ZeroVec<T>`.
309
    ///
310
    /// # Examples
311
    ///
312
    /// ```
313
    /// use zerovec::ZeroVec;
314
    ///
315
    /// let zv: ZeroVec<u16> = ZeroVec::new();
316
    /// assert!(zv.is_empty());
317
    /// ```
318
    #[inline]
319
0
    pub const fn new() -> Self {
320
0
        Self::new_borrowed(&[])
321
0
    }
322
323
    /// Same as `ZeroSlice::len`, which is available through `Deref` and not `const`.
324
0
    pub const fn const_len(&self) -> usize {
325
0
        self.vector.as_slice().len()
326
0
    }
327
328
    /// Creates a new owned `ZeroVec` using an existing
329
    /// allocated backing buffer
330
    ///
331
    /// If you have a slice of `&[T]`s, prefer using
332
    /// [`Self::alloc_from_slice()`].
333
    #[inline]
334
    #[cfg(feature = "alloc")]
335
0
    pub fn new_owned(vec: Vec<T::ULE>) -> Self {
336
        // Deconstruct the vector into parts
337
        // This is the only part of the code that goes from Vec
338
        // to ZeroVec, all other such operations should use this function
339
0
        let capacity = vec.capacity();
340
0
        let len = vec.len();
341
0
        let ptr = core::mem::ManuallyDrop::new(vec).as_mut_ptr();
342
        // Safety: `ptr` comes from Vec::as_mut_ptr, which says:
343
        // "Returns an unsafe mutable pointer to the vector’s buffer,
344
        // or a dangling raw pointer valid for zero sized reads"
345
0
        let ptr = unsafe { NonNull::new_unchecked(ptr) };
346
0
        let buf = NonNull::slice_from_raw_parts(ptr, len);
347
0
        Self {
348
0
            vector: EyepatchHackVector { buf, capacity },
349
0
            marker1: PhantomData,
350
0
            marker2: PhantomData,
351
0
        }
352
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16>>::new_owned
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_>>::new_owned
353
354
    /// Creates a new borrowed `ZeroVec` using an existing
355
    /// backing buffer
356
    #[inline]
357
0
    pub const fn new_borrowed(slice: &'a [T::ULE]) -> Self {
358
        // Safety: references in Rust cannot be null.
359
        // The safe function `impl From<&T> for NonNull<T>` is not const.
360
0
        let slice = unsafe { NonNull::new_unchecked(slice as *const [_] as *mut [_]) };
361
0
        Self {
362
0
            vector: EyepatchHackVector {
363
0
                buf: slice,
364
0
                #[cfg(feature = "alloc")]
365
0
                capacity: 0,
366
0
            },
367
0
            marker1: PhantomData,
368
0
            marker2: PhantomData,
369
0
        }
370
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<zerovec::ule::niche::NichedOption<icu_locale_core::subtags::script::Script, 4>>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::script::ScriptWithExt>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<char>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u32>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<potential_utf::uchar::PotentialCodePoint>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u8>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16>>::new_borrowed
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_>>::new_borrowed
371
372
    /// Creates a new, owned, empty `ZeroVec<T>`, with a certain capacity pre-allocated.
373
    #[cfg(feature = "alloc")]
374
0
    pub fn with_capacity(capacity: usize) -> Self {
375
0
        Self::new_owned(Vec::with_capacity(capacity))
376
0
    }
377
378
    /// Parses a `&[u8]` buffer into a `ZeroVec<T>`.
379
    ///
380
    /// This function is infallible for built-in integer types, but fallible for other types,
381
    /// such as `char`. For more information, see [`ULE::parse_bytes_to_slice`].
382
    ///
383
    /// The bytes within the byte buffer must remain constant for the life of the ZeroVec.
384
    ///
385
    /// # Endianness
386
    ///
387
    /// The byte buffer must be encoded in little-endian, even if running in a big-endian
388
    /// environment. This ensures a consistent representation of data across platforms.
389
    ///
390
    /// # Example
391
    ///
392
    /// ```
393
    /// use zerovec::ZeroVec;
394
    ///
395
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
396
    /// let zerovec: ZeroVec<u16> =
397
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
398
    ///
399
    /// assert!(!zerovec.is_owned());
400
    /// assert_eq!(zerovec.get(2), Some(421));
401
    /// ```
402
0
    pub fn parse_bytes(bytes: &'a [u8]) -> Result<Self, UleError> {
403
0
        let slice: &'a [T::ULE] = T::ULE::parse_bytes_to_slice(bytes)?;
404
0
        Ok(Self::new_borrowed(slice))
405
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u8>>::parse_bytes
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16>>::parse_bytes
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_>>::parse_bytes
406
407
    /// Uses a `&[u8]` buffer as a `ZeroVec<T>` without any verification.
408
    ///
409
    /// # Safety
410
    ///
411
    /// `bytes` need to be an output from [`ZeroSlice::as_bytes()`].
412
0
    pub const unsafe fn from_bytes_unchecked(bytes: &'a [u8]) -> Self {
413
        // &[u8] and &[T::ULE] are the same slice with different length metadata.
414
0
        Self::new_borrowed(core::slice::from_raw_parts(
415
0
            bytes.as_ptr() as *const T::ULE,
416
0
            bytes.len() / core::mem::size_of::<T::ULE>(),
417
0
        ))
418
0
    }
419
420
    /// Converts a `ZeroVec<T>` into a `ZeroVec<u8>`, retaining the current ownership model.
421
    ///
422
    /// Note that the length of the ZeroVec may change.
423
    ///
424
    /// # Examples
425
    ///
426
    /// Convert a borrowed `ZeroVec`:
427
    ///
428
    /// ```
429
    /// use zerovec::ZeroVec;
430
    ///
431
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
432
    /// let zerovec: ZeroVec<u16> =
433
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
434
    /// let zv_bytes = zerovec.into_bytes();
435
    ///
436
    /// assert!(!zv_bytes.is_owned());
437
    /// assert_eq!(zv_bytes.get(0), Some(0xD3));
438
    /// ```
439
    ///
440
    /// Convert an owned `ZeroVec`:
441
    ///
442
    /// ```
443
    /// use zerovec::ZeroVec;
444
    ///
445
    /// let nums: &[u16] = &[211, 281, 421, 461];
446
    /// let zerovec = ZeroVec::alloc_from_slice(nums);
447
    /// let zv_bytes = zerovec.into_bytes();
448
    ///
449
    /// assert!(zv_bytes.is_owned());
450
    /// assert_eq!(zv_bytes.get(0), Some(0xD3));
451
    /// ```
452
    #[cfg(feature = "alloc")]
453
0
    pub fn into_bytes(self) -> ZeroVec<'a, u8> {
454
        use alloc::borrow::Cow;
455
0
        match self.into_cow() {
456
0
            Cow::Borrowed(slice) => {
457
0
                let bytes: &'a [u8] = T::ULE::slice_as_bytes(slice);
458
0
                ZeroVec::new_borrowed(bytes)
459
            }
460
0
            Cow::Owned(vec) => {
461
0
                let bytes = Vec::from(T::ULE::slice_as_bytes(&vec));
462
0
                ZeroVec::new_owned(bytes)
463
            }
464
        }
465
0
    }
466
467
    /// Returns this [`ZeroVec`] as a [`ZeroSlice`].
468
    ///
469
    /// To get a reference with a longer lifetime from a borrowed [`ZeroVec`],
470
    /// use [`ZeroVec::as_maybe_borrowed`].
471
    #[inline]
472
0
    pub const fn as_slice(&self) -> &ZeroSlice<T> {
473
0
        let slice: &[T::ULE] = self.vector.as_slice();
474
0
        ZeroSlice::from_ule_slice(slice)
475
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::props::JoiningType>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::props::BidiClass>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::props::gc::GeneralCategory>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<zerovec::ule::niche::NichedOption<icu_locale_core::subtags::script::Script, 4>>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<icu_properties::script::ScriptWithExt>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<char>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u32>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<potential_utf::uchar::PotentialCodePoint>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u8>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16>>::as_slice
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_>>::as_slice
476
477
    /// Casts a `ZeroVec<T>` to a compatible `ZeroVec<P>`.
478
    ///
479
    /// `T` and `P` are compatible if they have the same `ULE` representation.
480
    ///
481
    /// If the `ULE`s of `T` and `P` are different types but have the same size,
482
    /// use [`Self::try_into_converted()`].
483
    ///
484
    /// # Examples
485
    ///
486
    /// ```
487
    /// use zerovec::ZeroVec;
488
    ///
489
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x80];
490
    ///
491
    /// let zerovec_u16: ZeroVec<u16> =
492
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
493
    /// assert_eq!(zerovec_u16.get(3), Some(32973));
494
    ///
495
    /// let zerovec_i16: ZeroVec<i16> = zerovec_u16.cast();
496
    /// assert_eq!(zerovec_i16.get(3), Some(-32563));
497
    /// ```
498
    #[cfg(feature = "alloc")]
499
0
    pub fn cast<P>(self) -> ZeroVec<'a, P>
500
0
    where
501
0
        P: AsULE<ULE = T::ULE>,
502
    {
503
0
        match self.into_cow() {
504
0
            Cow::Owned(v) => ZeroVec::new_owned(v),
505
0
            Cow::Borrowed(v) => ZeroVec::new_borrowed(v),
506
        }
507
0
    }
508
509
    /// Converts a `ZeroVec<T>` into a `ZeroVec<P>`, retaining the current ownership model.
510
    ///
511
    /// If `T` and `P` have the exact same `ULE`, use [`Self::cast()`].
512
    ///
513
    /// # Panics
514
    ///
515
    /// Panics if `T::ULE` and `P::ULE` are not the same size.
516
    ///
517
    /// # Examples
518
    ///
519
    /// Convert a borrowed `ZeroVec`:
520
    ///
521
    /// ```
522
    /// use zerovec::ZeroVec;
523
    ///
524
    /// let bytes: &[u8] = &[0x7F, 0xF3, 0x01, 0x49, 0xF6, 0x01];
525
    /// let zv_char: ZeroVec<char> =
526
    ///     ZeroVec::parse_bytes(bytes).expect("valid code points");
527
    /// let zv_u8_3: ZeroVec<[u8; 3]> =
528
    ///     zv_char.try_into_converted().expect("infallible conversion");
529
    ///
530
    /// assert!(!zv_u8_3.is_owned());
531
    /// assert_eq!(zv_u8_3.get(0), Some([0x7F, 0xF3, 0x01]));
532
    /// ```
533
    ///
534
    /// Convert an owned `ZeroVec`:
535
    ///
536
    /// ```
537
    /// use zerovec::ZeroVec;
538
    ///
539
    /// let chars: &[char] = &['🍿', '🙉'];
540
    /// let zv_char = ZeroVec::alloc_from_slice(chars);
541
    /// let zv_u8_3: ZeroVec<[u8; 3]> =
542
    ///     zv_char.try_into_converted().expect("length is divisible");
543
    ///
544
    /// assert!(zv_u8_3.is_owned());
545
    /// assert_eq!(zv_u8_3.get(0), Some([0x7F, 0xF3, 0x01]));
546
    /// ```
547
    ///
548
    /// If the types are not the same size, we refuse to convert:
549
    ///
550
    /// ```should_panic
551
    /// use zerovec::ZeroVec;
552
    ///
553
    /// let bytes: &[u8] = &[0x7F, 0xF3, 0x01, 0x49, 0xF6, 0x01];
554
    /// let zv_char: ZeroVec<char> =
555
    ///     ZeroVec::parse_bytes(bytes).expect("valid code points");
556
    ///
557
    /// // Panics! core::mem::size_of::<char::ULE> != core::mem::size_of::<u16::ULE>
558
    /// zv_char.try_into_converted::<u16>();
559
    /// ```
560
    ///
561
    /// Instead, convert to bytes and then parse:
562
    ///
563
    /// ```
564
    /// use zerovec::ZeroVec;
565
    ///
566
    /// let bytes: &[u8] = &[0x7F, 0xF3, 0x01, 0x49, 0xF6, 0x01];
567
    /// let zv_char: ZeroVec<char> =
568
    ///     ZeroVec::parse_bytes(bytes).expect("valid code points");
569
    /// let zv_u16: ZeroVec<u16> =
570
    ///     zv_char.into_bytes().try_into_parsed().expect("infallible");
571
    ///
572
    /// assert!(!zv_u16.is_owned());
573
    /// assert_eq!(zv_u16.get(0), Some(0xF37F));
574
    /// ```
575
    #[cfg(feature = "alloc")]
576
0
    pub fn try_into_converted<P: AsULE>(self) -> Result<ZeroVec<'a, P>, UleError> {
577
0
        assert_eq!(
578
            core::mem::size_of::<<T as AsULE>::ULE>(),
579
            core::mem::size_of::<<P as AsULE>::ULE>()
580
        );
581
0
        match self.into_cow() {
582
0
            Cow::Borrowed(old_slice) => {
583
0
                let bytes: &'a [u8] = T::ULE::slice_as_bytes(old_slice);
584
0
                let new_slice = P::ULE::parse_bytes_to_slice(bytes)?;
585
0
                Ok(ZeroVec::new_borrowed(new_slice))
586
            }
587
0
            Cow::Owned(old_vec) => {
588
0
                let bytes: &[u8] = T::ULE::slice_as_bytes(&old_vec);
589
0
                P::ULE::validate_bytes(bytes)?;
590
                // Feature "vec_into_raw_parts" is not yet stable (#65816). Polyfill:
591
0
                let (ptr, len, cap) = {
592
0
                    // Take ownership of the pointer
593
0
                    let mut v = core::mem::ManuallyDrop::new(old_vec);
594
0
                    // Fetch the pointer, length, and capacity
595
0
                    (v.as_mut_ptr(), v.len(), v.capacity())
596
0
                };
597
                // Safety checklist for Vec::from_raw_parts:
598
                // 1. ptr came from a Vec<T>
599
                // 2. P and T are asserted above to be the same size
600
                // 3. length is what it was before
601
                // 4. capacity is what it was before
602
0
                let new_vec = unsafe {
603
0
                    let ptr = ptr as *mut P::ULE;
604
0
                    Vec::from_raw_parts(ptr, len, cap)
605
                };
606
0
                Ok(ZeroVec::new_owned(new_vec))
607
            }
608
        }
609
0
    }
610
611
    /// Check if this type is fully owned
612
    #[inline]
613
0
    pub fn is_owned(&self) -> bool {
614
        #[cfg(feature = "alloc")]
615
0
        return self.vector.capacity != 0;
616
        #[cfg(not(feature = "alloc"))]
617
        return false;
618
0
    }
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<u16>>::is_owned
Unexecuted instantiation: <zerovec::zerovec::ZeroVec<_>>::is_owned
619
620
    /// If this is a borrowed [`ZeroVec`], return it as a slice that covers
621
    /// its lifetime parameter.
622
    ///
623
    /// To infallibly get a [`ZeroSlice`] with a shorter lifetime, use
624
    /// [`ZeroVec::as_slice`].
625
    #[inline]
626
0
    pub fn as_maybe_borrowed(&self) -> Option<&'a ZeroSlice<T>> {
627
0
        if self.is_owned() {
628
0
            None
629
        } else {
630
            // We can extend the lifetime of the slice to 'a
631
            // since we know it is borrowed
632
0
            let ule_slice = unsafe { self.vector.as_arbitrary_slice() };
633
0
            Some(ZeroSlice::from_ule_slice(ule_slice))
634
        }
635
0
    }
636
637
    /// If the ZeroVec is owned, returns the capacity of the vector.
638
    ///
639
    /// Otherwise, if the ZeroVec is borrowed, returns `None`.
640
    ///
641
    /// # Examples
642
    ///
643
    /// ```
644
    /// use zerovec::ZeroVec;
645
    ///
646
    /// let mut zv = ZeroVec::<u8>::new_borrowed(&[0, 1, 2, 3]);
647
    /// assert!(!zv.is_owned());
648
    /// assert_eq!(zv.owned_capacity(), None);
649
    ///
650
    /// // Convert to owned without appending anything
651
    /// zv.with_mut(|v| ());
652
    /// assert!(zv.is_owned());
653
    /// assert_eq!(zv.owned_capacity(), Some(4.try_into().unwrap()));
654
    ///
655
    /// // Double the size by appending
656
    /// zv.with_mut(|v| v.push(0));
657
    /// assert!(zv.is_owned());
658
    /// assert_eq!(zv.owned_capacity(), Some(8.try_into().unwrap()));
659
    /// ```
660
    #[inline]
661
0
    pub fn owned_capacity(&self) -> Option<NonZeroUsize> {
662
        #[cfg(feature = "alloc")]
663
0
        return NonZeroUsize::try_from(self.vector.capacity).ok();
664
        #[cfg(not(feature = "alloc"))]
665
        return None;
666
0
    }
667
}
668
669
impl<'a> ZeroVec<'a, u8> {
670
    /// Converts a `ZeroVec<u8>` into a `ZeroVec<T>`, retaining the current ownership model.
671
    ///
672
    /// Note that the length of the ZeroVec may change.
673
    ///
674
    /// # Examples
675
    ///
676
    /// Convert a borrowed `ZeroVec`:
677
    ///
678
    /// ```
679
    /// use zerovec::ZeroVec;
680
    ///
681
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
682
    /// let zv_bytes = ZeroVec::new_borrowed(bytes);
683
    /// let zerovec: ZeroVec<u16> = zv_bytes.try_into_parsed().expect("infallible");
684
    ///
685
    /// assert!(!zerovec.is_owned());
686
    /// assert_eq!(zerovec.get(0), Some(211));
687
    /// ```
688
    ///
689
    /// Convert an owned `ZeroVec`:
690
    ///
691
    /// ```
692
    /// use zerovec::ZeroVec;
693
    ///
694
    /// let bytes: Vec<u8> = vec![0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
695
    /// let zv_bytes = ZeroVec::new_owned(bytes);
696
    /// let zerovec: ZeroVec<u16> = zv_bytes.try_into_parsed().expect("infallible");
697
    ///
698
    /// assert!(zerovec.is_owned());
699
    /// assert_eq!(zerovec.get(0), Some(211));
700
    /// ```
701
    #[cfg(feature = "alloc")]
702
0
    pub fn try_into_parsed<T: AsULE>(self) -> Result<ZeroVec<'a, T>, UleError> {
703
0
        match self.into_cow() {
704
0
            Cow::Borrowed(bytes) => {
705
0
                let slice: &'a [T::ULE] = T::ULE::parse_bytes_to_slice(bytes)?;
706
0
                Ok(ZeroVec::new_borrowed(slice))
707
            }
708
0
            Cow::Owned(vec) => {
709
0
                let slice = Vec::from(T::ULE::parse_bytes_to_slice(&vec)?);
710
0
                Ok(ZeroVec::new_owned(slice))
711
            }
712
        }
713
0
    }
714
}
715
716
impl<'a, T> ZeroVec<'a, T>
717
where
718
    T: AsULE,
719
{
720
    /// Creates a `ZeroVec<T>` from a `&[T]` by allocating memory.
721
    ///
722
    /// This function results in an `Owned` instance of `ZeroVec<T>`.
723
    ///
724
    /// # Example
725
    ///
726
    /// ```
727
    /// use zerovec::ZeroVec;
728
    ///
729
    /// // The little-endian bytes correspond to the numbers on the following line.
730
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
731
    /// let nums: &[u16] = &[211, 281, 421, 461];
732
    ///
733
    /// let zerovec = ZeroVec::alloc_from_slice(nums);
734
    ///
735
    /// assert!(zerovec.is_owned());
736
    /// assert_eq!(bytes, zerovec.as_bytes());
737
    /// ```
738
    #[inline]
739
    #[cfg(feature = "alloc")]
740
0
    pub fn alloc_from_slice(other: &[T]) -> Self {
741
0
        Self::new_owned(other.iter().copied().map(T::to_unaligned).collect())
742
0
    }
743
744
    /// Creates a `Vec<T>` from a `ZeroVec<T>`.
745
    ///
746
    /// # Example
747
    ///
748
    /// ```
749
    /// use zerovec::ZeroVec;
750
    ///
751
    /// let nums: &[u16] = &[211, 281, 421, 461];
752
    /// let vec: Vec<u16> = ZeroVec::alloc_from_slice(nums).to_vec();
753
    ///
754
    /// assert_eq!(nums, vec.as_slice());
755
    /// ```
756
    #[inline]
757
    #[cfg(feature = "alloc")]
758
0
    pub fn to_vec(&self) -> Vec<T> {
759
0
        self.iter().collect()
760
0
    }
761
}
762
763
impl<'a, T> ZeroVec<'a, T>
764
where
765
    T: EqULE,
766
{
767
    /// Attempts to create a `ZeroVec<'a, T>` from a `&'a [T]` by borrowing the argument.
768
    ///
769
    /// If this is not possible, such as on a big-endian platform, `None` is returned.
770
    ///
771
    /// # Example
772
    ///
773
    /// ```
774
    /// use zerovec::ZeroVec;
775
    ///
776
    /// // The little-endian bytes correspond to the numbers on the following line.
777
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
778
    /// let nums: &[u16] = &[211, 281, 421, 461];
779
    ///
780
    /// if let Some(zerovec) = ZeroVec::try_from_slice(nums) {
781
    ///     assert!(!zerovec.is_owned());
782
    ///     assert_eq!(bytes, zerovec.as_bytes());
783
    /// }
784
    /// ```
785
    #[inline]
786
0
    pub fn try_from_slice(slice: &'a [T]) -> Option<Self> {
787
0
        T::slice_to_unaligned(slice).map(|ule_slice| Self::new_borrowed(ule_slice))
788
0
    }
789
790
    /// Creates a `ZeroVec<'a, T>` from a `&'a [T]`, either by borrowing the argument or by
791
    /// allocating a new vector.
792
    ///
793
    /// This is a cheap operation on little-endian platforms, falling back to a more expensive
794
    /// operation on big-endian platforms.
795
    ///
796
    /// # Example
797
    ///
798
    /// ```
799
    /// use zerovec::ZeroVec;
800
    ///
801
    /// // The little-endian bytes correspond to the numbers on the following line.
802
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
803
    /// let nums: &[u16] = &[211, 281, 421, 461];
804
    ///
805
    /// let zerovec = ZeroVec::from_slice_or_alloc(nums);
806
    ///
807
    /// // Note: zerovec could be either borrowed or owned.
808
    /// assert_eq!(bytes, zerovec.as_bytes());
809
    /// ```
810
    #[inline]
811
    #[cfg(feature = "alloc")]
812
0
    pub fn from_slice_or_alloc(slice: &'a [T]) -> Self {
813
0
        Self::try_from_slice(slice).unwrap_or_else(|| Self::alloc_from_slice(slice))
814
0
    }
815
}
816
817
impl<'a, T> ZeroVec<'a, T>
818
where
819
    T: AsULE,
820
{
821
    /// Mutates each element according to a given function, meant to be
822
    /// a more convenient version of calling `.iter_mut()` with
823
    /// [`ZeroVec::with_mut()`] which serves fewer use cases.
824
    ///
825
    /// This will convert the ZeroVec into an owned ZeroVec if not already the case.
826
    ///
827
    /// # Example
828
    ///
829
    /// ```
830
    /// use zerovec::ZeroVec;
831
    ///
832
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
833
    /// let mut zerovec: ZeroVec<u16> =
834
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
835
    ///
836
    /// zerovec.for_each_mut(|item| *item += 1);
837
    ///
838
    /// assert_eq!(zerovec.to_vec(), &[212, 282, 422, 462]);
839
    /// assert!(zerovec.is_owned());
840
    /// ```
841
    #[inline]
842
    #[cfg(feature = "alloc")]
843
0
    pub fn for_each_mut(&mut self, mut f: impl FnMut(&mut T)) {
844
0
        self.to_mut_slice().iter_mut().for_each(|item| {
845
0
            let mut aligned = T::from_unaligned(*item);
846
0
            f(&mut aligned);
847
0
            *item = aligned.to_unaligned()
848
0
        })
849
0
    }
850
851
    /// Same as [`ZeroVec::for_each_mut()`], but bubbles up errors.
852
    ///
853
    /// # Example
854
    ///
855
    /// ```
856
    /// use zerovec::ZeroVec;
857
    ///
858
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
859
    /// let mut zerovec: ZeroVec<u16> =
860
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
861
    ///
862
    /// zerovec.try_for_each_mut(|item| {
863
    ///     *item = item.checked_add(1).ok_or(())?;
864
    ///     Ok(())
865
    /// })?;
866
    ///
867
    /// assert_eq!(zerovec.to_vec(), &[212, 282, 422, 462]);
868
    /// assert!(zerovec.is_owned());
869
    /// # Ok::<(), ()>(())
870
    /// ```
871
    #[inline]
872
    #[cfg(feature = "alloc")]
873
0
    pub fn try_for_each_mut<E>(
874
0
        &mut self,
875
0
        mut f: impl FnMut(&mut T) -> Result<(), E>,
876
0
    ) -> Result<(), E> {
877
0
        self.to_mut_slice().iter_mut().try_for_each(|item| {
878
0
            let mut aligned = T::from_unaligned(*item);
879
0
            f(&mut aligned)?;
880
0
            *item = aligned.to_unaligned();
881
0
            Ok(())
882
0
        })
883
0
    }
884
885
    /// Converts a borrowed ZeroVec to an owned ZeroVec. No-op if already owned.
886
    ///
887
    /// # Example
888
    ///
889
    /// ```
890
    /// use zerovec::ZeroVec;
891
    ///
892
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
893
    /// let zerovec: ZeroVec<u16> =
894
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
895
    /// assert!(!zerovec.is_owned());
896
    ///
897
    /// let owned = zerovec.into_owned();
898
    /// assert!(owned.is_owned());
899
    /// ```
900
    #[cfg(feature = "alloc")]
901
0
    pub fn into_owned(self) -> ZeroVec<'static, T> {
902
        use alloc::borrow::Cow;
903
0
        match self.into_cow() {
904
0
            Cow::Owned(vec) => ZeroVec::new_owned(vec),
905
0
            Cow::Borrowed(b) => ZeroVec::new_owned(b.into()),
906
        }
907
0
    }
908
909
    /// Allows the ZeroVec to be mutated by converting it to an owned variant, and producing
910
    /// a mutable vector of ULEs. If you only need a mutable slice, consider using [`Self::to_mut_slice()`]
911
    /// instead.
912
    ///
913
    /// # Example
914
    ///
915
    /// ```rust
916
    /// # use crate::zerovec::ule::AsULE;
917
    /// use zerovec::ZeroVec;
918
    ///
919
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
920
    /// let mut zerovec: ZeroVec<u16> =
921
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
922
    /// assert!(!zerovec.is_owned());
923
    ///
924
    /// zerovec.with_mut(|v| v.push(12_u16.to_unaligned()));
925
    /// assert!(zerovec.is_owned());
926
    /// ```
927
    #[cfg(feature = "alloc")]
928
0
    pub fn with_mut<R>(&mut self, f: impl FnOnce(&mut alloc::vec::Vec<T::ULE>) -> R) -> R {
929
        use alloc::borrow::Cow;
930
        // We're in danger if f() panics whilst we've moved a vector out of self;
931
        // replace it with an empty dummy vector for now
932
0
        let this = core::mem::take(self);
933
0
        let mut vec = match this.into_cow() {
934
0
            Cow::Owned(v) => v,
935
0
            Cow::Borrowed(s) => s.into(),
936
        };
937
0
        let ret = f(&mut vec);
938
0
        *self = Self::new_owned(vec);
939
0
        ret
940
0
    }
941
942
    /// Allows the ZeroVec to be mutated by converting it to an owned variant (if necessary)
943
    /// and returning a slice to its backing buffer. [`Self::with_mut()`] allows for mutation
944
    /// of the vector itself.
945
    ///
946
    /// # Example
947
    ///
948
    /// ```rust
949
    /// # use crate::zerovec::ule::AsULE;
950
    /// use zerovec::ZeroVec;
951
    ///
952
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
953
    /// let mut zerovec: ZeroVec<u16> =
954
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
955
    /// assert!(!zerovec.is_owned());
956
    ///
957
    /// zerovec.to_mut_slice()[1] = 5u16.to_unaligned();
958
    /// assert!(zerovec.is_owned());
959
    /// ```
960
    #[cfg(feature = "alloc")]
961
0
    pub fn to_mut_slice(&mut self) -> &mut [T::ULE] {
962
0
        if !self.is_owned() {
963
0
            // `buf` is either a valid vector or slice of `T::ULE`s, either
964
0
            // way it's always valid
965
0
            let slice = self.vector.as_slice();
966
0
            *self = ZeroVec::new_owned(slice.into());
967
0
        }
968
0
        unsafe { self.vector.buf.as_mut() }
969
0
    }
970
    /// Remove all elements from this ZeroVec and reset it to an empty borrowed state.
971
0
    pub fn clear(&mut self) {
972
0
        *self = Self::new_borrowed(&[])
973
0
    }
974
975
    /// Removes the first element of the ZeroVec. The ZeroVec remains in the same
976
    /// borrowed or owned state.
977
    ///
978
    /// # Examples
979
    ///
980
    /// ```
981
    /// # use crate::zerovec::ule::AsULE;
982
    /// use zerovec::ZeroVec;
983
    ///
984
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
985
    /// let mut zerovec: ZeroVec<u16> =
986
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
987
    /// assert!(!zerovec.is_owned());
988
    ///
989
    /// let first = zerovec.take_first().unwrap();
990
    /// assert_eq!(first, 0x00D3);
991
    /// assert!(!zerovec.is_owned());
992
    ///
993
    /// let mut zerovec = zerovec.into_owned();
994
    /// assert!(zerovec.is_owned());
995
    /// let first = zerovec.take_first().unwrap();
996
    /// assert_eq!(first, 0x0119);
997
    /// assert!(zerovec.is_owned());
998
    /// ```
999
    #[cfg(feature = "alloc")]
1000
0
    pub fn take_first(&mut self) -> Option<T> {
1001
0
        match core::mem::take(self).into_cow() {
1002
0
            Cow::Owned(mut vec) => {
1003
0
                if vec.is_empty() {
1004
0
                    return None;
1005
0
                }
1006
0
                let ule = vec.remove(0);
1007
0
                let rv = T::from_unaligned(ule);
1008
0
                *self = ZeroVec::new_owned(vec);
1009
0
                Some(rv)
1010
            }
1011
0
            Cow::Borrowed(b) => {
1012
0
                let (ule, remainder) = b.split_first()?;
1013
0
                let rv = T::from_unaligned(*ule);
1014
0
                *self = ZeroVec::new_borrowed(remainder);
1015
0
                Some(rv)
1016
            }
1017
        }
1018
0
    }
1019
1020
    /// Removes the last element of the ZeroVec. The ZeroVec remains in the same
1021
    /// borrowed or owned state.
1022
    ///
1023
    /// # Examples
1024
    ///
1025
    /// ```
1026
    /// # use crate::zerovec::ule::AsULE;
1027
    /// use zerovec::ZeroVec;
1028
    ///
1029
    /// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
1030
    /// let mut zerovec: ZeroVec<u16> =
1031
    ///     ZeroVec::parse_bytes(bytes).expect("infallible");
1032
    /// assert!(!zerovec.is_owned());
1033
    ///
1034
    /// let last = zerovec.take_last().unwrap();
1035
    /// assert_eq!(last, 0x01CD);
1036
    /// assert!(!zerovec.is_owned());
1037
    ///
1038
    /// let mut zerovec = zerovec.into_owned();
1039
    /// assert!(zerovec.is_owned());
1040
    /// let last = zerovec.take_last().unwrap();
1041
    /// assert_eq!(last, 0x01A5);
1042
    /// assert!(zerovec.is_owned());
1043
    /// ```
1044
    #[cfg(feature = "alloc")]
1045
0
    pub fn take_last(&mut self) -> Option<T> {
1046
0
        match core::mem::take(self).into_cow() {
1047
0
            Cow::Owned(mut vec) => {
1048
0
                let ule = vec.pop()?;
1049
0
                let rv = T::from_unaligned(ule);
1050
0
                *self = ZeroVec::new_owned(vec);
1051
0
                Some(rv)
1052
            }
1053
0
            Cow::Borrowed(b) => {
1054
0
                let (ule, remainder) = b.split_last()?;
1055
0
                let rv = T::from_unaligned(*ule);
1056
0
                *self = ZeroVec::new_borrowed(remainder);
1057
0
                Some(rv)
1058
            }
1059
        }
1060
0
    }
1061
1062
    /// Converts the type into a `Cow<'a, [T::ULE]>`, which is
1063
    /// the logical equivalent of this type's internal representation
1064
    #[inline]
1065
    #[cfg(feature = "alloc")]
1066
0
    pub fn into_cow(self) -> Cow<'a, [T::ULE]> {
1067
0
        let this = core::mem::ManuallyDrop::new(self);
1068
0
        if this.is_owned() {
1069
0
            let vec = unsafe {
1070
                // safe to call: we know it's owned,
1071
                // and `self`/`this` are thenceforth no longer used or dropped
1072
0
                { this }.vector.get_vec()
1073
            };
1074
0
            Cow::Owned(vec)
1075
        } else {
1076
            // We can extend the lifetime of the slice to 'a
1077
            // since we know it is borrowed
1078
0
            let slice = unsafe { { this }.vector.as_arbitrary_slice() };
1079
0
            Cow::Borrowed(slice)
1080
        }
1081
0
    }
1082
1083
    /// Truncates this vector to `min(self.len(), max)`.
1084
    #[inline]
1085
0
    pub fn truncated(mut self, max: usize) -> Self {
1086
0
        self.vector.truncate(max);
1087
0
        self
1088
0
    }
1089
}
1090
1091
#[cfg(feature = "alloc")]
1092
impl<T: AsULE> FromIterator<T> for ZeroVec<'_, T> {
1093
    /// Creates an owned [`ZeroVec`] from an iterator of values.
1094
0
    fn from_iter<I>(iter: I) -> Self
1095
0
    where
1096
0
        I: IntoIterator<Item = T>,
1097
    {
1098
0
        ZeroVec::new_owned(iter.into_iter().map(|t| t.to_unaligned()).collect())
1099
0
    }
1100
}
1101
1102
/// Convenience wrapper for [`ZeroSlice::from_ule_slice`]. The value will be created at compile-time,
1103
/// meaning that all arguments must also be constant.
1104
///
1105
/// # Arguments
1106
///
1107
/// * `$aligned` - The type of an element in its canonical, aligned form, e.g., `char`.
1108
/// * `$convert` - A const function that converts an `$aligned` into its unaligned equivalent, e.g.,
1109
///   const fn from_aligned(a: CanonicalType) -> CanonicalType::ULE`.
1110
/// * `$x` - The elements that the `ZeroSlice` will hold.
1111
///
1112
/// # Examples
1113
///
1114
/// Using array-conversion functions provided by this crate:
1115
///
1116
/// ```
1117
/// use zerovec::{ZeroSlice, zeroslice, ule::AsULE};
1118
///
1119
/// const SIGNATURE: &ZeroSlice<char> = zeroslice!(char; <char as AsULE>::ULE::from_aligned; ['b', 'y', 'e', '✌']);
1120
/// const EMPTY: &ZeroSlice<u32> = zeroslice![];
1121
///
1122
/// let empty: &ZeroSlice<u32> = zeroslice![];
1123
/// let nums = zeroslice!(u32; <u32 as AsULE>::ULE::from_unsigned; [1, 2, 3, 4, 5]);
1124
/// assert_eq!(nums.last().unwrap(), 5);
1125
/// ```
1126
///
1127
/// Using a custom array-conversion function:
1128
///
1129
/// ```
1130
/// use zerovec::{ule::AsULE, ule::RawBytesULE, zeroslice, ZeroSlice};
1131
///
1132
/// const fn be_convert(num: i16) -> <i16 as AsULE>::ULE {
1133
///     RawBytesULE(num.to_be_bytes())
1134
/// }
1135
///
1136
/// const NUMBERS_BE: &ZeroSlice<i16> =
1137
///     zeroslice!(i16; be_convert; [1, -2, 3, -4, 5]);
1138
/// ```
1139
#[macro_export]
1140
macro_rules! zeroslice {
1141
    () => {
1142
        $crate::ZeroSlice::new_empty()
1143
    };
1144
    ($aligned:ty; $convert:expr; [$($x:expr),+ $(,)?]) => {
1145
        $crate::ZeroSlice::<$aligned>::from_ule_slice(const { &[$($convert($x)),*] })
1146
    };
1147
}
1148
1149
/// Creates a borrowed `ZeroVec`. Convenience wrapper for `zeroslice!(...).as_zerovec()`. The value
1150
/// will be created at compile-time, meaning that all arguments must also be constant.
1151
///
1152
/// See [`zeroslice!`](crate::zeroslice) for more information.
1153
///
1154
/// # Examples
1155
///
1156
/// ```
1157
/// use zerovec::{ZeroVec, zerovec, ule::AsULE};
1158
///
1159
/// const SIGNATURE: ZeroVec<char> = zerovec!(char; <char as AsULE>::ULE::from_aligned; ['a', 'y', 'e', '✌']);
1160
/// assert!(!SIGNATURE.is_owned());
1161
///
1162
/// const EMPTY: ZeroVec<u32> = zerovec![];
1163
/// assert!(!EMPTY.is_owned());
1164
/// ```
1165
#[macro_export]
1166
macro_rules! zerovec {
1167
    () => (
1168
        $crate::ZeroVec::new()
1169
    );
1170
    ($aligned:ty; $convert:expr; [$($x:expr),+ $(,)?]) => (
1171
        $crate::zeroslice![$aligned; $convert; [$($x),+]].as_zerovec()
1172
    );
1173
}
1174
1175
#[cfg(test)]
1176
mod tests {
1177
    use super::*;
1178
    use crate::samples::*;
1179
1180
    #[test]
1181
    fn test_get() {
1182
        {
1183
            let zerovec = ZeroVec::from_slice_or_alloc(TEST_SLICE);
1184
            assert_eq!(zerovec.get(0), Some(TEST_SLICE[0]));
1185
            assert_eq!(zerovec.get(1), Some(TEST_SLICE[1]));
1186
            assert_eq!(zerovec.get(2), Some(TEST_SLICE[2]));
1187
        }
1188
        {
1189
            let zerovec = ZeroVec::<u32>::parse_bytes(TEST_BUFFER_LE).unwrap();
1190
            assert_eq!(zerovec.get(0), Some(TEST_SLICE[0]));
1191
            assert_eq!(zerovec.get(1), Some(TEST_SLICE[1]));
1192
            assert_eq!(zerovec.get(2), Some(TEST_SLICE[2]));
1193
        }
1194
    }
1195
1196
    #[test]
1197
    fn test_binary_search() {
1198
        {
1199
            let zerovec = ZeroVec::from_slice_or_alloc(TEST_SLICE);
1200
            assert_eq!(Ok(3), zerovec.binary_search(&0x0e0d0c));
1201
            assert_eq!(Err(3), zerovec.binary_search(&0x0c0d0c));
1202
        }
1203
        {
1204
            let zerovec = ZeroVec::<u32>::parse_bytes(TEST_BUFFER_LE).unwrap();
1205
            assert_eq!(Ok(3), zerovec.binary_search(&0x0e0d0c));
1206
            assert_eq!(Err(3), zerovec.binary_search(&0x0c0d0c));
1207
        }
1208
    }
1209
1210
    #[test]
1211
    fn test_odd_alignment() {
1212
        assert_eq!(
1213
            Some(0x020100),
1214
            ZeroVec::<u32>::parse_bytes(TEST_BUFFER_LE).unwrap().get(0)
1215
        );
1216
        assert_eq!(
1217
            Some(0x04000201),
1218
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[1..77])
1219
                .unwrap()
1220
                .get(0)
1221
        );
1222
        assert_eq!(
1223
            Some(0x05040002),
1224
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[2..78])
1225
                .unwrap()
1226
                .get(0)
1227
        );
1228
        assert_eq!(
1229
            Some(0x06050400),
1230
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[3..79])
1231
                .unwrap()
1232
                .get(0)
1233
        );
1234
        assert_eq!(
1235
            Some(0x060504),
1236
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[4..])
1237
                .unwrap()
1238
                .get(0)
1239
        );
1240
        assert_eq!(
1241
            Some(0x4e4d4c00),
1242
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[75..79])
1243
                .unwrap()
1244
                .get(0)
1245
        );
1246
        assert_eq!(
1247
            Some(0x4e4d4c00),
1248
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[3..79])
1249
                .unwrap()
1250
                .get(18)
1251
        );
1252
        assert_eq!(
1253
            Some(0x4e4d4c),
1254
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[76..])
1255
                .unwrap()
1256
                .get(0)
1257
        );
1258
        assert_eq!(
1259
            Some(0x4e4d4c),
1260
            ZeroVec::<u32>::parse_bytes(TEST_BUFFER_LE).unwrap().get(19)
1261
        );
1262
        // TODO(#1144): Check for correct slice length in RawBytesULE
1263
        // assert_eq!(
1264
        //     None,
1265
        //     ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[77..])
1266
        //         .unwrap()
1267
        //         .get(0)
1268
        // );
1269
        assert_eq!(
1270
            None,
1271
            ZeroVec::<u32>::parse_bytes(TEST_BUFFER_LE).unwrap().get(20)
1272
        );
1273
        assert_eq!(
1274
            None,
1275
            ZeroVec::<u32>::parse_bytes(&TEST_BUFFER_LE[3..79])
1276
                .unwrap()
1277
                .get(19)
1278
        );
1279
    }
1280
}