Coverage Report

Created: 2025-11-16 06:36

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/botan/src/lib/block/camellia/camellia.cpp
Line
Count
Source
1
/*
2
* Camellia
3
* (C) 2012,2020 Jack Lloyd
4
*
5
* Botan is released under the Simplified BSD License (see license.txt)
6
*/
7
8
#include <botan/internal/camellia.h>
9
10
#include <botan/internal/loadstor.h>
11
#include <botan/internal/prefetch.h>
12
#include <botan/internal/rotate.h>
13
14
#if defined(BOTAN_HAS_CPUID) && defined(BOTAN_HAS_CAMELLIA_GFNI)
15
   #include <botan/internal/camellia_gfni.h>
16
   #include <botan/internal/cpuid.h>
17
#endif
18
19
namespace Botan {
20
21
namespace {
22
23
namespace Camellia_F {
24
25
alignas(256) const uint8_t SBOX1[256] = {
26
   0x70, 0x82, 0x2C, 0xEC, 0xB3, 0x27, 0xC0, 0xE5, 0xE4, 0x85, 0x57, 0x35, 0xEA, 0x0C, 0xAE, 0x41, 0x23, 0xEF, 0x6B,
27
   0x93, 0x45, 0x19, 0xA5, 0x21, 0xED, 0x0E, 0x4F, 0x4E, 0x1D, 0x65, 0x92, 0xBD, 0x86, 0xB8, 0xAF, 0x8F, 0x7C, 0xEB,
28
   0x1F, 0xCE, 0x3E, 0x30, 0xDC, 0x5F, 0x5E, 0xC5, 0x0B, 0x1A, 0xA6, 0xE1, 0x39, 0xCA, 0xD5, 0x47, 0x5D, 0x3D, 0xD9,
29
   0x01, 0x5A, 0xD6, 0x51, 0x56, 0x6C, 0x4D, 0x8B, 0x0D, 0x9A, 0x66, 0xFB, 0xCC, 0xB0, 0x2D, 0x74, 0x12, 0x2B, 0x20,
30
   0xF0, 0xB1, 0x84, 0x99, 0xDF, 0x4C, 0xCB, 0xC2, 0x34, 0x7E, 0x76, 0x05, 0x6D, 0xB7, 0xA9, 0x31, 0xD1, 0x17, 0x04,
31
   0xD7, 0x14, 0x58, 0x3A, 0x61, 0xDE, 0x1B, 0x11, 0x1C, 0x32, 0x0F, 0x9C, 0x16, 0x53, 0x18, 0xF2, 0x22, 0xFE, 0x44,
32
   0xCF, 0xB2, 0xC3, 0xB5, 0x7A, 0x91, 0x24, 0x08, 0xE8, 0xA8, 0x60, 0xFC, 0x69, 0x50, 0xAA, 0xD0, 0xA0, 0x7D, 0xA1,
33
   0x89, 0x62, 0x97, 0x54, 0x5B, 0x1E, 0x95, 0xE0, 0xFF, 0x64, 0xD2, 0x10, 0xC4, 0x00, 0x48, 0xA3, 0xF7, 0x75, 0xDB,
34
   0x8A, 0x03, 0xE6, 0xDA, 0x09, 0x3F, 0xDD, 0x94, 0x87, 0x5C, 0x83, 0x02, 0xCD, 0x4A, 0x90, 0x33, 0x73, 0x67, 0xF6,
35
   0xF3, 0x9D, 0x7F, 0xBF, 0xE2, 0x52, 0x9B, 0xD8, 0x26, 0xC8, 0x37, 0xC6, 0x3B, 0x81, 0x96, 0x6F, 0x4B, 0x13, 0xBE,
36
   0x63, 0x2E, 0xE9, 0x79, 0xA7, 0x8C, 0x9F, 0x6E, 0xBC, 0x8E, 0x29, 0xF5, 0xF9, 0xB6, 0x2F, 0xFD, 0xB4, 0x59, 0x78,
37
   0x98, 0x06, 0x6A, 0xE7, 0x46, 0x71, 0xBA, 0xD4, 0x25, 0xAB, 0x42, 0x88, 0xA2, 0x8D, 0xFA, 0x72, 0x07, 0xB9, 0x55,
38
   0xF8, 0xEE, 0xAC, 0x0A, 0x36, 0x49, 0x2A, 0x68, 0x3C, 0x38, 0xF1, 0xA4, 0x40, 0x28, 0xD3, 0x7B, 0xBB, 0xC9, 0x43,
39
   0xC1, 0x15, 0xE3, 0xAD, 0xF4, 0x77, 0xC7, 0x80, 0x9E};
40
41
// SBOX2[x] = rotl<1>(SBOX1[x])
42
alignas(256) const uint8_t SBOX2[256] = {
43
   0xE0, 0x05, 0x58, 0xD9, 0x67, 0x4E, 0x81, 0xCB, 0xC9, 0x0B, 0xAE, 0x6A, 0xD5, 0x18, 0x5D, 0x82, 0x46, 0xDF, 0xD6,
44
   0x27, 0x8A, 0x32, 0x4B, 0x42, 0xDB, 0x1C, 0x9E, 0x9C, 0x3A, 0xCA, 0x25, 0x7B, 0x0D, 0x71, 0x5F, 0x1F, 0xF8, 0xD7,
45
   0x3E, 0x9D, 0x7C, 0x60, 0xB9, 0xBE, 0xBC, 0x8B, 0x16, 0x34, 0x4D, 0xC3, 0x72, 0x95, 0xAB, 0x8E, 0xBA, 0x7A, 0xB3,
46
   0x02, 0xB4, 0xAD, 0xA2, 0xAC, 0xD8, 0x9A, 0x17, 0x1A, 0x35, 0xCC, 0xF7, 0x99, 0x61, 0x5A, 0xE8, 0x24, 0x56, 0x40,
47
   0xE1, 0x63, 0x09, 0x33, 0xBF, 0x98, 0x97, 0x85, 0x68, 0xFC, 0xEC, 0x0A, 0xDA, 0x6F, 0x53, 0x62, 0xA3, 0x2E, 0x08,
48
   0xAF, 0x28, 0xB0, 0x74, 0xC2, 0xBD, 0x36, 0x22, 0x38, 0x64, 0x1E, 0x39, 0x2C, 0xA6, 0x30, 0xE5, 0x44, 0xFD, 0x88,
49
   0x9F, 0x65, 0x87, 0x6B, 0xF4, 0x23, 0x48, 0x10, 0xD1, 0x51, 0xC0, 0xF9, 0xD2, 0xA0, 0x55, 0xA1, 0x41, 0xFA, 0x43,
50
   0x13, 0xC4, 0x2F, 0xA8, 0xB6, 0x3C, 0x2B, 0xC1, 0xFF, 0xC8, 0xA5, 0x20, 0x89, 0x00, 0x90, 0x47, 0xEF, 0xEA, 0xB7,
51
   0x15, 0x06, 0xCD, 0xB5, 0x12, 0x7E, 0xBB, 0x29, 0x0F, 0xB8, 0x07, 0x04, 0x9B, 0x94, 0x21, 0x66, 0xE6, 0xCE, 0xED,
52
   0xE7, 0x3B, 0xFE, 0x7F, 0xC5, 0xA4, 0x37, 0xB1, 0x4C, 0x91, 0x6E, 0x8D, 0x76, 0x03, 0x2D, 0xDE, 0x96, 0x26, 0x7D,
53
   0xC6, 0x5C, 0xD3, 0xF2, 0x4F, 0x19, 0x3F, 0xDC, 0x79, 0x1D, 0x52, 0xEB, 0xF3, 0x6D, 0x5E, 0xFB, 0x69, 0xB2, 0xF0,
54
   0x31, 0x0C, 0xD4, 0xCF, 0x8C, 0xE2, 0x75, 0xA9, 0x4A, 0x57, 0x84, 0x11, 0x45, 0x1B, 0xF5, 0xE4, 0x0E, 0x73, 0xAA,
55
   0xF1, 0xDD, 0x59, 0x14, 0x6C, 0x92, 0x54, 0xD0, 0x78, 0x70, 0xE3, 0x49, 0x80, 0x50, 0xA7, 0xF6, 0x77, 0x93, 0x86,
56
   0x83, 0x2A, 0xC7, 0x5B, 0xE9, 0xEE, 0x8F, 0x01, 0x3D};
57
58
// SBOX3[x] = rotl<7>(SBOX1[x])
59
alignas(256) const uint8_t SBOX3[256] = {
60
   0x38, 0x41, 0x16, 0x76, 0xD9, 0x93, 0x60, 0xF2, 0x72, 0xC2, 0xAB, 0x9A, 0x75, 0x06, 0x57, 0xA0, 0x91, 0xF7, 0xB5,
61
   0xC9, 0xA2, 0x8C, 0xD2, 0x90, 0xF6, 0x07, 0xA7, 0x27, 0x8E, 0xB2, 0x49, 0xDE, 0x43, 0x5C, 0xD7, 0xC7, 0x3E, 0xF5,
62
   0x8F, 0x67, 0x1F, 0x18, 0x6E, 0xAF, 0x2F, 0xE2, 0x85, 0x0D, 0x53, 0xF0, 0x9C, 0x65, 0xEA, 0xA3, 0xAE, 0x9E, 0xEC,
63
   0x80, 0x2D, 0x6B, 0xA8, 0x2B, 0x36, 0xA6, 0xC5, 0x86, 0x4D, 0x33, 0xFD, 0x66, 0x58, 0x96, 0x3A, 0x09, 0x95, 0x10,
64
   0x78, 0xD8, 0x42, 0xCC, 0xEF, 0x26, 0xE5, 0x61, 0x1A, 0x3F, 0x3B, 0x82, 0xB6, 0xDB, 0xD4, 0x98, 0xE8, 0x8B, 0x02,
65
   0xEB, 0x0A, 0x2C, 0x1D, 0xB0, 0x6F, 0x8D, 0x88, 0x0E, 0x19, 0x87, 0x4E, 0x0B, 0xA9, 0x0C, 0x79, 0x11, 0x7F, 0x22,
66
   0xE7, 0x59, 0xE1, 0xDA, 0x3D, 0xC8, 0x12, 0x04, 0x74, 0x54, 0x30, 0x7E, 0xB4, 0x28, 0x55, 0x68, 0x50, 0xBE, 0xD0,
67
   0xC4, 0x31, 0xCB, 0x2A, 0xAD, 0x0F, 0xCA, 0x70, 0xFF, 0x32, 0x69, 0x08, 0x62, 0x00, 0x24, 0xD1, 0xFB, 0xBA, 0xED,
68
   0x45, 0x81, 0x73, 0x6D, 0x84, 0x9F, 0xEE, 0x4A, 0xC3, 0x2E, 0xC1, 0x01, 0xE6, 0x25, 0x48, 0x99, 0xB9, 0xB3, 0x7B,
69
   0xF9, 0xCE, 0xBF, 0xDF, 0x71, 0x29, 0xCD, 0x6C, 0x13, 0x64, 0x9B, 0x63, 0x9D, 0xC0, 0x4B, 0xB7, 0xA5, 0x89, 0x5F,
70
   0xB1, 0x17, 0xF4, 0xBC, 0xD3, 0x46, 0xCF, 0x37, 0x5E, 0x47, 0x94, 0xFA, 0xFC, 0x5B, 0x97, 0xFE, 0x5A, 0xAC, 0x3C,
71
   0x4C, 0x03, 0x35, 0xF3, 0x23, 0xB8, 0x5D, 0x6A, 0x92, 0xD5, 0x21, 0x44, 0x51, 0xC6, 0x7D, 0x39, 0x83, 0xDC, 0xAA,
72
   0x7C, 0x77, 0x56, 0x05, 0x1B, 0xA4, 0x15, 0x34, 0x1E, 0x1C, 0xF8, 0x52, 0x20, 0x14, 0xE9, 0xBD, 0xDD, 0xE4, 0xA1,
73
   0xE0, 0x8A, 0xF1, 0xD6, 0x7A, 0xBB, 0xE3, 0x40, 0x4F};
74
75
// SBOX4[x] = SBOX1[rotl<1>(x)]
76
alignas(256) const uint8_t SBOX4[256] = {
77
   0x70, 0x2C, 0xB3, 0xC0, 0xE4, 0x57, 0xEA, 0xAE, 0x23, 0x6B, 0x45, 0xA5, 0xED, 0x4F, 0x1D, 0x92, 0x86, 0xAF, 0x7C,
78
   0x1F, 0x3E, 0xDC, 0x5E, 0x0B, 0xA6, 0x39, 0xD5, 0x5D, 0xD9, 0x5A, 0x51, 0x6C, 0x8B, 0x9A, 0xFB, 0xB0, 0x74, 0x2B,
79
   0xF0, 0x84, 0xDF, 0xCB, 0x34, 0x76, 0x6D, 0xA9, 0xD1, 0x04, 0x14, 0x3A, 0xDE, 0x11, 0x32, 0x9C, 0x53, 0xF2, 0xFE,
80
   0xCF, 0xC3, 0x7A, 0x24, 0xE8, 0x60, 0x69, 0xAA, 0xA0, 0xA1, 0x62, 0x54, 0x1E, 0xE0, 0x64, 0x10, 0x00, 0xA3, 0x75,
81
   0x8A, 0xE6, 0x09, 0xDD, 0x87, 0x83, 0xCD, 0x90, 0x73, 0xF6, 0x9D, 0xBF, 0x52, 0xD8, 0xC8, 0xC6, 0x81, 0x6F, 0x13,
82
   0x63, 0xE9, 0xA7, 0x9F, 0xBC, 0x29, 0xF9, 0x2F, 0xB4, 0x78, 0x06, 0xE7, 0x71, 0xD4, 0xAB, 0x88, 0x8D, 0x72, 0xB9,
83
   0xF8, 0xAC, 0x36, 0x2A, 0x3C, 0xF1, 0x40, 0xD3, 0xBB, 0x43, 0x15, 0xAD, 0x77, 0x80, 0x82, 0xEC, 0x27, 0xE5, 0x85,
84
   0x35, 0x0C, 0x41, 0xEF, 0x93, 0x19, 0x21, 0x0E, 0x4E, 0x65, 0xBD, 0xB8, 0x8F, 0xEB, 0xCE, 0x30, 0x5F, 0xC5, 0x1A,
85
   0xE1, 0xCA, 0x47, 0x3D, 0x01, 0xD6, 0x56, 0x4D, 0x0D, 0x66, 0xCC, 0x2D, 0x12, 0x20, 0xB1, 0x99, 0x4C, 0xC2, 0x7E,
86
   0x05, 0xB7, 0x31, 0x17, 0xD7, 0x58, 0x61, 0x1B, 0x1C, 0x0F, 0x16, 0x18, 0x22, 0x44, 0xB2, 0xB5, 0x91, 0x08, 0xA8,
87
   0xFC, 0x50, 0xD0, 0x7D, 0x89, 0x97, 0x5B, 0x95, 0xFF, 0xD2, 0xC4, 0x48, 0xF7, 0xDB, 0x03, 0xDA, 0x3F, 0x94, 0x5C,
88
   0x02, 0x4A, 0x33, 0x67, 0xF3, 0x7F, 0xE2, 0x9B, 0x26, 0x37, 0x3B, 0x96, 0x4B, 0xBE, 0x2E, 0x79, 0x8C, 0x6E, 0x8E,
89
   0xF5, 0xB6, 0xFD, 0x59, 0x98, 0x6A, 0x46, 0xBA, 0x25, 0x42, 0xA2, 0xFA, 0x07, 0x55, 0xEE, 0x0A, 0x49, 0x68, 0x38,
90
   0xA4, 0x28, 0x7B, 0xC9, 0xC1, 0xE3, 0xF4, 0xC7, 0x9E};
91
92
0
uint64_t F(uint64_t v, uint64_t K) {
93
0
   const uint64_t M1 = 0x0101010001000001;
94
0
   const uint64_t M2 = 0x0001010101010000;
95
0
   const uint64_t M3 = 0x0100010100010100;
96
0
   const uint64_t M4 = 0x0101000100000101;
97
0
   const uint64_t M5 = 0x0001010100010101;
98
0
   const uint64_t M6 = 0x0100010101000101;
99
0
   const uint64_t M7 = 0x0101000101010001;
100
0
   const uint64_t M8 = 0x0101010001010100;
101
102
0
   const uint64_t x = v ^ K;
103
104
0
   const uint64_t Z1 = M1 * SBOX1[get_byte<0>(x)];
105
0
   const uint64_t Z2 = M2 * SBOX2[get_byte<1>(x)];
106
0
   const uint64_t Z3 = M3 * SBOX3[get_byte<2>(x)];
107
0
   const uint64_t Z4 = M4 * SBOX4[get_byte<3>(x)];
108
0
   const uint64_t Z5 = M5 * SBOX2[get_byte<4>(x)];
109
0
   const uint64_t Z6 = M6 * SBOX3[get_byte<5>(x)];
110
0
   const uint64_t Z7 = M7 * SBOX4[get_byte<6>(x)];
111
0
   const uint64_t Z8 = M8 * SBOX1[get_byte<7>(x)];
112
113
0
   return Z1 ^ Z2 ^ Z3 ^ Z4 ^ Z5 ^ Z6 ^ Z7 ^ Z8;
114
0
}
115
116
0
inline uint64_t FL(uint64_t v, uint64_t K) {
117
0
   uint32_t x1 = static_cast<uint32_t>(v >> 32);
118
0
   uint32_t x2 = static_cast<uint32_t>(v & 0xFFFFFFFF);
119
120
0
   const uint32_t k1 = static_cast<uint32_t>(K >> 32);
121
0
   const uint32_t k2 = static_cast<uint32_t>(K & 0xFFFFFFFF);
122
123
0
   x2 ^= rotl<1>(x1 & k1);
124
0
   x1 ^= (x2 | k2);
125
126
0
   return ((static_cast<uint64_t>(x1) << 32) | x2);
127
0
}
128
129
0
inline uint64_t FLINV(uint64_t v, uint64_t K) {
130
0
   uint32_t x1 = static_cast<uint32_t>(v >> 32);
131
0
   uint32_t x2 = static_cast<uint32_t>(v & 0xFFFFFFFF);
132
133
0
   const uint32_t k1 = static_cast<uint32_t>(K >> 32);
134
0
   const uint32_t k2 = static_cast<uint32_t>(K & 0xFFFFFFFF);
135
136
0
   x1 ^= (x2 | k2);
137
0
   x2 ^= rotl<1>(x1 & k1);
138
139
0
   return ((static_cast<uint64_t>(x1) << 32) | x2);
140
0
}
141
142
/*
143
* Camellia Encryption
144
*/
145
0
void encrypt(const uint8_t in[], uint8_t out[], size_t blocks, const secure_vector<uint64_t>& SK, size_t rounds) {
146
0
   prefetch_arrays(SBOX1, SBOX2, SBOX3, SBOX4);
147
148
0
   for(size_t i = 0; i < blocks; ++i) {
149
0
      uint64_t D1 = load_be<uint64_t>(in, 2 * i + 0);
150
0
      uint64_t D2 = load_be<uint64_t>(in, 2 * i + 1);
151
152
0
      const uint64_t* K = SK.data();
153
154
0
      D1 ^= *K++;
155
0
      D2 ^= *K++;
156
157
0
      D2 ^= F(D1, *K++);
158
0
      D1 ^= F(D2, *K++);
159
160
0
      for(size_t r = 1; r != rounds - 1; ++r) {
161
0
         if(r % 3 == 0) {
162
0
            D1 = FL(D1, *K++);
163
0
            D2 = FLINV(D2, *K++);
164
0
         }
165
166
0
         D2 ^= F(D1, *K++);
167
0
         D1 ^= F(D2, *K++);
168
0
      }
169
170
0
      D2 ^= F(D1, *K++);
171
0
      D1 ^= F(D2, *K++);
172
173
0
      D2 ^= *K++;
174
0
      D1 ^= *K++;
175
176
0
      store_be(out + 16 * i, D2, D1);
177
0
   }
178
0
}
179
180
/*
181
* Camellia Decryption
182
*/
183
0
void decrypt(const uint8_t in[], uint8_t out[], size_t blocks, const secure_vector<uint64_t>& SK, size_t rounds) {
184
0
   prefetch_arrays(SBOX1, SBOX2, SBOX3, SBOX4);
185
186
0
   for(size_t i = 0; i < blocks; ++i) {
187
0
      uint64_t D1 = load_be<uint64_t>(in, 2 * i + 0);
188
0
      uint64_t D2 = load_be<uint64_t>(in, 2 * i + 1);
189
190
0
      const uint64_t* K = &SK[SK.size() - 1];
191
192
0
      D2 ^= *K--;
193
0
      D1 ^= *K--;
194
195
0
      D2 ^= F(D1, *K--);
196
0
      D1 ^= F(D2, *K--);
197
198
0
      for(size_t r = 1; r != rounds - 1; ++r) {
199
0
         if(r % 3 == 0) {
200
0
            D1 = FL(D1, *K--);
201
0
            D2 = FLINV(D2, *K--);
202
0
         }
203
204
0
         D2 ^= F(D1, *K--);
205
0
         D1 ^= F(D2, *K--);
206
0
      }
207
208
0
      D2 ^= F(D1, *K--);
209
0
      D1 ^= F(D2, *K--);
210
211
0
      D1 ^= *K--;
212
0
      D2 ^= *K;
213
214
0
      store_be(out + 16 * i, D2, D1);
215
0
   }
216
0
}
217
218
0
inline uint64_t left_rot_hi(uint64_t h, uint64_t l, size_t shift) {
219
0
   if(shift >= 64) {
220
0
      shift -= 64;
221
0
   }
222
0
   return (h << shift) | (l >> (64 - shift));
223
0
}
224
225
0
inline uint64_t left_rot_lo(uint64_t h, uint64_t l, size_t shift) {
226
0
   if(shift >= 64) {
227
0
      shift -= 64;
228
0
   }
229
0
   return (h >> (64 - shift)) | (l << shift);
230
0
}
231
232
/*
233
* Camellia Key Schedule
234
*/
235
0
void key_schedule(secure_vector<uint64_t>& SK, std::span<const uint8_t> key) {
236
0
   const uint64_t Sigma1 = 0xA09E667F3BCC908B;
237
0
   const uint64_t Sigma2 = 0xB67AE8584CAA73B2;
238
0
   const uint64_t Sigma3 = 0xC6EF372FE94F82BE;
239
0
   const uint64_t Sigma4 = 0x54FF53A5F1D36F1C;
240
0
   const uint64_t Sigma5 = 0x10E527FADE682D1D;
241
0
   const uint64_t Sigma6 = 0xB05688C2B3E6C1FD;
242
243
0
   const uint64_t KL_H = load_be<uint64_t>(key.data(), 0);
244
0
   const uint64_t KL_L = load_be<uint64_t>(key.data(), 1);
245
246
0
   const uint64_t KR_H = (key.size() >= 24) ? load_be<uint64_t>(key.data(), 2) : 0;
247
248
0
   const uint64_t KR_L = [&]() -> uint64_t {
249
0
      if(key.size() == 32) {
250
0
         return load_be<uint64_t>(key.data(), 3);
251
0
      } else if(key.size() == 24) {
252
0
         return ~KR_H;
253
0
      } else {
254
0
         return 0;
255
0
      }
256
0
   }();
257
258
0
   uint64_t D1 = KL_H ^ KR_H;
259
0
   uint64_t D2 = KL_L ^ KR_L;
260
0
   D2 ^= F(D1, Sigma1);
261
0
   D1 ^= F(D2, Sigma2);
262
0
   D1 ^= KL_H;
263
0
   D2 ^= KL_L;
264
0
   D2 ^= F(D1, Sigma3);
265
0
   D1 ^= F(D2, Sigma4);
266
267
0
   const uint64_t KA_H = D1;
268
0
   const uint64_t KA_L = D2;
269
270
0
   D1 = KA_H ^ KR_H;
271
0
   D2 = KA_L ^ KR_L;
272
0
   D2 ^= F(D1, Sigma5);
273
0
   D1 ^= F(D2, Sigma6);
274
275
0
   const uint64_t KB_H = D1;
276
0
   const uint64_t KB_L = D2;
277
278
0
   if(key.size() == 16) {
279
0
      SK.resize(26);
280
281
0
      SK[0] = KL_H;
282
0
      SK[1] = KL_L;
283
0
      SK[2] = KA_H;
284
0
      SK[3] = KA_L;
285
0
      SK[4] = left_rot_hi(KL_H, KL_L, 15);
286
0
      SK[5] = left_rot_lo(KL_H, KL_L, 15);
287
0
      SK[6] = left_rot_hi(KA_H, KA_L, 15);
288
0
      SK[7] = left_rot_lo(KA_H, KA_L, 15);
289
0
      SK[8] = left_rot_hi(KA_H, KA_L, 30);
290
0
      SK[9] = left_rot_lo(KA_H, KA_L, 30);
291
0
      SK[10] = left_rot_hi(KL_H, KL_L, 45);
292
0
      SK[11] = left_rot_lo(KL_H, KL_L, 45);
293
0
      SK[12] = left_rot_hi(KA_H, KA_L, 45);
294
0
      SK[13] = left_rot_lo(KL_H, KL_L, 60);
295
0
      SK[14] = left_rot_hi(KA_H, KA_L, 60);
296
0
      SK[15] = left_rot_lo(KA_H, KA_L, 60);
297
0
      SK[16] = left_rot_lo(KL_H, KL_L, 77);
298
0
      SK[17] = left_rot_hi(KL_H, KL_L, 77);
299
0
      SK[18] = left_rot_lo(KL_H, KL_L, 94);
300
0
      SK[19] = left_rot_hi(KL_H, KL_L, 94);
301
0
      SK[20] = left_rot_lo(KA_H, KA_L, 94);
302
0
      SK[21] = left_rot_hi(KA_H, KA_L, 94);
303
0
      SK[22] = left_rot_lo(KL_H, KL_L, 111);
304
0
      SK[23] = left_rot_hi(KL_H, KL_L, 111);
305
0
      SK[24] = left_rot_lo(KA_H, KA_L, 111);
306
0
      SK[25] = left_rot_hi(KA_H, KA_L, 111);
307
0
   } else {
308
0
      SK.resize(34);
309
310
0
      SK[0] = KL_H;
311
0
      SK[1] = KL_L;
312
0
      SK[2] = KB_H;
313
0
      SK[3] = KB_L;
314
315
0
      SK[4] = left_rot_hi(KR_H, KR_L, 15);
316
0
      SK[5] = left_rot_lo(KR_H, KR_L, 15);
317
0
      SK[6] = left_rot_hi(KA_H, KA_L, 15);
318
0
      SK[7] = left_rot_lo(KA_H, KA_L, 15);
319
320
0
      SK[8] = left_rot_hi(KR_H, KR_L, 30);
321
0
      SK[9] = left_rot_lo(KR_H, KR_L, 30);
322
0
      SK[10] = left_rot_hi(KB_H, KB_L, 30);
323
0
      SK[11] = left_rot_lo(KB_H, KB_L, 30);
324
325
0
      SK[12] = left_rot_hi(KL_H, KL_L, 45);
326
0
      SK[13] = left_rot_lo(KL_H, KL_L, 45);
327
0
      SK[14] = left_rot_hi(KA_H, KA_L, 45);
328
0
      SK[15] = left_rot_lo(KA_H, KA_L, 45);
329
330
0
      SK[16] = left_rot_hi(KL_H, KL_L, 60);
331
0
      SK[17] = left_rot_lo(KL_H, KL_L, 60);
332
0
      SK[18] = left_rot_hi(KR_H, KR_L, 60);
333
0
      SK[19] = left_rot_lo(KR_H, KR_L, 60);
334
0
      SK[20] = left_rot_hi(KB_H, KB_L, 60);
335
0
      SK[21] = left_rot_lo(KB_H, KB_L, 60);
336
337
0
      SK[22] = left_rot_lo(KL_H, KL_L, 77);
338
0
      SK[23] = left_rot_hi(KL_H, KL_L, 77);
339
0
      SK[24] = left_rot_lo(KA_H, KA_L, 77);
340
0
      SK[25] = left_rot_hi(KA_H, KA_L, 77);
341
342
0
      SK[26] = left_rot_lo(KR_H, KR_L, 94);
343
0
      SK[27] = left_rot_hi(KR_H, KR_L, 94);
344
0
      SK[28] = left_rot_lo(KA_H, KA_L, 94);
345
0
      SK[29] = left_rot_hi(KA_H, KA_L, 94);
346
0
      SK[30] = left_rot_lo(KL_H, KL_L, 111);
347
0
      SK[31] = left_rot_hi(KL_H, KL_L, 111);
348
0
      SK[32] = left_rot_lo(KB_H, KB_L, 111);
349
0
      SK[33] = left_rot_hi(KB_H, KB_L, 111);
350
0
   }
351
0
}
352
353
0
std::string provider() {
354
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
355
0
   if(auto feat = CPUID::check(CPUID::Feature::GFNI)) {
356
0
      return *feat;
357
0
   }
358
0
#endif
359
360
0
   return "base";
361
0
}
362
363
}  // namespace Camellia_F
364
365
}  // namespace
366
367
0
void Camellia_128::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
368
0
   assert_key_material_set();
369
370
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
371
0
   if(CPUID::has(CPUID::Feature::GFNI)) {
372
0
      return camellia_gfni_encrypt9(in, out, blocks, m_SK);
373
0
   }
374
0
#endif
375
376
0
   Camellia_F::encrypt(in, out, blocks, m_SK, 9);
377
0
}
378
379
0
void Camellia_192::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
380
0
   assert_key_material_set();
381
382
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
383
0
   if(CPUID::has(CPUID::Feature::GFNI)) {
384
0
      return camellia_gfni_encrypt12(in, out, blocks, m_SK);
385
0
   }
386
0
#endif
387
388
0
   Camellia_F::encrypt(in, out, blocks, m_SK, 12);
389
0
}
390
391
0
void Camellia_256::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
392
0
   assert_key_material_set();
393
394
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
395
0
   if(CPUID::has(CPUID::Feature::GFNI)) {
396
0
      return camellia_gfni_encrypt12(in, out, blocks, m_SK);
397
0
   }
398
0
#endif
399
400
0
   Camellia_F::encrypt(in, out, blocks, m_SK, 12);
401
0
}
402
403
0
void Camellia_128::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
404
0
   assert_key_material_set();
405
406
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
407
0
   if(CPUID::has(CPUID::Feature::GFNI)) {
408
0
      return camellia_gfni_decrypt9(in, out, blocks, m_SK);
409
0
   }
410
0
#endif
411
412
0
   Camellia_F::decrypt(in, out, blocks, m_SK, 9);
413
0
}
414
415
0
void Camellia_192::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
416
0
   assert_key_material_set();
417
418
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
419
0
   if(CPUID::has(CPUID::Feature::GFNI)) {
420
0
      return camellia_gfni_decrypt12(in, out, blocks, m_SK);
421
0
   }
422
0
#endif
423
424
0
   Camellia_F::decrypt(in, out, blocks, m_SK, 12);
425
0
}
426
427
0
void Camellia_256::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
428
0
   assert_key_material_set();
429
430
0
#if defined(BOTAN_HAS_CAMELLIA_GFNI)
431
0
   if(CPUID::has(CPUID::Feature::GFNI)) {
432
0
      return camellia_gfni_decrypt12(in, out, blocks, m_SK);
433
0
   }
434
0
#endif
435
436
0
   Camellia_F::decrypt(in, out, blocks, m_SK, 12);
437
0
}
438
439
0
bool Camellia_128::has_keying_material() const {
440
0
   return !m_SK.empty();
441
0
}
442
443
0
bool Camellia_192::has_keying_material() const {
444
0
   return !m_SK.empty();
445
0
}
446
447
0
bool Camellia_256::has_keying_material() const {
448
0
   return !m_SK.empty();
449
0
}
450
451
0
void Camellia_128::key_schedule(std::span<const uint8_t> key) {
452
0
   Camellia_F::key_schedule(m_SK, key);
453
0
}
454
455
0
void Camellia_192::key_schedule(std::span<const uint8_t> key) {
456
0
   Camellia_F::key_schedule(m_SK, key);
457
0
}
458
459
0
void Camellia_256::key_schedule(std::span<const uint8_t> key) {
460
0
   Camellia_F::key_schedule(m_SK, key);
461
0
}
462
463
0
void Camellia_128::clear() {
464
0
   zap(m_SK);
465
0
}
466
467
0
void Camellia_192::clear() {
468
0
   zap(m_SK);
469
0
}
470
471
0
void Camellia_256::clear() {
472
0
   zap(m_SK);
473
0
}
474
475
0
std::string Camellia_128::provider() const {
476
0
   return Camellia_F::provider();
477
0
}
478
479
0
std::string Camellia_192::provider() const {
480
0
   return Camellia_F::provider();
481
0
}
482
483
0
std::string Camellia_256::provider() const {
484
0
   return Camellia_F::provider();
485
0
}
486
487
}  // namespace Botan