/src/rnp/src/lib/keygen.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2024 [Ribose Inc](https://www.ribose.com). |
3 | | * All rights reserved. |
4 | | * |
5 | | * Redistribution and use in source and binary forms, with or without modification, |
6 | | * are permitted provided that the following conditions are met: |
7 | | * |
8 | | * 1. Redistributions of source code must retain the above copyright notice, |
9 | | * this list of conditions and the following disclaimer. |
10 | | * |
11 | | * 2. Redistributions in binary form must reproduce the above copyright notice, |
12 | | * this list of conditions and the following disclaimer in the documentation |
13 | | * and/or other materials provided with the distribution. |
14 | | * |
15 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
16 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
17 | | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
18 | | * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
19 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
20 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
21 | | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
22 | | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
23 | | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
24 | | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | */ |
26 | | |
27 | | #include "keygen.hpp" |
28 | | #include <cassert> |
29 | | #include <algorithm> |
30 | | #include "librekey/key_store_g10.h" |
31 | | |
32 | | namespace rnp { |
33 | | KeygenParams::KeygenParams(pgp_pubkey_alg_t alg, SecurityContext &ctx) |
34 | 0 | : alg_(alg), hash_(PGP_HASH_UNKNOWN), version_(PGP_V4), ctx_(ctx) |
35 | 0 | { |
36 | 0 | key_params_ = pgp::KeyParams::create(alg); |
37 | 0 | } |
38 | | |
39 | | void |
40 | | KeygenParams::check_defaults() noexcept |
41 | 0 | { |
42 | 0 | if (hash_ == PGP_HASH_UNKNOWN) { |
43 | 0 | hash_ = alg_ == PGP_PKA_SM2 ? PGP_HASH_SM3 : DEFAULT_PGP_HASH_ALG; |
44 | 0 | } |
45 | 0 | pgp_hash_alg_t min_hash = key_params_->min_hash(); |
46 | 0 | if (Hash::size(hash_) < Hash::size(min_hash)) { |
47 | 0 | hash_ = min_hash; |
48 | 0 | } |
49 | 0 | key_params_->check_defaults(); |
50 | 0 | } |
51 | | |
52 | | bool |
53 | | KeygenParams::validate() const noexcept |
54 | 0 | { |
55 | 0 | #if defined(ENABLE_PQC) |
56 | 0 | switch (alg()) { |
57 | 0 | case PGP_PKA_SPHINCSPLUS_SHA2: |
58 | 0 | FALLTHROUGH_STATEMENT; |
59 | 0 | case PGP_PKA_SPHINCSPLUS_SHAKE: { |
60 | 0 | auto &slhdsa = dynamic_cast<const pgp::SlhdsaKeyParams &>(key_params()); |
61 | 0 | if (!sphincsplus_hash_allowed(alg(), slhdsa.param(), hash())) { |
62 | 0 | RNP_LOG("invalid hash algorithm for the slhdsa key"); |
63 | 0 | return false; |
64 | 0 | } |
65 | 0 | break; |
66 | 0 | } |
67 | 0 | case PGP_PKA_DILITHIUM3_ED25519: |
68 | 0 | FALLTHROUGH_STATEMENT; |
69 | | // TODO: Add case PGP_PKA_DILITHIUM5_ED448: FALLTHROUGH_STATEMENT; |
70 | 0 | case PGP_PKA_DILITHIUM3_P256: |
71 | 0 | FALLTHROUGH_STATEMENT; |
72 | 0 | case PGP_PKA_DILITHIUM5_P384: |
73 | 0 | FALLTHROUGH_STATEMENT; |
74 | 0 | case PGP_PKA_DILITHIUM3_BP256: |
75 | 0 | FALLTHROUGH_STATEMENT; |
76 | 0 | case PGP_PKA_DILITHIUM5_BP384: |
77 | 0 | if (!dilithium_hash_allowed(hash())) { |
78 | 0 | RNP_LOG("invalid hash algorithm for the dilithium key"); |
79 | 0 | return false; |
80 | 0 | } |
81 | 0 | break; |
82 | 0 | default: |
83 | 0 | break; |
84 | 0 | } |
85 | 0 | #endif |
86 | 0 | return true; |
87 | 0 | } |
88 | | |
89 | | bool |
90 | | KeygenParams::validate(const CertParams &cert) const noexcept |
91 | 0 | { |
92 | | /* Confirm that the specified pk alg can certify. |
93 | | * gpg requires this, though the RFC only says that a V4 primary |
94 | | * key SHOULD be a key capable of certification. |
95 | | */ |
96 | 0 | if (!(pgp_pk_alg_capabilities(alg()) & PGP_KF_CERTIFY)) { |
97 | 0 | RNP_LOG("primary key alg (%d) must be able to sign", alg()); |
98 | 0 | return false; |
99 | 0 | } |
100 | | |
101 | | // check key flags |
102 | 0 | if (!cert.flags) { |
103 | | // these are probably not *technically* required |
104 | 0 | RNP_LOG("key flags are required"); |
105 | 0 | return false; |
106 | 0 | } |
107 | 0 | if (cert.flags & ~pgp_pk_alg_capabilities(alg())) { |
108 | | // check the flags against the alg capabilities |
109 | 0 | RNP_LOG("usage not permitted for pk algorithm"); |
110 | 0 | return false; |
111 | 0 | } |
112 | | // require a userid |
113 | 0 | if (cert.userid.empty()) { |
114 | 0 | RNP_LOG("userid is required for primary key"); |
115 | 0 | return false; |
116 | 0 | } |
117 | 0 | return validate(); |
118 | 0 | } |
119 | | |
120 | | bool |
121 | | KeygenParams::validate(const BindingParams &binding) const noexcept |
122 | 0 | { |
123 | 0 | if (!binding.flags) { |
124 | 0 | RNP_LOG("key flags are required"); |
125 | 0 | return false; |
126 | 0 | } |
127 | 0 | if (binding.flags & ~pgp_pk_alg_capabilities(alg())) { |
128 | | // check the flags against the alg capabilities |
129 | 0 | RNP_LOG("usage not permitted for pk algorithm"); |
130 | 0 | return false; |
131 | 0 | } |
132 | 0 | return validate(); |
133 | 0 | } |
134 | | |
135 | | static const id_str_pair pubkey_alg_map[] = {{PGP_PKA_RSA, "RSA (Encrypt or Sign)"}, |
136 | | {PGP_PKA_RSA_ENCRYPT_ONLY, "RSA Encrypt-Only"}, |
137 | | {PGP_PKA_RSA_SIGN_ONLY, "RSA Sign-Only"}, |
138 | | {PGP_PKA_ELGAMAL, "Elgamal (Encrypt-Only)"}, |
139 | | {PGP_PKA_DSA, "DSA"}, |
140 | | {PGP_PKA_ECDH, "ECDH"}, |
141 | | {PGP_PKA_ECDSA, "ECDSA"}, |
142 | | {PGP_PKA_EDDSA, "EdDSA"}, |
143 | | {PGP_PKA_SM2, "SM2"}, |
144 | | #if defined(ENABLE_CRYPTO_REFRESH) |
145 | | {PGP_PKA_ED25519, "ED25519"}, |
146 | | {PGP_PKA_X25519, "X25519"}, |
147 | | #endif |
148 | | #if defined(ENABLE_PQC) |
149 | | {PGP_PKA_KYBER768_X25519, "ML-KEM-768_X25519"}, |
150 | | //{PGP_PKA_KYBER1024_X448, "Kyber-X448"}, |
151 | | {PGP_PKA_KYBER768_P256, "ML-KEM-768_P256"}, |
152 | | {PGP_PKA_KYBER1024_P384, "ML-KEM-1024_P384"}, |
153 | | {PGP_PKA_KYBER768_BP256, "ML-KEM-768_BP256"}, |
154 | | {PGP_PKA_KYBER1024_BP384, "ML-KEM-1024_BP384"}, |
155 | | {PGP_PKA_DILITHIUM3_ED25519, "ML-DSA-65_ED25519"}, |
156 | | //{PGP_PKA_DILITHIUM5_ED448, "Dilithium-ED448"}, |
157 | | {PGP_PKA_DILITHIUM3_P256, "ML-DSA-65_P256"}, |
158 | | {PGP_PKA_DILITHIUM5_P384, "ML-DSA-87_P384"}, |
159 | | {PGP_PKA_DILITHIUM3_BP256, "ML-DSA-65_BP256"}, |
160 | | {PGP_PKA_DILITHIUM5_BP384, "ML-DSA-87_BP384"}, |
161 | | {PGP_PKA_SPHINCSPLUS_SHA2, "SLH-DSA-SHA2"}, |
162 | | {PGP_PKA_SPHINCSPLUS_SHAKE, "SLH-DSA-SHAKE"}, |
163 | | #endif |
164 | | {0, NULL}}; |
165 | | |
166 | | bool |
167 | | KeygenParams::generate(pgp_key_pkt_t &seckey, bool primary) |
168 | 0 | { |
169 | | /* populate pgp key structure */ |
170 | 0 | seckey = {}; |
171 | 0 | seckey.version = version(); |
172 | 0 | seckey.creation_time = ctx().time(); |
173 | 0 | seckey.alg = alg(); |
174 | 0 | seckey.material = pgp::KeyMaterial::create(alg()); |
175 | 0 | if (!seckey.material) { |
176 | 0 | RNP_LOG("Unsupported key algorithm: %d", alg()); |
177 | 0 | return false; |
178 | 0 | } |
179 | 0 | seckey.tag = primary ? PGP_PKT_SECRET_KEY : PGP_PKT_SECRET_SUBKEY; |
180 | |
|
181 | 0 | if (!seckey.material->generate(ctx(), key_params())) { |
182 | 0 | return false; |
183 | 0 | } |
184 | | |
185 | 0 | seckey.sec_protection.s2k.usage = PGP_S2KU_NONE; |
186 | | /* fill the sec_data/sec_len */ |
187 | 0 | if (encrypt_secret_key(&seckey, NULL, ctx().rng)) { |
188 | 0 | RNP_LOG("failed to fill sec_data"); |
189 | 0 | return false; |
190 | 0 | } |
191 | 0 | return true; |
192 | 0 | } |
193 | | |
194 | | static bool |
195 | | load_generated_g10_key( |
196 | | Key *dst, pgp_key_pkt_t *newkey, Key *primary_key, Key *pubkey, SecurityContext &ctx) |
197 | 0 | { |
198 | | // this should generally be zeroed |
199 | 0 | assert(dst->type() == 0); |
200 | | // if a primary is provided, make sure it's actually a primary key |
201 | 0 | assert(!primary_key || primary_key->is_primary()); |
202 | | // if a pubkey is provided, make sure it's actually a public key |
203 | 0 | assert(!pubkey || pubkey->is_public()); |
204 | | // G10 always needs pubkey here |
205 | 0 | assert(pubkey); |
206 | | |
207 | | // this would be better on the stack but the key store does not allow it |
208 | 0 | std::unique_ptr<KeyStore> key_store(new (std::nothrow) KeyStore(ctx)); |
209 | 0 | if (!key_store) { |
210 | 0 | return false; |
211 | 0 | } |
212 | | /* Write g10 seckey */ |
213 | 0 | MemoryDest memdst(NULL, 0); |
214 | 0 | if (!g10_write_seckey(&memdst.dst(), newkey, NULL, ctx)) { |
215 | 0 | RNP_LOG("failed to write generated seckey"); |
216 | 0 | return false; |
217 | 0 | } |
218 | | |
219 | 0 | std::vector<Key *> key_ptrs; /* holds primary and pubkey, when used */ |
220 | | // if this is a subkey, add the primary in first |
221 | 0 | if (primary_key) { |
222 | 0 | key_ptrs.push_back(primary_key); |
223 | 0 | } |
224 | | // G10 needs the pubkey for copying some attributes (key version, creation time, etc) |
225 | 0 | key_ptrs.push_back(pubkey); |
226 | |
|
227 | 0 | MemorySource memsrc(memdst.memory(), memdst.writeb(), false); |
228 | 0 | KeyProvider prov(rnp_key_provider_key_ptr_list, &key_ptrs); |
229 | 0 | if (!key_store.get()->load_g10(memsrc.src(), &prov)) { |
230 | 0 | return false; |
231 | 0 | } |
232 | 0 | if (key_store.get()->key_count() != 1) { |
233 | 0 | return false; |
234 | 0 | } |
235 | | // if a primary key is provided, it should match the sub with regards to type |
236 | 0 | assert(!primary_key || (primary_key->is_secret() == key_store->keys.front().is_secret())); |
237 | 0 | *dst = Key(key_store->keys.front()); |
238 | 0 | return true; |
239 | 0 | } |
240 | | |
241 | | bool |
242 | | KeygenParams::generate(CertParams &cert, |
243 | | Key & primary_sec, |
244 | | Key & primary_pub, |
245 | | KeyFormat secformat) |
246 | 0 | { |
247 | 0 | primary_sec = {}; |
248 | 0 | primary_pub = {}; |
249 | | |
250 | | // merge some defaults in |
251 | 0 | check_defaults(); |
252 | 0 | cert.check_defaults(*this); |
253 | | // now validate the keygen fields |
254 | 0 | if (!validate(cert)) { |
255 | 0 | return false; |
256 | 0 | } |
257 | | |
258 | | // generate the raw key and fill tag/secret fields |
259 | 0 | pgp_key_pkt_t secpkt; |
260 | 0 | if (!generate(secpkt, true)) { |
261 | 0 | return false; |
262 | 0 | } |
263 | | |
264 | 0 | Key sec(secpkt); |
265 | 0 | Key pub(secpkt, true); |
266 | 0 | #if defined(ENABLE_CRYPTO_REFRESH) |
267 | | // for v6 packets, a direct-key sig is mandatory. |
268 | 0 | if (sec.version() == PGP_V6) { |
269 | 0 | sec.add_direct_sig(cert, hash(), ctx(), &pub); |
270 | 0 | } |
271 | 0 | #endif |
272 | 0 | sec.add_uid_cert(cert, hash(), ctx(), &pub); |
273 | |
|
274 | 0 | switch (secformat) { |
275 | 0 | case KeyFormat::GPG: |
276 | 0 | case KeyFormat::KBX: |
277 | 0 | primary_sec = std::move(sec); |
278 | 0 | primary_pub = std::move(pub); |
279 | 0 | break; |
280 | 0 | case KeyFormat::G10: |
281 | 0 | primary_pub = std::move(pub); |
282 | 0 | if (!load_generated_g10_key(&primary_sec, &secpkt, NULL, &primary_pub, ctx())) { |
283 | 0 | RNP_LOG("failed to load generated key"); |
284 | 0 | return false; |
285 | 0 | } |
286 | 0 | break; |
287 | 0 | default: |
288 | 0 | RNP_LOG("invalid format"); |
289 | 0 | return false; |
290 | 0 | } |
291 | | |
292 | | /* mark it as valid */ |
293 | 0 | primary_pub.mark_valid(); |
294 | 0 | primary_sec.mark_valid(); |
295 | | /* refresh key's data */ |
296 | 0 | return primary_pub.refresh_data(ctx()) && primary_sec.refresh_data(ctx()); |
297 | 0 | } |
298 | | |
299 | | bool |
300 | | KeygenParams::generate(BindingParams & binding, |
301 | | Key & primary_sec, |
302 | | Key & primary_pub, |
303 | | Key & subkey_sec, |
304 | | Key & subkey_pub, |
305 | | const pgp_password_provider_t &password_provider, |
306 | | KeyFormat secformat) |
307 | 0 | { |
308 | | // validate args |
309 | 0 | if (!primary_sec.is_primary() || !primary_pub.is_primary() || !primary_sec.is_secret() || |
310 | 0 | !primary_pub.is_public()) { |
311 | 0 | RNP_LOG("invalid parameters"); |
312 | 0 | return false; |
313 | 0 | } |
314 | 0 | subkey_sec = {}; |
315 | 0 | subkey_pub = {}; |
316 | | |
317 | | // merge some defaults in |
318 | 0 | check_defaults(); |
319 | 0 | binding.check_defaults(*this); |
320 | | |
321 | | // now validate the keygen fields |
322 | 0 | if (!validate(binding)) { |
323 | 0 | return false; |
324 | 0 | } |
325 | | |
326 | | /* decrypt the primary seckey if needed (for signatures) */ |
327 | 0 | KeyLocker primlock(primary_sec); |
328 | 0 | if (primary_sec.encrypted() && !primary_sec.unlock(password_provider, PGP_OP_ADD_SUBKEY)) { |
329 | 0 | RNP_LOG("Failed to unlock primary key."); |
330 | 0 | return false; |
331 | 0 | } |
332 | | /* generate the raw subkey */ |
333 | 0 | pgp_key_pkt_t secpkt; |
334 | 0 | if (!generate(secpkt, false)) { |
335 | 0 | return false; |
336 | 0 | } |
337 | 0 | pgp_key_pkt_t pubpkt = pgp_key_pkt_t(secpkt, true); |
338 | 0 | Key sec(secpkt, primary_sec); |
339 | 0 | Key pub(pubpkt, primary_pub); |
340 | | /* add binding */ |
341 | 0 | primary_sec.add_sub_binding(sec, pub, binding, hash(), ctx()); |
342 | | /* copy to the result */ |
343 | 0 | subkey_pub = std::move(pub); |
344 | 0 | switch (secformat) { |
345 | 0 | case KeyFormat::GPG: |
346 | 0 | case KeyFormat::KBX: |
347 | 0 | subkey_sec = std::move(sec); |
348 | 0 | break; |
349 | 0 | case KeyFormat::G10: |
350 | 0 | if (!load_generated_g10_key(&subkey_sec, &secpkt, &primary_sec, &subkey_pub, ctx())) { |
351 | 0 | RNP_LOG("failed to load generated key"); |
352 | 0 | return false; |
353 | 0 | } |
354 | 0 | break; |
355 | 0 | default: |
356 | 0 | RNP_LOG("invalid format"); |
357 | 0 | return false; |
358 | 0 | } |
359 | | |
360 | 0 | subkey_pub.mark_valid(); |
361 | 0 | subkey_sec.mark_valid(); |
362 | 0 | return subkey_pub.refresh_data(&primary_pub, ctx()) && |
363 | 0 | subkey_sec.refresh_data(&primary_sec, ctx()); |
364 | 0 | } |
365 | | |
366 | | UserPrefs::UserPrefs(const pgp::pkt::Signature &sig) |
367 | 0 | { |
368 | 0 | symm_algs = sig.preferred_symm_algs(); |
369 | 0 | hash_algs = sig.preferred_hash_algs(); |
370 | 0 | z_algs = sig.preferred_z_algs(); |
371 | |
|
372 | 0 | if (sig.has_subpkt(PGP_SIG_SUBPKT_KEYSERV_PREFS)) { |
373 | 0 | ks_prefs = {sig.key_server_prefs()}; |
374 | 0 | } |
375 | |
|
376 | 0 | if (sig.has_subpkt(PGP_SIG_SUBPKT_PREF_KEYSERV)) { |
377 | 0 | key_server = sig.key_server(); |
378 | 0 | } |
379 | 0 | } |
380 | | |
381 | | void |
382 | | UserPrefs::add_uniq(std::vector<uint8_t> &vec, uint8_t val) |
383 | 0 | { |
384 | 0 | if (std::find(vec.begin(), vec.end(), val) == vec.end()) { |
385 | 0 | vec.push_back(val); |
386 | 0 | } |
387 | 0 | } |
388 | | |
389 | | void |
390 | | UserPrefs::add_symm_alg(pgp_symm_alg_t alg) |
391 | 0 | { |
392 | 0 | add_uniq(symm_algs, alg); |
393 | 0 | } |
394 | | |
395 | | void |
396 | | UserPrefs::add_hash_alg(pgp_hash_alg_t alg) |
397 | 0 | { |
398 | 0 | add_uniq(hash_algs, alg); |
399 | 0 | } |
400 | | |
401 | | void |
402 | | UserPrefs::add_z_alg(pgp_compression_type_t alg) |
403 | 0 | { |
404 | 0 | add_uniq(z_algs, alg); |
405 | 0 | } |
406 | | |
407 | | void |
408 | | UserPrefs::add_ks_pref(pgp_key_server_prefs_t pref) |
409 | 0 | { |
410 | 0 | add_uniq(ks_prefs, pref); |
411 | 0 | } |
412 | | |
413 | | #if defined(ENABLE_CRYPTO_REFRESH) |
414 | | void |
415 | | UserPrefs::add_aead_prefs(pgp_symm_alg_t sym_alg, pgp_aead_alg_t aead_alg) |
416 | 0 | { |
417 | 0 | for (size_t i = 0; i < aead_prefs.size(); i += 2) { |
418 | 0 | if (aead_prefs[i] == sym_alg && aead_prefs[i + 1] == aead_alg) { |
419 | 0 | return; |
420 | 0 | } |
421 | 0 | } |
422 | 0 | aead_prefs.push_back(sym_alg); |
423 | 0 | aead_prefs.push_back(aead_alg); |
424 | 0 | } |
425 | | #endif |
426 | | |
427 | | void |
428 | | UserPrefs::check_defaults(pgp_version_t version) |
429 | 0 | { |
430 | 0 | if (symm_algs.empty()) { |
431 | 0 | symm_algs = {PGP_SA_AES_256, PGP_SA_AES_192, PGP_SA_AES_128}; |
432 | 0 | } |
433 | 0 | if (hash_algs.empty()) { |
434 | 0 | hash_algs = {PGP_HASH_SHA256, PGP_HASH_SHA384, PGP_HASH_SHA512, PGP_HASH_SHA224}; |
435 | 0 | } |
436 | 0 | if (z_algs.empty()) { |
437 | 0 | z_algs = {PGP_C_ZLIB, PGP_C_BZIP2, PGP_C_ZIP, PGP_C_NONE}; |
438 | 0 | } |
439 | 0 | #if defined(ENABLE_CRYPTO_REFRESH) |
440 | 0 | if (aead_prefs.empty() && (version == PGP_V6)) { |
441 | 0 | for (auto sym_alg : symm_algs) { |
442 | 0 | aead_prefs.push_back(sym_alg); |
443 | 0 | aead_prefs.push_back(PGP_AEAD_OCB); |
444 | 0 | } |
445 | 0 | } |
446 | 0 | #endif |
447 | 0 | } |
448 | | |
449 | | void |
450 | | CertParams::check_defaults(const KeygenParams ¶ms) |
451 | 0 | { |
452 | 0 | prefs.check_defaults(params.version()); |
453 | |
|
454 | 0 | if (!flags) { |
455 | | // set some default key flags if none are provided |
456 | 0 | flags = pgp_pk_alg_capabilities(params.alg()); |
457 | 0 | } |
458 | 0 | if (userid.empty()) { |
459 | 0 | std::string alg = id_str_pair::lookup(pubkey_alg_map, params.alg()); |
460 | 0 | std::string bits = std::to_string(params.key_params().bits()); |
461 | 0 | std::string name = getenv_logname() ? getenv_logname() : ""; |
462 | | /* Awkward but better then sprintf */ |
463 | 0 | userid = alg + " " + bits + "-bit key <" + name + "@localhost>"; |
464 | 0 | } |
465 | 0 | } |
466 | | |
467 | | void |
468 | | CertParams::populate(pgp_userid_pkt_t &uid) const |
469 | 0 | { |
470 | 0 | uid.tag = PGP_PKT_USER_ID; |
471 | 0 | uid.uid.assign(userid.data(), userid.data() + userid.size()); |
472 | 0 | } |
473 | | |
474 | | void |
475 | | CertParams::populate(pgp::pkt::Signature &sig) const |
476 | 0 | { |
477 | 0 | if (key_expiration) { |
478 | 0 | sig.set_key_expiration(key_expiration); |
479 | 0 | } |
480 | 0 | if (primary) { |
481 | 0 | sig.set_primary_uid(true); |
482 | 0 | } |
483 | 0 | #if defined(ENABLE_CRYPTO_REFRESH) |
484 | 0 | if ((sig.version == PGP_V6) && (sig.type() != PGP_SIG_DIRECT)) { |
485 | | /* only set key expiraton and primary uid for v6 self-signatures |
486 | | * since most information is stored in the direct-key signature of the primary key. |
487 | | */ |
488 | |
|
489 | 0 | if (flags && (sig.type() == PGP_SIG_SUBKEY)) { |
490 | | /* for v6 subkeys signatures we also add the key flags */ |
491 | 0 | sig.set_key_flags(flags); |
492 | 0 | } |
493 | 0 | return; |
494 | 0 | } else if ((sig.version == PGP_V6) && (sig.type() == PGP_SIG_DIRECT)) { |
495 | | /* set some additional packets for v6 direct-key self signatures */ |
496 | 0 | sig.set_key_features(PGP_KEY_FEATURE_MDC | PGP_KEY_FEATURE_SEIPDV2); |
497 | 0 | if (!prefs.aead_prefs.empty()) { |
498 | 0 | sig.set_preferred_aead_algs(prefs.aead_prefs); |
499 | 0 | } |
500 | 0 | } |
501 | 0 | #endif |
502 | 0 | if (flags) { |
503 | 0 | sig.set_key_flags(flags); |
504 | 0 | } |
505 | 0 | if (!prefs.symm_algs.empty()) { |
506 | 0 | sig.set_preferred_symm_algs(prefs.symm_algs); |
507 | 0 | } |
508 | 0 | if (!prefs.hash_algs.empty()) { |
509 | 0 | sig.set_preferred_hash_algs(prefs.hash_algs); |
510 | 0 | } |
511 | 0 | if (!prefs.z_algs.empty()) { |
512 | 0 | sig.set_preferred_z_algs(prefs.z_algs); |
513 | 0 | } |
514 | 0 | if (!prefs.ks_prefs.empty()) { |
515 | 0 | sig.set_key_server_prefs(prefs.ks_prefs[0]); |
516 | 0 | } |
517 | 0 | if (!prefs.key_server.empty()) { |
518 | 0 | sig.set_key_server(prefs.key_server); |
519 | 0 | } |
520 | 0 | } |
521 | | |
522 | | void |
523 | | CertParams::populate(pgp_userid_pkt_t &uid, pgp::pkt::Signature &sig) const |
524 | 0 | { |
525 | 0 | sig.set_type(PGP_CERT_POSITIVE); |
526 | 0 | populate(sig); |
527 | 0 | populate(uid); |
528 | 0 | } |
529 | | |
530 | | void |
531 | | BindingParams::check_defaults(const KeygenParams ¶ms) |
532 | 0 | { |
533 | 0 | if (!flags) { |
534 | | // set some default key flags if none are provided |
535 | 0 | flags = pgp_pk_alg_capabilities(params.alg()); |
536 | 0 | } |
537 | 0 | } |
538 | | |
539 | | } // namespace rnp |