/src/botan/src/lib/block/noekeon/noekeon.cpp
Line | Count | Source |
1 | | /* |
2 | | * Noekeon |
3 | | * (C) 1999-2008 Jack Lloyd |
4 | | * |
5 | | * Botan is released under the Simplified BSD License (see license.txt) |
6 | | */ |
7 | | |
8 | | #include <botan/internal/noekeon.h> |
9 | | |
10 | | #include <botan/internal/loadstor.h> |
11 | | #include <botan/internal/rotate.h> |
12 | | |
13 | | #if defined(BOTAN_HAS_CPUID) |
14 | | #include <botan/internal/cpuid.h> |
15 | | #endif |
16 | | |
17 | | namespace Botan { |
18 | | |
19 | | namespace { |
20 | | |
21 | | /* |
22 | | * Noekeon's Theta Operation |
23 | | */ |
24 | 0 | inline void theta(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3, const uint32_t EK[4]) { |
25 | 0 | uint32_t T = A0 ^ A2; |
26 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
27 | 0 | A1 ^= T; |
28 | 0 | A3 ^= T; |
29 | |
|
30 | 0 | A0 ^= EK[0]; |
31 | 0 | A1 ^= EK[1]; |
32 | 0 | A2 ^= EK[2]; |
33 | 0 | A3 ^= EK[3]; |
34 | |
|
35 | 0 | T = A1 ^ A3; |
36 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
37 | 0 | A0 ^= T; |
38 | 0 | A2 ^= T; |
39 | 0 | } |
40 | | |
41 | | /* |
42 | | * Theta With Null Key |
43 | | */ |
44 | 0 | inline void theta(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3) { |
45 | 0 | uint32_t T = A0 ^ A2; |
46 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
47 | 0 | A1 ^= T; |
48 | 0 | A3 ^= T; |
49 | |
|
50 | 0 | T = A1 ^ A3; |
51 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
52 | 0 | A0 ^= T; |
53 | 0 | A2 ^= T; |
54 | 0 | } |
55 | | |
56 | | /* |
57 | | * Noekeon's Gamma S-Box Layer |
58 | | */ |
59 | 0 | inline void gamma(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3) { |
60 | 0 | A1 ^= ~(A2 | A3); |
61 | 0 | A0 ^= A2 & A1; |
62 | |
|
63 | 0 | uint32_t T = A3; |
64 | 0 | A3 = A0; |
65 | 0 | A0 = T; |
66 | |
|
67 | 0 | A2 ^= A0 ^ A1 ^ A3; |
68 | |
|
69 | 0 | A1 ^= ~(A2 | A3); |
70 | 0 | A0 ^= A2 & A1; |
71 | 0 | } |
72 | | |
73 | | } // namespace |
74 | | |
75 | 0 | size_t Noekeon::parallelism() const { |
76 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
77 | 0 | if(CPUID::has(CPUID::Feature::SIMD_4X32)) { |
78 | 0 | return 4; |
79 | 0 | } |
80 | 0 | #endif |
81 | | |
82 | 0 | return 1; |
83 | 0 | } |
84 | | |
85 | 0 | std::string Noekeon::provider() const { |
86 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
87 | 0 | if(auto feat = CPUID::check(CPUID::Feature::SIMD_4X32)) { |
88 | 0 | return *feat; |
89 | 0 | } |
90 | 0 | #endif |
91 | | |
92 | 0 | return "base"; |
93 | 0 | } |
94 | | |
95 | | /* |
96 | | * Noekeon Round Constants |
97 | | */ |
98 | | const uint8_t Noekeon::RC[] = { |
99 | | 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4}; |
100 | | |
101 | | /* |
102 | | * Noekeon Encryption |
103 | | */ |
104 | 0 | void Noekeon::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { |
105 | 0 | assert_key_material_set(); |
106 | |
|
107 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
108 | 0 | if(CPUID::has(CPUID::Feature::SIMD_4X32)) { |
109 | 0 | while(blocks >= 4) { |
110 | 0 | simd_encrypt_4(in, out); |
111 | 0 | in += 4 * BLOCK_SIZE; |
112 | 0 | out += 4 * BLOCK_SIZE; |
113 | 0 | blocks -= 4; |
114 | 0 | } |
115 | 0 | } |
116 | 0 | #endif |
117 | |
|
118 | 0 | for(size_t i = 0; i != blocks; ++i) { |
119 | 0 | uint32_t A0 = load_be<uint32_t>(in, 0); |
120 | 0 | uint32_t A1 = load_be<uint32_t>(in, 1); |
121 | 0 | uint32_t A2 = load_be<uint32_t>(in, 2); |
122 | 0 | uint32_t A3 = load_be<uint32_t>(in, 3); |
123 | |
|
124 | 0 | for(size_t j = 0; j != 16; ++j) { |
125 | 0 | A0 ^= RC[j]; |
126 | 0 | theta(A0, A1, A2, A3, m_EK.data()); |
127 | |
|
128 | 0 | A1 = rotl<1>(A1); |
129 | 0 | A2 = rotl<5>(A2); |
130 | 0 | A3 = rotl<2>(A3); |
131 | |
|
132 | 0 | gamma(A0, A1, A2, A3); |
133 | |
|
134 | 0 | A1 = rotr<1>(A1); |
135 | 0 | A2 = rotr<5>(A2); |
136 | 0 | A3 = rotr<2>(A3); |
137 | 0 | } |
138 | |
|
139 | 0 | A0 ^= RC[16]; |
140 | 0 | theta(A0, A1, A2, A3, m_EK.data()); |
141 | |
|
142 | 0 | store_be(out, A0, A1, A2, A3); |
143 | |
|
144 | 0 | in += BLOCK_SIZE; |
145 | 0 | out += BLOCK_SIZE; |
146 | 0 | } |
147 | 0 | } |
148 | | |
149 | | /* |
150 | | * Noekeon Encryption |
151 | | */ |
152 | 0 | void Noekeon::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { |
153 | 0 | assert_key_material_set(); |
154 | |
|
155 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
156 | 0 | if(CPUID::has(CPUID::Feature::SIMD_4X32)) { |
157 | 0 | while(blocks >= 4) { |
158 | 0 | simd_decrypt_4(in, out); |
159 | 0 | in += 4 * BLOCK_SIZE; |
160 | 0 | out += 4 * BLOCK_SIZE; |
161 | 0 | blocks -= 4; |
162 | 0 | } |
163 | 0 | } |
164 | 0 | #endif |
165 | |
|
166 | 0 | for(size_t i = 0; i != blocks; ++i) { |
167 | 0 | uint32_t A0 = load_be<uint32_t>(in, 0); |
168 | 0 | uint32_t A1 = load_be<uint32_t>(in, 1); |
169 | 0 | uint32_t A2 = load_be<uint32_t>(in, 2); |
170 | 0 | uint32_t A3 = load_be<uint32_t>(in, 3); |
171 | |
|
172 | 0 | for(size_t j = 16; j != 0; --j) { |
173 | 0 | theta(A0, A1, A2, A3, m_DK.data()); |
174 | 0 | A0 ^= RC[j]; |
175 | |
|
176 | 0 | A1 = rotl<1>(A1); |
177 | 0 | A2 = rotl<5>(A2); |
178 | 0 | A3 = rotl<2>(A3); |
179 | |
|
180 | 0 | gamma(A0, A1, A2, A3); |
181 | |
|
182 | 0 | A1 = rotr<1>(A1); |
183 | 0 | A2 = rotr<5>(A2); |
184 | 0 | A3 = rotr<2>(A3); |
185 | 0 | } |
186 | |
|
187 | 0 | theta(A0, A1, A2, A3, m_DK.data()); |
188 | 0 | A0 ^= RC[0]; |
189 | |
|
190 | 0 | store_be(out, A0, A1, A2, A3); |
191 | |
|
192 | 0 | in += BLOCK_SIZE; |
193 | 0 | out += BLOCK_SIZE; |
194 | 0 | } |
195 | 0 | } |
196 | | |
197 | 0 | bool Noekeon::has_keying_material() const { |
198 | 0 | return !m_EK.empty(); |
199 | 0 | } |
200 | | |
201 | | /* |
202 | | * Noekeon Key Schedule |
203 | | */ |
204 | 0 | void Noekeon::key_schedule(std::span<const uint8_t> key) { |
205 | 0 | uint32_t A0 = load_be<uint32_t>(key.data(), 0); |
206 | 0 | uint32_t A1 = load_be<uint32_t>(key.data(), 1); |
207 | 0 | uint32_t A2 = load_be<uint32_t>(key.data(), 2); |
208 | 0 | uint32_t A3 = load_be<uint32_t>(key.data(), 3); |
209 | |
|
210 | 0 | for(size_t i = 0; i != 16; ++i) { |
211 | 0 | A0 ^= RC[i]; |
212 | 0 | theta(A0, A1, A2, A3); |
213 | |
|
214 | 0 | A1 = rotl<1>(A1); |
215 | 0 | A2 = rotl<5>(A2); |
216 | 0 | A3 = rotl<2>(A3); |
217 | |
|
218 | 0 | gamma(A0, A1, A2, A3); |
219 | |
|
220 | 0 | A1 = rotr<1>(A1); |
221 | 0 | A2 = rotr<5>(A2); |
222 | 0 | A3 = rotr<2>(A3); |
223 | 0 | } |
224 | |
|
225 | 0 | A0 ^= RC[16]; |
226 | |
|
227 | 0 | m_DK.resize(4); |
228 | 0 | m_DK[0] = A0; |
229 | 0 | m_DK[1] = A1; |
230 | 0 | m_DK[2] = A2; |
231 | 0 | m_DK[3] = A3; |
232 | |
|
233 | 0 | theta(A0, A1, A2, A3); |
234 | |
|
235 | 0 | m_EK.resize(4); |
236 | 0 | m_EK[0] = A0; |
237 | 0 | m_EK[1] = A1; |
238 | 0 | m_EK[2] = A2; |
239 | 0 | m_EK[3] = A3; |
240 | 0 | } |
241 | | |
242 | | /* |
243 | | * Clear memory of sensitive data |
244 | | */ |
245 | 0 | void Noekeon::clear() { |
246 | 0 | zap(m_EK); |
247 | 0 | zap(m_DK); |
248 | 0 | } |
249 | | |
250 | | } // namespace Botan |