/src/LPM/external.protobuf/include/google/protobuf/map.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Protocol Buffers - Google's data interchange format |
2 | | // Copyright 2008 Google Inc. All rights reserved. |
3 | | // |
4 | | // Use of this source code is governed by a BSD-style |
5 | | // license that can be found in the LICENSE file or at |
6 | | // https://developers.google.com/open-source/licenses/bsd |
7 | | |
8 | | // This file defines the map container and its helpers to support protobuf maps. |
9 | | // |
10 | | // The Map and MapIterator types are provided by this header file. |
11 | | // Please avoid using other types defined here, unless they are public |
12 | | // types within Map or MapIterator, such as Map::value_type. |
13 | | |
14 | | #ifndef GOOGLE_PROTOBUF_MAP_H__ |
15 | | #define GOOGLE_PROTOBUF_MAP_H__ |
16 | | |
17 | | #include <algorithm> |
18 | | #include <cstddef> |
19 | | #include <cstdint> |
20 | | #include <functional> |
21 | | #include <initializer_list> |
22 | | #include <iterator> |
23 | | #include <limits> // To support Visual Studio 2008 |
24 | | #include <string> |
25 | | #include <type_traits> |
26 | | #include <utility> |
27 | | |
28 | | #if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__) |
29 | | #include <time.h> |
30 | | #endif |
31 | | |
32 | | #include "google/protobuf/stubs/common.h" |
33 | | #include "absl/base/attributes.h" |
34 | | #include "absl/container/btree_map.h" |
35 | | #include "absl/hash/hash.h" |
36 | | #include "absl/log/absl_check.h" |
37 | | #include "absl/meta/type_traits.h" |
38 | | #include "absl/strings/string_view.h" |
39 | | #include "google/protobuf/arena.h" |
40 | | #include "google/protobuf/generated_enum_util.h" |
41 | | #include "google/protobuf/internal_visibility.h" |
42 | | #include "google/protobuf/map_type_handler.h" |
43 | | #include "google/protobuf/port.h" |
44 | | #include "google/protobuf/wire_format_lite.h" |
45 | | |
46 | | |
47 | | #ifdef SWIG |
48 | | #error "You cannot SWIG proto headers" |
49 | | #endif |
50 | | |
51 | | // Must be included last. |
52 | | #include "google/protobuf/port_def.inc" |
53 | | |
54 | | namespace google { |
55 | | namespace protobuf { |
56 | | |
57 | | template <typename Key, typename T> |
58 | | class Map; |
59 | | |
60 | | class MapIterator; |
61 | | |
62 | | template <typename Enum> |
63 | | struct is_proto_enum; |
64 | | |
65 | | namespace internal { |
66 | | template <typename Key, typename T> |
67 | | class MapFieldLite; |
68 | | |
69 | | template <typename Derived, typename Key, typename T, |
70 | | WireFormatLite::FieldType key_wire_type, |
71 | | WireFormatLite::FieldType value_wire_type> |
72 | | class MapField; |
73 | | |
74 | | struct MapTestPeer; |
75 | | struct MapBenchmarkPeer; |
76 | | |
77 | | template <typename Key, typename T> |
78 | | class TypeDefinedMapFieldBase; |
79 | | |
80 | | class DynamicMapField; |
81 | | |
82 | | class GeneratedMessageReflection; |
83 | | |
84 | | // The largest valid serialization for a message is INT_MAX, so we can't have |
85 | | // more than 32-bits worth of elements. |
86 | | using map_index_t = uint32_t; |
87 | | |
88 | | // Internal type traits that can be used to define custom key/value types. These |
89 | | // are only be specialized by protobuf internals, and never by users. |
90 | | template <typename T, typename VoidT = void> |
91 | | struct is_internal_map_key_type : std::false_type {}; |
92 | | |
93 | | template <typename T, typename VoidT = void> |
94 | | struct is_internal_map_value_type : std::false_type {}; |
95 | | |
96 | | // re-implement std::allocator to use arena allocator for memory allocation. |
97 | | // Used for Map implementation. Users should not use this class |
98 | | // directly. |
99 | | template <typename U> |
100 | | class MapAllocator { |
101 | | public: |
102 | | using value_type = U; |
103 | | using pointer = value_type*; |
104 | | using const_pointer = const value_type*; |
105 | | using reference = value_type&; |
106 | | using const_reference = const value_type&; |
107 | | using size_type = size_t; |
108 | | using difference_type = ptrdiff_t; |
109 | | |
110 | | constexpr MapAllocator() : arena_(nullptr) {} |
111 | | explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {} |
112 | | template <typename X> |
113 | | MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit) |
114 | | : arena_(allocator.arena()) {} |
115 | | |
116 | | // MapAllocator does not support alignments beyond 8. Technically we should |
117 | | // support up to std::max_align_t, but this fails with ubsan and tcmalloc |
118 | | // debug allocation logic which assume 8 as default alignment. |
119 | | static_assert(alignof(value_type) <= 8, ""); |
120 | | |
121 | 0 | pointer allocate(size_type n, const void* /* hint */ = nullptr) { |
122 | 0 | // If arena is not given, malloc needs to be called which doesn't |
123 | 0 | // construct element object. |
124 | 0 | if (arena_ == nullptr) { |
125 | 0 | return static_cast<pointer>(::operator new(n * sizeof(value_type))); |
126 | 0 | } else { |
127 | 0 | return reinterpret_cast<pointer>( |
128 | 0 | Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type))); |
129 | 0 | } |
130 | 0 | } Unexecuted instantiation: google::protobuf::internal::MapAllocator<google::protobuf::internal::NodeBase>::allocate(unsigned long, void const*) Unexecuted instantiation: google::protobuf::internal::MapAllocator<google::protobuf::internal::TableEntryPtr>::allocate(unsigned long, void const*) |
131 | | |
132 | 0 | void deallocate(pointer p, size_type n) { |
133 | 0 | if (arena_ == nullptr) { |
134 | 0 | internal::SizedDelete(p, n * sizeof(value_type)); |
135 | 0 | } |
136 | 0 | } |
137 | | |
138 | | #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \ |
139 | | !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN) |
140 | | template <class NodeType, class... Args> |
141 | | void construct(NodeType* p, Args&&... args) { |
142 | | // Clang 3.6 doesn't compile static casting to void* directly. (Issue |
143 | | // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall |
144 | | // not cast away constness". So first the maybe const pointer is casted to |
145 | | // const void* and after the const void* is const casted. |
146 | | new (const_cast<void*>(static_cast<const void*>(p))) |
147 | | NodeType(std::forward<Args>(args)...); |
148 | | } |
149 | | |
150 | | template <class NodeType> |
151 | | void destroy(NodeType* p) { |
152 | | p->~NodeType(); |
153 | | } |
154 | | #else |
155 | | void construct(pointer p, const_reference t) { new (p) value_type(t); } |
156 | | |
157 | | void destroy(pointer p) { p->~value_type(); } |
158 | | #endif |
159 | | |
160 | | template <typename X> |
161 | | struct rebind { |
162 | | using other = MapAllocator<X>; |
163 | | }; |
164 | | |
165 | | template <typename X> |
166 | | bool operator==(const MapAllocator<X>& other) const { |
167 | | return arena_ == other.arena_; |
168 | | } |
169 | | |
170 | | template <typename X> |
171 | | bool operator!=(const MapAllocator<X>& other) const { |
172 | | return arena_ != other.arena_; |
173 | | } |
174 | | |
175 | | // To support Visual Studio 2008 |
176 | | size_type max_size() const { |
177 | | // parentheses around (std::...:max) prevents macro warning of max() |
178 | | return (std::numeric_limits<size_type>::max)(); |
179 | | } |
180 | | |
181 | | // To support gcc-4.4, which does not properly |
182 | | // support templated friend classes |
183 | 0 | Arena* arena() const { return arena_; } |
184 | | |
185 | | private: |
186 | | using DestructorSkippable_ = void; |
187 | | Arena* arena_; |
188 | | }; |
189 | | |
190 | | // To save on binary size and simplify generic uses of the map types we collapse |
191 | | // signed/unsigned versions of the same sized integer to the unsigned version. |
192 | | template <typename T, typename = void> |
193 | | struct KeyForBaseImpl { |
194 | | using type = T; |
195 | | }; |
196 | | template <typename T> |
197 | | struct KeyForBaseImpl<T, std::enable_if_t<std::is_integral<T>::value && |
198 | | std::is_signed<T>::value>> { |
199 | | using type = std::make_unsigned_t<T>; |
200 | | }; |
201 | | template <typename T> |
202 | | using KeyForBase = typename KeyForBaseImpl<T>::type; |
203 | | |
204 | | // Default case: Not transparent. |
205 | | // We use std::hash<key_type>/std::less<key_type> and all the lookup functions |
206 | | // only accept `key_type`. |
207 | | template <typename key_type> |
208 | | struct TransparentSupport { |
209 | | // We hash all the scalars as uint64_t so that we can implement the same hash |
210 | | // function for VariantKey. This way we can have MapKey provide the same hash |
211 | | // as the underlying value would have. |
212 | | using hash = std::hash< |
213 | | std::conditional_t<std::is_scalar<key_type>::value, uint64_t, key_type>>; |
214 | | |
215 | | static bool Equals(const key_type& a, const key_type& b) { return a == b; } |
216 | | |
217 | | template <typename K> |
218 | | using key_arg = key_type; |
219 | | |
220 | | using ViewType = std::conditional_t<std::is_scalar<key_type>::value, key_type, |
221 | | const key_type&>; |
222 | | static ViewType ToView(const key_type& v) { return v; } |
223 | | }; |
224 | | |
225 | | // We add transparent support for std::string keys. We use |
226 | | // std::hash<absl::string_view> as it supports the input types we care about. |
227 | | // The lookup functions accept arbitrary `K`. This will include any key type |
228 | | // that is convertible to absl::string_view. |
229 | | template <> |
230 | | struct TransparentSupport<std::string> { |
231 | | // Use go/ranked-overloads for dispatching. |
232 | | struct Rank0 {}; |
233 | | struct Rank1 : Rank0 {}; |
234 | | struct Rank2 : Rank1 {}; |
235 | | template <typename T, typename = std::enable_if_t< |
236 | | std::is_convertible<T, absl::string_view>::value>> |
237 | | static absl::string_view ImplicitConvertImpl(T&& str, Rank2) { |
238 | | absl::string_view ref = str; |
239 | | return ref; |
240 | | } |
241 | | template <typename T, typename = std::enable_if_t< |
242 | | std::is_convertible<T, const std::string&>::value>> |
243 | | static absl::string_view ImplicitConvertImpl(T&& str, Rank1) { |
244 | | const std::string& ref = str; |
245 | | return ref; |
246 | | } |
247 | | template <typename T> |
248 | | static absl::string_view ImplicitConvertImpl(T&& str, Rank0) { |
249 | | return {str.data(), str.size()}; |
250 | | } |
251 | | |
252 | | template <typename T> |
253 | | static absl::string_view ImplicitConvert(T&& str) { |
254 | | return ImplicitConvertImpl(std::forward<T>(str), Rank2{}); |
255 | | } |
256 | | |
257 | | struct hash : public absl::Hash<absl::string_view> { |
258 | | using is_transparent = void; |
259 | | |
260 | | template <typename T> |
261 | | size_t operator()(T&& str) const { |
262 | | return absl::Hash<absl::string_view>::operator()( |
263 | | ImplicitConvert(std::forward<T>(str))); |
264 | | } |
265 | | }; |
266 | | |
267 | | template <typename T, typename U> |
268 | | static bool Equals(T&& t, U&& u) { |
269 | | return ImplicitConvert(std::forward<T>(t)) == |
270 | | ImplicitConvert(std::forward<U>(u)); |
271 | | } |
272 | | |
273 | | template <typename K> |
274 | | using key_arg = K; |
275 | | |
276 | | using ViewType = absl::string_view; |
277 | | template <typename T> |
278 | | static ViewType ToView(const T& v) { |
279 | | return ImplicitConvert(v); |
280 | | } |
281 | | }; |
282 | | |
283 | | enum class MapNodeSizeInfoT : uint32_t; |
284 | 0 | inline uint16_t SizeFromInfo(MapNodeSizeInfoT node_size_info) { |
285 | 0 | return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 16); |
286 | 0 | } |
287 | 0 | inline uint16_t ValueOffsetFromInfo(MapNodeSizeInfoT node_size_info) { |
288 | 0 | return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 0); |
289 | 0 | } |
290 | 0 | constexpr MapNodeSizeInfoT MakeNodeInfo(uint16_t size, uint16_t value_offset) { |
291 | 0 | return static_cast<MapNodeSizeInfoT>((static_cast<uint32_t>(size) << 16) | |
292 | 0 | value_offset); |
293 | 0 | } |
294 | | |
295 | | struct NodeBase { |
296 | | // Align the node to allow KeyNode to predict the location of the key. |
297 | | // This way sizeof(NodeBase) contains any possible padding it was going to |
298 | | // have between NodeBase and the key. |
299 | | alignas(kMaxMessageAlignment) NodeBase* next; |
300 | | |
301 | 0 | void* GetVoidKey() { return this + 1; } |
302 | 0 | const void* GetVoidKey() const { return this + 1; } |
303 | | |
304 | 0 | void* GetVoidValue(MapNodeSizeInfoT size_info) { |
305 | 0 | return reinterpret_cast<char*>(this) + ValueOffsetFromInfo(size_info); |
306 | 0 | } |
307 | | }; |
308 | | |
309 | 0 | inline NodeBase* EraseFromLinkedList(NodeBase* item, NodeBase* head) { |
310 | 0 | if (head == item) { |
311 | 0 | return head->next; |
312 | 0 | } else { |
313 | 0 | head->next = EraseFromLinkedList(item, head->next); |
314 | 0 | return head; |
315 | 0 | } |
316 | 0 | } |
317 | | |
318 | 0 | constexpr size_t MapTreeLengthThreshold() { return 8; } |
319 | 0 | inline bool TableEntryIsTooLong(NodeBase* node) { |
320 | 0 | const size_t kMaxLength = MapTreeLengthThreshold(); |
321 | 0 | size_t count = 0; |
322 | 0 | do { |
323 | 0 | ++count; |
324 | 0 | node = node->next; |
325 | 0 | } while (node != nullptr); |
326 | 0 | // Invariant: no linked list ever is more than kMaxLength in length. |
327 | 0 | ABSL_DCHECK_LE(count, kMaxLength); |
328 | 0 | return count >= kMaxLength; |
329 | 0 | } |
330 | | |
331 | | // Similar to the public MapKey, but specialized for the internal |
332 | | // implementation. |
333 | | struct VariantKey { |
334 | | // We make this value 16 bytes to make it cheaper to pass in the ABI. |
335 | | // Can't overload string_view this way, so we unpack the fields. |
336 | | // data==nullptr means this is a number and `integral` is the value. |
337 | | // data!=nullptr means this is a string and `integral` is the size. |
338 | | const char* data; |
339 | | uint64_t integral; |
340 | | |
341 | 0 | explicit VariantKey(uint64_t v) : data(nullptr), integral(v) {} |
342 | | explicit VariantKey(absl::string_view v) |
343 | 0 | : data(v.data()), integral(v.size()) { |
344 | 0 | // We use `data` to discriminate between the types, so make sure it is never |
345 | 0 | // null here. |
346 | 0 | if (data == nullptr) data = ""; |
347 | 0 | } |
348 | | |
349 | 0 | size_t Hash() const { |
350 | 0 | return data == nullptr ? std::hash<uint64_t>{}(integral) |
351 | 0 | : absl::Hash<absl::string_view>{}( |
352 | 0 | absl::string_view(data, integral)); |
353 | 0 | } |
354 | | |
355 | 0 | friend bool operator<(const VariantKey& left, const VariantKey& right) { |
356 | 0 | ABSL_DCHECK_EQ(left.data == nullptr, right.data == nullptr); |
357 | 0 | if (left.integral != right.integral) { |
358 | 0 | // If they are numbers with different value, or strings with different |
359 | 0 | // size, check the number only. |
360 | 0 | return left.integral < right.integral; |
361 | 0 | } |
362 | 0 | if (left.data == nullptr) { |
363 | 0 | // If they are numbers they have the same value, so return. |
364 | 0 | return false; |
365 | 0 | } |
366 | 0 | // They are strings of the same size, so check the bytes. |
367 | 0 | return memcmp(left.data, right.data, left.integral) < 0; |
368 | 0 | } |
369 | | }; |
370 | | |
371 | | // This is to be specialized by MapKey. |
372 | | template <typename T> |
373 | | struct RealKeyToVariantKey { |
374 | | VariantKey operator()(T value) const { return VariantKey(value); } |
375 | | }; |
376 | | |
377 | | template <> |
378 | | struct RealKeyToVariantKey<std::string> { |
379 | | template <typename T> |
380 | | VariantKey operator()(const T& value) const { |
381 | | return VariantKey(TransparentSupport<std::string>::ImplicitConvert(value)); |
382 | | } |
383 | | }; |
384 | | |
385 | | // We use a single kind of tree for all maps. This reduces code duplication. |
386 | | using TreeForMap = |
387 | | absl::btree_map<VariantKey, NodeBase*, std::less<VariantKey>, |
388 | | MapAllocator<std::pair<const VariantKey, NodeBase*>>>; |
389 | | |
390 | | // Type safe tagged pointer. |
391 | | // We convert to/from nodes and trees using the operations below. |
392 | | // They ensure that the tags are used correctly. |
393 | | // There are three states: |
394 | | // - x == 0: the entry is empty |
395 | | // - x != 0 && (x&1) == 0: the entry is a node list |
396 | | // - x != 0 && (x&1) == 1: the entry is a tree |
397 | | enum class TableEntryPtr : uintptr_t; |
398 | | |
399 | 0 | inline bool TableEntryIsEmpty(TableEntryPtr entry) { |
400 | 0 | return entry == TableEntryPtr{}; |
401 | 0 | } |
402 | 0 | inline bool TableEntryIsTree(TableEntryPtr entry) { |
403 | 0 | return (static_cast<uintptr_t>(entry) & 1) == 1; |
404 | 0 | } |
405 | 0 | inline bool TableEntryIsList(TableEntryPtr entry) { |
406 | 0 | return !TableEntryIsTree(entry); |
407 | 0 | } |
408 | 0 | inline bool TableEntryIsNonEmptyList(TableEntryPtr entry) { |
409 | 0 | return !TableEntryIsEmpty(entry) && TableEntryIsList(entry); |
410 | 0 | } |
411 | 0 | inline NodeBase* TableEntryToNode(TableEntryPtr entry) { |
412 | 0 | ABSL_DCHECK(TableEntryIsList(entry)); |
413 | 0 | return reinterpret_cast<NodeBase*>(static_cast<uintptr_t>(entry)); |
414 | 0 | } |
415 | 0 | inline TableEntryPtr NodeToTableEntry(NodeBase* node) { |
416 | 0 | ABSL_DCHECK((reinterpret_cast<uintptr_t>(node) & 1) == 0); |
417 | 0 | return static_cast<TableEntryPtr>(reinterpret_cast<uintptr_t>(node)); |
418 | 0 | } |
419 | 0 | inline TreeForMap* TableEntryToTree(TableEntryPtr entry) { |
420 | 0 | ABSL_DCHECK(TableEntryIsTree(entry)); |
421 | 0 | return reinterpret_cast<TreeForMap*>(static_cast<uintptr_t>(entry) - 1); |
422 | 0 | } |
423 | 0 | inline TableEntryPtr TreeToTableEntry(TreeForMap* node) { |
424 | 0 | ABSL_DCHECK((reinterpret_cast<uintptr_t>(node) & 1) == 0); |
425 | 0 | return static_cast<TableEntryPtr>(reinterpret_cast<uintptr_t>(node) | 1); |
426 | 0 | } |
427 | | |
428 | | // This captures all numeric types. |
429 | 0 | inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; } |
430 | 0 | inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) { |
431 | 0 | return StringSpaceUsedExcludingSelfLong(str); |
432 | 0 | } |
433 | | template <typename T, |
434 | | typename = decltype(std::declval<const T&>().SpaceUsedLong())> |
435 | | size_t MapValueSpaceUsedExcludingSelfLong(const T& message) { |
436 | | return message.SpaceUsedLong() - sizeof(T); |
437 | | } |
438 | | |
439 | | constexpr size_t kGlobalEmptyTableSize = 1; |
440 | | PROTOBUF_EXPORT extern const TableEntryPtr |
441 | | kGlobalEmptyTable[kGlobalEmptyTableSize]; |
442 | | |
443 | | template <typename Map, |
444 | | typename = typename std::enable_if< |
445 | | !std::is_scalar<typename Map::key_type>::value || |
446 | | !std::is_scalar<typename Map::mapped_type>::value>::type> |
447 | | size_t SpaceUsedInValues(const Map* map) { |
448 | | size_t size = 0; |
449 | | for (const auto& v : *map) { |
450 | | size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) + |
451 | | internal::MapValueSpaceUsedExcludingSelfLong(v.second); |
452 | | } |
453 | | return size; |
454 | | } |
455 | | |
456 | 0 | inline size_t SpaceUsedInValues(const void*) { return 0; } |
457 | | |
458 | | class UntypedMapBase; |
459 | | |
460 | | class UntypedMapIterator { |
461 | | public: |
462 | | // Invariants: |
463 | | // node_ is always correct. This is handy because the most common |
464 | | // operations are operator* and operator-> and they only use node_. |
465 | | // When node_ is set to a non-null value, all the other non-const fields |
466 | | // are updated to be correct also, but those fields can become stale |
467 | | // if the underlying map is modified. When those fields are needed they |
468 | | // are rechecked, and updated if necessary. |
469 | 0 | UntypedMapIterator() : node_(nullptr), m_(nullptr), bucket_index_(0) {} |
470 | | |
471 | | explicit UntypedMapIterator(const UntypedMapBase* m); |
472 | | |
473 | | UntypedMapIterator(NodeBase* n, const UntypedMapBase* m, map_index_t index) |
474 | 0 | : node_(n), m_(m), bucket_index_(index) {} |
475 | | |
476 | | // Advance through buckets, looking for the first that isn't empty. |
477 | | // If nothing non-empty is found then leave node_ == nullptr. |
478 | | void SearchFrom(map_index_t start_bucket); |
479 | | |
480 | | // The definition of operator== is handled by the derived type. If we were |
481 | | // to do it in this class it would allow comparing iterators of different |
482 | | // map types. |
483 | 0 | bool Equals(const UntypedMapIterator& other) const { |
484 | 0 | return node_ == other.node_; |
485 | 0 | } |
486 | | |
487 | | // The definition of operator++ is handled in the derived type. We would not |
488 | | // be able to return the right type from here. |
489 | 0 | void PlusPlus() { |
490 | 0 | if (node_->next == nullptr) { |
491 | 0 | SearchFrom(bucket_index_ + 1); |
492 | 0 | } else { |
493 | 0 | node_ = node_->next; |
494 | 0 | } |
495 | 0 | } |
496 | | |
497 | | // Conversion to and from a typed iterator child class is used by FFI. |
498 | | template <class Iter> |
499 | | static UntypedMapIterator FromTyped(Iter it) { |
500 | | static_assert( |
501 | | #if defined(__cpp_lib_is_layout_compatible) && \ |
502 | | __cpp_lib_is_layout_compatible >= 201907L |
503 | | std::is_layout_compatible_v<Iter, UntypedMapIterator>, |
504 | | #else |
505 | | sizeof(it) == sizeof(UntypedMapIterator), |
506 | | #endif |
507 | | "Map iterator must not have extra state that the base class" |
508 | | "does not define."); |
509 | | return static_cast<UntypedMapIterator>(it); |
510 | | } |
511 | | |
512 | | template <class Iter> |
513 | | Iter ToTyped() const { |
514 | | return Iter(*this); |
515 | | } |
516 | | NodeBase* node_; |
517 | | const UntypedMapBase* m_; |
518 | | map_index_t bucket_index_; |
519 | | }; |
520 | | |
521 | | // These properties are depended upon by Rust FFI. |
522 | | static_assert(std::is_trivially_copyable<UntypedMapIterator>::value, |
523 | | "UntypedMapIterator must be trivially copyable."); |
524 | | static_assert(std::is_trivially_destructible<UntypedMapIterator>::value, |
525 | | "UntypedMapIterator must be trivially destructible."); |
526 | | static_assert(std::is_standard_layout<UntypedMapIterator>::value, |
527 | | "UntypedMapIterator must be standard layout."); |
528 | | static_assert(offsetof(UntypedMapIterator, node_) == 0, |
529 | | "node_ must be the first field of UntypedMapIterator."); |
530 | | static_assert(sizeof(UntypedMapIterator) == |
531 | | sizeof(void*) * 2 + |
532 | | std::max(sizeof(uint32_t), alignof(void*)), |
533 | | "UntypedMapIterator does not have the expected size for FFI"); |
534 | | static_assert( |
535 | | alignof(UntypedMapIterator) == std::max(alignof(void*), alignof(uint32_t)), |
536 | | "UntypedMapIterator does not have the expected alignment for FFI"); |
537 | | |
538 | | // Base class for all Map instantiations. |
539 | | // This class holds all the data and provides the basic functionality shared |
540 | | // among all instantiations. |
541 | | // Having an untyped base class helps generic consumers (like the table-driven |
542 | | // parser) by having non-template code that can handle all instantiations. |
543 | | class PROTOBUF_EXPORT UntypedMapBase { |
544 | | using Allocator = internal::MapAllocator<void*>; |
545 | | using Tree = internal::TreeForMap; |
546 | | |
547 | | public: |
548 | | using size_type = size_t; |
549 | | |
550 | | explicit constexpr UntypedMapBase(Arena* arena) |
551 | | : num_elements_(0), |
552 | | num_buckets_(internal::kGlobalEmptyTableSize), |
553 | | seed_(0), |
554 | | index_of_first_non_null_(internal::kGlobalEmptyTableSize), |
555 | | table_(const_cast<TableEntryPtr*>(internal::kGlobalEmptyTable)), |
556 | 0 | alloc_(arena) {} |
557 | | |
558 | | UntypedMapBase(const UntypedMapBase&) = delete; |
559 | | UntypedMapBase& operator=(const UntypedMapBase&) = delete; |
560 | | |
561 | | protected: |
562 | | // 16 bytes is the minimum useful size for the array cache in the arena. |
563 | | enum { kMinTableSize = 16 / sizeof(void*) }; |
564 | | |
565 | | public: |
566 | 0 | Arena* arena() const { return this->alloc_.arena(); } |
567 | | |
568 | 0 | void InternalSwap(UntypedMapBase* other) { |
569 | 0 | std::swap(num_elements_, other->num_elements_); |
570 | 0 | std::swap(num_buckets_, other->num_buckets_); |
571 | 0 | std::swap(seed_, other->seed_); |
572 | 0 | std::swap(index_of_first_non_null_, other->index_of_first_non_null_); |
573 | 0 | std::swap(table_, other->table_); |
574 | 0 | std::swap(alloc_, other->alloc_); |
575 | 0 | } |
576 | | |
577 | 0 | static size_type max_size() { |
578 | 0 | return std::numeric_limits<map_index_t>::max(); |
579 | 0 | } |
580 | 0 | size_type size() const { return num_elements_; } |
581 | 0 | bool empty() const { return size() == 0; } |
582 | | |
583 | 0 | UntypedMapIterator begin() const { return UntypedMapIterator(this); } |
584 | | // We make this a static function to reduce the cost in MapField. |
585 | | // All the end iterators are singletons anyway. |
586 | 0 | static UntypedMapIterator EndIterator() { return {}; } |
587 | | |
588 | | protected: |
589 | | friend class TcParser; |
590 | | friend struct MapTestPeer; |
591 | | friend struct MapBenchmarkPeer; |
592 | | friend class UntypedMapIterator; |
593 | | |
594 | | struct NodeAndBucket { |
595 | | NodeBase* node; |
596 | | map_index_t bucket; |
597 | | }; |
598 | | |
599 | | // Returns whether we should insert after the head of the list. For |
600 | | // non-optimized builds, we randomly decide whether to insert right at the |
601 | | // head of the list or just after the head. This helps add a little bit of |
602 | | // non-determinism to the map ordering. |
603 | 0 | bool ShouldInsertAfterHead(void* node) { |
604 | 0 | #ifdef NDEBUG |
605 | 0 | (void)node; |
606 | 0 | return false; |
607 | 0 | #else |
608 | 0 | // Doing modulo with a prime mixes the bits more. |
609 | 0 | return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6; |
610 | 0 | #endif |
611 | 0 | } |
612 | | |
613 | | // Helper for InsertUnique. Handles the case where bucket b is a |
614 | | // not-too-long linked list. |
615 | 0 | void InsertUniqueInList(map_index_t b, NodeBase* node) { |
616 | 0 | if (!TableEntryIsEmpty(b) && ShouldInsertAfterHead(node)) { |
617 | 0 | auto* first = TableEntryToNode(table_[b]); |
618 | 0 | node->next = first->next; |
619 | 0 | first->next = node; |
620 | 0 | } else { |
621 | 0 | node->next = TableEntryToNode(table_[b]); |
622 | 0 | table_[b] = NodeToTableEntry(node); |
623 | 0 | } |
624 | 0 | } |
625 | | |
626 | 0 | bool TableEntryIsEmpty(map_index_t b) const { |
627 | 0 | return internal::TableEntryIsEmpty(table_[b]); |
628 | 0 | } |
629 | 0 | bool TableEntryIsNonEmptyList(map_index_t b) const { |
630 | 0 | return internal::TableEntryIsNonEmptyList(table_[b]); |
631 | 0 | } |
632 | 0 | bool TableEntryIsTree(map_index_t b) const { |
633 | 0 | return internal::TableEntryIsTree(table_[b]); |
634 | 0 | } |
635 | 0 | bool TableEntryIsList(map_index_t b) const { |
636 | 0 | return internal::TableEntryIsList(table_[b]); |
637 | 0 | } |
638 | | |
639 | | // Return whether table_[b] is a linked list that seems awfully long. |
640 | | // Requires table_[b] to point to a non-empty linked list. |
641 | 0 | bool TableEntryIsTooLong(map_index_t b) { |
642 | 0 | return internal::TableEntryIsTooLong(TableEntryToNode(table_[b])); |
643 | 0 | } |
644 | | |
645 | | // Return a power of two no less than max(kMinTableSize, n). |
646 | | // Assumes either n < kMinTableSize or n is a power of two. |
647 | 0 | map_index_t TableSize(map_index_t n) { |
648 | 0 | return n < static_cast<map_index_t>(kMinTableSize) |
649 | 0 | ? static_cast<map_index_t>(kMinTableSize) |
650 | 0 | : n; |
651 | 0 | } |
652 | | |
653 | | template <typename T> |
654 | | using AllocFor = absl::allocator_traits<Allocator>::template rebind_alloc<T>; |
655 | | |
656 | | // Alignment of the nodes is the same as alignment of NodeBase. |
657 | 0 | NodeBase* AllocNode(MapNodeSizeInfoT size_info) { |
658 | 0 | return AllocNode(SizeFromInfo(size_info)); |
659 | 0 | } |
660 | | |
661 | 0 | NodeBase* AllocNode(size_t node_size) { |
662 | 0 | PROTOBUF_ASSUME(node_size % sizeof(NodeBase) == 0); |
663 | 0 | return AllocFor<NodeBase>(alloc_).allocate(node_size / sizeof(NodeBase)); |
664 | 0 | } |
665 | | |
666 | 0 | void DeallocNode(NodeBase* node, MapNodeSizeInfoT size_info) { |
667 | 0 | DeallocNode(node, SizeFromInfo(size_info)); |
668 | 0 | } |
669 | | |
670 | 0 | void DeallocNode(NodeBase* node, size_t node_size) { |
671 | 0 | PROTOBUF_ASSUME(node_size % sizeof(NodeBase) == 0); |
672 | 0 | AllocFor<NodeBase>(alloc_).deallocate(node, node_size / sizeof(NodeBase)); |
673 | 0 | } |
674 | | |
675 | 0 | void DeleteTable(TableEntryPtr* table, map_index_t n) { |
676 | 0 | if (auto* a = arena()) { |
677 | 0 | a->ReturnArrayMemory(table, n * sizeof(TableEntryPtr)); |
678 | 0 | } else { |
679 | 0 | internal::SizedDelete(table, n * sizeof(TableEntryPtr)); |
680 | 0 | } |
681 | 0 | } |
682 | | |
683 | | NodeBase* DestroyTree(Tree* tree); |
684 | | using GetKey = VariantKey (*)(NodeBase*); |
685 | | void InsertUniqueInTree(map_index_t b, GetKey get_key, NodeBase* node); |
686 | | void TransferTree(Tree* tree, GetKey get_key); |
687 | | TableEntryPtr ConvertToTree(NodeBase* node, GetKey get_key); |
688 | | void EraseFromTree(map_index_t b, typename Tree::iterator tree_it); |
689 | | |
690 | | map_index_t VariantBucketNumber(VariantKey key) const; |
691 | | |
692 | 0 | map_index_t BucketNumberFromHash(uint64_t h) const { |
693 | 0 | // We xor the hash value against the random seed so that we effectively |
694 | 0 | // have a random hash function. |
695 | 0 | // We use absl::Hash to do bit mixing for uniform bucket selection. |
696 | 0 | return absl::HashOf(h ^ seed_) & (num_buckets_ - 1); |
697 | 0 | } |
698 | | |
699 | 0 | TableEntryPtr* CreateEmptyTable(map_index_t n) { |
700 | 0 | ABSL_DCHECK_GE(n, map_index_t{kMinTableSize}); |
701 | 0 | ABSL_DCHECK_EQ(n & (n - 1), 0u); |
702 | 0 | TableEntryPtr* result = AllocFor<TableEntryPtr>(alloc_).allocate(n); |
703 | 0 | memset(result, 0, n * sizeof(result[0])); |
704 | 0 | return result; |
705 | 0 | } |
706 | | |
707 | | // Return a randomish value. |
708 | 0 | map_index_t Seed() const { |
709 | 0 | uint64_t s = 0; |
710 | 0 | #if !defined(GOOGLE_PROTOBUF_NO_RDTSC) |
711 | 0 | #if defined(__APPLE__) |
712 | 0 | // Use a commpage-based fast time function on Apple environments (MacOS, |
713 | 0 | // iOS, tvOS, watchOS, etc). |
714 | 0 | s = clock_gettime_nsec_np(CLOCK_UPTIME_RAW); |
715 | 0 | #elif defined(__x86_64__) && defined(__GNUC__) |
716 | 0 | uint32_t hi, lo; |
717 | 0 | asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); |
718 | 0 | s = ((static_cast<uint64_t>(hi) << 32) | lo); |
719 | 0 | #elif defined(__aarch64__) && defined(__GNUC__) |
720 | 0 | // There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the |
721 | 0 | // system timer. It runs at a different frequency than the CPU's, but is |
722 | 0 | // the best source of time-based entropy we get. |
723 | 0 | uint64_t virtual_timer_value; |
724 | 0 | asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value)); |
725 | 0 | s = virtual_timer_value; |
726 | 0 | #endif |
727 | 0 | #endif // !defined(GOOGLE_PROTOBUF_NO_RDTSC) |
728 | 0 | // Add entropy from the address of the map and the address of the table |
729 | 0 | // array. |
730 | 0 | return static_cast<map_index_t>( |
731 | 0 | absl::HashOf(s, table_, static_cast<const void*>(this))); |
732 | 0 | } |
733 | | |
734 | | enum { |
735 | | kKeyIsString = 1 << 0, |
736 | | kValueIsString = 1 << 1, |
737 | | kValueIsProto = 1 << 2, |
738 | | kUseDestructFunc = 1 << 3, |
739 | | }; |
740 | | template <typename Key, typename Value> |
741 | | static constexpr uint8_t MakeDestroyBits() { |
742 | | uint8_t result = 0; |
743 | | if (!std::is_trivially_destructible<Key>::value) { |
744 | | if (std::is_same<Key, std::string>::value) { |
745 | | result |= kKeyIsString; |
746 | | } else { |
747 | | return kUseDestructFunc; |
748 | | } |
749 | | } |
750 | | if (!std::is_trivially_destructible<Value>::value) { |
751 | | if (std::is_same<Value, std::string>::value) { |
752 | | result |= kValueIsString; |
753 | | } else if (std::is_base_of<MessageLite, Value>::value) { |
754 | | result |= kValueIsProto; |
755 | | } else { |
756 | | return kUseDestructFunc; |
757 | | } |
758 | | } |
759 | | return result; |
760 | | } |
761 | | |
762 | | struct ClearInput { |
763 | | MapNodeSizeInfoT size_info; |
764 | | uint8_t destroy_bits; |
765 | | bool reset_table; |
766 | | void (*destroy_node)(NodeBase*); |
767 | | }; |
768 | | |
769 | | template <typename Node> |
770 | | static void DestroyNode(NodeBase* node) { |
771 | | static_cast<Node*>(node)->~Node(); |
772 | | } |
773 | | |
774 | | template <typename Node> |
775 | | static constexpr ClearInput MakeClearInput(bool reset) { |
776 | | constexpr auto bits = |
777 | | MakeDestroyBits<typename Node::key_type, typename Node::mapped_type>(); |
778 | | return ClearInput{Node::size_info(), bits, reset, |
779 | | bits & kUseDestructFunc ? DestroyNode<Node> : nullptr}; |
780 | | } |
781 | | |
782 | | void ClearTable(ClearInput input); |
783 | | |
784 | | NodeAndBucket FindFromTree(map_index_t b, VariantKey key, |
785 | | Tree::iterator* it) const; |
786 | | |
787 | | // Space used for the table, trees, and nodes. |
788 | | // Does not include the indirect space used. Eg the data of a std::string. |
789 | | size_t SpaceUsedInTable(size_t sizeof_node) const; |
790 | | |
791 | | map_index_t num_elements_; |
792 | | map_index_t num_buckets_; |
793 | | map_index_t seed_; |
794 | | map_index_t index_of_first_non_null_; |
795 | | TableEntryPtr* table_; // an array with num_buckets_ entries |
796 | | Allocator alloc_; |
797 | | }; |
798 | | |
799 | | inline UntypedMapIterator::UntypedMapIterator(const UntypedMapBase* m) : m_(m) { |
800 | | if (m_->index_of_first_non_null_ == m_->num_buckets_) { |
801 | | bucket_index_ = 0; |
802 | | node_ = nullptr; |
803 | | } else { |
804 | | bucket_index_ = m_->index_of_first_non_null_; |
805 | | TableEntryPtr entry = m_->table_[bucket_index_]; |
806 | | node_ = PROTOBUF_PREDICT_TRUE(TableEntryIsList(entry)) |
807 | | ? TableEntryToNode(entry) |
808 | | : TableEntryToTree(entry)->begin()->second; |
809 | | PROTOBUF_ASSUME(node_ != nullptr); |
810 | | } |
811 | | } |
812 | | |
813 | 0 | inline void UntypedMapIterator::SearchFrom(map_index_t start_bucket) { |
814 | 0 | ABSL_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || |
815 | 0 | !m_->TableEntryIsEmpty(m_->index_of_first_non_null_)); |
816 | 0 | for (map_index_t i = start_bucket; i < m_->num_buckets_; ++i) { |
817 | 0 | TableEntryPtr entry = m_->table_[i]; |
818 | 0 | if (entry == TableEntryPtr{}) continue; |
819 | 0 | bucket_index_ = i; |
820 | 0 | if (PROTOBUF_PREDICT_TRUE(TableEntryIsList(entry))) { |
821 | 0 | node_ = TableEntryToNode(entry); |
822 | 0 | } else { |
823 | 0 | TreeForMap* tree = TableEntryToTree(entry); |
824 | 0 | ABSL_DCHECK(!tree->empty()); |
825 | 0 | node_ = tree->begin()->second; |
826 | 0 | } |
827 | 0 | return; |
828 | 0 | } |
829 | 0 | node_ = nullptr; |
830 | 0 | bucket_index_ = 0; |
831 | 0 | } |
832 | | |
833 | | // Base class used by TcParser to extract the map object from a map field. |
834 | | // We keep it here to avoid a dependency into map_field.h from the main TcParser |
835 | | // code, since that would bring in Message too. |
836 | | class MapFieldBaseForParse { |
837 | | public: |
838 | 0 | const UntypedMapBase& GetMap() const { |
839 | 0 | return vtable_->get_map(*this, false); |
840 | 0 | } |
841 | 0 | UntypedMapBase* MutableMap() { |
842 | 0 | return &const_cast<UntypedMapBase&>(vtable_->get_map(*this, true)); |
843 | 0 | } |
844 | | |
845 | | protected: |
846 | | struct VTable { |
847 | | const UntypedMapBase& (*get_map)(const MapFieldBaseForParse&, |
848 | | bool is_mutable); |
849 | | }; |
850 | | explicit constexpr MapFieldBaseForParse(const VTable* vtable) |
851 | 0 | : vtable_(vtable) {} |
852 | | ~MapFieldBaseForParse() = default; |
853 | | |
854 | | const VTable* vtable_; |
855 | | }; |
856 | | |
857 | | // The value might be of different signedness, so use memcpy to extract it. |
858 | | template <typename T, std::enable_if_t<std::is_integral<T>::value, int> = 0> |
859 | | T ReadKey(const void* ptr) { |
860 | | T out; |
861 | | memcpy(&out, ptr, sizeof(T)); |
862 | | return out; |
863 | | } |
864 | | |
865 | | template <typename T, std::enable_if_t<!std::is_integral<T>::value, int> = 0> |
866 | | const T& ReadKey(const void* ptr) { |
867 | | return *reinterpret_cast<const T*>(ptr); |
868 | | } |
869 | | |
870 | | template <typename Key> |
871 | | struct KeyNode : NodeBase { |
872 | | static constexpr size_t kOffset = sizeof(NodeBase); |
873 | | decltype(auto) key() const { return ReadKey<Key>(GetVoidKey()); } |
874 | | }; |
875 | | |
876 | | // KeyMapBase is a chaining hash map with the additional feature that some |
877 | | // buckets can be converted to use an ordered container. This ensures O(lg n) |
878 | | // bounds on find, insert, and erase, while avoiding the overheads of ordered |
879 | | // containers most of the time. |
880 | | // |
881 | | // The implementation doesn't need the full generality of unordered_map, |
882 | | // and it doesn't have it. More bells and whistles can be added as needed. |
883 | | // Some implementation details: |
884 | | // 1. The number of buckets is a power of two. |
885 | | // 2. As is typical for hash_map and such, the Keys and Values are always |
886 | | // stored in linked list nodes. Pointers to elements are never invalidated |
887 | | // until the element is deleted. |
888 | | // 3. The trees' payload type is pointer to linked-list node. Tree-converting |
889 | | // a bucket doesn't copy Key-Value pairs. |
890 | | // 4. Once we've tree-converted a bucket, it is never converted back unless the |
891 | | // bucket is completely emptied out. Note that the items a tree contains may |
892 | | // wind up assigned to trees or lists upon a rehash. |
893 | | // 5. Mutations to a map do not invalidate the map's iterators, pointers to |
894 | | // elements, or references to elements. |
895 | | // 6. Except for erase(iterator), any non-const method can reorder iterators. |
896 | | // 7. Uses VariantKey when using the Tree representation, which holds all |
897 | | // possible key types as a variant value. |
898 | | |
899 | | template <typename Key> |
900 | | class KeyMapBase : public UntypedMapBase { |
901 | | static_assert(!std::is_signed<Key>::value || !std::is_integral<Key>::value, |
902 | | ""); |
903 | | |
904 | | using TS = TransparentSupport<Key>; |
905 | | |
906 | | public: |
907 | | using hasher = typename TS::hash; |
908 | | |
909 | | using UntypedMapBase::UntypedMapBase; |
910 | | |
911 | | protected: |
912 | | using KeyNode = internal::KeyNode<Key>; |
913 | | |
914 | | // Trees. The payload type is a copy of Key, so that we can query the tree |
915 | | // with Keys that are not in any particular data structure. |
916 | | // The value is a void* pointing to Node. We use void* instead of Node* to |
917 | | // avoid code bloat. That way there is only one instantiation of the tree |
918 | | // class per key type. |
919 | | using Tree = internal::TreeForMap; |
920 | | using TreeIterator = typename Tree::iterator; |
921 | | |
922 | | public: |
923 | | hasher hash_function() const { return {}; } |
924 | | |
925 | | protected: |
926 | | friend class TcParser; |
927 | | friend struct MapTestPeer; |
928 | | friend struct MapBenchmarkPeer; |
929 | | |
930 | | PROTOBUF_NOINLINE void erase_no_destroy(map_index_t b, KeyNode* node) { |
931 | | TreeIterator tree_it; |
932 | | const bool is_list = revalidate_if_necessary(b, node, &tree_it); |
933 | | if (is_list) { |
934 | | ABSL_DCHECK(TableEntryIsNonEmptyList(b)); |
935 | | auto* head = TableEntryToNode(table_[b]); |
936 | | head = EraseFromLinkedList(node, head); |
937 | | table_[b] = NodeToTableEntry(head); |
938 | | } else { |
939 | | EraseFromTree(b, tree_it); |
940 | | } |
941 | | --num_elements_; |
942 | | if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) { |
943 | | while (index_of_first_non_null_ < num_buckets_ && |
944 | | TableEntryIsEmpty(index_of_first_non_null_)) { |
945 | | ++index_of_first_non_null_; |
946 | | } |
947 | | } |
948 | | } |
949 | | |
950 | | NodeAndBucket FindHelper(typename TS::ViewType k, |
951 | | TreeIterator* it = nullptr) const { |
952 | | map_index_t b = BucketNumber(k); |
953 | | if (TableEntryIsNonEmptyList(b)) { |
954 | | auto* node = internal::TableEntryToNode(table_[b]); |
955 | | do { |
956 | | if (TS::Equals(static_cast<KeyNode*>(node)->key(), k)) { |
957 | | return {node, b}; |
958 | | } else { |
959 | | node = node->next; |
960 | | } |
961 | | } while (node != nullptr); |
962 | | } else if (TableEntryIsTree(b)) { |
963 | | return FindFromTree(b, internal::RealKeyToVariantKey<Key>{}(k), it); |
964 | | } |
965 | | return {nullptr, b}; |
966 | | } |
967 | | |
968 | | // Insert the given node. |
969 | | // If the key is a duplicate, it inserts the new node and returns the old one. |
970 | | // Gives ownership to the caller. |
971 | | // If the key is unique, it returns `nullptr`. |
972 | | KeyNode* InsertOrReplaceNode(KeyNode* node) { |
973 | | KeyNode* to_erase = nullptr; |
974 | | auto p = this->FindHelper(node->key()); |
975 | | if (p.node != nullptr) { |
976 | | erase_no_destroy(p.bucket, static_cast<KeyNode*>(p.node)); |
977 | | to_erase = static_cast<KeyNode*>(p.node); |
978 | | } else if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) { |
979 | | p = FindHelper(node->key()); |
980 | | } |
981 | | const map_index_t b = p.bucket; // bucket number |
982 | | InsertUnique(b, node); |
983 | | ++num_elements_; |
984 | | return to_erase; |
985 | | } |
986 | | |
987 | | // Insert the given Node in bucket b. If that would make bucket b too big, |
988 | | // and bucket b is not a tree, create a tree for buckets b. |
989 | | // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct |
990 | | // bucket. num_elements_ is not modified. |
991 | | void InsertUnique(map_index_t b, KeyNode* node) { |
992 | | ABSL_DCHECK(index_of_first_non_null_ == num_buckets_ || |
993 | | !TableEntryIsEmpty(index_of_first_non_null_)); |
994 | | // In practice, the code that led to this point may have already |
995 | | // determined whether we are inserting into an empty list, a short list, |
996 | | // or whatever. But it's probably cheap enough to recompute that here; |
997 | | // it's likely that we're inserting into an empty or short list. |
998 | | ABSL_DCHECK(FindHelper(node->key()).node == nullptr); |
999 | | if (TableEntryIsEmpty(b)) { |
1000 | | InsertUniqueInList(b, node); |
1001 | | index_of_first_non_null_ = (std::min)(index_of_first_non_null_, b); |
1002 | | } else if (TableEntryIsNonEmptyList(b) && !TableEntryIsTooLong(b)) { |
1003 | | InsertUniqueInList(b, node); |
1004 | | } else { |
1005 | | InsertUniqueInTree(b, NodeToVariantKey, node); |
1006 | | } |
1007 | | } |
1008 | | |
1009 | | static VariantKey NodeToVariantKey(NodeBase* node) { |
1010 | | return internal::RealKeyToVariantKey<Key>{}( |
1011 | | static_cast<KeyNode*>(node)->key()); |
1012 | | } |
1013 | | |
1014 | | // Have it a separate function for testing. |
1015 | | static size_type CalculateHiCutoff(size_type num_buckets) { |
1016 | | // We want the high cutoff to follow this rules: |
1017 | | // - When num_buckets_ == kGlobalEmptyTableSize, then make it 0 to force an |
1018 | | // allocation. |
1019 | | // - When num_buckets_ < 8, then make it num_buckets_ to avoid |
1020 | | // a reallocation. A large load factor is not that important on small |
1021 | | // tables and saves memory. |
1022 | | // - Otherwise, make it 75% of num_buckets_. |
1023 | | return num_buckets - num_buckets / 16 * 4 - num_buckets % 2; |
1024 | | } |
1025 | | |
1026 | | // Returns whether it did resize. Currently this is only used when |
1027 | | // num_elements_ increases, though it could be used in other situations. |
1028 | | // It checks for load too low as well as load too high: because any number |
1029 | | // of erases can occur between inserts, the load could be as low as 0 here. |
1030 | | // Resizing to a lower size is not always helpful, but failing to do so can |
1031 | | // destroy the expected big-O bounds for some operations. By having the |
1032 | | // policy that sometimes we resize down as well as up, clients can easily |
1033 | | // keep O(size()) = O(number of buckets) if they want that. |
1034 | | bool ResizeIfLoadIsOutOfRange(size_type new_size) { |
1035 | | const size_type hi_cutoff = CalculateHiCutoff(num_buckets_); |
1036 | | const size_type lo_cutoff = hi_cutoff / 4; |
1037 | | // We don't care how many elements are in trees. If a lot are, |
1038 | | // we may resize even though there are many empty buckets. In |
1039 | | // practice, this seems fine. |
1040 | | if (PROTOBUF_PREDICT_FALSE(new_size > hi_cutoff)) { |
1041 | | if (num_buckets_ <= max_size() / 2) { |
1042 | | Resize(num_buckets_ * 2); |
1043 | | return true; |
1044 | | } |
1045 | | } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff && |
1046 | | num_buckets_ > kMinTableSize)) { |
1047 | | size_type lg2_of_size_reduction_factor = 1; |
1048 | | // It's possible we want to shrink a lot here... size() could even be 0. |
1049 | | // So, estimate how much to shrink by making sure we don't shrink so |
1050 | | // much that we would need to grow the table after a few inserts. |
1051 | | const size_type hypothetical_size = new_size * 5 / 4 + 1; |
1052 | | while ((hypothetical_size << lg2_of_size_reduction_factor) < hi_cutoff) { |
1053 | | ++lg2_of_size_reduction_factor; |
1054 | | } |
1055 | | size_type new_num_buckets = std::max<size_type>( |
1056 | | kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); |
1057 | | if (new_num_buckets != num_buckets_) { |
1058 | | Resize(new_num_buckets); |
1059 | | return true; |
1060 | | } |
1061 | | } |
1062 | | return false; |
1063 | | } |
1064 | | |
1065 | | // Resize to the given number of buckets. |
1066 | | void Resize(map_index_t new_num_buckets) { |
1067 | | if (num_buckets_ == kGlobalEmptyTableSize) { |
1068 | | // This is the global empty array. |
1069 | | // Just overwrite with a new one. No need to transfer or free anything. |
1070 | | num_buckets_ = index_of_first_non_null_ = kMinTableSize; |
1071 | | table_ = CreateEmptyTable(num_buckets_); |
1072 | | seed_ = Seed(); |
1073 | | return; |
1074 | | } |
1075 | | |
1076 | | ABSL_DCHECK_GE(new_num_buckets, kMinTableSize); |
1077 | | const auto old_table = table_; |
1078 | | const map_index_t old_table_size = num_buckets_; |
1079 | | num_buckets_ = new_num_buckets; |
1080 | | table_ = CreateEmptyTable(num_buckets_); |
1081 | | const map_index_t start = index_of_first_non_null_; |
1082 | | index_of_first_non_null_ = num_buckets_; |
1083 | | for (map_index_t i = start; i < old_table_size; ++i) { |
1084 | | if (internal::TableEntryIsNonEmptyList(old_table[i])) { |
1085 | | TransferList(static_cast<KeyNode*>(TableEntryToNode(old_table[i]))); |
1086 | | } else if (internal::TableEntryIsTree(old_table[i])) { |
1087 | | this->TransferTree(TableEntryToTree(old_table[i]), NodeToVariantKey); |
1088 | | } |
1089 | | } |
1090 | | DeleteTable(old_table, old_table_size); |
1091 | | } |
1092 | | |
1093 | | // Transfer all nodes in the list `node` into `this`. |
1094 | | void TransferList(KeyNode* node) { |
1095 | | do { |
1096 | | auto* next = static_cast<KeyNode*>(node->next); |
1097 | | InsertUnique(BucketNumber(node->key()), node); |
1098 | | node = next; |
1099 | | } while (node != nullptr); |
1100 | | } |
1101 | | |
1102 | | map_index_t BucketNumber(typename TS::ViewType k) const { |
1103 | | ABSL_DCHECK_EQ(BucketNumberFromHash(hash_function()(k)), |
1104 | | VariantBucketNumber(RealKeyToVariantKey<Key>{}(k))); |
1105 | | return BucketNumberFromHash(hash_function()(k)); |
1106 | | } |
1107 | | |
1108 | | // Assumes node_ and m_ are correct and non-null, but other fields may be |
1109 | | // stale. Fix them as needed. Then return true iff node_ points to a |
1110 | | // Node in a list. If false is returned then *it is modified to be |
1111 | | // a valid iterator for node_. |
1112 | | bool revalidate_if_necessary(map_index_t& bucket_index, KeyNode* node, |
1113 | | TreeIterator* it) const { |
1114 | | // Force bucket_index to be in range. |
1115 | | bucket_index &= (num_buckets_ - 1); |
1116 | | // Common case: the bucket we think is relevant points to `node`. |
1117 | | if (table_[bucket_index] == NodeToTableEntry(node)) return true; |
1118 | | // Less common: the bucket is a linked list with node_ somewhere in it, |
1119 | | // but not at the head. |
1120 | | if (TableEntryIsNonEmptyList(bucket_index)) { |
1121 | | auto* l = TableEntryToNode(table_[bucket_index]); |
1122 | | while ((l = l->next) != nullptr) { |
1123 | | if (l == node) { |
1124 | | return true; |
1125 | | } |
1126 | | } |
1127 | | } |
1128 | | // Well, bucket_index_ still might be correct, but probably |
1129 | | // not. Revalidate just to be sure. This case is rare enough that we |
1130 | | // don't worry about potential optimizations, such as having a custom |
1131 | | // find-like method that compares Node* instead of the key. |
1132 | | auto res = FindHelper(node->key(), it); |
1133 | | bucket_index = res.bucket; |
1134 | | return TableEntryIsList(bucket_index); |
1135 | | } |
1136 | | }; |
1137 | | |
1138 | | template <typename T, typename K> |
1139 | | bool InitializeMapKey(T*, K&&, Arena*) { |
1140 | | return false; |
1141 | | } |
1142 | | |
1143 | | |
1144 | | } // namespace internal |
1145 | | |
1146 | | // This is the class for Map's internal value_type. |
1147 | | template <typename Key, typename T> |
1148 | | using MapPair = std::pair<const Key, T>; |
1149 | | |
1150 | | // Map is an associative container type used to store protobuf map |
1151 | | // fields. Each Map instance may or may not use a different hash function, a |
1152 | | // different iteration order, and so on. E.g., please don't examine |
1153 | | // implementation details to decide if the following would work: |
1154 | | // Map<int, int> m0, m1; |
1155 | | // m0[0] = m1[0] = m0[1] = m1[1] = 0; |
1156 | | // assert(m0.begin()->first == m1.begin()->first); // Bug! |
1157 | | // |
1158 | | // Map's interface is similar to std::unordered_map, except that Map is not |
1159 | | // designed to play well with exceptions. |
1160 | | template <typename Key, typename T> |
1161 | | class Map : private internal::KeyMapBase<internal::KeyForBase<Key>> { |
1162 | | using Base = typename Map::KeyMapBase; |
1163 | | |
1164 | | using TS = internal::TransparentSupport<Key>; |
1165 | | |
1166 | | public: |
1167 | | using key_type = Key; |
1168 | | using mapped_type = T; |
1169 | | using init_type = std::pair<Key, T>; |
1170 | | using value_type = MapPair<Key, T>; |
1171 | | |
1172 | | using pointer = value_type*; |
1173 | | using const_pointer = const value_type*; |
1174 | | using reference = value_type&; |
1175 | | using const_reference = const value_type&; |
1176 | | |
1177 | | using size_type = size_t; |
1178 | | using hasher = typename TS::hash; |
1179 | | |
1180 | | constexpr Map() : Base(nullptr) { StaticValidityCheck(); } |
1181 | | Map(const Map& other) : Map(nullptr, other) {} |
1182 | | |
1183 | | // Internal Arena constructors: do not use! |
1184 | | // TODO: remove non internal ctors |
1185 | | explicit Map(Arena* arena) : Base(arena) { StaticValidityCheck(); } |
1186 | | Map(internal::InternalVisibility, Arena* arena) : Map(arena) {} |
1187 | | Map(internal::InternalVisibility, Arena* arena, const Map& other) |
1188 | | : Map(arena, other) {} |
1189 | | |
1190 | | Map(Map&& other) noexcept : Map() { |
1191 | | if (other.arena() != nullptr) { |
1192 | | *this = other; |
1193 | | } else { |
1194 | | swap(other); |
1195 | | } |
1196 | | } |
1197 | | |
1198 | | Map& operator=(Map&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1199 | | if (this != &other) { |
1200 | | if (arena() != other.arena()) { |
1201 | | *this = other; |
1202 | | } else { |
1203 | | swap(other); |
1204 | | } |
1205 | | } |
1206 | | return *this; |
1207 | | } |
1208 | | |
1209 | | template <class InputIt> |
1210 | | Map(const InputIt& first, const InputIt& last) : Map() { |
1211 | | insert(first, last); |
1212 | | } |
1213 | | |
1214 | | ~Map() { |
1215 | | // Fail-safe in case we miss calling this in a constructor. Note: this one |
1216 | | // won't trigger for leaked maps that never get destructed. |
1217 | | StaticValidityCheck(); |
1218 | | |
1219 | | if (this->num_buckets_ != internal::kGlobalEmptyTableSize) { |
1220 | | this->ClearTable(this->template MakeClearInput<Node>(false)); |
1221 | | } |
1222 | | } |
1223 | | |
1224 | | private: |
1225 | | Map(Arena* arena, const Map& other) : Base(arena) { |
1226 | | StaticValidityCheck(); |
1227 | | insert(other.begin(), other.end()); |
1228 | | } |
1229 | | static_assert(!std::is_const<mapped_type>::value && |
1230 | | !std::is_const<key_type>::value, |
1231 | | "We do not support const types."); |
1232 | | static_assert(!std::is_volatile<mapped_type>::value && |
1233 | | !std::is_volatile<key_type>::value, |
1234 | | "We do not support volatile types."); |
1235 | | static_assert(!std::is_pointer<mapped_type>::value && |
1236 | | !std::is_pointer<key_type>::value, |
1237 | | "We do not support pointer types."); |
1238 | | static_assert(!std::is_reference<mapped_type>::value && |
1239 | | !std::is_reference<key_type>::value, |
1240 | | "We do not support reference types."); |
1241 | | static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() { |
1242 | | static_assert(alignof(internal::NodeBase) >= alignof(mapped_type), |
1243 | | "Alignment of mapped type is too high."); |
1244 | | static_assert( |
1245 | | absl::disjunction<internal::is_supported_integral_type<key_type>, |
1246 | | internal::is_supported_string_type<key_type>, |
1247 | | internal::is_internal_map_key_type<key_type>>::value, |
1248 | | "We only support integer, string, or designated internal key " |
1249 | | "types."); |
1250 | | static_assert(absl::disjunction< |
1251 | | internal::is_supported_scalar_type<mapped_type>, |
1252 | | is_proto_enum<mapped_type>, |
1253 | | internal::is_supported_message_type<mapped_type>, |
1254 | | internal::is_internal_map_value_type<mapped_type>>::value, |
1255 | | "We only support scalar, Message, and designated internal " |
1256 | | "mapped types."); |
1257 | | } |
1258 | | |
1259 | | template <typename P> |
1260 | | struct SameAsElementReference |
1261 | | : std::is_same<typename std::remove_cv< |
1262 | | typename std::remove_reference<reference>::type>::type, |
1263 | | typename std::remove_cv< |
1264 | | typename std::remove_reference<P>::type>::type> {}; |
1265 | | |
1266 | | template <class P> |
1267 | | using RequiresInsertable = |
1268 | | typename std::enable_if<std::is_convertible<P, init_type>::value || |
1269 | | SameAsElementReference<P>::value, |
1270 | | int>::type; |
1271 | | template <class P> |
1272 | | using RequiresNotInit = |
1273 | | typename std::enable_if<!std::is_same<P, init_type>::value, int>::type; |
1274 | | |
1275 | | template <typename LookupKey> |
1276 | | using key_arg = typename TS::template key_arg<LookupKey>; |
1277 | | |
1278 | | public: |
1279 | | // Iterators |
1280 | | class const_iterator : private internal::UntypedMapIterator { |
1281 | | using BaseIt = internal::UntypedMapIterator; |
1282 | | |
1283 | | public: |
1284 | | using iterator_category = std::forward_iterator_tag; |
1285 | | using value_type = typename Map::value_type; |
1286 | | using difference_type = ptrdiff_t; |
1287 | | using pointer = const value_type*; |
1288 | | using reference = const value_type&; |
1289 | | |
1290 | | const_iterator() {} |
1291 | | const_iterator(const const_iterator&) = default; |
1292 | | const_iterator& operator=(const const_iterator&) = default; |
1293 | | |
1294 | | reference operator*() const { return static_cast<Node*>(this->node_)->kv; } |
1295 | | pointer operator->() const { return &(operator*()); } |
1296 | | |
1297 | | const_iterator& operator++() { |
1298 | | this->PlusPlus(); |
1299 | | return *this; |
1300 | | } |
1301 | | const_iterator operator++(int) { |
1302 | | auto copy = *this; |
1303 | | this->PlusPlus(); |
1304 | | return copy; |
1305 | | } |
1306 | | |
1307 | | friend bool operator==(const const_iterator& a, const const_iterator& b) { |
1308 | | return a.Equals(b); |
1309 | | } |
1310 | | friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
1311 | | return !a.Equals(b); |
1312 | | } |
1313 | | |
1314 | | private: |
1315 | | using BaseIt::BaseIt; |
1316 | | explicit const_iterator(const BaseIt& base) : BaseIt(base) {} |
1317 | | friend class Map; |
1318 | | friend class internal::UntypedMapIterator; |
1319 | | friend class internal::TypeDefinedMapFieldBase<Key, T>; |
1320 | | }; |
1321 | | |
1322 | | class iterator : private internal::UntypedMapIterator { |
1323 | | using BaseIt = internal::UntypedMapIterator; |
1324 | | |
1325 | | public: |
1326 | | using iterator_category = std::forward_iterator_tag; |
1327 | | using value_type = typename Map::value_type; |
1328 | | using difference_type = ptrdiff_t; |
1329 | | using pointer = value_type*; |
1330 | | using reference = value_type&; |
1331 | | |
1332 | | iterator() {} |
1333 | | iterator(const iterator&) = default; |
1334 | | iterator& operator=(const iterator&) = default; |
1335 | | |
1336 | | reference operator*() const { return static_cast<Node*>(this->node_)->kv; } |
1337 | | pointer operator->() const { return &(operator*()); } |
1338 | | |
1339 | | iterator& operator++() { |
1340 | | this->PlusPlus(); |
1341 | | return *this; |
1342 | | } |
1343 | | iterator operator++(int) { |
1344 | | auto copy = *this; |
1345 | | this->PlusPlus(); |
1346 | | return copy; |
1347 | | } |
1348 | | |
1349 | | // Allow implicit conversion to const_iterator. |
1350 | | operator const_iterator() const { // NOLINT(runtime/explicit) |
1351 | | return const_iterator(static_cast<const BaseIt&>(*this)); |
1352 | | } |
1353 | | |
1354 | | friend bool operator==(const iterator& a, const iterator& b) { |
1355 | | return a.Equals(b); |
1356 | | } |
1357 | | friend bool operator!=(const iterator& a, const iterator& b) { |
1358 | | return !a.Equals(b); |
1359 | | } |
1360 | | |
1361 | | private: |
1362 | | using BaseIt::BaseIt; |
1363 | | friend class Map; |
1364 | | }; |
1365 | | |
1366 | | iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(this); } |
1367 | | iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(); } |
1368 | | const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1369 | | return const_iterator(this); |
1370 | | } |
1371 | | const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1372 | | return const_iterator(); |
1373 | | } |
1374 | | const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1375 | | return begin(); |
1376 | | } |
1377 | | const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } |
1378 | | |
1379 | | using Base::empty; |
1380 | | using Base::size; |
1381 | | |
1382 | | // Element access |
1383 | | template <typename K = key_type> |
1384 | | T& operator[](const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1385 | | return try_emplace(key).first->second; |
1386 | | } |
1387 | | template < |
1388 | | typename K = key_type, |
1389 | | // Disable for integral types to reduce code bloat. |
1390 | | typename = typename std::enable_if<!std::is_integral<K>::value>::type> |
1391 | | T& operator[](key_arg<K>&& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1392 | | return try_emplace(std::forward<K>(key)).first->second; |
1393 | | } |
1394 | | |
1395 | | template <typename K = key_type> |
1396 | | const T& at(const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1397 | | const_iterator it = find(key); |
1398 | | ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
1399 | | return it->second; |
1400 | | } |
1401 | | |
1402 | | template <typename K = key_type> |
1403 | | T& at(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1404 | | iterator it = find(key); |
1405 | | ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
1406 | | return it->second; |
1407 | | } |
1408 | | |
1409 | | // Lookup |
1410 | | template <typename K = key_type> |
1411 | | size_type count(const key_arg<K>& key) const { |
1412 | | return find(key) == end() ? 0 : 1; |
1413 | | } |
1414 | | |
1415 | | template <typename K = key_type> |
1416 | | const_iterator find(const key_arg<K>& key) const |
1417 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1418 | | return const_cast<Map*>(this)->find(key); |
1419 | | } |
1420 | | template <typename K = key_type> |
1421 | | iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1422 | | auto res = this->FindHelper(TS::ToView(key)); |
1423 | | return iterator(static_cast<Node*>(res.node), this, res.bucket); |
1424 | | } |
1425 | | |
1426 | | template <typename K = key_type> |
1427 | | bool contains(const key_arg<K>& key) const { |
1428 | | return find(key) != end(); |
1429 | | } |
1430 | | |
1431 | | template <typename K = key_type> |
1432 | | std::pair<const_iterator, const_iterator> equal_range( |
1433 | | const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1434 | | const_iterator it = find(key); |
1435 | | if (it == end()) { |
1436 | | return std::pair<const_iterator, const_iterator>(it, it); |
1437 | | } else { |
1438 | | const_iterator begin = it++; |
1439 | | return std::pair<const_iterator, const_iterator>(begin, it); |
1440 | | } |
1441 | | } |
1442 | | |
1443 | | template <typename K = key_type> |
1444 | | std::pair<iterator, iterator> equal_range(const key_arg<K>& key) |
1445 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1446 | | iterator it = find(key); |
1447 | | if (it == end()) { |
1448 | | return std::pair<iterator, iterator>(it, it); |
1449 | | } else { |
1450 | | iterator begin = it++; |
1451 | | return std::pair<iterator, iterator>(begin, it); |
1452 | | } |
1453 | | } |
1454 | | |
1455 | | // insert |
1456 | | template <typename K, typename... Args> |
1457 | | std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) |
1458 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1459 | | // Inserts a new element into the container if there is no element with the |
1460 | | // key in the container. |
1461 | | // The new element is: |
1462 | | // (1) Constructed in-place with the given args, if mapped_type is not |
1463 | | // arena constructible. |
1464 | | // (2) Constructed in-place with the arena and then assigned with a |
1465 | | // mapped_type temporary constructed with the given args, otherwise. |
1466 | | return ArenaAwareTryEmplace(Arena::is_arena_constructable<mapped_type>(), |
1467 | | std::forward<K>(k), |
1468 | | std::forward<Args>(args)...); |
1469 | | } |
1470 | | std::pair<iterator, bool> insert(init_type&& value) |
1471 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1472 | | return try_emplace(std::move(value.first), std::move(value.second)); |
1473 | | } |
1474 | | template <typename P, RequiresInsertable<P> = 0> |
1475 | | std::pair<iterator, bool> insert(P&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1476 | | return try_emplace(std::forward<P>(value).first, |
1477 | | std::forward<P>(value).second); |
1478 | | } |
1479 | | template <typename... Args> |
1480 | | std::pair<iterator, bool> emplace(Args&&... args) |
1481 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1482 | | return EmplaceInternal(Rank0{}, std::forward<Args>(args)...); |
1483 | | } |
1484 | | template <class InputIt> |
1485 | | void insert(InputIt first, InputIt last) { |
1486 | | for (; first != last; ++first) { |
1487 | | auto&& pair = *first; |
1488 | | try_emplace(pair.first, pair.second); |
1489 | | } |
1490 | | } |
1491 | | void insert(std::initializer_list<init_type> values) { |
1492 | | insert(values.begin(), values.end()); |
1493 | | } |
1494 | | template <typename P, RequiresNotInit<P> = 0, |
1495 | | RequiresInsertable<const P&> = 0> |
1496 | | void insert(std::initializer_list<P> values) { |
1497 | | insert(values.begin(), values.end()); |
1498 | | } |
1499 | | |
1500 | | // Erase and clear |
1501 | | template <typename K = key_type> |
1502 | | size_type erase(const key_arg<K>& key) { |
1503 | | iterator it = find(key); |
1504 | | if (it == end()) { |
1505 | | return 0; |
1506 | | } else { |
1507 | | erase(it); |
1508 | | return 1; |
1509 | | } |
1510 | | } |
1511 | | |
1512 | | iterator erase(iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1513 | | auto next = std::next(pos); |
1514 | | ABSL_DCHECK_EQ(pos.m_, static_cast<Base*>(this)); |
1515 | | auto* node = static_cast<Node*>(pos.node_); |
1516 | | this->erase_no_destroy(pos.bucket_index_, node); |
1517 | | DestroyNode(node); |
1518 | | return next; |
1519 | | } |
1520 | | |
1521 | | void erase(iterator first, iterator last) { |
1522 | | while (first != last) { |
1523 | | first = erase(first); |
1524 | | } |
1525 | | } |
1526 | | |
1527 | | void clear() { |
1528 | | if (this->num_buckets_ == internal::kGlobalEmptyTableSize) return; |
1529 | | this->ClearTable(this->template MakeClearInput<Node>(true)); |
1530 | | } |
1531 | | |
1532 | | // Assign |
1533 | | Map& operator=(const Map& other) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1534 | | if (this != &other) { |
1535 | | clear(); |
1536 | | insert(other.begin(), other.end()); |
1537 | | } |
1538 | | return *this; |
1539 | | } |
1540 | | |
1541 | | void swap(Map& other) { |
1542 | | if (arena() == other.arena()) { |
1543 | | InternalSwap(&other); |
1544 | | } else { |
1545 | | // TODO: optimize this. The temporary copy can be allocated |
1546 | | // in the same arena as the other message, and the "other = copy" can |
1547 | | // be replaced with the fast-path swap above. |
1548 | | Map copy = *this; |
1549 | | *this = other; |
1550 | | other = copy; |
1551 | | } |
1552 | | } |
1553 | | |
1554 | | void InternalSwap(Map* other) { |
1555 | | internal::UntypedMapBase::InternalSwap(other); |
1556 | | } |
1557 | | |
1558 | | hasher hash_function() const { return {}; } |
1559 | | |
1560 | | size_t SpaceUsedExcludingSelfLong() const { |
1561 | | if (empty()) return 0; |
1562 | | return SpaceUsedInternal() + internal::SpaceUsedInValues(this); |
1563 | | } |
1564 | | |
1565 | | private: |
1566 | | struct Rank1 {}; |
1567 | | struct Rank0 : Rank1 {}; |
1568 | | |
1569 | | // Linked-list nodes, as one would expect for a chaining hash table. |
1570 | | struct Node : Base::KeyNode { |
1571 | | using key_type = Key; |
1572 | | using mapped_type = T; |
1573 | | static constexpr internal::MapNodeSizeInfoT size_info() { |
1574 | | return internal::MakeNodeInfo(sizeof(Node), |
1575 | | PROTOBUF_FIELD_OFFSET(Node, kv.second)); |
1576 | | } |
1577 | | value_type kv; |
1578 | | }; |
1579 | | |
1580 | | using Tree = internal::TreeForMap; |
1581 | | using TreeIterator = typename Tree::iterator; |
1582 | | using TableEntryPtr = internal::TableEntryPtr; |
1583 | | |
1584 | | static Node* NodeFromTreeIterator(TreeIterator it) { |
1585 | | static_assert( |
1586 | | PROTOBUF_FIELD_OFFSET(Node, kv.first) == Base::KeyNode::kOffset, ""); |
1587 | | static_assert(alignof(Node) == alignof(internal::NodeBase), ""); |
1588 | | return static_cast<Node*>(it->second); |
1589 | | } |
1590 | | |
1591 | | void DestroyNode(Node* node) { |
1592 | | if (this->alloc_.arena() == nullptr) { |
1593 | | node->kv.first.~key_type(); |
1594 | | node->kv.second.~mapped_type(); |
1595 | | this->DeallocNode(node, sizeof(Node)); |
1596 | | } |
1597 | | } |
1598 | | |
1599 | | size_t SpaceUsedInternal() const { |
1600 | | return this->SpaceUsedInTable(sizeof(Node)); |
1601 | | } |
1602 | | |
1603 | | // We try to construct `init_type` from `Args` with a fall back to |
1604 | | // `value_type`. The latter is less desired as it unconditionally makes a copy |
1605 | | // of `value_type::first`. |
1606 | | template <typename... Args> |
1607 | | auto EmplaceInternal(Rank0, Args&&... args) -> |
1608 | | typename std::enable_if<std::is_constructible<init_type, Args...>::value, |
1609 | | std::pair<iterator, bool>>::type { |
1610 | | return insert(init_type(std::forward<Args>(args)...)); |
1611 | | } |
1612 | | template <typename... Args> |
1613 | | std::pair<iterator, bool> EmplaceInternal(Rank1, Args&&... args) { |
1614 | | return insert(value_type(std::forward<Args>(args)...)); |
1615 | | } |
1616 | | |
1617 | | template <typename K, typename... Args> |
1618 | | std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) { |
1619 | | auto p = this->FindHelper(TS::ToView(k)); |
1620 | | // Case 1: key was already present. |
1621 | | if (p.node != nullptr) |
1622 | | return std::make_pair( |
1623 | | iterator(static_cast<Node*>(p.node), this, p.bucket), false); |
1624 | | // Case 2: insert. |
1625 | | if (this->ResizeIfLoadIsOutOfRange(this->num_elements_ + 1)) { |
1626 | | p = this->FindHelper(TS::ToView(k)); |
1627 | | } |
1628 | | const auto b = p.bucket; // bucket number |
1629 | | // If K is not key_type, make the conversion to key_type explicit. |
1630 | | using TypeToInit = typename std::conditional< |
1631 | | std::is_same<typename std::decay<K>::type, key_type>::value, K&&, |
1632 | | key_type>::type; |
1633 | | Node* node = static_cast<Node*>(this->AllocNode(sizeof(Node))); |
1634 | | |
1635 | | // Even when arena is nullptr, CreateInArenaStorage is still used to |
1636 | | // ensure the arena of submessage will be consistent. Otherwise, |
1637 | | // submessage may have its own arena when message-owned arena is enabled. |
1638 | | // Note: This only works if `Key` is not arena constructible. |
1639 | | if (!internal::InitializeMapKey(const_cast<Key*>(&node->kv.first), |
1640 | | std::forward<K>(k), this->alloc_.arena())) { |
1641 | | Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first), |
1642 | | this->alloc_.arena(), |
1643 | | static_cast<TypeToInit>(std::forward<K>(k))); |
1644 | | } |
1645 | | // Note: if `T` is arena constructible, `Args` needs to be empty. |
1646 | | Arena::CreateInArenaStorage(&node->kv.second, this->alloc_.arena(), |
1647 | | std::forward<Args>(args)...); |
1648 | | |
1649 | | this->InsertUnique(b, node); |
1650 | | ++this->num_elements_; |
1651 | | return std::make_pair(iterator(node, this, b), true); |
1652 | | } |
1653 | | |
1654 | | // A helper function to perform an assignment of `mapped_type`. |
1655 | | // If the first argument is true, then it is a regular assignment. |
1656 | | // Otherwise, we first create a temporary and then perform an assignment. |
1657 | | template <typename V> |
1658 | | static void AssignMapped(std::true_type, mapped_type& mapped, V&& v) { |
1659 | | mapped = std::forward<V>(v); |
1660 | | } |
1661 | | template <typename... Args> |
1662 | | static void AssignMapped(std::false_type, mapped_type& mapped, |
1663 | | Args&&... args) { |
1664 | | mapped = mapped_type(std::forward<Args>(args)...); |
1665 | | } |
1666 | | |
1667 | | // Case 1: `mapped_type` is arena constructible. A temporary object is |
1668 | | // created and then (if `Args` are not empty) assigned to a mapped value |
1669 | | // that was created with the arena. |
1670 | | template <typename K> |
1671 | | std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k) { |
1672 | | // case 1.1: "default" constructed (e.g. from arena only). |
1673 | | return TryEmplaceInternal(std::forward<K>(k)); |
1674 | | } |
1675 | | template <typename K, typename... Args> |
1676 | | std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k, |
1677 | | Args&&... args) { |
1678 | | // case 1.2: "default" constructed + copy/move assignment |
1679 | | auto p = TryEmplaceInternal(std::forward<K>(k)); |
1680 | | if (p.second) { |
1681 | | AssignMapped(std::is_same<void(typename std::decay<Args>::type...), |
1682 | | void(mapped_type)>(), |
1683 | | p.first->second, std::forward<Args>(args)...); |
1684 | | } |
1685 | | return p; |
1686 | | } |
1687 | | // Case 2: `mapped_type` is not arena constructible. Using in-place |
1688 | | // construction. |
1689 | | template <typename... Args> |
1690 | | std::pair<iterator, bool> ArenaAwareTryEmplace(std::false_type, |
1691 | | Args&&... args) { |
1692 | | return TryEmplaceInternal(std::forward<Args>(args)...); |
1693 | | } |
1694 | | |
1695 | | using Base::arena; |
1696 | | |
1697 | | friend class Arena; |
1698 | | template <typename, typename> |
1699 | | friend class internal::TypeDefinedMapFieldBase; |
1700 | | using InternalArenaConstructable_ = void; |
1701 | | using DestructorSkippable_ = void; |
1702 | | template <typename K, typename V> |
1703 | | friend class internal::MapFieldLite; |
1704 | | friend class internal::TcParser; |
1705 | | friend struct internal::MapTestPeer; |
1706 | | friend struct internal::MapBenchmarkPeer; |
1707 | | }; |
1708 | | |
1709 | | namespace internal { |
1710 | | template <typename... T> |
1711 | | PROTOBUF_NOINLINE void MapMergeFrom(Map<T...>& dest, const Map<T...>& src) { |
1712 | | for (const auto& elem : src) { |
1713 | | dest[elem.first] = elem.second; |
1714 | | } |
1715 | | } |
1716 | | } // namespace internal |
1717 | | |
1718 | | } // namespace protobuf |
1719 | | } // namespace google |
1720 | | |
1721 | | #include "google/protobuf/port_undef.inc" |
1722 | | |
1723 | | #endif // GOOGLE_PROTOBUF_MAP_H__ |