Coverage Report

Created: 2025-10-13 07:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/Botan-3.4.0/src/lib/math/numbertheory/numthry.cpp
Line
Count
Source
1
/*
2
* Number Theory Functions
3
* (C) 1999-2011,2016,2018,2019 Jack Lloyd
4
* (C) 2007,2008 Falko Strenzke, FlexSecure GmbH
5
*
6
* Botan is released under the Simplified BSD License (see license.txt)
7
*/
8
9
#include <botan/numthry.h>
10
11
#include <botan/reducer.h>
12
#include <botan/rng.h>
13
#include <botan/internal/ct_utils.h>
14
#include <botan/internal/divide.h>
15
#include <botan/internal/monty.h>
16
#include <botan/internal/monty_exp.h>
17
#include <botan/internal/mp_core.h>
18
#include <botan/internal/primality.h>
19
#include <algorithm>
20
21
namespace Botan {
22
23
/*
24
* Tonelli-Shanks algorithm
25
*/
26
0
BigInt sqrt_modulo_prime(const BigInt& a, const BigInt& p) {
27
0
   BOTAN_ARG_CHECK(p > 1, "invalid prime");
28
0
   BOTAN_ARG_CHECK(a < p, "value to solve for must be less than p");
29
0
   BOTAN_ARG_CHECK(a >= 0, "value to solve for must not be negative");
30
31
   // some very easy cases
32
0
   if(p == 2 || a <= 1) {
33
0
      return a;
34
0
   }
35
36
0
   BOTAN_ARG_CHECK(p.is_odd(), "invalid prime");
37
38
0
   if(jacobi(a, p) != 1) {  // not a quadratic residue
39
0
      return BigInt::from_s32(-1);
40
0
   }
41
42
0
   Modular_Reducer mod_p(p);
43
0
   auto monty_p = std::make_shared<Montgomery_Params>(p, mod_p);
44
45
   // If p == 3 (mod 4) there is a simple solution
46
0
   if(p % 4 == 3) {
47
0
      return monty_exp_vartime(monty_p, a, ((p + 1) >> 2));
48
0
   }
49
50
   // Otherwise we have to use Shanks-Tonelli
51
0
   size_t s = low_zero_bits(p - 1);
52
0
   BigInt q = p >> s;
53
54
0
   q -= 1;
55
0
   q >>= 1;
56
57
0
   BigInt r = monty_exp_vartime(monty_p, a, q);
58
0
   BigInt n = mod_p.multiply(a, mod_p.square(r));
59
0
   r = mod_p.multiply(r, a);
60
61
0
   if(n == 1) {
62
0
      return r;
63
0
   }
64
65
   // find random quadratic nonresidue z
66
0
   word z = 2;
67
0
   for(;;) {
68
0
      if(jacobi(BigInt::from_word(z), p) == -1) {  // found one
69
0
         break;
70
0
      }
71
72
0
      z += 1;  // try next z
73
74
      /*
75
      * The expected number of tests to find a non-residue modulo a
76
      * prime is 2. If we have not found one after 256 then almost
77
      * certainly we have been given a non-prime p.
78
      */
79
0
      if(z >= 256) {
80
0
         return BigInt::from_s32(-1);
81
0
      }
82
0
   }
83
84
0
   BigInt c = monty_exp_vartime(monty_p, BigInt::from_word(z), (q << 1) + 1);
85
86
0
   while(n > 1) {
87
0
      q = n;
88
89
0
      size_t i = 0;
90
0
      while(q != 1) {
91
0
         q = mod_p.square(q);
92
0
         ++i;
93
94
0
         if(i >= s) {
95
0
            return BigInt::from_s32(-1);
96
0
         }
97
0
      }
98
99
0
      BOTAN_ASSERT_NOMSG(s >= (i + 1));  // No underflow!
100
0
      c = monty_exp_vartime(monty_p, c, BigInt::power_of_2(s - i - 1));
101
0
      r = mod_p.multiply(r, c);
102
0
      c = mod_p.square(c);
103
0
      n = mod_p.multiply(n, c);
104
105
      // s decreases as the algorithm proceeds
106
0
      BOTAN_ASSERT_NOMSG(s >= i);
107
0
      s = i;
108
0
   }
109
110
0
   return r;
111
0
}
112
113
/*
114
* Calculate the Jacobi symbol
115
*/
116
0
int32_t jacobi(const BigInt& a, const BigInt& n) {
117
0
   if(n.is_even() || n < 2) {
118
0
      throw Invalid_Argument("jacobi: second argument must be odd and > 1");
119
0
   }
120
121
0
   BigInt x = a % n;
122
0
   BigInt y = n;
123
0
   int32_t J = 1;
124
125
0
   while(y > 1) {
126
0
      x %= y;
127
0
      if(x > y / 2) {
128
0
         x = y - x;
129
0
         if(y % 4 == 3) {
130
0
            J = -J;
131
0
         }
132
0
      }
133
0
      if(x.is_zero()) {
134
0
         return 0;
135
0
      }
136
137
0
      size_t shifts = low_zero_bits(x);
138
0
      x >>= shifts;
139
0
      if(shifts % 2) {
140
0
         word y_mod_8 = y % 8;
141
0
         if(y_mod_8 == 3 || y_mod_8 == 5) {
142
0
            J = -J;
143
0
         }
144
0
      }
145
146
0
      if(x % 4 == 3 && y % 4 == 3) {
147
0
         J = -J;
148
0
      }
149
0
      std::swap(x, y);
150
0
   }
151
0
   return J;
152
0
}
153
154
/*
155
* Square a BigInt
156
*/
157
67.2k
BigInt square(const BigInt& x) {
158
67.2k
   BigInt z = x;
159
67.2k
   secure_vector<word> ws;
160
67.2k
   z.square(ws);
161
67.2k
   return z;
162
67.2k
}
163
164
/*
165
* Return the number of 0 bits at the end of n
166
*/
167
1.59k
size_t low_zero_bits(const BigInt& n) {
168
1.59k
   size_t low_zero = 0;
169
170
1.59k
   auto seen_nonempty_word = CT::Mask<word>::cleared();
171
172
14.3k
   for(size_t i = 0; i != n.size(); ++i) {
173
12.7k
      const word x = n.word_at(i);
174
175
      // ctz(0) will return sizeof(word)
176
12.7k
      const size_t tz_x = ctz(x);
177
178
      // if x > 0 we want to count tz_x in total but not any
179
      // further words, so set the mask after the addition
180
12.7k
      low_zero += seen_nonempty_word.if_not_set_return(tz_x);
181
182
12.7k
      seen_nonempty_word |= CT::Mask<word>::expand(x);
183
12.7k
   }
184
185
   // if we saw no words with x > 0 then n == 0 and the value we have
186
   // computed is meaningless. Instead return BigInt::zero() in that case.
187
1.59k
   return static_cast<size_t>(seen_nonempty_word.if_set_return(low_zero));
188
1.59k
}
189
190
/*
191
* Calculate the GCD in constant time
192
*/
193
0
BigInt gcd(const BigInt& a, const BigInt& b) {
194
0
   if(a.is_zero()) {
195
0
      return abs(b);
196
0
   }
197
0
   if(b.is_zero()) {
198
0
      return abs(a);
199
0
   }
200
201
0
   const size_t sz = std::max(a.sig_words(), b.sig_words());
202
0
   auto u = BigInt::with_capacity(sz);
203
0
   auto v = BigInt::with_capacity(sz);
204
0
   u += a;
205
0
   v += b;
206
207
0
   u.const_time_poison();
208
0
   v.const_time_poison();
209
210
0
   u.set_sign(BigInt::Positive);
211
0
   v.set_sign(BigInt::Positive);
212
213
   // In the worst case we have two fully populated big ints. After right
214
   // shifting so many times, we'll have reached the result for sure.
215
0
   const size_t loop_cnt = u.bits() + v.bits();
216
217
0
   using WordMask = CT::Mask<word>;
218
219
   // This temporary is big enough to hold all intermediate results of the
220
   // algorithm. No reallocation will happen during the loop.
221
   // Note however, that `ct_cond_assign()` will invalidate the 'sig_words'
222
   // cache, which _does not_ shrink the capacity of the underlying buffer.
223
0
   auto tmp = BigInt::with_capacity(sz);
224
0
   size_t factors_of_two = 0;
225
0
   for(size_t i = 0; i != loop_cnt; ++i) {
226
0
      auto both_odd = WordMask::expand(u.is_odd()) & WordMask::expand(v.is_odd());
227
228
      // Subtract the smaller from the larger if both are odd
229
0
      auto u_gt_v = WordMask::expand(bigint_cmp(u.data(), u.size(), v.data(), v.size()) > 0);
230
0
      bigint_sub_abs(tmp.mutable_data(), u.data(), sz, v.data(), sz);
231
0
      u.ct_cond_assign((u_gt_v & both_odd).as_bool(), tmp);
232
0
      v.ct_cond_assign((~u_gt_v & both_odd).as_bool(), tmp);
233
234
0
      const auto u_is_even = WordMask::expand(u.is_even());
235
0
      const auto v_is_even = WordMask::expand(v.is_even());
236
0
      BOTAN_DEBUG_ASSERT((u_is_even | v_is_even).as_bool());
237
238
      // When both are even, we're going to eliminate a factor of 2.
239
      // We have to reapply this factor to the final result.
240
0
      factors_of_two += (u_is_even & v_is_even).if_set_return(1);
241
242
      // remove one factor of 2, if u is even
243
0
      bigint_shr2(tmp.mutable_data(), u.data(), sz, 1);
244
0
      u.ct_cond_assign(u_is_even.as_bool(), tmp);
245
246
      // remove one factor of 2, if v is even
247
0
      bigint_shr2(tmp.mutable_data(), v.data(), sz, 1);
248
0
      v.ct_cond_assign(v_is_even.as_bool(), tmp);
249
0
   }
250
251
   // The GCD (without factors of two) is either in u or v, the other one is
252
   // zero. The non-zero variable _must_ be odd, because all factors of two were
253
   // removed in the loop iterations above.
254
0
   BOTAN_DEBUG_ASSERT(u.is_zero() || v.is_zero());
255
0
   BOTAN_DEBUG_ASSERT(u.is_odd() || v.is_odd());
256
257
   // make sure that the GCD (without factors of two) is in u
258
0
   u.ct_cond_assign(u.is_even() /* .is_zero() would not be constant time */, v);
259
260
   // re-apply the factors of two
261
0
   u.ct_shift_left(factors_of_two);
262
263
0
   u.const_time_unpoison();
264
0
   v.const_time_unpoison();
265
266
0
   return u;
267
0
}
268
269
/*
270
* Calculate the LCM
271
*/
272
0
BigInt lcm(const BigInt& a, const BigInt& b) {
273
0
   if(a == b) {
274
0
      return a;
275
0
   }
276
277
0
   auto ab = a * b;
278
0
   ab.set_sign(BigInt::Positive);  // ignore the signs of a & b
279
0
   const auto g = gcd(a, b);
280
0
   return ct_divide(ab, g);
281
0
}
282
283
/*
284
* Modular Exponentiation
285
*/
286
0
BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod) {
287
0
   if(mod.is_negative() || mod == 1) {
288
0
      return BigInt::zero();
289
0
   }
290
291
0
   if(base.is_zero() || mod.is_zero()) {
292
0
      if(exp.is_zero()) {
293
0
         return BigInt::one();
294
0
      }
295
0
      return BigInt::zero();
296
0
   }
297
298
0
   Modular_Reducer reduce_mod(mod);
299
300
0
   const size_t exp_bits = exp.bits();
301
302
0
   if(mod.is_odd()) {
303
0
      auto monty_params = std::make_shared<Montgomery_Params>(mod, reduce_mod);
304
0
      return monty_exp(monty_params, reduce_mod.reduce(base), exp, exp_bits);
305
0
   }
306
307
   /*
308
   Support for even modulus is just a convenience and not considered
309
   cryptographically important, so this implementation is slow ...
310
   */
311
0
   BigInt accum = BigInt::one();
312
0
   BigInt g = reduce_mod.reduce(base);
313
0
   BigInt t;
314
315
0
   for(size_t i = 0; i != exp_bits; ++i) {
316
0
      t = reduce_mod.multiply(g, accum);
317
0
      g = reduce_mod.square(g);
318
0
      accum.ct_cond_assign(exp.get_bit(i), t);
319
0
   }
320
0
   return accum;
321
0
}
322
323
0
BigInt is_perfect_square(const BigInt& C) {
324
0
   if(C < 1) {
325
0
      throw Invalid_Argument("is_perfect_square requires C >= 1");
326
0
   }
327
0
   if(C == 1) {
328
0
      return BigInt::one();
329
0
   }
330
331
0
   const size_t n = C.bits();
332
0
   const size_t m = (n + 1) / 2;
333
0
   const BigInt B = C + BigInt::power_of_2(m);
334
335
0
   BigInt X = BigInt::power_of_2(m) - 1;
336
0
   BigInt X2 = (X * X);
337
338
0
   for(;;) {
339
0
      X = (X2 + C) / (2 * X);
340
0
      X2 = (X * X);
341
342
0
      if(X2 < B) {
343
0
         break;
344
0
      }
345
0
   }
346
347
0
   if(X2 == C) {
348
0
      return X;
349
0
   } else {
350
0
      return BigInt::zero();
351
0
   }
352
0
}
353
354
/*
355
* Test for primality using Miller-Rabin
356
*/
357
0
bool is_prime(const BigInt& n, RandomNumberGenerator& rng, size_t prob, bool is_random) {
358
0
   if(n == 2) {
359
0
      return true;
360
0
   }
361
0
   if(n <= 1 || n.is_even()) {
362
0
      return false;
363
0
   }
364
365
0
   const size_t n_bits = n.bits();
366
367
   // Fast path testing for small numbers (<= 65521)
368
0
   if(n_bits <= 16) {
369
0
      const uint16_t num = static_cast<uint16_t>(n.word_at(0));
370
371
0
      return std::binary_search(PRIMES, PRIMES + PRIME_TABLE_SIZE, num);
372
0
   }
373
374
0
   Modular_Reducer mod_n(n);
375
376
0
   if(rng.is_seeded()) {
377
0
      const size_t t = miller_rabin_test_iterations(n_bits, prob, is_random);
378
379
0
      if(is_miller_rabin_probable_prime(n, mod_n, rng, t) == false) {
380
0
         return false;
381
0
      }
382
383
0
      if(is_random) {
384
0
         return true;
385
0
      } else {
386
0
         return is_lucas_probable_prime(n, mod_n);
387
0
      }
388
0
   } else {
389
0
      return is_bailie_psw_probable_prime(n, mod_n);
390
0
   }
391
0
}
392
393
}  // namespace Botan