/src/resiprocate/resip/stack/Tuple.cxx
Line | Count | Source |
1 | | #if defined(HAVE_CONFIG_H) |
2 | | #include "config.h" |
3 | | #endif |
4 | | |
5 | | #include "resip/stack/Tuple.hxx" |
6 | | #include "rutil/compat.hxx" |
7 | | |
8 | | #include <iostream> |
9 | | #include <string.h> |
10 | | #include <sys/types.h> |
11 | | #include "rutil/ResipAssert.h" |
12 | | |
13 | | #if !defined (WIN32) |
14 | | #include <arpa/inet.h> |
15 | | #include <netinet/in.h> |
16 | | #if defined(__APPLE__) && !defined(s6_addr16) |
17 | | #define s6_addr16 __u6_addr.__u6_addr16 |
18 | | #endif |
19 | | #endif |
20 | | |
21 | | #include "rutil/Data.hxx" |
22 | | #include "rutil/DnsUtil.hxx" |
23 | | #include "rutil/GenericIPAddress.hxx" |
24 | | #include "rutil/HashMap.hxx" |
25 | | #include "rutil/MD5Stream.hxx" |
26 | | #include "rutil/Logger.hxx" |
27 | | #ifdef USE_NETNS |
28 | | # include "rutil/NetNs.hxx" |
29 | | #endif |
30 | | |
31 | | using namespace resip; |
32 | | |
33 | | #define RESIPROCATE_SUBSYSTEM Subsystem::DNS |
34 | | |
35 | | Tuple::Tuple() : |
36 | 33.7k | mFlowKey(0), |
37 | 33.7k | mTransportKey(0), |
38 | 33.7k | onlyUseExistingConnection(false), |
39 | 33.7k | mTransportType(UNKNOWN_TRANSPORT) |
40 | 33.7k | { |
41 | 33.7k | sockaddr_in* addr4 = (sockaddr_in*)&mSockaddr; |
42 | 33.7k | memset(addr4, 0, sizeof(sockaddr_in)); |
43 | 33.7k | mSockaddr.sa_family = AF_INET; |
44 | 33.7k | } |
45 | | |
46 | | Tuple::Tuple(const GenericIPAddress& genericAddress, TransportType type, |
47 | | const Data& targetDomain) : |
48 | 0 | mFlowKey(0), |
49 | 0 | mTransportKey(0), |
50 | 0 | onlyUseExistingConnection(false), |
51 | 0 | mTransportType(type), |
52 | 0 | mTargetDomain(targetDomain) |
53 | 0 | { |
54 | 0 | setSockaddr(genericAddress); |
55 | 0 | } |
56 | | |
57 | | |
58 | | Tuple::Tuple(const Data& printableAddr, |
59 | | int port, |
60 | | IpVersion ipVer, |
61 | | TransportType type, |
62 | | const Data& targetDomain, |
63 | | const Data& netNs) : |
64 | 0 | mFlowKey(0), |
65 | 0 | mTransportKey(0), |
66 | 0 | onlyUseExistingConnection(false), |
67 | 0 | mTransportType(type), |
68 | 0 | mTargetDomain(targetDomain), |
69 | 0 | mNetNs(netNs) |
70 | 0 | { |
71 | 0 | if (ipVer == V4) |
72 | 0 | { |
73 | 0 | memset(&m_anonv4, 0, sizeof(m_anonv4)); |
74 | 0 | m_anonv4.sin_family = AF_INET; |
75 | 0 | m_anonv4.sin_port = htons(port); |
76 | |
|
77 | 0 | if (printableAddr.empty()) |
78 | 0 | { |
79 | 0 | m_anonv4.sin_addr.s_addr = htonl(INADDR_ANY); |
80 | 0 | } |
81 | 0 | else |
82 | 0 | { |
83 | 0 | DnsUtil::inet_pton( printableAddr, m_anonv4.sin_addr); |
84 | 0 | } |
85 | 0 | } |
86 | 0 | else |
87 | 0 | { |
88 | 0 | #ifdef USE_IPV6 |
89 | 0 | memset(&m_anonv6, 0, sizeof(m_anonv6)); |
90 | 0 | m_anonv6.sin6_family = AF_INET6; |
91 | 0 | m_anonv6.sin6_port = htons(port); |
92 | 0 | if (printableAddr.empty()) |
93 | 0 | { |
94 | 0 | m_anonv6.sin6_addr = in6addr_any; |
95 | 0 | } |
96 | 0 | else |
97 | 0 | { |
98 | 0 | DnsUtil::inet_pton( printableAddr, m_anonv6.sin6_addr); |
99 | 0 | } |
100 | | #else |
101 | | // avoid asserts since Tuples created via printableAddr can be created from items |
102 | | // received from the wire or from configuration settings. Just create an IPV4 inaddr_any tuple. |
103 | | //assert(0); |
104 | | memset(&m_anonv4, 0, sizeof(m_anonv4)); |
105 | | m_anonv4.sin_family = AF_INET; |
106 | | m_anonv4.sin_port = htons(port); |
107 | | m_anonv4.sin_addr.s_addr = htonl(INADDR_ANY); |
108 | | #endif |
109 | 0 | } |
110 | 0 | } |
111 | | |
112 | | Tuple::Tuple(const Data& printableAddr, |
113 | | int port, |
114 | | TransportType ptype, |
115 | | const Data& targetDomain, |
116 | | const Data& netNs) : |
117 | 12 | mFlowKey(0), |
118 | 12 | mTransportKey(0), |
119 | 12 | onlyUseExistingConnection(false), |
120 | 12 | mTransportType(ptype), |
121 | 12 | mTargetDomain(targetDomain), |
122 | 12 | mNetNs(netNs) |
123 | 12 | { |
124 | 12 | if (DnsUtil::isIpV4Address(printableAddr)) |
125 | 10 | { |
126 | 10 | memset(&m_anonv4, 0, sizeof(m_anonv4)); |
127 | | |
128 | 10 | DnsUtil::inet_pton( printableAddr, m_anonv4.sin_addr); |
129 | 10 | m_anonv4.sin_family = AF_INET; |
130 | 10 | m_anonv4.sin_port = htons(port); |
131 | 10 | } |
132 | 2 | #ifdef USE_IPV6 |
133 | 2 | else if(DnsUtil::isIpV6Address(printableAddr)) |
134 | 2 | { |
135 | 2 | memset(&m_anonv6, 0, sizeof(m_anonv6)); |
136 | 2 | DnsUtil::inet_pton( printableAddr, m_anonv6.sin6_addr); |
137 | 2 | m_anonv6.sin6_family = AF_INET6; |
138 | 2 | m_anonv6.sin6_port = htons(port); |
139 | 2 | } |
140 | 0 | #endif |
141 | 0 | else |
142 | 0 | { |
143 | | // avoid asserts since Tuples created via printableAddr can be created from items |
144 | | // received from the wire or from configuration settings. Just create an IPV4 inaddr_any tuple. |
145 | | // assert(0); |
146 | 0 | memset(&m_anonv4, 0, sizeof(m_anonv4)); |
147 | 0 | m_anonv4.sin_family = AF_INET; |
148 | 0 | m_anonv4.sin_port = htons(port); |
149 | 0 | m_anonv4.sin_addr.s_addr = htonl(INADDR_ANY); |
150 | 0 | } |
151 | 12 | } |
152 | | |
153 | | Tuple::Tuple(const in_addr& ipv4, |
154 | | int port, |
155 | | TransportType ptype, |
156 | | const Data& targetDomain, |
157 | | const Data& netNs) |
158 | 0 | :mFlowKey(0), |
159 | 0 | mTransportKey(0), |
160 | 0 | onlyUseExistingConnection(false), |
161 | 0 | mTransportType(ptype), |
162 | 0 | mTargetDomain(targetDomain), |
163 | 0 | mNetNs(netNs) |
164 | 0 | { |
165 | 0 | memset(&m_anonv4, 0, sizeof(sockaddr_in)); |
166 | 0 | m_anonv4.sin_addr = ipv4; |
167 | 0 | m_anonv4.sin_port = htons(port); |
168 | 0 | m_anonv4.sin_family = AF_INET; |
169 | 0 | } |
170 | | |
171 | | #ifdef USE_IPV6 |
172 | | Tuple::Tuple(const in6_addr& ipv6, |
173 | | int port, |
174 | | TransportType ptype, |
175 | | const Data& targetDomaina, |
176 | | const Data& netNs) |
177 | 0 | :mFlowKey(0), |
178 | 0 | mTransportKey(0), |
179 | 0 | onlyUseExistingConnection(false), |
180 | 0 | mTransportType(ptype), |
181 | 0 | mTargetDomain(targetDomaina), |
182 | 0 | mNetNs(netNs) |
183 | 0 | { |
184 | 0 | memset(&m_anonv6, 0, sizeof(sockaddr_in6)); |
185 | 0 | m_anonv6.sin6_addr = ipv6; |
186 | 0 | m_anonv6.sin6_port = htons(port); |
187 | 0 | m_anonv6.sin6_family = AF_INET6; |
188 | 0 | } |
189 | | #endif |
190 | | |
191 | | Tuple::Tuple(const struct sockaddr& addr, |
192 | | TransportType ptype, |
193 | | const Data& targetDomain) : |
194 | 0 | mFlowKey(0), |
195 | 0 | mTransportKey(0), |
196 | 0 | onlyUseExistingConnection(false), |
197 | 0 | mSockaddr(addr), |
198 | 0 | mTransportType(ptype), |
199 | 0 | mTargetDomain(targetDomain) |
200 | 0 | { |
201 | 0 | if (addr.sa_family == AF_INET) |
202 | 0 | { |
203 | 0 | m_anonv4 = (sockaddr_in&)(addr); |
204 | 0 | } |
205 | 0 | #ifdef USE_IPV6 |
206 | 0 | else if (addr.sa_family == AF_INET6) |
207 | 0 | { |
208 | 0 | m_anonv6 = (sockaddr_in6&)(addr); |
209 | 0 | } |
210 | 0 | #endif |
211 | 0 | else |
212 | 0 | { |
213 | 0 | resip_assert(0); |
214 | 0 | } |
215 | 0 | } |
216 | | |
217 | | void |
218 | | Tuple::copySockaddrAnyPort(sockaddr *sa) |
219 | 0 | { |
220 | 0 | memcpy(sa, &mSockaddr, length()); |
221 | | // zero the port number |
222 | 0 | if (sa->sa_family == AF_INET) |
223 | 0 | { |
224 | 0 | ((sockaddr_in*)sa)->sin_port = 0; |
225 | 0 | } |
226 | 0 | #ifdef USE_IPV6 |
227 | 0 | else if (sa->sa_family == AF_INET6) |
228 | 0 | { |
229 | 0 | ((sockaddr_in6*)sa)->sin6_port = 0; |
230 | 0 | } |
231 | 0 | #endif |
232 | 0 | else |
233 | 0 | { |
234 | 0 | resip_assert(0); |
235 | 0 | } |
236 | 0 | } |
237 | | |
238 | | void |
239 | | Tuple::setSockaddr(const GenericIPAddress& addr) |
240 | 0 | { |
241 | 0 | if (addr.isVersion4()) |
242 | 0 | { |
243 | 0 | m_anonv4 = addr.v4Address; |
244 | 0 | } |
245 | 0 | else |
246 | 0 | #ifdef USE_IPV6 |
247 | 0 | { |
248 | 0 | m_anonv6 = addr.v6Address; |
249 | 0 | } |
250 | | #else |
251 | | { |
252 | | resip_assert(0); |
253 | | } |
254 | | #endif |
255 | 0 | } |
256 | | |
257 | | #ifdef USE_NETNS |
258 | | # define TOKEN_SIZE 8 |
259 | | # define TOKEN_IP_ADDRESS_OFFSET 4 |
260 | | #else |
261 | 0 | # define TOKEN_SIZE 7 |
262 | 0 | # define TOKEN_IP_ADDRESS_OFFSET 3 |
263 | | #endif |
264 | | |
265 | | void |
266 | | Tuple::writeBinaryToken(const resip::Tuple& tuple, resip::Data& container, const Data& salt) |
267 | 0 | { |
268 | | // .bwc. Maybe should just write the raw sockaddr into a buffer, and tack |
269 | | // on the flowid and onlyUseExistingConnection flag. Would require 10 extra |
270 | | // bytes for V6, and 14 extra bytes for V4. |
271 | | // V6: sin6_len(1), sin6_flowinfo(4), flowId(4), onlyUseExistingConnection(1) |
272 | | // V4: sin_family(2 instead of 1), sin_zero(8), flowId(4), onlyUseExistingConnection(1) |
273 | 0 | uint32_t rawToken[TOKEN_SIZE]; |
274 | 0 | memset(&rawToken, 0, TOKEN_SIZE * 4); |
275 | |
|
276 | 0 | rawToken[0] = tuple.mFlowKey; |
277 | |
|
278 | 0 | rawToken[1] = tuple.mTransportKey; |
279 | | |
280 | | // 0xXXXX0000 |
281 | 0 | rawToken[2] += (tuple.getPort() << 16); |
282 | | |
283 | | // 0x0000XX00 |
284 | 0 | rawToken[2] += (tuple.getType() << 8); |
285 | | |
286 | | // 0x000000X0 |
287 | 0 | if(tuple.onlyUseExistingConnection) |
288 | 0 | { |
289 | 0 | rawToken[2] += 0x00000010; |
290 | 0 | } |
291 | |
|
292 | | #ifdef USE_NETNS |
293 | | rawToken[3] = NetNs::getNetNsId(tuple.getNetNs()); |
294 | | #endif |
295 | |
|
296 | 0 | #ifdef USE_IPV6 |
297 | 0 | if(tuple.ipVersion()==V6) |
298 | 0 | { |
299 | | // 0x0000000X |
300 | 0 | rawToken[2] += 0x00000001; |
301 | 0 | in6_addr address = reinterpret_cast<const sockaddr_in6&>(tuple.getSockaddr()).sin6_addr; |
302 | 0 | resip_assert(sizeof(address)==16); |
303 | 0 | memcpy(&rawToken[TOKEN_IP_ADDRESS_OFFSET],&address,16); |
304 | 0 | } |
305 | 0 | else |
306 | 0 | #endif |
307 | 0 | { |
308 | 0 | in_addr address = reinterpret_cast<const sockaddr_in&>(tuple.getSockaddr()).sin_addr; |
309 | 0 | resip_assert(sizeof(address)==4); |
310 | 0 | memcpy(&rawToken[TOKEN_IP_ADDRESS_OFFSET],&address,4); |
311 | 0 | } |
312 | | |
313 | 0 | container.clear(); |
314 | 0 | container.reserve(((tuple.ipVersion()==V6) ? TOKEN_SIZE*4 : (TOKEN_SIZE-3)*4) + (salt.empty() ? 0 : 32)); |
315 | 0 | container.append((char*)&rawToken[0],(tuple.ipVersion()==V6) ? TOKEN_SIZE*4 : (TOKEN_SIZE-3)*4); |
316 | |
|
317 | 0 | if(!salt.empty()) |
318 | 0 | { |
319 | | // TODO - potentially use SHA1 HMAC if USE_SSL is defined for stronger encryption |
320 | 0 | MD5Stream ms; |
321 | 0 | ms << container << salt; |
322 | 0 | container += ms.getHex(); |
323 | 0 | } |
324 | 0 | } |
325 | | |
326 | | |
327 | | Tuple |
328 | | Tuple::makeTupleFromBinaryToken(const resip::Data& binaryFlowToken, const Data& salt) |
329 | 0 | { |
330 | | // To check if size is valid, we first need the IP version, so make sure the token is at least |
331 | | // the size of an IPv4 token |
332 | 0 | if(binaryFlowToken.size()<16) |
333 | 0 | { |
334 | | // !bwc! Should not assert here, since this sort of thing |
335 | | // can come off the wire easily. |
336 | | // TODO Throw an exception here? |
337 | 0 | DebugLog(<<"binary flow token was too small: " << binaryFlowToken.size()); |
338 | 0 | return Tuple(); |
339 | 0 | } |
340 | | |
341 | 0 | const uint32_t* rawToken=reinterpret_cast<const uint32_t*>(binaryFlowToken.data()); |
342 | |
|
343 | 0 | FlowKey mFlowKey=rawToken[0]; |
344 | 0 | TransportKey transportKey=rawToken[1]; |
345 | |
|
346 | 0 | IpVersion version = (rawToken[2] & 0x00000001 ? V6 : V4); |
347 | |
|
348 | 0 | bool isRealFlow = (rawToken[2] & 0x00000010 ? true : false); |
349 | |
|
350 | 0 | uint8_t temp = (TransportType)((rawToken[2] & 0x00000F00) >> 8); |
351 | 0 | if(temp >= MAX_TRANSPORT) |
352 | 0 | { |
353 | 0 | DebugLog(<<"Garbage transport type in flow token: " << temp ); |
354 | 0 | return Tuple(); |
355 | 0 | } |
356 | 0 | TransportType type = (TransportType)temp; |
357 | |
|
358 | 0 | uint16_t port= (rawToken[2] >> 16); |
359 | | |
360 | | // Now that we have the version we can do a more accurate check on the size |
361 | 0 | if(!((version==V4 && salt.empty() && binaryFlowToken.size()==(TOKEN_SIZE-3)*4) || |
362 | 0 | (version==V4 && !salt.empty() && binaryFlowToken.size()==(TOKEN_SIZE-3)*4 + 32) || |
363 | 0 | (version==V6 && salt.empty() && binaryFlowToken.size()==TOKEN_SIZE*4) || |
364 | 0 | (version==V6 && !salt.empty() && binaryFlowToken.size()==TOKEN_SIZE*4 + 32))) |
365 | 0 | { |
366 | 0 | DebugLog(<<"Binary flow token is the wrong size for its IP version."); |
367 | 0 | return Tuple(); |
368 | 0 | } |
369 | | |
370 | | // If salt is specified, validate HMAC |
371 | 0 | if(!salt.empty()) |
372 | 0 | { |
373 | 0 | unsigned int tokenSizeLessHMAC = version == V4 ? (TOKEN_SIZE-3)*4 : TOKEN_SIZE*4; |
374 | 0 | Data flowTokenLessHMAC(Data::Share, binaryFlowToken.data(), tokenSizeLessHMAC); |
375 | 0 | Data flowTokenHMAC(Data::Share, binaryFlowToken.data()+tokenSizeLessHMAC, 32); |
376 | 0 | MD5Stream ms; |
377 | 0 | ms << flowTokenLessHMAC << salt; |
378 | 0 | if(ms.getHex() != flowTokenHMAC) |
379 | 0 | { |
380 | 0 | DebugLog(<<"Binary flow token has invalid HMAC, not our token"); |
381 | 0 | return Tuple(); |
382 | 0 | } |
383 | 0 | } |
384 | | |
385 | 0 | Data netNs(""); |
386 | | #ifdef USE_NETNS |
387 | | int netNsId = rawToken[3]; |
388 | | try |
389 | | { |
390 | | netNs = NetNs::getNetNsName(netNsId); |
391 | | } |
392 | | catch (const NetNs::Exception& e) |
393 | | { |
394 | | ErrLog(<< "Tuple binary token contained netns id: " << netNsId << "which does not exist." |
395 | | << e); |
396 | | } |
397 | | #endif |
398 | |
|
399 | 0 | if(version==V6) |
400 | 0 | { |
401 | 0 | #ifdef USE_IPV6 |
402 | 0 | in6_addr address; |
403 | 0 | resip_assert(sizeof(address)==16); |
404 | 0 | memcpy(&address,&rawToken[TOKEN_IP_ADDRESS_OFFSET],16); |
405 | 0 | Tuple result(address, port, type, Data::Empty, netNs); |
406 | | #else |
407 | | Tuple result(resip::Data::Empty, port, type, Data::Empty, netNs); |
408 | | #endif |
409 | 0 | result.mFlowKey=(FlowKey)mFlowKey; |
410 | 0 | result.mTransportKey = (TransportKey)transportKey; |
411 | 0 | result.onlyUseExistingConnection=isRealFlow; |
412 | 0 | return result; |
413 | 0 | } |
414 | | |
415 | 0 | in_addr address; |
416 | 0 | resip_assert(sizeof(address)==4); |
417 | 0 | memcpy(&address,&rawToken[TOKEN_IP_ADDRESS_OFFSET],4); |
418 | 0 | Tuple result(address, port, type, Data::Empty, netNs); |
419 | 0 | result.mFlowKey=(FlowKey)mFlowKey; |
420 | 0 | result.mTransportKey = (TransportKey)transportKey; |
421 | 0 | result.onlyUseExistingConnection=isRealFlow; |
422 | 0 | return result; |
423 | 0 | } |
424 | | |
425 | | Data |
426 | | Tuple::presentationFormat() const |
427 | 0 | { |
428 | 0 | #ifdef USE_IPV6 |
429 | 0 | if (isV4()) |
430 | 0 | { |
431 | 0 | return Tuple::inet_ntop(*this); |
432 | 0 | } |
433 | 0 | else if (IN6_IS_ADDR_V4MAPPED(&m_anonv6.sin6_addr)) |
434 | 0 | { |
435 | 0 | return DnsUtil::inet_ntop(*(reinterpret_cast<const in_addr*>( |
436 | 0 | (reinterpret_cast<const unsigned char*>(&m_anonv6.sin6_addr) + 12)))); |
437 | 0 | } |
438 | 0 | else |
439 | 0 | { |
440 | 0 | return Tuple::inet_ntop(*this); |
441 | 0 | } |
442 | | #else |
443 | | return Tuple::inet_ntop(*this); |
444 | | #endif |
445 | |
|
446 | 0 | } |
447 | | |
448 | | void |
449 | | Tuple::setPort(int port) |
450 | 0 | { |
451 | 0 | if (mSockaddr.sa_family == AF_INET) // v4 |
452 | 0 | { |
453 | 0 | m_anonv4.sin_port = htons(port); |
454 | 0 | } |
455 | 0 | else |
456 | 0 | { |
457 | 0 | #ifdef USE_IPV6 |
458 | 0 | m_anonv6.sin6_port = htons(port); |
459 | | #else |
460 | | resip_assert(0); |
461 | | #endif |
462 | 0 | } |
463 | 0 | } |
464 | | |
465 | | int |
466 | | Tuple::getPort() const |
467 | 0 | { |
468 | 0 | if (mSockaddr.sa_family == AF_INET) // v4 |
469 | 0 | { |
470 | 0 | return ntohs(m_anonv4.sin_port); |
471 | 0 | } |
472 | 0 | else |
473 | 0 | { |
474 | 0 | #ifdef USE_IPV6 |
475 | 0 | return ntohs(m_anonv6.sin6_port); |
476 | | #else |
477 | | resip_assert(0); |
478 | | #endif |
479 | 0 | } |
480 | | |
481 | 0 | return -1; |
482 | 0 | } |
483 | | |
484 | | bool |
485 | | Tuple::isAnyInterface() const |
486 | 0 | { |
487 | 0 | if (isV4()) |
488 | 0 | { |
489 | 0 | return m_anonv4.sin_addr.s_addr == htonl(INADDR_ANY); |
490 | 0 | } |
491 | 0 | #if defined (USE_IPV6) |
492 | 0 | else |
493 | 0 | { |
494 | 0 | return memcmp(&m_anonv6.sin6_addr, &in6addr_any, sizeof(in6_addr)) == 0; |
495 | 0 | } |
496 | | #else |
497 | | return false; |
498 | | #endif |
499 | 0 | } |
500 | | |
501 | | static Tuple loopbackv4("127.0.0.1",0,UNKNOWN_TRANSPORT); |
502 | | bool |
503 | | Tuple::isLoopback() const |
504 | 0 | { |
505 | 0 | if(ipVersion()==V4) |
506 | 0 | { |
507 | 0 | return isEqualWithMask(loopbackv4,8,true,true); |
508 | 0 | } |
509 | 0 | else if (ipVersion()==V6) |
510 | 0 | { |
511 | 0 | #ifdef USE_IPV6 |
512 | 0 | #if defined(__linux__) || defined(__APPLE__) || defined(WIN32) |
513 | 0 | return IN6_IS_ADDR_LOOPBACK(&(m_anonv6.sin6_addr)) != 0; |
514 | | #else |
515 | | return ((*(const __uint32_t *)(const void *)(&(m_anonv6.sin6_addr.s6_addr[0])) == 0) && |
516 | | (*(const __uint32_t *)(const void *)(&(m_anonv6.sin6_addr.s6_addr[4])) == 0) && |
517 | | (*(const __uint32_t *)(const void *)(&(m_anonv6.sin6_addr.s6_addr[8])) == 0) && |
518 | | (*(const __uint32_t *)(const void *)(&(m_anonv6.sin6_addr.s6_addr[12])) == ntohl(1))); |
519 | | #endif |
520 | 0 | #endif |
521 | 0 | } |
522 | 0 | else |
523 | 0 | { |
524 | 0 | resip_assert(0); |
525 | 0 | } |
526 | | |
527 | 0 | return false; |
528 | 0 | } |
529 | | |
530 | | bool |
531 | | Tuple::isV4() const |
532 | 0 | { |
533 | 0 | return mSockaddr.sa_family == AF_INET; |
534 | 0 | } |
535 | | |
536 | | IpVersion |
537 | | Tuple::ipVersion() const |
538 | 0 | { |
539 | 0 | return mSockaddr.sa_family == AF_INET ? V4 : V6; |
540 | 0 | } |
541 | | |
542 | | static Tuple v4privateaddrbase1("10.0.0.0",0,UNKNOWN_TRANSPORT); |
543 | | static Tuple v4privateaddrbase2("172.16.0.0",0,UNKNOWN_TRANSPORT); |
544 | | static Tuple v4privateaddrbase3("192.168.0.0",0,UNKNOWN_TRANSPORT); |
545 | | static Tuple v4sharedaddrbase1("100.64.0.0",0,UNKNOWN_TRANSPORT); |
546 | | |
547 | | #ifdef USE_IPV6 |
548 | | static Tuple v6privateaddrbase("fc00::",0,UNKNOWN_TRANSPORT); |
549 | | #endif |
550 | | |
551 | | bool |
552 | | Tuple::isPrivateAddress() const |
553 | 0 | { |
554 | 0 | if(ipVersion()==V4) |
555 | 0 | { |
556 | | // RFC 1918 & RFC 6598 |
557 | 0 | return isEqualWithMask(v4privateaddrbase1,8,true,true) || // 10.0.0.0 - 10.255.255.255 (10/8 prefix) |
558 | 0 | isEqualWithMask(v4privateaddrbase2,12,true,true) || // 172.16.0.0 - 172.31.255.255 (172.16/12 prefix) |
559 | 0 | isEqualWithMask(v4privateaddrbase3,16,true,true) || // 192.168.0.0 - 192.168.255.255 (192.168/16 prefix) |
560 | 0 | isEqualWithMask(v4sharedaddrbase1,10,true,true) || // 100.64.0.0 - 100.127.255.255 (100.64/110 prefix) |
561 | 0 | isLoopback(); |
562 | 0 | } |
563 | 0 | #ifdef USE_IPV6 |
564 | 0 | else if (ipVersion()==V6) |
565 | 0 | { |
566 | | // RFC 4193 |
567 | | // ?slg? should we look specifically for ipv4 mapped/compatible address and apply V4 rules to them? |
568 | 0 | return isEqualWithMask(v6privateaddrbase,7,true,true) || // fc00::/7 |
569 | 0 | isLoopback(); |
570 | 0 | } |
571 | 0 | #endif |
572 | 0 | else |
573 | 0 | { |
574 | 0 | resip_assert(0); |
575 | 0 | } |
576 | | |
577 | 0 | return false; |
578 | 0 | } |
579 | | |
580 | | socklen_t |
581 | | Tuple::length() const |
582 | 0 | { |
583 | 0 | if (mSockaddr.sa_family == AF_INET) // v4 |
584 | 0 | { |
585 | 0 | return sizeof(sockaddr_in); |
586 | 0 | } |
587 | 0 | #ifdef USE_IPV6 |
588 | 0 | else if (mSockaddr.sa_family == AF_INET6) // v6 |
589 | 0 | { |
590 | 0 | return sizeof(sockaddr_in6); |
591 | 0 | } |
592 | 0 | #endif |
593 | | |
594 | 0 | resip_assert(0); |
595 | 0 | return 0; |
596 | 0 | } |
597 | | |
598 | | |
599 | | bool Tuple::operator==(const Tuple& rhs) const |
600 | 0 | { |
601 | 0 | if (mSockaddr.sa_family == rhs.mSockaddr.sa_family) |
602 | 0 | { |
603 | 0 | if (mSockaddr.sa_family == AF_INET) // v4 |
604 | 0 | { |
605 | 0 | return (m_anonv4.sin_port == rhs.m_anonv4.sin_port && |
606 | 0 | mTransportType == rhs.mTransportType && |
607 | 0 | memcmp(&m_anonv4.sin_addr, &rhs.m_anonv4.sin_addr, sizeof(in_addr)) == 0 && |
608 | 0 | rhs.mNetNs == mNetNs); |
609 | 0 | } |
610 | 0 | else // v6 |
611 | 0 | { |
612 | 0 | #ifdef USE_IPV6 |
613 | 0 | return (m_anonv6.sin6_port == rhs.m_anonv6.sin6_port && |
614 | 0 | mTransportType == rhs.mTransportType && |
615 | 0 | memcmp(&m_anonv6.sin6_addr, &rhs.m_anonv6.sin6_addr, sizeof(in6_addr)) == 0 && |
616 | 0 | rhs.mNetNs == mNetNs); |
617 | | #else |
618 | | resip_assert(0); |
619 | | return false; |
620 | | #endif |
621 | 0 | } |
622 | 0 | } |
623 | 0 | else |
624 | 0 | { |
625 | 0 | return false; |
626 | 0 | } |
627 | | |
628 | | // !dlb! don't include connection |
629 | 0 | } |
630 | | |
631 | | bool |
632 | | Tuple::operator<(const Tuple& rhs) const |
633 | 0 | { |
634 | 0 | if (mTransportType < rhs.mTransportType) |
635 | 0 | { |
636 | 0 | return true; |
637 | 0 | } |
638 | 0 | else if (mTransportType > rhs.mTransportType) |
639 | 0 | { |
640 | 0 | return false; |
641 | 0 | } |
642 | | |
643 | | #ifdef USE_NETNS |
644 | | // netns needs to be checked before port and address as the port/address |
645 | | // comparison bails out in equal case. Ideally netns comparison should |
646 | | // be last as its the most expensive comparison. For now putting it here |
647 | | // for minimal code change |
648 | | else if(mNetNs < rhs.mNetNs) |
649 | | { |
650 | | return(true); |
651 | | } |
652 | | else if(mNetNs > rhs.mNetNs) |
653 | | { |
654 | | return(false); |
655 | | } |
656 | | #endif |
657 | | |
658 | 0 | else if (mSockaddr.sa_family == AF_INET && rhs.mSockaddr.sa_family == AF_INET) |
659 | 0 | { |
660 | 0 | int c=memcmp(&m_anonv4.sin_addr, |
661 | 0 | &rhs.m_anonv4.sin_addr, |
662 | 0 | sizeof(in_addr)); |
663 | |
|
664 | 0 | if (c < 0) |
665 | 0 | { |
666 | 0 | return true; |
667 | 0 | } |
668 | 0 | else if (c > 0) |
669 | 0 | { |
670 | 0 | return false; |
671 | 0 | } |
672 | 0 | else if (m_anonv4.sin_port < rhs.m_anonv4.sin_port) |
673 | 0 | { |
674 | 0 | return true; |
675 | 0 | } |
676 | 0 | else |
677 | 0 | { |
678 | 0 | return false; |
679 | 0 | } |
680 | 0 | } |
681 | 0 | #ifdef USE_IPV6 |
682 | 0 | else if (mSockaddr.sa_family == AF_INET6 && |
683 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
684 | 0 | { |
685 | 0 | int c = memcmp(&m_anonv6.sin6_addr, |
686 | 0 | &rhs.m_anonv6.sin6_addr, |
687 | 0 | sizeof(in6_addr)); |
688 | 0 | if (c < 0) |
689 | 0 | { |
690 | 0 | return true; |
691 | 0 | } |
692 | 0 | else if (c > 0) |
693 | 0 | { |
694 | 0 | return false; |
695 | 0 | } |
696 | 0 | else if (m_anonv6.sin6_port < rhs.m_anonv6.sin6_port) |
697 | 0 | { |
698 | 0 | return true; |
699 | 0 | } |
700 | 0 | else |
701 | 0 | { |
702 | 0 | return false; |
703 | 0 | } |
704 | 0 | } |
705 | 0 | else if (mSockaddr.sa_family == AF_INET6 && |
706 | 0 | rhs.mSockaddr.sa_family == AF_INET) |
707 | 0 | { |
708 | 0 | return true; |
709 | 0 | } |
710 | 0 | else if (mSockaddr.sa_family == AF_INET && |
711 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
712 | 0 | { |
713 | 0 | return false; |
714 | 0 | } |
715 | 0 | #endif |
716 | | |
717 | 0 | else |
718 | 0 | { |
719 | | //assert(0); |
720 | 0 | return false; |
721 | 0 | } |
722 | 0 | } |
723 | | |
724 | | EncodeStream& |
725 | | resip::operator<<(EncodeStream& ostrm, const Tuple& tuple) |
726 | 0 | { |
727 | 0 | ostrm << "[ " ; |
728 | | |
729 | 0 | #ifdef USE_IPV6 |
730 | 0 | if (tuple.mSockaddr.sa_family == AF_INET6) |
731 | 0 | { |
732 | 0 | ostrm << "V6 " << DnsUtil::inet_ntop(tuple.m_anonv6.sin6_addr) << " port=" << tuple.getPort(); |
733 | 0 | } |
734 | 0 | else |
735 | 0 | #endif |
736 | 0 | if (tuple.mSockaddr.sa_family == AF_INET) |
737 | 0 | { |
738 | 0 | ostrm << "V4 " << Tuple::inet_ntop(tuple) << ":" << tuple.getPort(); |
739 | 0 | } |
740 | 0 | else |
741 | 0 | { |
742 | 0 | resip_assert(0); |
743 | 0 | } |
744 | |
|
745 | 0 | ostrm << " " << Tuple::toData(tuple.mTransportType); |
746 | |
|
747 | 0 | if (!tuple.mTargetDomain.empty()) |
748 | 0 | { |
749 | 0 | ostrm << " targetDomain=" << tuple.mTargetDomain; |
750 | 0 | } |
751 | | |
752 | 0 | if(tuple.mFlowKey != 0) |
753 | 0 | { |
754 | 0 | ostrm << " flowKey=" << tuple.mFlowKey; |
755 | 0 | } |
756 | |
|
757 | 0 | if(tuple.mTransportKey != 0) |
758 | 0 | { |
759 | 0 | ostrm << " transportKey=" << tuple.mTransportKey; |
760 | 0 | } |
761 | |
|
762 | | #ifdef USE_NETNS |
763 | | ostrm << " mNetNs=" << tuple.mNetNs; |
764 | | #endif |
765 | |
|
766 | 0 | ostrm << " ]"; |
767 | | |
768 | 0 | return ostrm; |
769 | 0 | } |
770 | | |
771 | | size_t |
772 | | Tuple::hash() const |
773 | 0 | { |
774 | | // !dlb! do not include the connection |
775 | 0 | #ifdef USE_IPV6 |
776 | 0 | if (mSockaddr.sa_family == AF_INET6) |
777 | 0 | { |
778 | 0 | const sockaddr_in6& in6 = |
779 | 0 | reinterpret_cast<const sockaddr_in6&>(mSockaddr); |
780 | |
|
781 | 0 | return size_t(Data(Data::Share, (const char *)&in6.sin6_addr.s6_addr, sizeof(in6.sin6_addr.s6_addr)).hash() + |
782 | | #ifdef USE_NETNS |
783 | | mNetNs.hash() + |
784 | | #endif |
785 | 0 | 5*in6.sin6_port + |
786 | 0 | 25*mTransportType); |
787 | 0 | } |
788 | 0 | else |
789 | 0 | #endif |
790 | 0 | { |
791 | 0 | const sockaddr_in& in4 = |
792 | 0 | reinterpret_cast<const sockaddr_in&>(mSockaddr); |
793 | | |
794 | 0 | return size_t(in4.sin_addr.s_addr + |
795 | | #ifdef USE_NETNS |
796 | | mNetNs.hash() + |
797 | | #endif |
798 | 0 | 5*in4.sin_port + |
799 | 0 | 25*mTransportType); |
800 | 0 | } |
801 | 0 | } |
802 | | |
803 | | HashValueImp(resip::Tuple, data.hash()); |
804 | | |
805 | | TransportType |
806 | | Tuple::toTransport(const Data& transportName) |
807 | 0 | { |
808 | 0 | return resip::toTransportType(transportName); // TransportTypes.hxx |
809 | 0 | }; |
810 | | |
811 | | const Data& |
812 | | Tuple::toData(TransportType type) |
813 | 0 | { |
814 | 0 | return resip::toData(type); // TransportTypes.hxx |
815 | 0 | } |
816 | | |
817 | | const Data& |
818 | | Tuple::toDataLower(TransportType type) |
819 | 0 | { |
820 | 0 | return resip::toDataLower(type); // TransportTypes.hxx |
821 | 0 | } |
822 | | |
823 | | Data |
824 | | Tuple::inet_ntop(const Tuple& tuple) |
825 | 0 | { |
826 | 0 | #ifdef USE_IPV6 |
827 | 0 | if (!tuple.isV4()) |
828 | 0 | { |
829 | 0 | const sockaddr_in6& addr = reinterpret_cast<const sockaddr_in6&>(tuple.getSockaddr()); |
830 | 0 | return DnsUtil::inet_ntop(addr.sin6_addr); |
831 | 0 | } |
832 | 0 | else |
833 | 0 | #endif |
834 | 0 | { |
835 | 0 | const sockaddr_in& addr = reinterpret_cast<const sockaddr_in&>(tuple.getSockaddr()); |
836 | 0 | return DnsUtil::inet_ntop(addr.sin_addr); |
837 | 0 | } |
838 | 0 | } |
839 | | |
840 | | |
841 | | bool |
842 | | Tuple::isEqualWithMask(const Tuple& compare, short mask, bool ignorePort, bool ignoreTransport) const |
843 | 0 | { |
844 | 0 | if(ignoreTransport || getType() == compare.getType()) // check if transport type matches |
845 | 0 | { |
846 | 0 | if (mSockaddr.sa_family == compare.getSockaddr().sa_family && mSockaddr.sa_family == AF_INET) // v4 |
847 | 0 | { |
848 | 0 | sockaddr_in* addr1 = (sockaddr_in*)&mSockaddr; |
849 | 0 | sockaddr_in* addr2 = (sockaddr_in*)&compare.getSockaddr(); |
850 | |
|
851 | 0 | return ((ignorePort || addr1->sin_port == addr2->sin_port) && |
852 | 0 | (addr1->sin_addr.s_addr & htonl((0xFFFFFFFF << (32 - mask)))) == |
853 | 0 | (addr2->sin_addr.s_addr & htonl((0xFFFFFFFF << (32 - mask))))); |
854 | 0 | } |
855 | 0 | #ifdef USE_IPV6 |
856 | 0 | else if (mSockaddr.sa_family == compare.getSockaddr().sa_family && mSockaddr.sa_family == AF_INET6) // v6 |
857 | 0 | { |
858 | 0 | sockaddr_in6* addr1 = (sockaddr_in6*)&mSockaddr; |
859 | 0 | sockaddr_in6* addr2 = (sockaddr_in6*)&compare.getSockaddr(); |
860 | |
|
861 | 0 | if(ignorePort || addr1->sin6_port == addr2->sin6_port) |
862 | 0 | { |
863 | 0 | uint32_t mask6part; |
864 | 0 | uint32_t temp; |
865 | 0 | bool match=true; |
866 | 0 | for(int i = 3; i >= 0; i--) |
867 | 0 | { |
868 | 0 | if(mask <= 32*i) |
869 | 0 | { |
870 | 0 | mask6part = 0; |
871 | 0 | } |
872 | 0 | else |
873 | 0 | { |
874 | 0 | temp = mask - 32*i; |
875 | 0 | if(temp >= 32) |
876 | 0 | { |
877 | 0 | mask6part = 0xffffffff; |
878 | 0 | } |
879 | 0 | else |
880 | 0 | { |
881 | 0 | mask6part = 0xffffffff << (32 - temp); |
882 | 0 | } |
883 | 0 | } |
884 | | #ifdef WIN32 |
885 | | if((*((unsigned long*)&addr1->sin6_addr.u.Word[i*2]) & htonl(mask6part)) != |
886 | | (*((unsigned long*)&addr2->sin6_addr.u.Word[i*2]) & htonl(mask6part))) |
887 | | #elif defined(sun) |
888 | | // sun has no s6_addr16 |
889 | | if((*((unsigned long*)&addr1->sin6_addr._S6_un._S6_u32[i]) & htonl(mask6part)) != |
890 | | (*((unsigned long*)&addr2->sin6_addr._S6_un._S6_u32[i]) & htonl(mask6part))) |
891 | | #elif defined(__APPLE__) || defined(__OpenBSD__) || defined(__FreeBSD__) |
892 | | // bsd has no s6_addr16 |
893 | | if((*((unsigned long*)&addr1->sin6_addr.__u6_addr.__u6_addr32[i]) & htonl(mask6part)) != |
894 | | (*((unsigned long*)&addr2->sin6_addr.__u6_addr.__u6_addr32[i]) & htonl(mask6part))) |
895 | | #else |
896 | 0 | if((*((uint32_t*)&addr1->sin6_addr.s6_addr16[i*2]) & htonl(mask6part)) != |
897 | 0 | (*((uint32_t*)&addr2->sin6_addr.s6_addr16[i*2]) & htonl(mask6part))) |
898 | 0 | #endif |
899 | 0 | { |
900 | 0 | match=false; |
901 | 0 | break; |
902 | 0 | } |
903 | 0 | } |
904 | 0 | if(match) |
905 | 0 | { |
906 | 0 | return true; |
907 | 0 | } |
908 | 0 | } |
909 | 0 | } |
910 | 0 | #endif |
911 | 0 | } |
912 | 0 | return false; |
913 | 0 | } |
914 | | |
915 | | |
916 | | // special comparitors |
917 | | bool |
918 | | Tuple::AnyInterfaceCompare::operator()(const Tuple& lhs, |
919 | | const Tuple& rhs) const |
920 | 0 | { |
921 | 0 | if (lhs.mTransportType < rhs.mTransportType) |
922 | 0 | { |
923 | 0 | return true; |
924 | 0 | } |
925 | 0 | else if (lhs.mTransportType > rhs.mTransportType) |
926 | 0 | { |
927 | 0 | return false; |
928 | 0 | } |
929 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET && rhs.mSockaddr.sa_family == AF_INET) |
930 | 0 | { |
931 | 0 | if (lhs.m_anonv4.sin_port < rhs.m_anonv4.sin_port) |
932 | 0 | { |
933 | 0 | return true; |
934 | 0 | } |
935 | 0 | else |
936 | 0 | { |
937 | 0 | return false; |
938 | 0 | } |
939 | 0 | } |
940 | 0 | #ifdef USE_IPV6 |
941 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET6 && |
942 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
943 | 0 | { |
944 | 0 | if (lhs.m_anonv6.sin6_port < rhs.m_anonv6.sin6_port) |
945 | 0 | { |
946 | 0 | return true; |
947 | 0 | } |
948 | 0 | else |
949 | 0 | { |
950 | 0 | return false; |
951 | 0 | } |
952 | 0 | } |
953 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET6 && |
954 | 0 | rhs.mSockaddr.sa_family == AF_INET) |
955 | 0 | { |
956 | 0 | return true; |
957 | 0 | } |
958 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET && |
959 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
960 | 0 | { |
961 | 0 | return false; |
962 | 0 | } |
963 | 0 | #endif |
964 | 0 | else |
965 | 0 | { |
966 | 0 | return false; |
967 | 0 | } |
968 | 0 | }; |
969 | | |
970 | | bool |
971 | | Tuple::AnyPortCompare::operator()(const Tuple& lhs, |
972 | | const Tuple& rhs) const |
973 | 0 | { |
974 | 0 | if (lhs.mTransportType < rhs.mTransportType) |
975 | 0 | { |
976 | 0 | return true; |
977 | 0 | } |
978 | 0 | else if (lhs.mTransportType > rhs.mTransportType) |
979 | 0 | { |
980 | 0 | return false; |
981 | 0 | } |
982 | | |
983 | | // transport types equal, so compare addresses |
984 | 0 | if (lhs.mSockaddr.sa_family == AF_INET && rhs.mSockaddr.sa_family == AF_INET) |
985 | 0 | { |
986 | 0 | int c = memcmp(&lhs.m_anonv4.sin_addr, |
987 | 0 | &rhs.m_anonv4.sin_addr, |
988 | 0 | sizeof(in_addr)); |
989 | |
|
990 | 0 | if (c < 0) |
991 | 0 | { |
992 | 0 | return true; |
993 | 0 | } |
994 | 0 | else if (c > 0) |
995 | 0 | { |
996 | 0 | return false; |
997 | 0 | } |
998 | 0 | } |
999 | 0 | #ifdef USE_IPV6 |
1000 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET6 && |
1001 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
1002 | 0 | { |
1003 | 0 | int c = memcmp(&lhs.m_anonv6.sin6_addr, |
1004 | 0 | &rhs.m_anonv6.sin6_addr, |
1005 | 0 | sizeof(in6_addr)); |
1006 | 0 | if (c < 0) |
1007 | 0 | { |
1008 | 0 | return true; |
1009 | 0 | } |
1010 | 0 | else if (c > 0) |
1011 | 0 | { |
1012 | 0 | return false; |
1013 | 0 | } |
1014 | 0 | } |
1015 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET6 && |
1016 | 0 | rhs.mSockaddr.sa_family == AF_INET) |
1017 | 0 | { |
1018 | 0 | return true; |
1019 | 0 | } |
1020 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET && |
1021 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
1022 | 0 | { |
1023 | 0 | return false; |
1024 | 0 | } |
1025 | 0 | #endif |
1026 | | #ifdef USE_NETNS |
1027 | | // transport type and addresses are equal, so compare netns |
1028 | | if(lhs.mNetNs < rhs.mNetNs) |
1029 | | { |
1030 | | //DebugLog(<< "AnyPortCompare netns less than (l=" << lhs.mNetNs << ", r=" << rhs.mNetNs); |
1031 | | return(true); |
1032 | | } |
1033 | | else if(rhs.mNetNs < lhs.mNetNs) |
1034 | | { |
1035 | | //DebugLog(<< "AnyPortCompare netns greater than (l=" << lhs.mNetNs << ", r=" << rhs.mNetNs); |
1036 | | return(false); |
1037 | | } |
1038 | | //DebugLog(<< "AnyPortCompare netns equal to (l=\"" << lhs.mNetNs << "\", r=\"" << rhs.mNetNs << "\""); |
1039 | | #endif |
1040 | | |
1041 | 0 | return false; |
1042 | 0 | } |
1043 | | |
1044 | | bool |
1045 | | Tuple::FlowKeyCompare::operator()(const Tuple& lhs, |
1046 | | const Tuple& rhs) const |
1047 | 0 | { |
1048 | 0 | if (lhs == rhs) |
1049 | 0 | { |
1050 | 0 | return lhs.mFlowKey < rhs.mFlowKey; |
1051 | 0 | } |
1052 | 0 | return lhs < rhs; |
1053 | 0 | }; |
1054 | | |
1055 | | GenericIPAddress |
1056 | | Tuple::toGenericIPAddress() const |
1057 | 0 | { |
1058 | 0 | if (isV4()) |
1059 | 0 | { |
1060 | 0 | return GenericIPAddress(m_anonv4); |
1061 | 0 | } |
1062 | 0 | else |
1063 | 0 | #ifdef USE_IPV6 |
1064 | 0 | { |
1065 | 0 | return GenericIPAddress(m_anonv6); |
1066 | 0 | } |
1067 | | #else |
1068 | | { |
1069 | | resip_assert(0); |
1070 | | return m_anonv4; //bogus |
1071 | | } |
1072 | | #endif |
1073 | 0 | } |
1074 | | |
1075 | | bool |
1076 | | Tuple::AnyPortAnyInterfaceCompare::operator()(const Tuple& lhs, |
1077 | | const Tuple& rhs) const |
1078 | 0 | { |
1079 | 0 | if (lhs.mTransportType < rhs.mTransportType) |
1080 | 0 | { |
1081 | 0 | return true; |
1082 | 0 | } |
1083 | 0 | else if (lhs.mTransportType > rhs.mTransportType) |
1084 | 0 | { |
1085 | 0 | return false; |
1086 | 0 | } |
1087 | 0 | #ifdef USE_IPV6 |
1088 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET6 && |
1089 | 0 | rhs.mSockaddr.sa_family == AF_INET) |
1090 | 0 | { |
1091 | 0 | return true; |
1092 | 0 | } |
1093 | 0 | else if (lhs.mSockaddr.sa_family == AF_INET && |
1094 | 0 | rhs.mSockaddr.sa_family == AF_INET6) |
1095 | 0 | { |
1096 | 0 | return false; |
1097 | 0 | } |
1098 | 0 | #endif |
1099 | 0 | else |
1100 | 0 | { |
1101 | 0 | return false; |
1102 | 0 | } |
1103 | 0 | }; |
1104 | | |
1105 | | /* ==================================================================== |
1106 | | * The Vovida Software License, Version 1.0 |
1107 | | * |
1108 | | * Copyright (c) 2000 Vovida Networks, Inc. All rights reserved. |
1109 | | * |
1110 | | * Redistribution and use in source and binary forms, with or without |
1111 | | * modification, are permitted provided that the following conditions |
1112 | | * are met: |
1113 | | * |
1114 | | * 1. Redistributions of source code must retain the above copyright |
1115 | | * notice, this list of conditions and the following disclaimer. |
1116 | | * |
1117 | | * 2. Redistributions in binary form must reproduce the above copyright |
1118 | | * notice, this list of conditions and the following disclaimer in |
1119 | | * the documentation and/or other materials provided with the |
1120 | | * distribution. |
1121 | | * |
1122 | | * 3. The names "VOCAL", "Vovida Open Communication Application Library", |
1123 | | * and "Vovida Open Communication Application Library (VOCAL)" must |
1124 | | * not be used to endorse or promote products derived from this |
1125 | | * software without prior written permission. For written |
1126 | | * permission, please contact vocal@vovida.org. |
1127 | | * |
1128 | | * 4. Products derived from this software may not be called "VOCAL", nor |
1129 | | * may "VOCAL" appear in their name, without prior written |
1130 | | * permission of Vovida Networks, Inc. |
1131 | | * |
1132 | | * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED |
1133 | | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
1134 | | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND |
1135 | | * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL VOVIDA |
1136 | | * NETWORKS, INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT DAMAGES |
1137 | | * IN EXCESS OF $1,000, NOR FOR ANY INDIRECT, INCIDENTAL, SPECIAL, |
1138 | | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
1139 | | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
1140 | | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
1141 | | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
1142 | | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
1143 | | * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
1144 | | * DAMAGE. |
1145 | | * |
1146 | | * ==================================================================== |
1147 | | * |
1148 | | * This software consists of voluntary contributions made by Vovida |
1149 | | * Networks, Inc. and many individuals on behalf of Vovida Networks, |
1150 | | * Inc. For more information on Vovida Networks, Inc., please see |
1151 | | * <http://www.vovida.org/>. |
1152 | | * |
1153 | | */ |