Coverage Report

Created: 2025-07-18 07:10

/src/rtpproxy/external/xxHash/xxhash.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * xxHash - Extremely Fast Hash algorithm
3
 * Header File
4
 * Copyright (C) 2012-2023 Yann Collet
5
 *
6
 * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions are
10
 * met:
11
 *
12
 *    * Redistributions of source code must retain the above copyright
13
 *      notice, this list of conditions and the following disclaimer.
14
 *    * Redistributions in binary form must reproduce the above
15
 *      copyright notice, this list of conditions and the following disclaimer
16
 *      in the documentation and/or other materials provided with the
17
 *      distribution.
18
 *
19
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
 *
31
 * You can contact the author at:
32
 *   - xxHash homepage: https://www.xxhash.com
33
 *   - xxHash source repository: https://github.com/Cyan4973/xxHash
34
 */
35
36
/*!
37
 * @mainpage xxHash
38
 *
39
 * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
40
 * limits.
41
 *
42
 * It is proposed in four flavors, in three families:
43
 * 1. @ref XXH32_family
44
 *   - Classic 32-bit hash function. Simple, compact, and runs on almost all
45
 *     32-bit and 64-bit systems.
46
 * 2. @ref XXH64_family
47
 *   - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
48
 *     64-bit systems (but _not_ 32-bit systems).
49
 * 3. @ref XXH3_family
50
 *   - Modern 64-bit and 128-bit hash function family which features improved
51
 *     strength and performance across the board, especially on smaller data.
52
 *     It benefits greatly from SIMD and 64-bit without requiring it.
53
 *
54
 * Benchmarks
55
 * ---
56
 * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
57
 * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
58
 *
59
 * | Hash Name            | ISA ext | Width | Large Data Speed | Small Data Velocity |
60
 * | -------------------- | ------- | ----: | ---------------: | ------------------: |
61
 * | XXH3_64bits()        | @b AVX2 |    64 |        59.4 GB/s |               133.1 |
62
 * | MeowHash             | AES-NI  |   128 |        58.2 GB/s |                52.5 |
63
 * | XXH3_128bits()       | @b AVX2 |   128 |        57.9 GB/s |               118.1 |
64
 * | CLHash               | PCLMUL  |    64 |        37.1 GB/s |                58.1 |
65
 * | XXH3_64bits()        | @b SSE2 |    64 |        31.5 GB/s |               133.1 |
66
 * | XXH3_128bits()       | @b SSE2 |   128 |        29.6 GB/s |               118.1 |
67
 * | RAM sequential read  |         |   N/A |        28.0 GB/s |                 N/A |
68
 * | ahash                | AES-NI  |    64 |        22.5 GB/s |               107.2 |
69
 * | City64               |         |    64 |        22.0 GB/s |                76.6 |
70
 * | T1ha2                |         |    64 |        22.0 GB/s |                99.0 |
71
 * | City128              |         |   128 |        21.7 GB/s |                57.7 |
72
 * | FarmHash             | AES-NI  |    64 |        21.3 GB/s |                71.9 |
73
 * | XXH64()              |         |    64 |        19.4 GB/s |                71.0 |
74
 * | SpookyHash           |         |    64 |        19.3 GB/s |                53.2 |
75
 * | Mum                  |         |    64 |        18.0 GB/s |                67.0 |
76
 * | CRC32C               | SSE4.2  |    32 |        13.0 GB/s |                57.9 |
77
 * | XXH32()              |         |    32 |         9.7 GB/s |                71.9 |
78
 * | City32               |         |    32 |         9.1 GB/s |                66.0 |
79
 * | Blake3*              | @b AVX2 |   256 |         4.4 GB/s |                 8.1 |
80
 * | Murmur3              |         |    32 |         3.9 GB/s |                56.1 |
81
 * | SipHash*             |         |    64 |         3.0 GB/s |                43.2 |
82
 * | Blake3*              | @b SSE2 |   256 |         2.4 GB/s |                 8.1 |
83
 * | HighwayHash          |         |    64 |         1.4 GB/s |                 6.0 |
84
 * | FNV64                |         |    64 |         1.2 GB/s |                62.7 |
85
 * | Blake2*              |         |   256 |         1.1 GB/s |                 5.1 |
86
 * | SHA1*                |         |   160 |         0.8 GB/s |                 5.6 |
87
 * | MD5*                 |         |   128 |         0.6 GB/s |                 7.8 |
88
 * @note
89
 *   - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
90
 *     even though it is mandatory on x64.
91
 *   - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
92
 *     by modern standards.
93
 *   - Small data velocity is a rough average of algorithm's efficiency for small
94
 *     data. For more accurate information, see the wiki.
95
 *   - More benchmarks and strength tests are found on the wiki:
96
 *         https://github.com/Cyan4973/xxHash/wiki
97
 *
98
 * Usage
99
 * ------
100
 * All xxHash variants use a similar API. Changing the algorithm is a trivial
101
 * substitution.
102
 *
103
 * @pre
104
 *    For functions which take an input and length parameter, the following
105
 *    requirements are assumed:
106
 *    - The range from [`input`, `input + length`) is valid, readable memory.
107
 *      - The only exception is if the `length` is `0`, `input` may be `NULL`.
108
 *    - For C++, the objects must have the *TriviallyCopyable* property, as the
109
 *      functions access bytes directly as if it was an array of `unsigned char`.
110
 *
111
 * @anchor single_shot_example
112
 * **Single Shot**
113
 *
114
 * These functions are stateless functions which hash a contiguous block of memory,
115
 * immediately returning the result. They are the easiest and usually the fastest
116
 * option.
117
 *
118
 * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
119
 *
120
 * @code{.c}
121
 *   #include <string.h>
122
 *   #include "xxhash.h"
123
 *
124
 *   // Example for a function which hashes a null terminated string with XXH32().
125
 *   XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
126
 *   {
127
 *       // NULL pointers are only valid if the length is zero
128
 *       size_t length = (string == NULL) ? 0 : strlen(string);
129
 *       return XXH32(string, length, seed);
130
 *   }
131
 * @endcode
132
 *
133
 *
134
 * @anchor streaming_example
135
 * **Streaming**
136
 *
137
 * These groups of functions allow incremental hashing of unknown size, even
138
 * more than what would fit in a size_t.
139
 *
140
 * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
141
 *
142
 * @code{.c}
143
 *   #include <stdio.h>
144
 *   #include <assert.h>
145
 *   #include "xxhash.h"
146
 *   // Example for a function which hashes a FILE incrementally with XXH3_64bits().
147
 *   XXH64_hash_t hashFile(FILE* f)
148
 *   {
149
 *       // Allocate a state struct. Do not just use malloc() or new.
150
 *       XXH3_state_t* state = XXH3_createState();
151
 *       assert(state != NULL && "Out of memory!");
152
 *       // Reset the state to start a new hashing session.
153
 *       XXH3_64bits_reset(state);
154
 *       char buffer[4096];
155
 *       size_t count;
156
 *       // Read the file in chunks
157
 *       while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
158
 *           // Run update() as many times as necessary to process the data
159
 *           XXH3_64bits_update(state, buffer, count);
160
 *       }
161
 *       // Retrieve the finalized hash. This will not change the state.
162
 *       XXH64_hash_t result = XXH3_64bits_digest(state);
163
 *       // Free the state. Do not use free().
164
 *       XXH3_freeState(state);
165
 *       return result;
166
 *   }
167
 * @endcode
168
 *
169
 * Streaming functions generate the xxHash value from an incremental input.
170
 * This method is slower than single-call functions, due to state management.
171
 * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
172
 *
173
 * An XXH state must first be allocated using `XXH*_createState()`.
174
 *
175
 * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
176
 *
177
 * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
178
 *
179
 * The function returns an error code, with 0 meaning OK, and any other value
180
 * meaning there is an error.
181
 *
182
 * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
183
 * This function returns the nn-bits hash as an int or long long.
184
 *
185
 * It's still possible to continue inserting input into the hash state after a
186
 * digest, and generate new hash values later on by invoking `XXH*_digest()`.
187
 *
188
 * When done, release the state using `XXH*_freeState()`.
189
 *
190
 *
191
 * @anchor canonical_representation_example
192
 * **Canonical Representation**
193
 *
194
 * The default return values from XXH functions are unsigned 32, 64 and 128 bit
195
 * integers.
196
 * This the simplest and fastest format for further post-processing.
197
 *
198
 * However, this leaves open the question of what is the order on the byte level,
199
 * since little and big endian conventions will store the same number differently.
200
 *
201
 * The canonical representation settles this issue by mandating big-endian
202
 * convention, the same convention as human-readable numbers (large digits first).
203
 *
204
 * When writing hash values to storage, sending them over a network, or printing
205
 * them, it's highly recommended to use the canonical representation to ensure
206
 * portability across a wider range of systems, present and future.
207
 *
208
 * The following functions allow transformation of hash values to and from
209
 * canonical format.
210
 *
211
 * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
212
 * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
213
 * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
214
 *
215
 * @code{.c}
216
 *   #include <stdio.h>
217
 *   #include "xxhash.h"
218
 *
219
 *   // Example for a function which prints XXH32_hash_t in human readable format
220
 *   void printXxh32(XXH32_hash_t hash)
221
 *   {
222
 *       XXH32_canonical_t cano;
223
 *       XXH32_canonicalFromHash(&cano, hash);
224
 *       size_t i;
225
 *       for(i = 0; i < sizeof(cano.digest); ++i) {
226
 *           printf("%02x", cano.digest[i]);
227
 *       }
228
 *       printf("\n");
229
 *   }
230
 *
231
 *   // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
232
 *   XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
233
 *   {
234
 *       XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
235
 *       return hash;
236
 *   }
237
 * @endcode
238
 *
239
 *
240
 * @file xxhash.h
241
 * xxHash prototypes and implementation
242
 */
243
244
#if defined (__cplusplus)
245
extern "C" {
246
#endif
247
248
/* ****************************
249
 *  INLINE mode
250
 ******************************/
251
/*!
252
 * @defgroup public Public API
253
 * Contains details on the public xxHash functions.
254
 * @{
255
 */
256
#ifdef XXH_DOXYGEN
257
/*!
258
 * @brief Gives access to internal state declaration, required for static allocation.
259
 *
260
 * Incompatible with dynamic linking, due to risks of ABI changes.
261
 *
262
 * Usage:
263
 * @code{.c}
264
 *     #define XXH_STATIC_LINKING_ONLY
265
 *     #include "xxhash.h"
266
 * @endcode
267
 */
268
#  define XXH_STATIC_LINKING_ONLY
269
/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
270
271
/*!
272
 * @brief Gives access to internal definitions.
273
 *
274
 * Usage:
275
 * @code{.c}
276
 *     #define XXH_STATIC_LINKING_ONLY
277
 *     #define XXH_IMPLEMENTATION
278
 *     #include "xxhash.h"
279
 * @endcode
280
 */
281
#  define XXH_IMPLEMENTATION
282
/* Do not undef XXH_IMPLEMENTATION for Doxygen */
283
284
/*!
285
 * @brief Exposes the implementation and marks all functions as `inline`.
286
 *
287
 * Use these build macros to inline xxhash into the target unit.
288
 * Inlining improves performance on small inputs, especially when the length is
289
 * expressed as a compile-time constant:
290
 *
291
 *  https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
292
 *
293
 * It also keeps xxHash symbols private to the unit, so they are not exported.
294
 *
295
 * Usage:
296
 * @code{.c}
297
 *     #define XXH_INLINE_ALL
298
 *     #include "xxhash.h"
299
 * @endcode
300
 * Do not compile and link xxhash.o as a separate object, as it is not useful.
301
 */
302
#  define XXH_INLINE_ALL
303
#  undef XXH_INLINE_ALL
304
/*!
305
 * @brief Exposes the implementation without marking functions as inline.
306
 */
307
#  define XXH_PRIVATE_API
308
#  undef XXH_PRIVATE_API
309
/*!
310
 * @brief Emulate a namespace by transparently prefixing all symbols.
311
 *
312
 * If you want to include _and expose_ xxHash functions from within your own
313
 * library, but also want to avoid symbol collisions with other libraries which
314
 * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
315
 * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
316
 * (therefore, avoid empty or numeric values).
317
 *
318
 * Note that no change is required within the calling program as long as it
319
 * includes `xxhash.h`: Regular symbol names will be automatically translated
320
 * by this header.
321
 */
322
#  define XXH_NAMESPACE /* YOUR NAME HERE */
323
#  undef XXH_NAMESPACE
324
#endif
325
326
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
327
    && !defined(XXH_INLINE_ALL_31684351384)
328
   /* this section should be traversed only once */
329
#  define XXH_INLINE_ALL_31684351384
330
   /* give access to the advanced API, required to compile implementations */
331
#  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
332
#  define XXH_STATIC_LINKING_ONLY
333
   /* make all functions private */
334
#  undef XXH_PUBLIC_API
335
#  if defined(__GNUC__)
336
#    define XXH_PUBLIC_API static __inline __attribute__((__unused__))
337
#  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
338
#    define XXH_PUBLIC_API static inline
339
#  elif defined(_MSC_VER)
340
#    define XXH_PUBLIC_API static __inline
341
#  else
342
     /* note: this version may generate warnings for unused static functions */
343
#    define XXH_PUBLIC_API static
344
#  endif
345
346
   /*
347
    * This part deals with the special case where a unit wants to inline xxHash,
348
    * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
349
    * such as part of some previously included *.h header file.
350
    * Without further action, the new include would just be ignored,
351
    * and functions would effectively _not_ be inlined (silent failure).
352
    * The following macros solve this situation by prefixing all inlined names,
353
    * avoiding naming collision with previous inclusions.
354
    */
355
   /* Before that, we unconditionally #undef all symbols,
356
    * in case they were already defined with XXH_NAMESPACE.
357
    * They will then be redefined for XXH_INLINE_ALL
358
    */
359
#  undef XXH_versionNumber
360
    /* XXH32 */
361
#  undef XXH32
362
#  undef XXH32_createState
363
#  undef XXH32_freeState
364
#  undef XXH32_reset
365
#  undef XXH32_update
366
#  undef XXH32_digest
367
#  undef XXH32_copyState
368
#  undef XXH32_canonicalFromHash
369
#  undef XXH32_hashFromCanonical
370
    /* XXH64 */
371
#  undef XXH64
372
#  undef XXH64_createState
373
#  undef XXH64_freeState
374
#  undef XXH64_reset
375
#  undef XXH64_update
376
#  undef XXH64_digest
377
#  undef XXH64_copyState
378
#  undef XXH64_canonicalFromHash
379
#  undef XXH64_hashFromCanonical
380
    /* XXH3_64bits */
381
#  undef XXH3_64bits
382
#  undef XXH3_64bits_withSecret
383
#  undef XXH3_64bits_withSeed
384
#  undef XXH3_64bits_withSecretandSeed
385
#  undef XXH3_createState
386
#  undef XXH3_freeState
387
#  undef XXH3_copyState
388
#  undef XXH3_64bits_reset
389
#  undef XXH3_64bits_reset_withSeed
390
#  undef XXH3_64bits_reset_withSecret
391
#  undef XXH3_64bits_update
392
#  undef XXH3_64bits_digest
393
#  undef XXH3_generateSecret
394
    /* XXH3_128bits */
395
#  undef XXH128
396
#  undef XXH3_128bits
397
#  undef XXH3_128bits_withSeed
398
#  undef XXH3_128bits_withSecret
399
#  undef XXH3_128bits_reset
400
#  undef XXH3_128bits_reset_withSeed
401
#  undef XXH3_128bits_reset_withSecret
402
#  undef XXH3_128bits_reset_withSecretandSeed
403
#  undef XXH3_128bits_update
404
#  undef XXH3_128bits_digest
405
#  undef XXH128_isEqual
406
#  undef XXH128_cmp
407
#  undef XXH128_canonicalFromHash
408
#  undef XXH128_hashFromCanonical
409
    /* Finally, free the namespace itself */
410
#  undef XXH_NAMESPACE
411
412
    /* employ the namespace for XXH_INLINE_ALL */
413
#  define XXH_NAMESPACE XXH_INLINE_
414
   /*
415
    * Some identifiers (enums, type names) are not symbols,
416
    * but they must nonetheless be renamed to avoid redeclaration.
417
    * Alternative solution: do not redeclare them.
418
    * However, this requires some #ifdefs, and has a more dispersed impact.
419
    * Meanwhile, renaming can be achieved in a single place.
420
    */
421
#  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
422
#  define XXH_OK XXH_IPREF(XXH_OK)
423
#  define XXH_ERROR XXH_IPREF(XXH_ERROR)
424
#  define XXH_errorcode XXH_IPREF(XXH_errorcode)
425
#  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
426
#  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
427
#  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
428
#  define XXH32_state_s XXH_IPREF(XXH32_state_s)
429
#  define XXH32_state_t XXH_IPREF(XXH32_state_t)
430
#  define XXH64_state_s XXH_IPREF(XXH64_state_s)
431
#  define XXH64_state_t XXH_IPREF(XXH64_state_t)
432
#  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
433
#  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
434
#  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
435
   /* Ensure the header is parsed again, even if it was previously included */
436
#  undef XXHASH_H_5627135585666179
437
#  undef XXHASH_H_STATIC_13879238742
438
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
439
440
/* ****************************************************************
441
 *  Stable API
442
 *****************************************************************/
443
#ifndef XXHASH_H_5627135585666179
444
#define XXHASH_H_5627135585666179 1
445
446
/*! @brief Marks a global symbol. */
447
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
448
#  if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
449
#    ifdef XXH_EXPORT
450
#      define XXH_PUBLIC_API __declspec(dllexport)
451
#    elif XXH_IMPORT
452
#      define XXH_PUBLIC_API __declspec(dllimport)
453
#    endif
454
#  else
455
#    define XXH_PUBLIC_API   /* do nothing */
456
#  endif
457
#endif
458
459
#ifdef XXH_NAMESPACE
460
0
#  define XXH_CAT(A,B) A##B
461
0
#  define XXH_NAME2(A,B) XXH_CAT(A,B)
462
#  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
463
/* XXH32 */
464
#  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
465
#  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
466
#  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
467
#  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
468
#  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
469
#  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
470
#  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
471
#  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
472
#  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
473
/* XXH64 */
474
0
#  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
475
#  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
476
#  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
477
#  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
478
#  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
479
#  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
480
#  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
481
#  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
482
#  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
483
/* XXH3_64bits */
484
#  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
485
#  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
486
#  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
487
#  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
488
#  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
489
#  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
490
#  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
491
#  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
492
#  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
493
#  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
494
#  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
495
#  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
496
#  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
497
#  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
498
#  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
499
/* XXH3_128bits */
500
#  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
501
#  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
502
#  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
503
#  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
504
#  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
505
#  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
506
#  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
507
#  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
508
#  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
509
#  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
510
#  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
511
#  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
512
#  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
513
#  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
514
#  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
515
#endif
516
517
518
/* *************************************
519
*  Compiler specifics
520
***************************************/
521
522
/* specific declaration modes for Windows */
523
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
524
#  if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
525
#    ifdef XXH_EXPORT
526
#      define XXH_PUBLIC_API __declspec(dllexport)
527
#    elif XXH_IMPORT
528
#      define XXH_PUBLIC_API __declspec(dllimport)
529
#    endif
530
#  else
531
#    define XXH_PUBLIC_API   /* do nothing */
532
#  endif
533
#endif
534
535
#if defined (__GNUC__)
536
# define XXH_CONSTF  __attribute__((__const__))
537
# define XXH_PUREF   __attribute__((__pure__))
538
# define XXH_MALLOCF __attribute__((__malloc__))
539
#else
540
# define XXH_CONSTF  /* disable */
541
# define XXH_PUREF
542
# define XXH_MALLOCF
543
#endif
544
545
/* *************************************
546
*  Version
547
***************************************/
548
#define XXH_VERSION_MAJOR    0
549
#define XXH_VERSION_MINOR    8
550
#define XXH_VERSION_RELEASE  3
551
/*! @brief Version number, encoded as two digits each */
552
#define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
553
554
/*!
555
 * @brief Obtains the xxHash version.
556
 *
557
 * This is mostly useful when xxHash is compiled as a shared library,
558
 * since the returned value comes from the library, as opposed to header file.
559
 *
560
 * @return @ref XXH_VERSION_NUMBER of the invoked library.
561
 */
562
XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
563
564
565
/* ****************************
566
*  Common basic types
567
******************************/
568
#include <stddef.h>   /* size_t */
569
/*!
570
 * @brief Exit code for the streaming API.
571
 */
572
typedef enum {
573
    XXH_OK = 0, /*!< OK */
574
    XXH_ERROR   /*!< Error */
575
} XXH_errorcode;
576
577
578
/*-**********************************************************************
579
*  32-bit hash
580
************************************************************************/
581
#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
582
/*!
583
 * @brief An unsigned 32-bit integer.
584
 *
585
 * Not necessarily defined to `uint32_t` but functionally equivalent.
586
 */
587
typedef uint32_t XXH32_hash_t;
588
589
#elif !defined (__VMS) \
590
  && (defined (__cplusplus) \
591
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
592
#   ifdef _AIX
593
#     include <inttypes.h>
594
#   else
595
#     include <stdint.h>
596
#   endif
597
    typedef uint32_t XXH32_hash_t;
598
599
#else
600
#   include <limits.h>
601
#   if UINT_MAX == 0xFFFFFFFFUL
602
      typedef unsigned int XXH32_hash_t;
603
#   elif ULONG_MAX == 0xFFFFFFFFUL
604
      typedef unsigned long XXH32_hash_t;
605
#   else
606
#     error "unsupported platform: need a 32-bit type"
607
#   endif
608
#endif
609
610
/*!
611
 * @}
612
 *
613
 * @defgroup XXH32_family XXH32 family
614
 * @ingroup public
615
 * Contains functions used in the classic 32-bit xxHash algorithm.
616
 *
617
 * @note
618
 *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
619
 *   Note that the @ref XXH3_family provides competitive speed for both 32-bit
620
 *   and 64-bit systems, and offers true 64/128 bit hash results.
621
 *
622
 * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
623
 * @see @ref XXH32_impl for implementation details
624
 * @{
625
 */
626
627
/*!
628
 * @brief Calculates the 32-bit hash of @p input using xxHash32.
629
 *
630
 * @param input The block of data to be hashed, at least @p length bytes in size.
631
 * @param length The length of @p input, in bytes.
632
 * @param seed The 32-bit seed to alter the hash's output predictably.
633
 *
634
 * @pre
635
 *   The memory between @p input and @p input + @p length must be valid,
636
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
637
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
638
 *
639
 * @return The calculated 32-bit xxHash32 value.
640
 *
641
 * @see @ref single_shot_example "Single Shot Example" for an example.
642
 */
643
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
644
645
#ifndef XXH_NO_STREAM
646
/*!
647
 * @typedef struct XXH32_state_s XXH32_state_t
648
 * @brief The opaque state struct for the XXH32 streaming API.
649
 *
650
 * @see XXH32_state_s for details.
651
 * @see @ref streaming_example "Streaming Example"
652
 */
653
typedef struct XXH32_state_s XXH32_state_t;
654
655
/*!
656
 * @brief Allocates an @ref XXH32_state_t.
657
 *
658
 * @return An allocated pointer of @ref XXH32_state_t on success.
659
 * @return `NULL` on failure.
660
 *
661
 * @note Must be freed with XXH32_freeState().
662
 *
663
 * @see @ref streaming_example "Streaming Example"
664
 */
665
XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
666
/*!
667
 * @brief Frees an @ref XXH32_state_t.
668
 *
669
 * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
670
 *
671
 * @return @ref XXH_OK.
672
 *
673
 * @note @p statePtr must be allocated with XXH32_createState().
674
 *
675
 * @see @ref streaming_example "Streaming Example"
676
 *
677
 */
678
XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
679
/*!
680
 * @brief Copies one @ref XXH32_state_t to another.
681
 *
682
 * @param dst_state The state to copy to.
683
 * @param src_state The state to copy from.
684
 * @pre
685
 *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
686
 */
687
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
688
689
/*!
690
 * @brief Resets an @ref XXH32_state_t to begin a new hash.
691
 *
692
 * @param statePtr The state struct to reset.
693
 * @param seed The 32-bit seed to alter the hash result predictably.
694
 *
695
 * @pre
696
 *   @p statePtr must not be `NULL`.
697
 *
698
 * @return @ref XXH_OK on success.
699
 * @return @ref XXH_ERROR on failure.
700
 *
701
 * @note This function resets and seeds a state. Call it before @ref XXH32_update().
702
 *
703
 * @see @ref streaming_example "Streaming Example"
704
 */
705
XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
706
707
/*!
708
 * @brief Consumes a block of @p input to an @ref XXH32_state_t.
709
 *
710
 * @param statePtr The state struct to update.
711
 * @param input The block of data to be hashed, at least @p length bytes in size.
712
 * @param length The length of @p input, in bytes.
713
 *
714
 * @pre
715
 *   @p statePtr must not be `NULL`.
716
 * @pre
717
 *   The memory between @p input and @p input + @p length must be valid,
718
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
719
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
720
 *
721
 * @return @ref XXH_OK on success.
722
 * @return @ref XXH_ERROR on failure.
723
 *
724
 * @note Call this to incrementally consume blocks of data.
725
 *
726
 * @see @ref streaming_example "Streaming Example"
727
 */
728
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
729
730
/*!
731
 * @brief Returns the calculated hash value from an @ref XXH32_state_t.
732
 *
733
 * @param statePtr The state struct to calculate the hash from.
734
 *
735
 * @pre
736
 *  @p statePtr must not be `NULL`.
737
 *
738
 * @return The calculated 32-bit xxHash32 value from that state.
739
 *
740
 * @note
741
 *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
742
 *   digest, and update again.
743
 *
744
 * @see @ref streaming_example "Streaming Example"
745
 */
746
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
747
#endif /* !XXH_NO_STREAM */
748
749
/*******   Canonical representation   *******/
750
751
/*!
752
 * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
753
 */
754
typedef struct {
755
    unsigned char digest[4]; /*!< Hash bytes, big endian */
756
} XXH32_canonical_t;
757
758
/*!
759
 * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
760
 *
761
 * @param dst  The @ref XXH32_canonical_t pointer to be stored to.
762
 * @param hash The @ref XXH32_hash_t to be converted.
763
 *
764
 * @pre
765
 *   @p dst must not be `NULL`.
766
 *
767
 * @see @ref canonical_representation_example "Canonical Representation Example"
768
 */
769
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
770
771
/*!
772
 * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
773
 *
774
 * @param src The @ref XXH32_canonical_t to convert.
775
 *
776
 * @pre
777
 *   @p src must not be `NULL`.
778
 *
779
 * @return The converted hash.
780
 *
781
 * @see @ref canonical_representation_example "Canonical Representation Example"
782
 */
783
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
784
785
786
/*! @cond Doxygen ignores this part */
787
#ifdef __has_attribute
788
# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
789
#else
790
# define XXH_HAS_ATTRIBUTE(x) 0
791
#endif
792
/*! @endcond */
793
794
/*! @cond Doxygen ignores this part */
795
/*
796
 * C23 __STDC_VERSION__ number hasn't been specified yet. For now
797
 * leave as `201711L` (C17 + 1).
798
 * TODO: Update to correct value when its been specified.
799
 */
800
#define XXH_C23_VN 201711L
801
/*! @endcond */
802
803
/*! @cond Doxygen ignores this part */
804
/* C-language Attributes are added in C23. */
805
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
806
# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
807
#else
808
# define XXH_HAS_C_ATTRIBUTE(x) 0
809
#endif
810
/*! @endcond */
811
812
/*! @cond Doxygen ignores this part */
813
#if defined(__cplusplus) && defined(__has_cpp_attribute)
814
# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
815
#else
816
# define XXH_HAS_CPP_ATTRIBUTE(x) 0
817
#endif
818
/*! @endcond */
819
820
/*! @cond Doxygen ignores this part */
821
/*
822
 * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
823
 * introduced in CPP17 and C23.
824
 * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
825
 * C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
826
 */
827
#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
828
# define XXH_FALLTHROUGH [[fallthrough]]
829
#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
830
# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
831
#else
832
# define XXH_FALLTHROUGH /* fallthrough */
833
#endif
834
/*! @endcond */
835
836
/*! @cond Doxygen ignores this part */
837
/*
838
 * Define XXH_NOESCAPE for annotated pointers in public API.
839
 * https://clang.llvm.org/docs/AttributeReference.html#noescape
840
 * As of writing this, only supported by clang.
841
 */
842
#if XXH_HAS_ATTRIBUTE(noescape)
843
# define XXH_NOESCAPE __attribute__((__noescape__))
844
#else
845
# define XXH_NOESCAPE
846
#endif
847
/*! @endcond */
848
849
850
/*!
851
 * @}
852
 * @ingroup public
853
 * @{
854
 */
855
856
#ifndef XXH_NO_LONG_LONG
857
/*-**********************************************************************
858
*  64-bit hash
859
************************************************************************/
860
#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
861
/*!
862
 * @brief An unsigned 64-bit integer.
863
 *
864
 * Not necessarily defined to `uint64_t` but functionally equivalent.
865
 */
866
typedef uint64_t XXH64_hash_t;
867
#elif !defined (__VMS) \
868
  && (defined (__cplusplus) \
869
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
870
#   ifdef _AIX
871
#     include <inttypes.h>
872
#   else
873
#     include <stdint.h>
874
#   endif
875
   typedef uint64_t XXH64_hash_t;
876
#else
877
#  include <limits.h>
878
#  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
879
     /* LP64 ABI says uint64_t is unsigned long */
880
     typedef unsigned long XXH64_hash_t;
881
#  else
882
     /* the following type must have a width of 64-bit */
883
     typedef unsigned long long XXH64_hash_t;
884
#  endif
885
#endif
886
887
/*!
888
 * @}
889
 *
890
 * @defgroup XXH64_family XXH64 family
891
 * @ingroup public
892
 * @{
893
 * Contains functions used in the classic 64-bit xxHash algorithm.
894
 *
895
 * @note
896
 *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
897
 *   and offers true 64/128 bit hash results.
898
 *   It provides better speed for systems with vector processing capabilities.
899
 */
900
901
/*!
902
 * @brief Calculates the 64-bit hash of @p input using xxHash64.
903
 *
904
 * @param input The block of data to be hashed, at least @p length bytes in size.
905
 * @param length The length of @p input, in bytes.
906
 * @param seed The 64-bit seed to alter the hash's output predictably.
907
 *
908
 * @pre
909
 *   The memory between @p input and @p input + @p length must be valid,
910
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
911
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
912
 *
913
 * @return The calculated 64-bit xxHash64 value.
914
 *
915
 * @see @ref single_shot_example "Single Shot Example" for an example.
916
 */
917
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
918
919
/*******   Streaming   *******/
920
#ifndef XXH_NO_STREAM
921
/*!
922
 * @brief The opaque state struct for the XXH64 streaming API.
923
 *
924
 * @see XXH64_state_s for details.
925
 * @see @ref streaming_example "Streaming Example"
926
 */
927
typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
928
929
/*!
930
 * @brief Allocates an @ref XXH64_state_t.
931
 *
932
 * @return An allocated pointer of @ref XXH64_state_t on success.
933
 * @return `NULL` on failure.
934
 *
935
 * @note Must be freed with XXH64_freeState().
936
 *
937
 * @see @ref streaming_example "Streaming Example"
938
 */
939
XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
940
941
/*!
942
 * @brief Frees an @ref XXH64_state_t.
943
 *
944
 * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
945
 *
946
 * @return @ref XXH_OK.
947
 *
948
 * @note @p statePtr must be allocated with XXH64_createState().
949
 *
950
 * @see @ref streaming_example "Streaming Example"
951
 */
952
XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
953
954
/*!
955
 * @brief Copies one @ref XXH64_state_t to another.
956
 *
957
 * @param dst_state The state to copy to.
958
 * @param src_state The state to copy from.
959
 * @pre
960
 *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
961
 */
962
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
963
964
/*!
965
 * @brief Resets an @ref XXH64_state_t to begin a new hash.
966
 *
967
 * @param statePtr The state struct to reset.
968
 * @param seed The 64-bit seed to alter the hash result predictably.
969
 *
970
 * @pre
971
 *   @p statePtr must not be `NULL`.
972
 *
973
 * @return @ref XXH_OK on success.
974
 * @return @ref XXH_ERROR on failure.
975
 *
976
 * @note This function resets and seeds a state. Call it before @ref XXH64_update().
977
 *
978
 * @see @ref streaming_example "Streaming Example"
979
 */
980
XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
981
982
/*!
983
 * @brief Consumes a block of @p input to an @ref XXH64_state_t.
984
 *
985
 * @param statePtr The state struct to update.
986
 * @param input The block of data to be hashed, at least @p length bytes in size.
987
 * @param length The length of @p input, in bytes.
988
 *
989
 * @pre
990
 *   @p statePtr must not be `NULL`.
991
 * @pre
992
 *   The memory between @p input and @p input + @p length must be valid,
993
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
994
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
995
 *
996
 * @return @ref XXH_OK on success.
997
 * @return @ref XXH_ERROR on failure.
998
 *
999
 * @note Call this to incrementally consume blocks of data.
1000
 *
1001
 * @see @ref streaming_example "Streaming Example"
1002
 */
1003
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
1004
1005
/*!
1006
 * @brief Returns the calculated hash value from an @ref XXH64_state_t.
1007
 *
1008
 * @param statePtr The state struct to calculate the hash from.
1009
 *
1010
 * @pre
1011
 *  @p statePtr must not be `NULL`.
1012
 *
1013
 * @return The calculated 64-bit xxHash64 value from that state.
1014
 *
1015
 * @note
1016
 *   Calling XXH64_digest() will not affect @p statePtr, so you can update,
1017
 *   digest, and update again.
1018
 *
1019
 * @see @ref streaming_example "Streaming Example"
1020
 */
1021
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
1022
#endif /* !XXH_NO_STREAM */
1023
/*******   Canonical representation   *******/
1024
1025
/*!
1026
 * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
1027
 */
1028
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
1029
1030
/*!
1031
 * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
1032
 *
1033
 * @param dst The @ref XXH64_canonical_t pointer to be stored to.
1034
 * @param hash The @ref XXH64_hash_t to be converted.
1035
 *
1036
 * @pre
1037
 *   @p dst must not be `NULL`.
1038
 *
1039
 * @see @ref canonical_representation_example "Canonical Representation Example"
1040
 */
1041
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
1042
1043
/*!
1044
 * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
1045
 *
1046
 * @param src The @ref XXH64_canonical_t to convert.
1047
 *
1048
 * @pre
1049
 *   @p src must not be `NULL`.
1050
 *
1051
 * @return The converted hash.
1052
 *
1053
 * @see @ref canonical_representation_example "Canonical Representation Example"
1054
 */
1055
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
1056
1057
#ifndef XXH_NO_XXH3
1058
1059
/*!
1060
 * @}
1061
 * ************************************************************************
1062
 * @defgroup XXH3_family XXH3 family
1063
 * @ingroup public
1064
 * @{
1065
 *
1066
 * XXH3 is a more recent hash algorithm featuring:
1067
 *  - Improved speed for both small and large inputs
1068
 *  - True 64-bit and 128-bit outputs
1069
 *  - SIMD acceleration
1070
 *  - Improved 32-bit viability
1071
 *
1072
 * Speed analysis methodology is explained here:
1073
 *
1074
 *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
1075
 *
1076
 * Compared to XXH64, expect XXH3 to run approximately
1077
 * ~2x faster on large inputs and >3x faster on small ones,
1078
 * exact differences vary depending on platform.
1079
 *
1080
 * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
1081
 * but does not require it.
1082
 * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
1083
 * at competitive speeds, even without vector support. Further details are
1084
 * explained in the implementation.
1085
 *
1086
 * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
1087
 * implementations for many common platforms:
1088
 *   - AVX512
1089
 *   - AVX2
1090
 *   - SSE2
1091
 *   - ARM NEON
1092
 *   - WebAssembly SIMD128
1093
 *   - POWER8 VSX
1094
 *   - s390x ZVector
1095
 * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
1096
 * selects the best version according to predefined macros. For the x86 family, an
1097
 * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
1098
 *
1099
 * XXH3 implementation is portable:
1100
 * it has a generic C90 formulation that can be compiled on any platform,
1101
 * all implementations generate exactly the same hash value on all platforms.
1102
 * Starting from v0.8.0, it's also labelled "stable", meaning that
1103
 * any future version will also generate the same hash value.
1104
 *
1105
 * XXH3 offers 2 variants, _64bits and _128bits.
1106
 *
1107
 * When only 64 bits are needed, prefer invoking the _64bits variant, as it
1108
 * reduces the amount of mixing, resulting in faster speed on small inputs.
1109
 * It's also generally simpler to manipulate a scalar return type than a struct.
1110
 *
1111
 * The API supports one-shot hashing, streaming mode, and custom secrets.
1112
 */
1113
1114
/*!
1115
 * @ingroup tuning
1116
 * @brief Possible values for @ref XXH_VECTOR.
1117
 *
1118
 * Unless set explicitly, determined automatically.
1119
 */
1120
#  define XXH_SCALAR 0 /*!< Portable scalar version */
1121
#  define XXH_SSE2   1 /*!< SSE2 for Pentium 4, Opteron, all x86_64. */
1122
#  define XXH_AVX2   2 /*!< AVX2 for Haswell and Bulldozer */
1123
#  define XXH_AVX512 3 /*!< AVX512 for Skylake and Icelake */
1124
#  define XXH_NEON   4 /*!< NEON for most ARMv7-A, all AArch64, and WASM SIMD128 */
1125
#  define XXH_VSX    5 /*!< VSX and ZVector for POWER8/z13 (64-bit) */
1126
#  define XXH_SVE    6 /*!< SVE for some ARMv8-A and ARMv9-A */
1127
#  define XXH_LSX    7 /*!< LSX (128-bit SIMD) for LoongArch64 */
1128
1129
1130
/*-**********************************************************************
1131
*  XXH3 64-bit variant
1132
************************************************************************/
1133
1134
/*!
1135
 * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
1136
 *
1137
 * @param input  The block of data to be hashed, at least @p length bytes in size.
1138
 * @param length The length of @p input, in bytes.
1139
 *
1140
 * @pre
1141
 *   The memory between @p input and @p input + @p length must be valid,
1142
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1143
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1144
 *
1145
 * @return The calculated 64-bit XXH3 hash value.
1146
 *
1147
 * @note
1148
 *   This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
1149
 *   it may have slightly better performance due to constant propagation of the
1150
 *   defaults.
1151
 *
1152
 * @see
1153
 *    XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
1154
 * @see @ref single_shot_example "Single Shot Example" for an example.
1155
 */
1156
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
1157
1158
/*!
1159
 * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
1160
 *
1161
 * @param input  The block of data to be hashed, at least @p length bytes in size.
1162
 * @param length The length of @p input, in bytes.
1163
 * @param seed   The 64-bit seed to alter the hash result predictably.
1164
 *
1165
 * @pre
1166
 *   The memory between @p input and @p input + @p length must be valid,
1167
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1168
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1169
 *
1170
 * @return The calculated 64-bit XXH3 hash value.
1171
 *
1172
 * @note
1173
 *    seed == 0 produces the same results as @ref XXH3_64bits().
1174
 *
1175
 * This variant generates a custom secret on the fly based on default secret
1176
 * altered using the @p seed value.
1177
 *
1178
 * While this operation is decently fast, note that it's not completely free.
1179
 *
1180
 * @see @ref single_shot_example "Single Shot Example" for an example.
1181
 */
1182
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
1183
1184
/*!
1185
 * The bare minimum size for a custom secret.
1186
 *
1187
 * @see
1188
 *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
1189
 *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
1190
 */
1191
#define XXH3_SECRET_SIZE_MIN 136
1192
1193
/*!
1194
 * @brief Calculates 64-bit variant of XXH3 with a custom "secret".
1195
 *
1196
 * @param data       The block of data to be hashed, at least @p len bytes in size.
1197
 * @param len        The length of @p data, in bytes.
1198
 * @param secret     The secret data.
1199
 * @param secretSize The length of @p secret, in bytes.
1200
 *
1201
 * @return The calculated 64-bit XXH3 hash value.
1202
 *
1203
 * @pre
1204
 *   The memory between @p data and @p data + @p len must be valid,
1205
 *   readable, contiguous memory. However, if @p length is `0`, @p data may be
1206
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1207
 *
1208
 * It's possible to provide any blob of bytes as a "secret" to generate the hash.
1209
 * This makes it more difficult for an external actor to prepare an intentional collision.
1210
 * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
1211
 * However, the quality of the secret impacts the dispersion of the hash algorithm.
1212
 * Therefore, the secret _must_ look like a bunch of random bytes.
1213
 * Avoid "trivial" or structured data such as repeated sequences or a text document.
1214
 * Whenever in doubt about the "randomness" of the blob of bytes,
1215
 * consider employing @ref XXH3_generateSecret() instead (see below).
1216
 * It will generate a proper high entropy secret derived from the blob of bytes.
1217
 * Another advantage of using XXH3_generateSecret() is that
1218
 * it guarantees that all bits within the initial blob of bytes
1219
 * will impact every bit of the output.
1220
 * This is not necessarily the case when using the blob of bytes directly
1221
 * because, when hashing _small_ inputs, only a portion of the secret is employed.
1222
 *
1223
 * @see @ref single_shot_example "Single Shot Example" for an example.
1224
 */
1225
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
1226
1227
1228
/*******   Streaming   *******/
1229
#ifndef XXH_NO_STREAM
1230
/*
1231
 * Streaming requires state maintenance.
1232
 * This operation costs memory and CPU.
1233
 * As a consequence, streaming is slower than one-shot hashing.
1234
 * For better performance, prefer one-shot functions whenever applicable.
1235
 */
1236
1237
/*!
1238
 * @brief The opaque state struct for the XXH3 streaming API.
1239
 *
1240
 * @see XXH3_state_s for details.
1241
 * @see @ref streaming_example "Streaming Example"
1242
 */
1243
typedef struct XXH3_state_s XXH3_state_t;
1244
XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
1245
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
1246
1247
/*!
1248
 * @brief Copies one @ref XXH3_state_t to another.
1249
 *
1250
 * @param dst_state The state to copy to.
1251
 * @param src_state The state to copy from.
1252
 * @pre
1253
 *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
1254
 */
1255
XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
1256
1257
/*!
1258
 * @brief Resets an @ref XXH3_state_t to begin a new hash.
1259
 *
1260
 * @param statePtr The state struct to reset.
1261
 *
1262
 * @pre
1263
 *   @p statePtr must not be `NULL`.
1264
 *
1265
 * @return @ref XXH_OK on success.
1266
 * @return @ref XXH_ERROR on failure.
1267
 *
1268
 * @note
1269
 *   - This function resets `statePtr` and generate a secret with default parameters.
1270
 *   - Call this function before @ref XXH3_64bits_update().
1271
 *   - Digest will be equivalent to `XXH3_64bits()`.
1272
 *
1273
 * @see @ref streaming_example "Streaming Example"
1274
 *
1275
 */
1276
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
1277
1278
/*!
1279
 * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
1280
 *
1281
 * @param statePtr The state struct to reset.
1282
 * @param seed     The 64-bit seed to alter the hash result predictably.
1283
 *
1284
 * @pre
1285
 *   @p statePtr must not be `NULL`.
1286
 *
1287
 * @return @ref XXH_OK on success.
1288
 * @return @ref XXH_ERROR on failure.
1289
 *
1290
 * @note
1291
 *   - This function resets `statePtr` and generate a secret from `seed`.
1292
 *   - Call this function before @ref XXH3_64bits_update().
1293
 *   - Digest will be equivalent to `XXH3_64bits_withSeed()`.
1294
 *
1295
 * @see @ref streaming_example "Streaming Example"
1296
 *
1297
 */
1298
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
1299
1300
/*!
1301
 * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
1302
 *
1303
 * @param statePtr The state struct to reset.
1304
 * @param secret     The secret data.
1305
 * @param secretSize The length of @p secret, in bytes.
1306
 *
1307
 * @pre
1308
 *   @p statePtr must not be `NULL`.
1309
 *
1310
 * @return @ref XXH_OK on success.
1311
 * @return @ref XXH_ERROR on failure.
1312
 *
1313
 * @note
1314
 *   `secret` is referenced, it _must outlive_ the hash streaming session.
1315
 *
1316
 * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
1317
 * and the quality of produced hash values depends on secret's entropy
1318
 * (secret's content should look like a bunch of random bytes).
1319
 * When in doubt about the randomness of a candidate `secret`,
1320
 * consider employing `XXH3_generateSecret()` instead (see below).
1321
 *
1322
 * @see @ref streaming_example "Streaming Example"
1323
 */
1324
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
1325
1326
/*!
1327
 * @brief Consumes a block of @p input to an @ref XXH3_state_t.
1328
 *
1329
 * @param statePtr The state struct to update.
1330
 * @param input The block of data to be hashed, at least @p length bytes in size.
1331
 * @param length The length of @p input, in bytes.
1332
 *
1333
 * @pre
1334
 *   @p statePtr must not be `NULL`.
1335
 * @pre
1336
 *   The memory between @p input and @p input + @p length must be valid,
1337
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1338
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1339
 *
1340
 * @return @ref XXH_OK on success.
1341
 * @return @ref XXH_ERROR on failure.
1342
 *
1343
 * @note Call this to incrementally consume blocks of data.
1344
 *
1345
 * @see @ref streaming_example "Streaming Example"
1346
 */
1347
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
1348
1349
/*!
1350
 * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
1351
 *
1352
 * @param statePtr The state struct to calculate the hash from.
1353
 *
1354
 * @pre
1355
 *  @p statePtr must not be `NULL`.
1356
 *
1357
 * @return The calculated XXH3 64-bit hash value from that state.
1358
 *
1359
 * @note
1360
 *   Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
1361
 *   digest, and update again.
1362
 *
1363
 * @see @ref streaming_example "Streaming Example"
1364
 */
1365
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t  XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
1366
#endif /* !XXH_NO_STREAM */
1367
1368
/* note : canonical representation of XXH3 is the same as XXH64
1369
 * since they both produce XXH64_hash_t values */
1370
1371
1372
/*-**********************************************************************
1373
*  XXH3 128-bit variant
1374
************************************************************************/
1375
1376
/*!
1377
 * @brief The return value from 128-bit hashes.
1378
 *
1379
 * Stored in little endian order, although the fields themselves are in native
1380
 * endianness.
1381
 */
1382
typedef struct {
1383
    XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
1384
    XXH64_hash_t high64;  /*!< `value >> 64` */
1385
} XXH128_hash_t;
1386
1387
/*!
1388
 * @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
1389
 *
1390
 * @param data The block of data to be hashed, at least @p length bytes in size.
1391
 * @param len  The length of @p data, in bytes.
1392
 *
1393
 * @return The calculated 128-bit variant of XXH3 value.
1394
 *
1395
 * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
1396
 * for shorter inputs.
1397
 *
1398
 * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
1399
 * it may have slightly better performance due to constant propagation of the
1400
 * defaults.
1401
 *
1402
 * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
1403
 * @see @ref single_shot_example "Single Shot Example" for an example.
1404
 */
1405
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
1406
/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
1407
 *
1408
 * @param data The block of data to be hashed, at least @p length bytes in size.
1409
 * @param len  The length of @p data, in bytes.
1410
 * @param seed The 64-bit seed to alter the hash result predictably.
1411
 *
1412
 * @return The calculated 128-bit variant of XXH3 value.
1413
 *
1414
 * @note
1415
 *    seed == 0 produces the same results as @ref XXH3_64bits().
1416
 *
1417
 * This variant generates a custom secret on the fly based on default secret
1418
 * altered using the @p seed value.
1419
 *
1420
 * While this operation is decently fast, note that it's not completely free.
1421
 *
1422
 * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
1423
 * @see @ref single_shot_example "Single Shot Example" for an example.
1424
 */
1425
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
1426
/*!
1427
 * @brief Calculates 128-bit variant of XXH3 with a custom "secret".
1428
 *
1429
 * @param data       The block of data to be hashed, at least @p len bytes in size.
1430
 * @param len        The length of @p data, in bytes.
1431
 * @param secret     The secret data.
1432
 * @param secretSize The length of @p secret, in bytes.
1433
 *
1434
 * @return The calculated 128-bit variant of XXH3 value.
1435
 *
1436
 * It's possible to provide any blob of bytes as a "secret" to generate the hash.
1437
 * This makes it more difficult for an external actor to prepare an intentional collision.
1438
 * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
1439
 * However, the quality of the secret impacts the dispersion of the hash algorithm.
1440
 * Therefore, the secret _must_ look like a bunch of random bytes.
1441
 * Avoid "trivial" or structured data such as repeated sequences or a text document.
1442
 * Whenever in doubt about the "randomness" of the blob of bytes,
1443
 * consider employing @ref XXH3_generateSecret() instead (see below).
1444
 * It will generate a proper high entropy secret derived from the blob of bytes.
1445
 * Another advantage of using XXH3_generateSecret() is that
1446
 * it guarantees that all bits within the initial blob of bytes
1447
 * will impact every bit of the output.
1448
 * This is not necessarily the case when using the blob of bytes directly
1449
 * because, when hashing _small_ inputs, only a portion of the secret is employed.
1450
 *
1451
 * @see @ref single_shot_example "Single Shot Example" for an example.
1452
 */
1453
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
1454
1455
/*******   Streaming   *******/
1456
#ifndef XXH_NO_STREAM
1457
/*
1458
 * Streaming requires state maintenance.
1459
 * This operation costs memory and CPU.
1460
 * As a consequence, streaming is slower than one-shot hashing.
1461
 * For better performance, prefer one-shot functions whenever applicable.
1462
 *
1463
 * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
1464
 * Use already declared XXH3_createState() and XXH3_freeState().
1465
 *
1466
 * All reset and streaming functions have same meaning as their 64-bit counterpart.
1467
 */
1468
1469
/*!
1470
 * @brief Resets an @ref XXH3_state_t to begin a new hash.
1471
 *
1472
 * @param statePtr The state struct to reset.
1473
 *
1474
 * @pre
1475
 *   @p statePtr must not be `NULL`.
1476
 *
1477
 * @return @ref XXH_OK on success.
1478
 * @return @ref XXH_ERROR on failure.
1479
 *
1480
 * @note
1481
 *   - This function resets `statePtr` and generate a secret with default parameters.
1482
 *   - Call it before @ref XXH3_128bits_update().
1483
 *   - Digest will be equivalent to `XXH3_128bits()`.
1484
 *
1485
 * @see @ref streaming_example "Streaming Example"
1486
 */
1487
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
1488
1489
/*!
1490
 * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
1491
 *
1492
 * @param statePtr The state struct to reset.
1493
 * @param seed     The 64-bit seed to alter the hash result predictably.
1494
 *
1495
 * @pre
1496
 *   @p statePtr must not be `NULL`.
1497
 *
1498
 * @return @ref XXH_OK on success.
1499
 * @return @ref XXH_ERROR on failure.
1500
 *
1501
 * @note
1502
 *   - This function resets `statePtr` and generate a secret from `seed`.
1503
 *   - Call it before @ref XXH3_128bits_update().
1504
 *   - Digest will be equivalent to `XXH3_128bits_withSeed()`.
1505
 *
1506
 * @see @ref streaming_example "Streaming Example"
1507
 */
1508
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
1509
/*!
1510
 * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
1511
 *
1512
 * @param statePtr   The state struct to reset.
1513
 * @param secret     The secret data.
1514
 * @param secretSize The length of @p secret, in bytes.
1515
 *
1516
 * @pre
1517
 *   @p statePtr must not be `NULL`.
1518
 *
1519
 * @return @ref XXH_OK on success.
1520
 * @return @ref XXH_ERROR on failure.
1521
 *
1522
 * `secret` is referenced, it _must outlive_ the hash streaming session.
1523
 * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
1524
 * and the quality of produced hash values depends on secret's entropy
1525
 * (secret's content should look like a bunch of random bytes).
1526
 * When in doubt about the randomness of a candidate `secret`,
1527
 * consider employing `XXH3_generateSecret()` instead (see below).
1528
 *
1529
 * @see @ref streaming_example "Streaming Example"
1530
 */
1531
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
1532
1533
/*!
1534
 * @brief Consumes a block of @p input to an @ref XXH3_state_t.
1535
 *
1536
 * Call this to incrementally consume blocks of data.
1537
 *
1538
 * @param statePtr The state struct to update.
1539
 * @param input The block of data to be hashed, at least @p length bytes in size.
1540
 * @param length The length of @p input, in bytes.
1541
 *
1542
 * @pre
1543
 *   @p statePtr must not be `NULL`.
1544
 *
1545
 * @return @ref XXH_OK on success.
1546
 * @return @ref XXH_ERROR on failure.
1547
 *
1548
 * @note
1549
 *   The memory between @p input and @p input + @p length must be valid,
1550
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1551
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1552
 *
1553
 */
1554
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
1555
1556
/*!
1557
 * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
1558
 *
1559
 * @param statePtr The state struct to calculate the hash from.
1560
 *
1561
 * @pre
1562
 *  @p statePtr must not be `NULL`.
1563
 *
1564
 * @return The calculated XXH3 128-bit hash value from that state.
1565
 *
1566
 * @note
1567
 *   Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
1568
 *   digest, and update again.
1569
 *
1570
 */
1571
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
1572
#endif /* !XXH_NO_STREAM */
1573
1574
/* Following helper functions make it possible to compare XXH128_hast_t values.
1575
 * Since XXH128_hash_t is a structure, this capability is not offered by the language.
1576
 * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
1577
1578
/*!
1579
 * @brief Check equality of two XXH128_hash_t values
1580
 *
1581
 * @param h1 The 128-bit hash value.
1582
 * @param h2 Another 128-bit hash value.
1583
 *
1584
 * @return `1` if `h1` and `h2` are equal.
1585
 * @return `0` if they are not.
1586
 */
1587
XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
1588
1589
/*!
1590
 * @brief Compares two @ref XXH128_hash_t
1591
 *
1592
 * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
1593
 *
1594
 * @param h128_1 Left-hand side value
1595
 * @param h128_2 Right-hand side value
1596
 *
1597
 * @return >0 if @p h128_1  > @p h128_2
1598
 * @return =0 if @p h128_1 == @p h128_2
1599
 * @return <0 if @p h128_1  < @p h128_2
1600
 */
1601
XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
1602
1603
1604
/*******   Canonical representation   *******/
1605
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
1606
1607
1608
/*!
1609
 * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
1610
 *
1611
 * @param dst  The @ref XXH128_canonical_t pointer to be stored to.
1612
 * @param hash The @ref XXH128_hash_t to be converted.
1613
 *
1614
 * @pre
1615
 *   @p dst must not be `NULL`.
1616
 * @see @ref canonical_representation_example "Canonical Representation Example"
1617
 */
1618
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
1619
1620
/*!
1621
 * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
1622
 *
1623
 * @param src The @ref XXH128_canonical_t to convert.
1624
 *
1625
 * @pre
1626
 *   @p src must not be `NULL`.
1627
 *
1628
 * @return The converted hash.
1629
 * @see @ref canonical_representation_example "Canonical Representation Example"
1630
 */
1631
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
1632
1633
1634
#endif  /* !XXH_NO_XXH3 */
1635
#endif  /* XXH_NO_LONG_LONG */
1636
1637
/*!
1638
 * @}
1639
 */
1640
#endif /* XXHASH_H_5627135585666179 */
1641
1642
1643
1644
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
1645
#define XXHASH_H_STATIC_13879238742
1646
/* ****************************************************************************
1647
 * This section contains declarations which are not guaranteed to remain stable.
1648
 * They may change in future versions, becoming incompatible with a different
1649
 * version of the library.
1650
 * These declarations should only be used with static linking.
1651
 * Never use them in association with dynamic linking!
1652
 ***************************************************************************** */
1653
1654
/*
1655
 * These definitions are only present to allow static allocation
1656
 * of XXH states, on stack or in a struct, for example.
1657
 * Never **ever** access their members directly.
1658
 */
1659
1660
/*!
1661
 * @internal
1662
 * @brief Structure for XXH32 streaming API.
1663
 *
1664
 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1665
 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
1666
 * an opaque type. This allows fields to safely be changed.
1667
 *
1668
 * Typedef'd to @ref XXH32_state_t.
1669
 * Do not access the members of this struct directly.
1670
 * @see XXH64_state_s, XXH3_state_s
1671
 */
1672
struct XXH32_state_s {
1673
   XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
1674
   XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
1675
   XXH32_hash_t acc[4];       /*!< Accumulator lanes */
1676
   unsigned char buffer[16];  /*!< Internal buffer for partial reads. */
1677
   XXH32_hash_t bufferedSize; /*!< Amount of data in @ref buffer */
1678
   XXH32_hash_t reserved;     /*!< Reserved field. Do not read nor write to it. */
1679
};   /* typedef'd to XXH32_state_t */
1680
1681
1682
#ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
1683
1684
/*!
1685
 * @internal
1686
 * @brief Structure for XXH64 streaming API.
1687
 *
1688
 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1689
 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
1690
 * an opaque type. This allows fields to safely be changed.
1691
 *
1692
 * Typedef'd to @ref XXH64_state_t.
1693
 * Do not access the members of this struct directly.
1694
 * @see XXH32_state_s, XXH3_state_s
1695
 */
1696
struct XXH64_state_s {
1697
   XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
1698
   XXH64_hash_t acc[4];       /*!< Accumulator lanes */
1699
   unsigned char buffer[32];  /*!< Internal buffer for partial reads.. */
1700
   XXH32_hash_t bufferedSize; /*!< Amount of data in @ref buffer */
1701
   XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
1702
   XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it. */
1703
};   /* typedef'd to XXH64_state_t */
1704
1705
#ifndef XXH_NO_XXH3
1706
1707
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
1708
#  define XXH_ALIGN(n)      _Alignas(n)
1709
#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
1710
/* In C++ alignas() is a keyword */
1711
#  define XXH_ALIGN(n)      alignas(n)
1712
#elif defined(__GNUC__)
1713
#  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
1714
#elif defined(_MSC_VER)
1715
#  define XXH_ALIGN(n)      __declspec(align(n))
1716
#else
1717
#  define XXH_ALIGN(n)   /* disabled */
1718
#endif
1719
1720
/* Old GCC versions only accept the attribute after the type in structures. */
1721
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
1722
    && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
1723
    && defined(__GNUC__)
1724
#   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
1725
#else
1726
#   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
1727
#endif
1728
1729
/*!
1730
 * @brief The size of the internal XXH3 buffer.
1731
 *
1732
 * This is the optimal update size for incremental hashing.
1733
 *
1734
 * @see XXH3_64b_update(), XXH3_128b_update().
1735
 */
1736
#define XXH3_INTERNALBUFFER_SIZE 256
1737
1738
/*!
1739
 * @internal
1740
 * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
1741
 *
1742
 * This is the size used in @ref XXH3_kSecret and the seeded functions.
1743
 *
1744
 * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
1745
 */
1746
#define XXH3_SECRET_DEFAULT_SIZE 192
1747
1748
/*!
1749
 * @internal
1750
 * @brief Structure for XXH3 streaming API.
1751
 *
1752
 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1753
 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
1754
 * Otherwise it is an opaque type.
1755
 * Never use this definition in combination with dynamic library.
1756
 * This allows fields to safely be changed in the future.
1757
 *
1758
 * @note ** This structure has a strict alignment requirement of 64 bytes!! **
1759
 * Do not allocate this with `malloc()` or `new`,
1760
 * it will not be sufficiently aligned.
1761
 * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
1762
 *
1763
 * Typedef'd to @ref XXH3_state_t.
1764
 * Do never access the members of this struct directly.
1765
 *
1766
 * @see XXH3_INITSTATE() for stack initialization.
1767
 * @see XXH3_createState(), XXH3_freeState().
1768
 * @see XXH32_state_s, XXH64_state_s
1769
 */
1770
struct XXH3_state_s {
1771
   XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
1772
       /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
1773
   XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
1774
       /*!< Used to store a custom secret generated from a seed. */
1775
   XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
1776
       /*!< The internal buffer. @see XXH32_state_s::mem32 */
1777
   XXH32_hash_t bufferedSize;
1778
       /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
1779
   XXH32_hash_t useSeed;
1780
       /*!< Reserved field. Needed for padding on 64-bit. */
1781
   size_t nbStripesSoFar;
1782
       /*!< Number or stripes processed. */
1783
   XXH64_hash_t totalLen;
1784
       /*!< Total length hashed. 64-bit even on 32-bit targets. */
1785
   size_t nbStripesPerBlock;
1786
       /*!< Number of stripes per block. */
1787
   size_t secretLimit;
1788
       /*!< Size of @ref customSecret or @ref extSecret */
1789
   XXH64_hash_t seed;
1790
       /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
1791
   XXH64_hash_t reserved64;
1792
       /*!< Reserved field. */
1793
   const unsigned char* extSecret;
1794
       /*!< Reference to an external secret for the _withSecret variants, NULL
1795
        *   for other variants. */
1796
   /* note: there may be some padding at the end due to alignment on 64 bytes */
1797
}; /* typedef'd to XXH3_state_t */
1798
1799
#undef XXH_ALIGN_MEMBER
1800
1801
/*!
1802
 * @brief Initializes a stack-allocated `XXH3_state_s`.
1803
 *
1804
 * When the @ref XXH3_state_t structure is merely emplaced on stack,
1805
 * it should be initialized with XXH3_INITSTATE() or a memset()
1806
 * in case its first reset uses XXH3_NNbits_reset_withSeed().
1807
 * This init can be omitted if the first reset uses default or _withSecret mode.
1808
 * This operation isn't necessary when the state is created with XXH3_createState().
1809
 * Note that this doesn't prepare the state for a streaming operation,
1810
 * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1811
 */
1812
#define XXH3_INITSTATE(XXH3_state_ptr)                       \
1813
    do {                                                     \
1814
        XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
1815
        tmp_xxh3_state_ptr->seed = 0;                        \
1816
        tmp_xxh3_state_ptr->extSecret = NULL;                \
1817
    } while(0)
1818
1819
1820
/*!
1821
 * @brief Calculates the 128-bit hash of @p data using XXH3.
1822
 *
1823
 * @param data The block of data to be hashed, at least @p len bytes in size.
1824
 * @param len  The length of @p data, in bytes.
1825
 * @param seed The 64-bit seed to alter the hash's output predictably.
1826
 *
1827
 * @pre
1828
 *   The memory between @p data and @p data + @p len must be valid,
1829
 *   readable, contiguous memory. However, if @p len is `0`, @p data may be
1830
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1831
 *
1832
 * @return The calculated 128-bit XXH3 value.
1833
 *
1834
 * @see @ref single_shot_example "Single Shot Example" for an example.
1835
 */
1836
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
1837
1838
1839
/* ===   Experimental API   === */
1840
/* Symbols defined below must be considered tied to a specific library version. */
1841
1842
/*!
1843
 * @brief Derive a high-entropy secret from any user-defined content, named customSeed.
1844
 *
1845
 * @param secretBuffer    A writable buffer for derived high-entropy secret data.
1846
 * @param secretSize      Size of secretBuffer, in bytes.  Must be >= XXH3_SECRET_SIZE_MIN.
1847
 * @param customSeed      A user-defined content.
1848
 * @param customSeedSize  Size of customSeed, in bytes.
1849
 *
1850
 * @return @ref XXH_OK on success.
1851
 * @return @ref XXH_ERROR on failure.
1852
 *
1853
 * The generated secret can be used in combination with `*_withSecret()` functions.
1854
 * The `_withSecret()` variants are useful to provide a higher level of protection
1855
 * than 64-bit seed, as it becomes much more difficult for an external actor to
1856
 * guess how to impact the calculation logic.
1857
 *
1858
 * The function accepts as input a custom seed of any length and any content,
1859
 * and derives from it a high-entropy secret of length @p secretSize into an
1860
 * already allocated buffer @p secretBuffer.
1861
 *
1862
 * The generated secret can then be used with any `*_withSecret()` variant.
1863
 * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
1864
 * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
1865
 * are part of this list. They all accept a `secret` parameter
1866
 * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
1867
 * _and_ feature very high entropy (consist of random-looking bytes).
1868
 * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
1869
 * be employed to ensure proper quality.
1870
 *
1871
 * @p customSeed can be anything. It can have any size, even small ones,
1872
 * and its content can be anything, even "poor entropy" sources such as a bunch
1873
 * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
1874
 *
1875
 * @pre
1876
 *   - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
1877
 *   - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1878
 *
1879
 * Example code:
1880
 * @code{.c}
1881
 *    #include <stdio.h>
1882
 *    #include <stdlib.h>
1883
 *    #include <string.h>
1884
 *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
1885
 *    #include "xxhash.h"
1886
 *    // Hashes argv[2] using the entropy from argv[1].
1887
 *    int main(int argc, char* argv[])
1888
 *    {
1889
 *        char secret[XXH3_SECRET_SIZE_MIN];
1890
 *        if (argv != 3) { return 1; }
1891
 *        XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
1892
 *        XXH64_hash_t h = XXH3_64bits_withSecret(
1893
 *             argv[2], strlen(argv[2]),
1894
 *             secret, sizeof(secret)
1895
 *        );
1896
 *        printf("%016llx\n", (unsigned long long) h);
1897
 *    }
1898
 * @endcode
1899
 */
1900
XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
1901
1902
/*!
1903
 * @brief Generate the same secret as the _withSeed() variants.
1904
 *
1905
 * @param secretBuffer A writable buffer of @ref XXH3_SECRET_DEFAULT_SIZE bytes
1906
 * @param seed         The 64-bit seed to alter the hash result predictably.
1907
 *
1908
 * The generated secret can be used in combination with
1909
 *`*_withSecret()` and `_withSecretandSeed()` variants.
1910
 *
1911
 * Example C++ `std::string` hash class:
1912
 * @code{.cpp}
1913
 *    #include <string>
1914
 *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
1915
 *    #include "xxhash.h"
1916
 *    // Slow, seeds each time
1917
 *    class HashSlow {
1918
 *        XXH64_hash_t seed;
1919
 *    public:
1920
 *        HashSlow(XXH64_hash_t s) : seed{s} {}
1921
 *        size_t operator()(const std::string& x) const {
1922
 *            return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
1923
 *        }
1924
 *    };
1925
 *    // Fast, caches the seeded secret for future uses.
1926
 *    class HashFast {
1927
 *        unsigned char secret[XXH3_SECRET_DEFAULT_SIZE];
1928
 *    public:
1929
 *        HashFast(XXH64_hash_t s) {
1930
 *            XXH3_generateSecret_fromSeed(secret, seed);
1931
 *        }
1932
 *        size_t operator()(const std::string& x) const {
1933
 *            return size_t{
1934
 *                XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
1935
 *            };
1936
 *        }
1937
 *    };
1938
 * @endcode
1939
 */
1940
XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
1941
1942
/*!
1943
 * @brief Maximum size of "short" key in bytes.
1944
 */
1945
#define XXH3_MIDSIZE_MAX 240
1946
1947
/*!
1948
 * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
1949
 *
1950
 * @param data       The block of data to be hashed, at least @p len bytes in size.
1951
 * @param len        The length of @p data, in bytes.
1952
 * @param secret     The secret data.
1953
 * @param secretSize The length of @p secret, in bytes.
1954
 * @param seed       The 64-bit seed to alter the hash result predictably.
1955
 *
1956
 * These variants generate hash values using either:
1957
 * - @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
1958
 * - @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
1959
 *
1960
 * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
1961
 * `_withSeed()` has to generate the secret on the fly for "large" keys.
1962
 * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
1963
 * `_withSecret()` has to generate the masks on the fly for "small" keys,
1964
 * which requires more instructions than _withSeed() variants.
1965
 * Therefore, _withSecretandSeed variant combines the best of both worlds.
1966
 *
1967
 * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
1968
 * this variant produces *exactly* the same results as `_withSeed()` variant,
1969
 * hence offering only a pure speed benefit on "large" input,
1970
 * by skipping the need to regenerate the secret for every large input.
1971
 *
1972
 * Another usage scenario is to hash the secret to a 64-bit hash value,
1973
 * for example with XXH3_64bits(), which then becomes the seed,
1974
 * and then employ both the seed and the secret in _withSecretandSeed().
1975
 * On top of speed, an added benefit is that each bit in the secret
1976
 * has a 50% chance to swap each bit in the output, via its impact to the seed.
1977
 *
1978
 * This is not guaranteed when using the secret directly in "small data" scenarios,
1979
 * because only portions of the secret are employed for small data.
1980
 */
1981
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
1982
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
1983
                              XXH_NOESCAPE const void* secret, size_t secretSize,
1984
                              XXH64_hash_t seed);
1985
1986
/*!
1987
 * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
1988
 *
1989
 * @param data       The memory segment to be hashed, at least @p len bytes in size.
1990
 * @param length     The length of @p data, in bytes.
1991
 * @param secret     The secret used to alter hash result predictably.
1992
 * @param secretSize The length of @p secret, in bytes (must be >= XXH3_SECRET_SIZE_MIN)
1993
 * @param seed64     The 64-bit seed to alter the hash result predictably.
1994
 *
1995
 * @return @ref XXH_OK on success.
1996
 * @return @ref XXH_ERROR on failure.
1997
 *
1998
 * @see XXH3_64bits_withSecretandSeed(): contract is the same.
1999
 */
2000
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
2001
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
2002
                               XXH_NOESCAPE const void* secret, size_t secretSize,
2003
                               XXH64_hash_t seed64);
2004
2005
#ifndef XXH_NO_STREAM
2006
/*!
2007
 * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
2008
 *
2009
 * @param statePtr   A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
2010
 * @param secret     The secret data.
2011
 * @param secretSize The length of @p secret, in bytes.
2012
 * @param seed64     The 64-bit seed to alter the hash result predictably.
2013
 *
2014
 * @return @ref XXH_OK on success.
2015
 * @return @ref XXH_ERROR on failure.
2016
 *
2017
 * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
2018
 */
2019
XXH_PUBLIC_API XXH_errorcode
2020
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
2021
                                    XXH_NOESCAPE const void* secret, size_t secretSize,
2022
                                    XXH64_hash_t seed64);
2023
2024
/*!
2025
 * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
2026
 *
2027
 * @param statePtr   A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
2028
 * @param secret     The secret data.
2029
 * @param secretSize The length of @p secret, in bytes.
2030
 * @param seed64     The 64-bit seed to alter the hash result predictably.
2031
 *
2032
 * @return @ref XXH_OK on success.
2033
 * @return @ref XXH_ERROR on failure.
2034
 *
2035
 * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
2036
 *
2037
 * Note: there was a bug in an earlier version of this function (<= v0.8.2)
2038
 * that would make it generate an incorrect hash value
2039
 * when @p seed == 0 and @p length < XXH3_MIDSIZE_MAX
2040
 * and @p secret is different from XXH3_generateSecret_fromSeed().
2041
 * As stated in the contract, the correct hash result must be
2042
 * the same as XXH3_128bits_withSeed() when @p length <= XXH3_MIDSIZE_MAX.
2043
 * Results generated by this older version are wrong, hence not comparable.
2044
 */
2045
XXH_PUBLIC_API XXH_errorcode
2046
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
2047
                                     XXH_NOESCAPE const void* secret, size_t secretSize,
2048
                                     XXH64_hash_t seed64);
2049
2050
#endif /* !XXH_NO_STREAM */
2051
2052
#endif  /* !XXH_NO_XXH3 */
2053
#endif  /* XXH_NO_LONG_LONG */
2054
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
2055
#  define XXH_IMPLEMENTATION
2056
#endif
2057
2058
#endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
2059
2060
2061
/* ======================================================================== */
2062
/* ======================================================================== */
2063
/* ======================================================================== */
2064
2065
2066
/*-**********************************************************************
2067
 * xxHash implementation
2068
 *-**********************************************************************
2069
 * xxHash's implementation used to be hosted inside xxhash.c.
2070
 *
2071
 * However, inlining requires implementation to be visible to the compiler,
2072
 * hence be included alongside the header.
2073
 * Previously, implementation was hosted inside xxhash.c,
2074
 * which was then #included when inlining was activated.
2075
 * This construction created issues with a few build and install systems,
2076
 * as it required xxhash.c to be stored in /include directory.
2077
 *
2078
 * xxHash implementation is now directly integrated within xxhash.h.
2079
 * As a consequence, xxhash.c is no longer needed in /include.
2080
 *
2081
 * xxhash.c is still available and is still useful.
2082
 * In a "normal" setup, when xxhash is not inlined,
2083
 * xxhash.h only exposes the prototypes and public symbols,
2084
 * while xxhash.c can be built into an object file xxhash.o
2085
 * which can then be linked into the final binary.
2086
 ************************************************************************/
2087
2088
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
2089
   || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
2090
#  define XXH_IMPLEM_13a8737387
2091
2092
/* *************************************
2093
*  Tuning parameters
2094
***************************************/
2095
2096
/*!
2097
 * @defgroup tuning Tuning parameters
2098
 * @{
2099
 *
2100
 * Various macros to control xxHash's behavior.
2101
 */
2102
#ifdef XXH_DOXYGEN
2103
/*!
2104
 * @brief Define this to disable 64-bit code.
2105
 *
2106
 * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
2107
 */
2108
#  define XXH_NO_LONG_LONG
2109
#  undef XXH_NO_LONG_LONG /* don't actually */
2110
/*!
2111
 * @brief Controls how unaligned memory is accessed.
2112
 *
2113
 * By default, access to unaligned memory is controlled by `memcpy()`, which is
2114
 * safe and portable.
2115
 *
2116
 * Unfortunately, on some target/compiler combinations, the generated assembly
2117
 * is sub-optimal.
2118
 *
2119
 * The below switch allow selection of a different access method
2120
 * in the search for improved performance.
2121
 *
2122
 * @par Possible options:
2123
 *
2124
 *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
2125
 *   @par
2126
 *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
2127
 *     eliminate the function call and treat it as an unaligned access.
2128
 *
2129
 *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
2130
 *   @par
2131
 *     Depends on compiler extensions and is therefore not portable.
2132
 *     This method is safe _if_ your compiler supports it,
2133
 *     and *generally* as fast or faster than `memcpy`.
2134
 *
2135
 *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
2136
 *  @par
2137
 *     Casts directly and dereferences. This method doesn't depend on the
2138
 *     compiler, but it violates the C standard as it directly dereferences an
2139
 *     unaligned pointer. It can generate buggy code on targets which do not
2140
 *     support unaligned memory accesses, but in some circumstances, it's the
2141
 *     only known way to get the most performance.
2142
 *
2143
 *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
2144
 *  @par
2145
 *     Also portable. This can generate the best code on old compilers which don't
2146
 *     inline small `memcpy()` calls, and it might also be faster on big-endian
2147
 *     systems which lack a native byteswap instruction. However, some compilers
2148
 *     will emit literal byteshifts even if the target supports unaligned access.
2149
 *
2150
 *
2151
 * @warning
2152
 *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
2153
 *   care, as what works on one compiler/platform/optimization level may cause
2154
 *   another to read garbage data or even crash.
2155
 *
2156
 * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
2157
 *
2158
 * Prefer these methods in priority order (0 > 3 > 1 > 2)
2159
 */
2160
#  define XXH_FORCE_MEMORY_ACCESS 0
2161
2162
/*!
2163
 * @def XXH_SIZE_OPT
2164
 * @brief Controls how much xxHash optimizes for size.
2165
 *
2166
 * xxHash, when compiled, tends to result in a rather large binary size. This
2167
 * is mostly due to heavy usage to forced inlining and constant folding of the
2168
 * @ref XXH3_family to increase performance.
2169
 *
2170
 * However, some developers prefer size over speed. This option can
2171
 * significantly reduce the size of the generated code. When using the `-Os`
2172
 * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
2173
 * otherwise it is defined to 0.
2174
 *
2175
 * Most of these size optimizations can be controlled manually.
2176
 *
2177
 * This is a number from 0-2.
2178
 *  - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
2179
 *    comes first.
2180
 *  - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
2181
 *    conservative and disables hacks that increase code size. It implies the
2182
 *    options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
2183
 *    and @ref XXH3_NEON_LANES == 8 if they are not already defined.
2184
 *  - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
2185
 *    Performance may cry. For example, the single shot functions just use the
2186
 *    streaming API.
2187
 */
2188
#  define XXH_SIZE_OPT 0
2189
2190
/*!
2191
 * @def XXH_FORCE_ALIGN_CHECK
2192
 * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
2193
 * and XXH64() only).
2194
 *
2195
 * This is an important performance trick for architectures without decent
2196
 * unaligned memory access performance.
2197
 *
2198
 * It checks for input alignment, and when conditions are met, uses a "fast
2199
 * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
2200
 * faster_ read speed.
2201
 *
2202
 * The check costs one initial branch per hash, which is generally negligible,
2203
 * but not zero.
2204
 *
2205
 * Moreover, it's not useful to generate an additional code path if memory
2206
 * access uses the same instruction for both aligned and unaligned
2207
 * addresses (e.g. x86 and aarch64).
2208
 *
2209
 * In these cases, the alignment check can be removed by setting this macro to 0.
2210
 * Then the code will always use unaligned memory access.
2211
 * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
2212
 * which are platforms known to offer good unaligned memory accesses performance.
2213
 *
2214
 * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
2215
 *
2216
 * This option does not affect XXH3 (only XXH32 and XXH64).
2217
 */
2218
#  define XXH_FORCE_ALIGN_CHECK 0
2219
2220
/*!
2221
 * @def XXH_NO_INLINE_HINTS
2222
 * @brief When non-zero, sets all functions to `static`.
2223
 *
2224
 * By default, xxHash tries to force the compiler to inline almost all internal
2225
 * functions.
2226
 *
2227
 * This can usually improve performance due to reduced jumping and improved
2228
 * constant folding, but significantly increases the size of the binary which
2229
 * might not be favorable.
2230
 *
2231
 * Additionally, sometimes the forced inlining can be detrimental to performance,
2232
 * depending on the architecture.
2233
 *
2234
 * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
2235
 * compiler full control on whether to inline or not.
2236
 *
2237
 * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
2238
 * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
2239
 */
2240
#  define XXH_NO_INLINE_HINTS 0
2241
2242
/*!
2243
 * @def XXH3_INLINE_SECRET
2244
 * @brief Determines whether to inline the XXH3 withSecret code.
2245
 *
2246
 * When the secret size is known, the compiler can improve the performance
2247
 * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
2248
 *
2249
 * However, if the secret size is not known, it doesn't have any benefit. This
2250
 * happens when xxHash is compiled into a global symbol. Therefore, if
2251
 * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
2252
 *
2253
 * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
2254
 * that are *sometimes* force inline on -Og, and it is impossible to automatically
2255
 * detect this optimization level.
2256
 */
2257
#  define XXH3_INLINE_SECRET 0
2258
2259
/*!
2260
 * @def XXH32_ENDJMP
2261
 * @brief Whether to use a jump for `XXH32_finalize`.
2262
 *
2263
 * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
2264
 * This is generally preferable for performance,
2265
 * but depending on exact architecture, a jmp may be preferable.
2266
 *
2267
 * This setting is only possibly making a difference for very small inputs.
2268
 */
2269
#  define XXH32_ENDJMP 0
2270
2271
/*!
2272
 * @internal
2273
 * @brief Redefines old internal names.
2274
 *
2275
 * For compatibility with code that uses xxHash's internals before the names
2276
 * were changed to improve namespacing. There is no other reason to use this.
2277
 */
2278
#  define XXH_OLD_NAMES
2279
#  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
2280
2281
/*!
2282
 * @def XXH_NO_STREAM
2283
 * @brief Disables the streaming API.
2284
 *
2285
 * When xxHash is not inlined and the streaming functions are not used, disabling
2286
 * the streaming functions can improve code size significantly, especially with
2287
 * the @ref XXH3_family which tends to make constant folded copies of itself.
2288
 */
2289
#  define XXH_NO_STREAM
2290
#  undef XXH_NO_STREAM /* don't actually */
2291
#endif /* XXH_DOXYGEN */
2292
/*!
2293
 * @}
2294
 */
2295
2296
#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
2297
   /* prefer __packed__ structures (method 1) for GCC
2298
    * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
2299
    * which for some reason does unaligned loads. */
2300
#  if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
2301
#    define XXH_FORCE_MEMORY_ACCESS 1
2302
#  endif
2303
#endif
2304
2305
#ifndef XXH_SIZE_OPT
2306
   /* default to 1 for -Os or -Oz */
2307
#  if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
2308
#    define XXH_SIZE_OPT 1
2309
#  else
2310
#    define XXH_SIZE_OPT 0
2311
#  endif
2312
#endif
2313
2314
#ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
2315
   /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
2316
#  if XXH_SIZE_OPT >= 1 || \
2317
      defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
2318
   || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64)    || defined(_M_ARM) /* visual */
2319
0
#    define XXH_FORCE_ALIGN_CHECK 0
2320
#  else
2321
#    define XXH_FORCE_ALIGN_CHECK 1
2322
#  endif
2323
#endif
2324
2325
#ifndef XXH_NO_INLINE_HINTS
2326
#  if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__)  /* -O0, -fno-inline */
2327
#    define XXH_NO_INLINE_HINTS 1
2328
#  else
2329
#    define XXH_NO_INLINE_HINTS 0
2330
#  endif
2331
#endif
2332
2333
#ifndef XXH3_INLINE_SECRET
2334
#  if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
2335
     || !defined(XXH_INLINE_ALL)
2336
#    define XXH3_INLINE_SECRET 0
2337
#  else
2338
#    define XXH3_INLINE_SECRET 1
2339
#  endif
2340
#endif
2341
2342
#ifndef XXH32_ENDJMP
2343
/* generally preferable for performance */
2344
#  define XXH32_ENDJMP 0
2345
#endif
2346
2347
/*!
2348
 * @defgroup impl Implementation
2349
 * @{
2350
 */
2351
2352
2353
/* *************************************
2354
*  Includes & Memory related functions
2355
***************************************/
2356
#if defined(XXH_NO_STREAM)
2357
/* nothing */
2358
#elif defined(XXH_NO_STDLIB)
2359
2360
/* When requesting to disable any mention of stdlib,
2361
 * the library loses the ability to invoked malloc / free.
2362
 * In practice, it means that functions like `XXH*_createState()`
2363
 * will always fail, and return NULL.
2364
 * This flag is useful in situations where
2365
 * xxhash.h is integrated into some kernel, embedded or limited environment
2366
 * without access to dynamic allocation.
2367
 */
2368
2369
static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
2370
static void XXH_free(void* p) { (void)p; }
2371
2372
#else
2373
2374
/*
2375
 * Modify the local functions below should you wish to use
2376
 * different memory routines for malloc() and free()
2377
 */
2378
#include <stdlib.h>
2379
2380
/*!
2381
 * @internal
2382
 * @brief Modify this function to use a different routine than malloc().
2383
 */
2384
0
static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
2385
2386
/*!
2387
 * @internal
2388
 * @brief Modify this function to use a different routine than free().
2389
 */
2390
0
static void XXH_free(void* p) { free(p); }
2391
2392
#endif  /* XXH_NO_STDLIB */
2393
2394
#include <string.h>
2395
2396
/*!
2397
 * @internal
2398
 * @brief Modify this function to use a different routine than memcpy().
2399
 */
2400
static void* XXH_memcpy(void* dest, const void* src, size_t size)
2401
0
{
2402
0
    return memcpy(dest,src,size);
2403
0
}
2404
2405
#include <limits.h>   /* ULLONG_MAX */
2406
2407
2408
/* *************************************
2409
*  Compiler Specific Options
2410
***************************************/
2411
#ifdef _MSC_VER /* Visual Studio warning fix */
2412
#  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
2413
#endif
2414
2415
#if XXH_NO_INLINE_HINTS  /* disable inlining hints */
2416
#  if defined(__GNUC__) || defined(__clang__)
2417
#    define XXH_FORCE_INLINE static __attribute__((__unused__))
2418
#  else
2419
#    define XXH_FORCE_INLINE static
2420
#  endif
2421
#  define XXH_NO_INLINE static
2422
/* enable inlining hints */
2423
#elif defined(__GNUC__) || defined(__clang__)
2424
#  define XXH_FORCE_INLINE static __inline__ __attribute__((__always_inline__, __unused__))
2425
#  define XXH_NO_INLINE static __attribute__((__noinline__))
2426
#elif defined(_MSC_VER)  /* Visual Studio */
2427
#  define XXH_FORCE_INLINE static __forceinline
2428
#  define XXH_NO_INLINE static __declspec(noinline)
2429
#elif defined (__cplusplus) \
2430
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
2431
#  define XXH_FORCE_INLINE static inline
2432
#  define XXH_NO_INLINE static
2433
#else
2434
#  define XXH_FORCE_INLINE static
2435
#  define XXH_NO_INLINE static
2436
#endif
2437
2438
#if defined(XXH_INLINE_ALL)
2439
#  define XXH_STATIC XXH_FORCE_INLINE
2440
#else
2441
#  define XXH_STATIC static
2442
#endif
2443
2444
#if XXH3_INLINE_SECRET
2445
#  define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
2446
#else
2447
#  define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
2448
#endif
2449
2450
#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
2451
#  define XXH_RESTRICT   /* disable */
2452
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
2453
#  define XXH_RESTRICT   restrict
2454
#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
2455
   || (defined (__clang__)) \
2456
   || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
2457
   || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
2458
/*
2459
 * There are a LOT more compilers that recognize __restrict but this
2460
 * covers the major ones.
2461
 */
2462
#  define XXH_RESTRICT   __restrict
2463
#else
2464
#  define XXH_RESTRICT   /* disable */
2465
#endif
2466
2467
/* *************************************
2468
*  Debug
2469
***************************************/
2470
/*!
2471
 * @ingroup tuning
2472
 * @def XXH_DEBUGLEVEL
2473
 * @brief Sets the debugging level.
2474
 *
2475
 * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
2476
 * compiler's command line options. The value must be a number.
2477
 */
2478
#ifndef XXH_DEBUGLEVEL
2479
#  ifdef DEBUGLEVEL /* backwards compat */
2480
#    define XXH_DEBUGLEVEL DEBUGLEVEL
2481
#  else
2482
#    define XXH_DEBUGLEVEL 0
2483
#  endif
2484
#endif
2485
2486
#if (XXH_DEBUGLEVEL>=1)
2487
#  include <assert.h>   /* note: can still be disabled with NDEBUG */
2488
#  define XXH_ASSERT(c)   assert(c)
2489
#else
2490
#  if defined(__INTEL_COMPILER)
2491
#    define XXH_ASSERT(c)   XXH_ASSUME((unsigned char) (c))
2492
#  else
2493
0
#    define XXH_ASSERT(c)   XXH_ASSUME(c)
2494
#  endif
2495
#endif
2496
2497
/* note: use after variable declarations */
2498
#ifndef XXH_STATIC_ASSERT
2499
#  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
2500
#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
2501
#  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
2502
#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
2503
#  else
2504
#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
2505
#  endif
2506
#  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
2507
#endif
2508
2509
/*!
2510
 * @internal
2511
 * @def XXH_COMPILER_GUARD(var)
2512
 * @brief Used to prevent unwanted optimizations for @p var.
2513
 *
2514
 * It uses an empty GCC inline assembly statement with a register constraint
2515
 * which forces @p var into a general purpose register (eg eax, ebx, ecx
2516
 * on x86) and marks it as modified.
2517
 *
2518
 * This is used in a few places to avoid unwanted autovectorization (e.g.
2519
 * XXH32_round()). All vectorization we want is explicit via intrinsics,
2520
 * and _usually_ isn't wanted elsewhere.
2521
 *
2522
 * We also use it to prevent unwanted constant folding for AArch64 in
2523
 * XXH3_initCustomSecret_scalar().
2524
 */
2525
#if defined(__GNUC__) || defined(__clang__)
2526
#  define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
2527
#else
2528
#  define XXH_COMPILER_GUARD(var) ((void)0)
2529
#endif
2530
2531
/* Specifically for NEON vectors which use the "w" constraint, on
2532
 * Clang. */
2533
#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
2534
#  define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
2535
#else
2536
#  define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
2537
#endif
2538
2539
/* *************************************
2540
*  Basic Types
2541
***************************************/
2542
#if !defined (__VMS) \
2543
 && (defined (__cplusplus) \
2544
 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
2545
#   ifdef _AIX
2546
#     include <inttypes.h>
2547
#   else
2548
#     include <stdint.h>
2549
#   endif
2550
    typedef uint8_t xxh_u8;
2551
#else
2552
    typedef unsigned char xxh_u8;
2553
#endif
2554
typedef XXH32_hash_t xxh_u32;
2555
2556
#ifdef XXH_OLD_NAMES
2557
#  warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
2558
#  define BYTE xxh_u8
2559
#  define U8   xxh_u8
2560
#  define U32  xxh_u32
2561
#endif
2562
2563
/* ***   Memory access   *** */
2564
2565
/*!
2566
 * @internal
2567
 * @fn xxh_u32 XXH_read32(const void* ptr)
2568
 * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
2569
 *
2570
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2571
 *
2572
 * @param ptr The pointer to read from.
2573
 * @return The 32-bit native endian integer from the bytes at @p ptr.
2574
 */
2575
2576
/*!
2577
 * @internal
2578
 * @fn xxh_u32 XXH_readLE32(const void* ptr)
2579
 * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
2580
 *
2581
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2582
 *
2583
 * @param ptr The pointer to read from.
2584
 * @return The 32-bit little endian integer from the bytes at @p ptr.
2585
 */
2586
2587
/*!
2588
 * @internal
2589
 * @fn xxh_u32 XXH_readBE32(const void* ptr)
2590
 * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
2591
 *
2592
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2593
 *
2594
 * @param ptr The pointer to read from.
2595
 * @return The 32-bit big endian integer from the bytes at @p ptr.
2596
 */
2597
2598
/*!
2599
 * @internal
2600
 * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
2601
 * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
2602
 *
2603
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2604
 * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
2605
 * always @ref XXH_alignment::XXH_unaligned.
2606
 *
2607
 * @param ptr The pointer to read from.
2608
 * @param align Whether @p ptr is aligned.
2609
 * @pre
2610
 *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
2611
 *   aligned.
2612
 * @return The 32-bit little endian integer from the bytes at @p ptr.
2613
 */
2614
2615
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2616
/*
2617
 * Manual byteshift. Best for old compilers which don't inline memcpy.
2618
 * We actually directly use XXH_readLE32 and XXH_readBE32.
2619
 */
2620
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2621
2622
/*
2623
 * Force direct memory access. Only works on CPU which support unaligned memory
2624
 * access in hardware.
2625
 */
2626
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
2627
2628
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2629
2630
/*
2631
 * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
2632
 * documentation claimed that it only increased the alignment, but actually it
2633
 * can decrease it on gcc, clang, and icc:
2634
 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
2635
 * https://gcc.godbolt.org/z/xYez1j67Y.
2636
 */
2637
#ifdef XXH_OLD_NAMES
2638
typedef union { xxh_u32 u32; } __attribute__((__packed__)) unalign;
2639
#endif
2640
static xxh_u32 XXH_read32(const void* ptr)
2641
0
{
2642
0
    typedef __attribute__((__aligned__(1))) xxh_u32 xxh_unalign32;
2643
0
    return *((const xxh_unalign32*)ptr);
2644
0
}
2645
2646
#else
2647
2648
/*
2649
 * Portable and safe solution. Generally efficient.
2650
 * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
2651
 */
2652
static xxh_u32 XXH_read32(const void* memPtr)
2653
{
2654
    xxh_u32 val;
2655
    XXH_memcpy(&val, memPtr, sizeof(val));
2656
    return val;
2657
}
2658
2659
#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2660
2661
2662
/* ***   Endianness   *** */
2663
2664
/*!
2665
 * @ingroup tuning
2666
 * @def XXH_CPU_LITTLE_ENDIAN
2667
 * @brief Whether the target is little endian.
2668
 *
2669
 * Defined to 1 if the target is little endian, or 0 if it is big endian.
2670
 * It can be defined externally, for example on the compiler command line.
2671
 *
2672
 * If it is not defined,
2673
 * a runtime check (which is usually constant folded) is used instead.
2674
 *
2675
 * @note
2676
 *   This is not necessarily defined to an integer constant.
2677
 *
2678
 * @see XXH_isLittleEndian() for the runtime check.
2679
 */
2680
#ifndef XXH_CPU_LITTLE_ENDIAN
2681
/*
2682
 * Try to detect endianness automatically, to avoid the nonstandard behavior
2683
 * in `XXH_isLittleEndian()`
2684
 */
2685
#  if defined(_WIN32) /* Windows is always little endian */ \
2686
     || defined(__LITTLE_ENDIAN__) \
2687
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
2688
0
#    define XXH_CPU_LITTLE_ENDIAN 1
2689
#  elif defined(__BIG_ENDIAN__) \
2690
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2691
#    define XXH_CPU_LITTLE_ENDIAN 0
2692
#  else
2693
/*!
2694
 * @internal
2695
 * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
2696
 *
2697
 * Most compilers will constant fold this.
2698
 */
2699
static int XXH_isLittleEndian(void)
2700
{
2701
    /*
2702
     * Portable and well-defined behavior.
2703
     * Don't use static: it is detrimental to performance.
2704
     */
2705
    const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
2706
    return one.c[0];
2707
}
2708
#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
2709
#  endif
2710
#endif
2711
2712
2713
2714
2715
/* ****************************************
2716
*  Compiler-specific Functions and Macros
2717
******************************************/
2718
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
2719
2720
#ifdef __has_builtin
2721
#  define XXH_HAS_BUILTIN(x) __has_builtin(x)
2722
#else
2723
#  define XXH_HAS_BUILTIN(x) 0
2724
#endif
2725
2726
2727
2728
/*
2729
 * C23 and future versions have standard "unreachable()".
2730
 * Once it has been implemented reliably we can add it as an
2731
 * additional case:
2732
 *
2733
 * ```
2734
 * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
2735
 * #  include <stddef.h>
2736
 * #  ifdef unreachable
2737
 * #    define XXH_UNREACHABLE() unreachable()
2738
 * #  endif
2739
 * #endif
2740
 * ```
2741
 *
2742
 * Note C++23 also has std::unreachable() which can be detected
2743
 * as follows:
2744
 * ```
2745
 * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
2746
 * #  include <utility>
2747
 * #  define XXH_UNREACHABLE() std::unreachable()
2748
 * #endif
2749
 * ```
2750
 * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
2751
 * We don't use that as including `<utility>` in `extern "C"` blocks
2752
 * doesn't work on GCC12
2753
 */
2754
2755
#if XXH_HAS_BUILTIN(__builtin_unreachable)
2756
#  define XXH_UNREACHABLE() __builtin_unreachable()
2757
2758
#elif defined(_MSC_VER)
2759
#  define XXH_UNREACHABLE() __assume(0)
2760
2761
#else
2762
#  define XXH_UNREACHABLE()
2763
#endif
2764
2765
#if XXH_HAS_BUILTIN(__builtin_assume)
2766
0
#  define XXH_ASSUME(c) __builtin_assume(c)
2767
#else
2768
#  define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
2769
#endif
2770
2771
/*!
2772
 * @internal
2773
 * @def XXH_rotl32(x,r)
2774
 * @brief 32-bit rotate left.
2775
 *
2776
 * @param x The 32-bit integer to be rotated.
2777
 * @param r The number of bits to rotate.
2778
 * @pre
2779
 *   @p r > 0 && @p r < 32
2780
 * @note
2781
 *   @p x and @p r may be evaluated multiple times.
2782
 * @return The rotated result.
2783
 */
2784
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
2785
                               && XXH_HAS_BUILTIN(__builtin_rotateleft64)
2786
#  define XXH_rotl32 __builtin_rotateleft32
2787
0
#  define XXH_rotl64 __builtin_rotateleft64
2788
#elif XXH_HAS_BUILTIN(__builtin_stdc_rotate_left)
2789
#  define XXH_rotl32 __builtin_stdc_rotate_left
2790
#  define XXH_rotl64 __builtin_stdc_rotate_left
2791
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
2792
#elif defined(_MSC_VER)
2793
#  define XXH_rotl32(x,r) _rotl(x,r)
2794
#  define XXH_rotl64(x,r) _rotl64(x,r)
2795
#else
2796
#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
2797
#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
2798
#endif
2799
2800
/*!
2801
 * @internal
2802
 * @fn xxh_u32 XXH_swap32(xxh_u32 x)
2803
 * @brief A 32-bit byteswap.
2804
 *
2805
 * @param x The 32-bit integer to byteswap.
2806
 * @return @p x, byteswapped.
2807
 */
2808
#if defined(_MSC_VER)     /* Visual Studio */
2809
#  define XXH_swap32 _byteswap_ulong
2810
#elif XXH_GCC_VERSION >= 403
2811
#  define XXH_swap32 __builtin_bswap32
2812
#else
2813
static xxh_u32 XXH_swap32 (xxh_u32 x)
2814
0
{
2815
0
    return  ((x << 24) & 0xff000000 ) |
2816
0
            ((x <<  8) & 0x00ff0000 ) |
2817
0
            ((x >>  8) & 0x0000ff00 ) |
2818
0
            ((x >> 24) & 0x000000ff );
2819
0
}
2820
#endif
2821
2822
2823
/* ***************************
2824
*  Memory reads
2825
*****************************/
2826
2827
/*!
2828
 * @internal
2829
 * @brief Enum to indicate whether a pointer is aligned.
2830
 */
2831
typedef enum {
2832
    XXH_aligned,  /*!< Aligned */
2833
    XXH_unaligned /*!< Possibly unaligned */
2834
} XXH_alignment;
2835
2836
/*
2837
 * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
2838
 *
2839
 * This is ideal for older compilers which don't inline memcpy.
2840
 */
2841
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2842
2843
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
2844
{
2845
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2846
    return bytePtr[0]
2847
         | ((xxh_u32)bytePtr[1] << 8)
2848
         | ((xxh_u32)bytePtr[2] << 16)
2849
         | ((xxh_u32)bytePtr[3] << 24);
2850
}
2851
2852
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
2853
{
2854
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2855
    return bytePtr[3]
2856
         | ((xxh_u32)bytePtr[2] << 8)
2857
         | ((xxh_u32)bytePtr[1] << 16)
2858
         | ((xxh_u32)bytePtr[0] << 24);
2859
}
2860
2861
#else
2862
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
2863
0
{
2864
0
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
2865
0
}
2866
2867
static xxh_u32 XXH_readBE32(const void* ptr)
2868
0
{
2869
0
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
2870
0
}
2871
#endif
2872
2873
XXH_FORCE_INLINE xxh_u32
2874
XXH_readLE32_align(const void* ptr, XXH_alignment align)
2875
0
{
2876
0
    if (align==XXH_unaligned) {
2877
0
        return XXH_readLE32(ptr);
2878
0
    } else {
2879
0
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
2880
0
    }
2881
0
}
2882
2883
2884
/* *************************************
2885
*  Misc
2886
***************************************/
2887
/*! @ingroup public */
2888
0
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
2889
2890
2891
/* *******************************************************************
2892
*  32-bit hash functions
2893
*********************************************************************/
2894
/*!
2895
 * @}
2896
 * @defgroup XXH32_impl XXH32 implementation
2897
 * @ingroup impl
2898
 *
2899
 * Details on the XXH32 implementation.
2900
 * @{
2901
 */
2902
 /* #define instead of static const, to be used as initializers */
2903
#define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
2904
#define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
2905
#define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
2906
#define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
2907
#define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
2908
2909
#ifdef XXH_OLD_NAMES
2910
#  define PRIME32_1 XXH_PRIME32_1
2911
#  define PRIME32_2 XXH_PRIME32_2
2912
#  define PRIME32_3 XXH_PRIME32_3
2913
#  define PRIME32_4 XXH_PRIME32_4
2914
#  define PRIME32_5 XXH_PRIME32_5
2915
#endif
2916
2917
/*!
2918
 * @internal
2919
 * @brief Normal stripe processing routine.
2920
 *
2921
 * This shuffles the bits so that any bit from @p input impacts several bits in
2922
 * @p acc.
2923
 *
2924
 * @param acc The accumulator lane.
2925
 * @param input The stripe of input to mix.
2926
 * @return The mixed accumulator lane.
2927
 */
2928
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
2929
0
{
2930
0
    acc += input * XXH_PRIME32_2;
2931
0
    acc  = XXH_rotl32(acc, 13);
2932
0
    acc *= XXH_PRIME32_1;
2933
0
#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
2934
0
    /*
2935
0
     * UGLY HACK:
2936
0
     * A compiler fence is used to prevent GCC and Clang from
2937
0
     * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
2938
0
     * reason) without globally disabling SSE4.1.
2939
0
     *
2940
0
     * The reason we want to avoid vectorization is because despite working on
2941
0
     * 4 integers at a time, there are multiple factors slowing XXH32 down on
2942
0
     * SSE4:
2943
0
     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
2944
0
     *   newer chips!) making it slightly slower to multiply four integers at
2945
0
     *   once compared to four integers independently. Even when pmulld was
2946
0
     *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
2947
0
     *   just to multiply unless doing a long operation.
2948
0
     *
2949
0
     * - Four instructions are required to rotate,
2950
0
     *      movqda tmp,  v // not required with VEX encoding
2951
0
     *      pslld  tmp, 13 // tmp <<= 13
2952
0
     *      psrld  v,   19 // x >>= 19
2953
0
     *      por    v,  tmp // x |= tmp
2954
0
     *   compared to one for scalar:
2955
0
     *      roll   v, 13    // reliably fast across the board
2956
0
     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
2957
0
     *
2958
0
     * - Instruction level parallelism is actually more beneficial here because
2959
0
     *   the SIMD actually serializes this operation: While v1 is rotating, v2
2960
0
     *   can load data, while v3 can multiply. SSE forces them to operate
2961
0
     *   together.
2962
0
     *
2963
0
     * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
2964
0
     * the loop. NEON is only faster on the A53, and with the newer cores, it is less
2965
0
     * than half the speed.
2966
0
     *
2967
0
     * Additionally, this is used on WASM SIMD128 because it JITs to the same
2968
0
     * SIMD instructions and has the same issue.
2969
0
     */
2970
0
    XXH_COMPILER_GUARD(acc);
2971
0
#endif
2972
0
    return acc;
2973
0
}
2974
2975
/*!
2976
 * @internal
2977
 * @brief Mixes all bits to finalize the hash.
2978
 *
2979
 * The final mix ensures that all input bits have a chance to impact any bit in
2980
 * the output digest, resulting in an unbiased distribution.
2981
 *
2982
 * @param hash The hash to avalanche.
2983
 * @return The avalanched hash.
2984
 */
2985
static xxh_u32 XXH32_avalanche(xxh_u32 hash)
2986
0
{
2987
0
    hash ^= hash >> 15;
2988
0
    hash *= XXH_PRIME32_2;
2989
0
    hash ^= hash >> 13;
2990
0
    hash *= XXH_PRIME32_3;
2991
0
    hash ^= hash >> 16;
2992
0
    return hash;
2993
0
}
2994
2995
0
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
2996
2997
/*!
2998
 * @internal
2999
 * @brief Sets up the initial accumulator state for XXH32().
3000
 */
3001
XXH_FORCE_INLINE void
3002
XXH32_initAccs(xxh_u32 *acc, xxh_u32 seed)
3003
0
{
3004
0
    XXH_ASSERT(acc != NULL);
3005
0
    acc[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
3006
0
    acc[1] = seed + XXH_PRIME32_2;
3007
0
    acc[2] = seed + 0;
3008
0
    acc[3] = seed - XXH_PRIME32_1;
3009
0
}
3010
3011
/*!
3012
 * @internal
3013
 * @brief Consumes a block of data for XXH32().
3014
 *
3015
 * @return the end input pointer.
3016
 */
3017
XXH_FORCE_INLINE const xxh_u8 *
3018
XXH32_consumeLong(
3019
    xxh_u32 *XXH_RESTRICT acc,
3020
    xxh_u8 const *XXH_RESTRICT input,
3021
    size_t len,
3022
    XXH_alignment align
3023
)
3024
0
{
3025
0
    const xxh_u8* const bEnd = input + len;
3026
0
    const xxh_u8* const limit = bEnd - 15;
3027
0
    XXH_ASSERT(acc != NULL);
3028
0
    XXH_ASSERT(input != NULL);
3029
0
    XXH_ASSERT(len >= 16);
3030
0
    do {
3031
0
        acc[0] = XXH32_round(acc[0], XXH_get32bits(input)); input += 4;
3032
0
        acc[1] = XXH32_round(acc[1], XXH_get32bits(input)); input += 4;
3033
0
        acc[2] = XXH32_round(acc[2], XXH_get32bits(input)); input += 4;
3034
0
        acc[3] = XXH32_round(acc[3], XXH_get32bits(input)); input += 4;
3035
0
    } while (input < limit);
3036
0
3037
0
    return input;
3038
0
}
3039
3040
/*!
3041
 * @internal
3042
 * @brief Merges the accumulator lanes together for XXH32()
3043
 */
3044
XXH_FORCE_INLINE XXH_PUREF xxh_u32
3045
XXH32_mergeAccs(const xxh_u32 *acc)
3046
0
{
3047
0
    XXH_ASSERT(acc != NULL);
3048
0
    return XXH_rotl32(acc[0], 1)  + XXH_rotl32(acc[1], 7)
3049
0
         + XXH_rotl32(acc[2], 12) + XXH_rotl32(acc[3], 18);
3050
0
}
3051
3052
/*!
3053
 * @internal
3054
 * @brief Processes the last 0-15 bytes of @p ptr.
3055
 *
3056
 * There may be up to 15 bytes remaining to consume from the input.
3057
 * This final stage will digest them to ensure that all input bytes are present
3058
 * in the final mix.
3059
 *
3060
 * @param hash The hash to finalize.
3061
 * @param ptr The pointer to the remaining input.
3062
 * @param len The remaining length, modulo 16.
3063
 * @param align Whether @p ptr is aligned.
3064
 * @return The finalized hash.
3065
 * @see XXH64_finalize().
3066
 */
3067
static XXH_PUREF xxh_u32
3068
XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
3069
0
{
3070
0
#define XXH_PROCESS1 do {                             \
3071
0
    hash += (*ptr++) * XXH_PRIME32_5;                 \
3072
0
    hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1;      \
3073
0
} while (0)
3074
0
3075
0
#define XXH_PROCESS4 do {                             \
3076
0
    hash += XXH_get32bits(ptr) * XXH_PRIME32_3;       \
3077
0
    ptr += 4;                                         \
3078
0
    hash  = XXH_rotl32(hash, 17) * XXH_PRIME32_4;     \
3079
0
} while (0)
3080
0
3081
0
    if (ptr==NULL) XXH_ASSERT(len == 0);
3082
0
3083
0
    /* Compact rerolled version; generally faster */
3084
0
    if (!XXH32_ENDJMP) {
3085
0
        len &= 15;
3086
0
        while (len >= 4) {
3087
0
            XXH_PROCESS4;
3088
0
            len -= 4;
3089
0
        }
3090
0
        while (len > 0) {
3091
0
            XXH_PROCESS1;
3092
0
            --len;
3093
0
        }
3094
0
        return XXH32_avalanche(hash);
3095
0
    } else {
3096
0
         switch(len&15) /* or switch(bEnd - p) */ {
3097
0
           case 12:      XXH_PROCESS4;
3098
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3099
0
           case 8:       XXH_PROCESS4;
3100
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3101
0
           case 4:       XXH_PROCESS4;
3102
0
                         return XXH32_avalanche(hash);
3103
0
3104
0
           case 13:      XXH_PROCESS4;
3105
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3106
0
           case 9:       XXH_PROCESS4;
3107
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3108
0
           case 5:       XXH_PROCESS4;
3109
0
                         XXH_PROCESS1;
3110
0
                         return XXH32_avalanche(hash);
3111
0
3112
0
           case 14:      XXH_PROCESS4;
3113
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3114
0
           case 10:      XXH_PROCESS4;
3115
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3116
0
           case 6:       XXH_PROCESS4;
3117
0
                         XXH_PROCESS1;
3118
0
                         XXH_PROCESS1;
3119
0
                         return XXH32_avalanche(hash);
3120
0
3121
0
           case 15:      XXH_PROCESS4;
3122
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3123
0
           case 11:      XXH_PROCESS4;
3124
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3125
0
           case 7:       XXH_PROCESS4;
3126
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3127
0
           case 3:       XXH_PROCESS1;
3128
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3129
0
           case 2:       XXH_PROCESS1;
3130
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3131
0
           case 1:       XXH_PROCESS1;
3132
0
                         XXH_FALLTHROUGH;  /* fallthrough */
3133
0
           case 0:       return XXH32_avalanche(hash);
3134
0
        }
3135
0
        XXH_ASSERT(0);
3136
0
        return hash;   /* reaching this point is deemed impossible */
3137
0
    }
3138
0
}
3139
3140
#ifdef XXH_OLD_NAMES
3141
#  define PROCESS1 XXH_PROCESS1
3142
#  define PROCESS4 XXH_PROCESS4
3143
#else
3144
#  undef XXH_PROCESS1
3145
#  undef XXH_PROCESS4
3146
#endif
3147
3148
/*!
3149
 * @internal
3150
 * @brief The implementation for @ref XXH32().
3151
 *
3152
 * @param input , len , seed Directly passed from @ref XXH32().
3153
 * @param align Whether @p input is aligned.
3154
 * @return The calculated hash.
3155
 */
3156
XXH_FORCE_INLINE XXH_PUREF xxh_u32
3157
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
3158
0
{
3159
0
    xxh_u32 h32;
3160
0
3161
0
    if (input==NULL) XXH_ASSERT(len == 0);
3162
0
3163
0
    if (len>=16) {
3164
0
        xxh_u32 acc[4];
3165
0
        XXH32_initAccs(acc, seed);
3166
0
3167
0
        input = XXH32_consumeLong(acc, input, len, align);
3168
0
3169
0
        h32 = XXH32_mergeAccs(acc);
3170
0
    } else {
3171
0
        h32  = seed + XXH_PRIME32_5;
3172
0
    }
3173
0
3174
0
    h32 += (xxh_u32)len;
3175
0
3176
0
    return XXH32_finalize(h32, input, len&15, align);
3177
0
}
3178
3179
/*! @ingroup XXH32_family */
3180
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
3181
0
{
3182
0
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
3183
0
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
3184
0
    XXH32_state_t state;
3185
0
    XXH32_reset(&state, seed);
3186
0
    XXH32_update(&state, (const xxh_u8*)input, len);
3187
0
    return XXH32_digest(&state);
3188
0
#else
3189
0
    if (XXH_FORCE_ALIGN_CHECK) {
3190
0
        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
3191
0
            return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
3192
0
    }   }
3193
0
3194
0
    return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
3195
0
#endif
3196
0
}
3197
3198
3199
3200
/*******   Hash streaming   *******/
3201
#ifndef XXH_NO_STREAM
3202
/*! @ingroup XXH32_family */
3203
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
3204
0
{
3205
0
    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
3206
0
}
3207
/*! @ingroup XXH32_family */
3208
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
3209
0
{
3210
0
    XXH_free(statePtr);
3211
0
    return XXH_OK;
3212
0
}
3213
3214
/*! @ingroup XXH32_family */
3215
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
3216
0
{
3217
0
    XXH_memcpy(dstState, srcState, sizeof(*dstState));
3218
0
}
3219
3220
/*! @ingroup XXH32_family */
3221
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
3222
0
{
3223
0
    XXH_ASSERT(statePtr != NULL);
3224
0
    memset(statePtr, 0, sizeof(*statePtr));
3225
0
    XXH32_initAccs(statePtr->acc, seed);
3226
0
    return XXH_OK;
3227
0
}
3228
3229
3230
/*! @ingroup XXH32_family */
3231
XXH_PUBLIC_API XXH_errorcode
3232
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
3233
0
{
3234
0
    if (input==NULL) {
3235
0
        XXH_ASSERT(len == 0);
3236
0
        return XXH_OK;
3237
0
    }
3238
0
3239
0
    state->total_len_32 += (XXH32_hash_t)len;
3240
0
    state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
3241
0
3242
0
    XXH_ASSERT(state->bufferedSize < sizeof(state->buffer));
3243
0
    if (len < sizeof(state->buffer) - state->bufferedSize)  {   /* fill in tmp buffer */
3244
0
        XXH_memcpy(state->buffer + state->bufferedSize, input, len);
3245
0
        state->bufferedSize += (XXH32_hash_t)len;
3246
0
        return XXH_OK;
3247
0
    }
3248
0
3249
0
    {   const xxh_u8* xinput = (const xxh_u8*)input;
3250
0
        const xxh_u8* const bEnd = xinput + len;
3251
0
3252
0
        if (state->bufferedSize) {   /* non-empty buffer: complete first */
3253
0
            XXH_memcpy(state->buffer + state->bufferedSize, xinput, sizeof(state->buffer) - state->bufferedSize);
3254
0
            xinput += sizeof(state->buffer) - state->bufferedSize;
3255
0
            /* then process one round */
3256
0
            (void)XXH32_consumeLong(state->acc, state->buffer, sizeof(state->buffer), XXH_aligned);
3257
0
            state->bufferedSize = 0;
3258
0
        }
3259
0
3260
0
        XXH_ASSERT(xinput <= bEnd);
3261
0
        if ((size_t)(bEnd - xinput) >= sizeof(state->buffer)) {
3262
0
            /* Process the remaining data */
3263
0
            xinput = XXH32_consumeLong(state->acc, xinput, (size_t)(bEnd - xinput), XXH_unaligned);
3264
0
        }
3265
0
3266
0
        if (xinput < bEnd) {
3267
0
            /* Copy the leftover to the tmp buffer */
3268
0
            XXH_memcpy(state->buffer, xinput, (size_t)(bEnd-xinput));
3269
0
            state->bufferedSize = (unsigned)(bEnd-xinput);
3270
0
        }
3271
0
    }
3272
0
3273
0
    return XXH_OK;
3274
0
}
3275
3276
3277
/*! @ingroup XXH32_family */
3278
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
3279
0
{
3280
0
    xxh_u32 h32;
3281
0
3282
0
    if (state->large_len) {
3283
0
        h32 = XXH32_mergeAccs(state->acc);
3284
0
    } else {
3285
0
        h32 = state->acc[2] /* == seed */ + XXH_PRIME32_5;
3286
0
    }
3287
0
3288
0
    h32 += state->total_len_32;
3289
0
3290
0
    return XXH32_finalize(h32, state->buffer, state->bufferedSize, XXH_aligned);
3291
0
}
3292
#endif /* !XXH_NO_STREAM */
3293
3294
/*******   Canonical representation   *******/
3295
3296
/*! @ingroup XXH32_family */
3297
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
3298
0
{
3299
0
    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
3300
0
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
3301
0
    XXH_memcpy(dst, &hash, sizeof(*dst));
3302
0
}
3303
/*! @ingroup XXH32_family */
3304
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
3305
0
{
3306
0
    return XXH_readBE32(src);
3307
0
}
3308
3309
3310
#ifndef XXH_NO_LONG_LONG
3311
3312
/* *******************************************************************
3313
*  64-bit hash functions
3314
*********************************************************************/
3315
/*!
3316
 * @}
3317
 * @ingroup impl
3318
 * @{
3319
 */
3320
/*******   Memory access   *******/
3321
3322
typedef XXH64_hash_t xxh_u64;
3323
3324
#ifdef XXH_OLD_NAMES
3325
#  define U64 xxh_u64
3326
#endif
3327
3328
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
3329
/*
3330
 * Manual byteshift. Best for old compilers which don't inline memcpy.
3331
 * We actually directly use XXH_readLE64 and XXH_readBE64.
3332
 */
3333
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
3334
3335
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
3336
static xxh_u64 XXH_read64(const void* memPtr)
3337
{
3338
    return *(const xxh_u64*) memPtr;
3339
}
3340
3341
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
3342
3343
/*
3344
 * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
3345
 * documentation claimed that it only increased the alignment, but actually it
3346
 * can decrease it on gcc, clang, and icc:
3347
 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
3348
 * https://gcc.godbolt.org/z/xYez1j67Y.
3349
 */
3350
#ifdef XXH_OLD_NAMES
3351
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((__packed__)) unalign64;
3352
#endif
3353
static xxh_u64 XXH_read64(const void* ptr)
3354
0
{
3355
0
    typedef __attribute__((__aligned__(1))) xxh_u64 xxh_unalign64;
3356
0
    return *((const xxh_unalign64*)ptr);
3357
0
}
3358
3359
#else
3360
3361
/*
3362
 * Portable and safe solution. Generally efficient.
3363
 * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
3364
 */
3365
static xxh_u64 XXH_read64(const void* memPtr)
3366
{
3367
    xxh_u64 val;
3368
    XXH_memcpy(&val, memPtr, sizeof(val));
3369
    return val;
3370
}
3371
3372
#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
3373
3374
#if defined(_MSC_VER)     /* Visual Studio */
3375
#  define XXH_swap64 _byteswap_uint64
3376
#elif XXH_GCC_VERSION >= 403
3377
#  define XXH_swap64 __builtin_bswap64
3378
#else
3379
static xxh_u64 XXH_swap64(xxh_u64 x)
3380
0
{
3381
0
    return  ((x << 56) & 0xff00000000000000ULL) |
3382
0
            ((x << 40) & 0x00ff000000000000ULL) |
3383
0
            ((x << 24) & 0x0000ff0000000000ULL) |
3384
0
            ((x << 8)  & 0x000000ff00000000ULL) |
3385
0
            ((x >> 8)  & 0x00000000ff000000ULL) |
3386
0
            ((x >> 24) & 0x0000000000ff0000ULL) |
3387
0
            ((x >> 40) & 0x000000000000ff00ULL) |
3388
0
            ((x >> 56) & 0x00000000000000ffULL);
3389
0
}
3390
#endif
3391
3392
3393
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
3394
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
3395
3396
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
3397
{
3398
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
3399
    return bytePtr[0]
3400
         | ((xxh_u64)bytePtr[1] << 8)
3401
         | ((xxh_u64)bytePtr[2] << 16)
3402
         | ((xxh_u64)bytePtr[3] << 24)
3403
         | ((xxh_u64)bytePtr[4] << 32)
3404
         | ((xxh_u64)bytePtr[5] << 40)
3405
         | ((xxh_u64)bytePtr[6] << 48)
3406
         | ((xxh_u64)bytePtr[7] << 56);
3407
}
3408
3409
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
3410
{
3411
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
3412
    return bytePtr[7]
3413
         | ((xxh_u64)bytePtr[6] << 8)
3414
         | ((xxh_u64)bytePtr[5] << 16)
3415
         | ((xxh_u64)bytePtr[4] << 24)
3416
         | ((xxh_u64)bytePtr[3] << 32)
3417
         | ((xxh_u64)bytePtr[2] << 40)
3418
         | ((xxh_u64)bytePtr[1] << 48)
3419
         | ((xxh_u64)bytePtr[0] << 56);
3420
}
3421
3422
#else
3423
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
3424
0
{
3425
0
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
3426
0
}
3427
3428
static xxh_u64 XXH_readBE64(const void* ptr)
3429
0
{
3430
0
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
3431
0
}
3432
#endif
3433
3434
XXH_FORCE_INLINE xxh_u64
3435
XXH_readLE64_align(const void* ptr, XXH_alignment align)
3436
0
{
3437
0
    if (align==XXH_unaligned)
3438
0
        return XXH_readLE64(ptr);
3439
0
    else
3440
0
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
3441
0
}
3442
3443
3444
/*******   xxh64   *******/
3445
/*!
3446
 * @}
3447
 * @defgroup XXH64_impl XXH64 implementation
3448
 * @ingroup impl
3449
 *
3450
 * Details on the XXH64 implementation.
3451
 * @{
3452
 */
3453
/* #define rather that static const, to be used as initializers */
3454
0
#define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
3455
0
#define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
3456
0
#define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
3457
0
#define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
3458
0
#define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
3459
3460
#ifdef XXH_OLD_NAMES
3461
#  define PRIME64_1 XXH_PRIME64_1
3462
#  define PRIME64_2 XXH_PRIME64_2
3463
#  define PRIME64_3 XXH_PRIME64_3
3464
#  define PRIME64_4 XXH_PRIME64_4
3465
#  define PRIME64_5 XXH_PRIME64_5
3466
#endif
3467
3468
/*! @copydoc XXH32_round */
3469
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
3470
0
{
3471
0
    acc += input * XXH_PRIME64_2;
3472
0
    acc  = XXH_rotl64(acc, 31);
3473
0
    acc *= XXH_PRIME64_1;
3474
#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
3475
    /*
3476
     * DISABLE AUTOVECTORIZATION:
3477
     * A compiler fence is used to prevent GCC and Clang from
3478
     * autovectorizing the XXH64 loop (pragmas and attributes don't work for some
3479
     * reason) without globally disabling AVX512.
3480
     *
3481
     * Autovectorization of XXH64 tends to be detrimental,
3482
     * though the exact outcome may change depending on exact cpu and compiler version.
3483
     * For information, it has been reported as detrimental for Skylake-X,
3484
     * but possibly beneficial for Zen4.
3485
     *
3486
     * The default is to disable auto-vectorization,
3487
     * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
3488
     */
3489
    XXH_COMPILER_GUARD(acc);
3490
#endif
3491
0
    return acc;
3492
0
}
3493
3494
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
3495
0
{
3496
0
    val  = XXH64_round(0, val);
3497
0
    acc ^= val;
3498
0
    acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
3499
0
    return acc;
3500
0
}
3501
3502
/*! @copydoc XXH32_avalanche */
3503
static xxh_u64 XXH64_avalanche(xxh_u64 hash)
3504
0
{
3505
0
    hash ^= hash >> 33;
3506
0
    hash *= XXH_PRIME64_2;
3507
0
    hash ^= hash >> 29;
3508
0
    hash *= XXH_PRIME64_3;
3509
0
    hash ^= hash >> 32;
3510
0
    return hash;
3511
0
}
3512
3513
3514
0
#define XXH_get64bits(p) XXH_readLE64_align(p, align)
3515
3516
/*!
3517
 * @internal
3518
 * @brief Sets up the initial accumulator state for XXH64().
3519
 */
3520
XXH_FORCE_INLINE void
3521
XXH64_initAccs(xxh_u64 *acc, xxh_u64 seed)
3522
0
{
3523
0
    XXH_ASSERT(acc != NULL);
3524
0
    acc[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
3525
0
    acc[1] = seed + XXH_PRIME64_2;
3526
0
    acc[2] = seed + 0;
3527
0
    acc[3] = seed - XXH_PRIME64_1;
3528
0
}
3529
3530
/*!
3531
 * @internal
3532
 * @brief Consumes a block of data for XXH64().
3533
 *
3534
 * @return the end input pointer.
3535
 */
3536
XXH_FORCE_INLINE const xxh_u8 *
3537
XXH64_consumeLong(
3538
    xxh_u64 *XXH_RESTRICT acc,
3539
    xxh_u8 const *XXH_RESTRICT input,
3540
    size_t len,
3541
    XXH_alignment align
3542
)
3543
0
{
3544
0
    const xxh_u8* const bEnd = input + len;
3545
0
    const xxh_u8* const limit = bEnd - 31;
3546
0
    XXH_ASSERT(acc != NULL);
3547
0
    XXH_ASSERT(input != NULL);
3548
0
    XXH_ASSERT(len >= 32);
3549
0
    do {
3550
        /* reroll on 32-bit */
3551
0
        if (sizeof(void *) < sizeof(xxh_u64)) {
3552
0
            size_t i;
3553
0
            for (i = 0; i < 4; i++) {
3554
0
                acc[i] = XXH64_round(acc[i], XXH_get64bits(input));
3555
0
                input += 8;
3556
0
            }
3557
0
        } else {
3558
0
            acc[0] = XXH64_round(acc[0], XXH_get64bits(input)); input += 8;
3559
0
            acc[1] = XXH64_round(acc[1], XXH_get64bits(input)); input += 8;
3560
0
            acc[2] = XXH64_round(acc[2], XXH_get64bits(input)); input += 8;
3561
0
            acc[3] = XXH64_round(acc[3], XXH_get64bits(input)); input += 8;
3562
0
        }
3563
0
    } while (input < limit);
3564
3565
0
    return input;
3566
0
}
3567
3568
/*!
3569
 * @internal
3570
 * @brief Merges the accumulator lanes together for XXH64()
3571
 */
3572
XXH_FORCE_INLINE XXH_PUREF xxh_u64
3573
XXH64_mergeAccs(const xxh_u64 *acc)
3574
0
{
3575
0
    XXH_ASSERT(acc != NULL);
3576
0
    {
3577
0
        xxh_u64 h64 = XXH_rotl64(acc[0], 1) + XXH_rotl64(acc[1], 7)
3578
0
                    + XXH_rotl64(acc[2], 12) + XXH_rotl64(acc[3], 18);
3579
        /* reroll on 32-bit */
3580
0
        if (sizeof(void *) < sizeof(xxh_u64)) {
3581
0
            size_t i;
3582
0
            for (i = 0; i < 4; i++) {
3583
0
                h64 = XXH64_mergeRound(h64, acc[i]);
3584
0
            }
3585
0
        } else {
3586
0
            h64 = XXH64_mergeRound(h64, acc[0]);
3587
0
            h64 = XXH64_mergeRound(h64, acc[1]);
3588
0
            h64 = XXH64_mergeRound(h64, acc[2]);
3589
0
            h64 = XXH64_mergeRound(h64, acc[3]);
3590
0
        }
3591
0
        return h64;
3592
0
    }
3593
0
}
3594
3595
/*!
3596
 * @internal
3597
 * @brief Processes the last 0-31 bytes of @p ptr.
3598
 *
3599
 * There may be up to 31 bytes remaining to consume from the input.
3600
 * This final stage will digest them to ensure that all input bytes are present
3601
 * in the final mix.
3602
 *
3603
 * @param hash The hash to finalize.
3604
 * @param ptr The pointer to the remaining input.
3605
 * @param len The remaining length, modulo 32.
3606
 * @param align Whether @p ptr is aligned.
3607
 * @return The finalized hash
3608
 * @see XXH32_finalize().
3609
 */
3610
XXH_STATIC XXH_PUREF xxh_u64
3611
XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
3612
0
{
3613
0
    if (ptr==NULL) XXH_ASSERT(len == 0);
3614
0
    len &= 31;
3615
0
    while (len >= 8) {
3616
0
        xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
3617
0
        ptr += 8;
3618
0
        hash ^= k1;
3619
0
        hash  = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
3620
0
        len -= 8;
3621
0
    }
3622
0
    if (len >= 4) {
3623
0
        hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
3624
0
        ptr += 4;
3625
0
        hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
3626
0
        len -= 4;
3627
0
    }
3628
0
    while (len > 0) {
3629
0
        hash ^= (*ptr++) * XXH_PRIME64_5;
3630
0
        hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
3631
0
        --len;
3632
0
    }
3633
0
    return  XXH64_avalanche(hash);
3634
0
}
3635
3636
#ifdef XXH_OLD_NAMES
3637
#  define PROCESS1_64 XXH_PROCESS1_64
3638
#  define PROCESS4_64 XXH_PROCESS4_64
3639
#  define PROCESS8_64 XXH_PROCESS8_64
3640
#else
3641
#  undef XXH_PROCESS1_64
3642
#  undef XXH_PROCESS4_64
3643
#  undef XXH_PROCESS8_64
3644
#endif
3645
3646
/*!
3647
 * @internal
3648
 * @brief The implementation for @ref XXH64().
3649
 *
3650
 * @param input , len , seed Directly passed from @ref XXH64().
3651
 * @param align Whether @p input is aligned.
3652
 * @return The calculated hash.
3653
 */
3654
XXH_FORCE_INLINE XXH_PUREF xxh_u64
3655
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
3656
0
{
3657
0
    xxh_u64 h64;
3658
0
    if (input==NULL) XXH_ASSERT(len == 0);
3659
3660
0
    if (len>=32) {  /* Process a large block of data */
3661
0
        xxh_u64 acc[4];
3662
0
        XXH64_initAccs(acc, seed);
3663
3664
0
        input = XXH64_consumeLong(acc, input, len, align);
3665
3666
0
        h64 = XXH64_mergeAccs(acc);
3667
0
    } else {
3668
0
        h64  = seed + XXH_PRIME64_5;
3669
0
    }
3670
3671
0
    h64 += (xxh_u64) len;
3672
3673
0
    return XXH64_finalize(h64, input, len, align);
3674
0
}
3675
3676
3677
/*! @ingroup XXH64_family */
3678
XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
3679
0
{
3680
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
3681
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
3682
    XXH64_state_t state;
3683
    XXH64_reset(&state, seed);
3684
    XXH64_update(&state, (const xxh_u8*)input, len);
3685
    return XXH64_digest(&state);
3686
#else
3687
0
    if (XXH_FORCE_ALIGN_CHECK) {
3688
0
        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
3689
0
            return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
3690
0
    }   }
3691
3692
0
    return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
3693
3694
0
#endif
3695
0
}
3696
3697
/*******   Hash Streaming   *******/
3698
#ifndef XXH_NO_STREAM
3699
/*! @ingroup XXH64_family*/
3700
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
3701
0
{
3702
0
    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
3703
0
}
3704
/*! @ingroup XXH64_family */
3705
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
3706
0
{
3707
0
    XXH_free(statePtr);
3708
0
    return XXH_OK;
3709
0
}
3710
3711
/*! @ingroup XXH64_family */
3712
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
3713
0
{
3714
0
    XXH_memcpy(dstState, srcState, sizeof(*dstState));
3715
0
}
3716
3717
/*! @ingroup XXH64_family */
3718
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
3719
0
{
3720
0
    XXH_ASSERT(statePtr != NULL);
3721
0
    memset(statePtr, 0, sizeof(*statePtr));
3722
0
    XXH64_initAccs(statePtr->acc, seed);
3723
0
    return XXH_OK;
3724
0
}
3725
3726
/*! @ingroup XXH64_family */
3727
XXH_PUBLIC_API XXH_errorcode
3728
XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
3729
0
{
3730
0
    if (input==NULL) {
3731
0
        XXH_ASSERT(len == 0);
3732
0
        return XXH_OK;
3733
0
    }
3734
0
3735
0
    state->total_len += len;
3736
0
3737
0
    XXH_ASSERT(state->bufferedSize <= sizeof(state->buffer));
3738
0
    if (len < sizeof(state->buffer) - state->bufferedSize)  {   /* fill in tmp buffer */
3739
0
        XXH_memcpy(state->buffer + state->bufferedSize, input, len);
3740
0
        state->bufferedSize += (XXH32_hash_t)len;
3741
0
        return XXH_OK;
3742
0
    }
3743
0
3744
0
    {   const xxh_u8* xinput = (const xxh_u8*)input;
3745
0
        const xxh_u8* const bEnd = xinput + len;
3746
0
3747
0
        if (state->bufferedSize) {   /* non-empty buffer => complete first */
3748
0
            XXH_memcpy(state->buffer + state->bufferedSize, xinput, sizeof(state->buffer) - state->bufferedSize);
3749
0
            xinput += sizeof(state->buffer) - state->bufferedSize;
3750
0
            /* and process one round */
3751
0
            (void)XXH64_consumeLong(state->acc, state->buffer, sizeof(state->buffer), XXH_aligned);
3752
0
            state->bufferedSize = 0;
3753
0
        }
3754
0
3755
0
        XXH_ASSERT(xinput <= bEnd);
3756
0
        if ((size_t)(bEnd - xinput) >= sizeof(state->buffer)) {
3757
0
            /* Process the remaining data */
3758
0
            xinput = XXH64_consumeLong(state->acc, xinput, (size_t)(bEnd - xinput), XXH_unaligned);
3759
0
        }
3760
0
3761
0
        if (xinput < bEnd) {
3762
0
            /* Copy the leftover to the tmp buffer */
3763
0
            XXH_memcpy(state->buffer, xinput, (size_t)(bEnd-xinput));
3764
0
            state->bufferedSize = (unsigned)(bEnd-xinput);
3765
0
        }
3766
0
    }
3767
0
3768
0
    return XXH_OK;
3769
0
}
3770
3771
3772
/*! @ingroup XXH64_family */
3773
XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
3774
0
{
3775
0
    xxh_u64 h64;
3776
0
3777
0
    if (state->total_len >= 32) {
3778
0
        h64 = XXH64_mergeAccs(state->acc);
3779
0
    } else {
3780
0
        h64  = state->acc[2] /*seed*/ + XXH_PRIME64_5;
3781
0
    }
3782
0
3783
0
    h64 += (xxh_u64) state->total_len;
3784
0
3785
0
    return XXH64_finalize(h64, state->buffer, (size_t)state->total_len, XXH_aligned);
3786
0
}
3787
#endif /* !XXH_NO_STREAM */
3788
3789
/******* Canonical representation   *******/
3790
3791
/*! @ingroup XXH64_family */
3792
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
3793
0
{
3794
0
    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
3795
0
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
3796
0
    XXH_memcpy(dst, &hash, sizeof(*dst));
3797
0
}
3798
3799
/*! @ingroup XXH64_family */
3800
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
3801
0
{
3802
0
    return XXH_readBE64(src);
3803
0
}
3804
3805
#ifndef XXH_NO_XXH3
3806
3807
/* *********************************************************************
3808
*  XXH3
3809
*  New generation hash designed for speed on small keys and vectorization
3810
************************************************************************ */
3811
/*!
3812
 * @}
3813
 * @defgroup XXH3_impl XXH3 implementation
3814
 * @ingroup impl
3815
 * @{
3816
 */
3817
3818
/* ===   Compiler specifics   === */
3819
3820
3821
#if (defined(__GNUC__) && (__GNUC__ >= 3))  \
3822
  || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
3823
  || defined(__clang__)
3824
#    define XXH_likely(x) __builtin_expect(x, 1)
3825
#    define XXH_unlikely(x) __builtin_expect(x, 0)
3826
#else
3827
#    define XXH_likely(x) (x)
3828
#    define XXH_unlikely(x) (x)
3829
#endif
3830
3831
#ifndef XXH_HAS_INCLUDE
3832
#  ifdef __has_include
3833
/*
3834
 * Not defined as XXH_HAS_INCLUDE(x) (function-like) because
3835
 * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
3836
 */
3837
#    define XXH_HAS_INCLUDE __has_include
3838
#  else
3839
#    define XXH_HAS_INCLUDE(x) 0
3840
#  endif
3841
#endif
3842
3843
#if defined(__GNUC__) || defined(__clang__)
3844
#  if defined(__ARM_FEATURE_SVE)
3845
#    include <arm_sve.h>
3846
#  endif
3847
#  if defined(__ARM_NEON__) || defined(__ARM_NEON) \
3848
   || (defined(_M_ARM) && _M_ARM >= 7) \
3849
   || defined(_M_ARM64) || defined(_M_ARM64EC) \
3850
   || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
3851
#    define inline __inline__  /* circumvent a clang bug */
3852
#    include <arm_neon.h>
3853
#    undef inline
3854
#  elif defined(__AVX2__)
3855
#    include <immintrin.h>
3856
#  elif defined(__SSE2__)
3857
#    include <emmintrin.h>
3858
#  elif defined(__loongarch_sx)
3859
#    include <lsxintrin.h>
3860
#  endif
3861
#endif
3862
3863
#if defined(_MSC_VER)
3864
#  include <intrin.h>
3865
#endif
3866
3867
/*
3868
 * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
3869
 * remaining a true 64-bit/128-bit hash function.
3870
 *
3871
 * This is done by prioritizing a subset of 64-bit operations that can be
3872
 * emulated without too many steps on the average 32-bit machine.
3873
 *
3874
 * For example, these two lines seem similar, and run equally fast on 64-bit:
3875
 *
3876
 *   xxh_u64 x;
3877
 *   x ^= (x >> 47); // good
3878
 *   x ^= (x >> 13); // bad
3879
 *
3880
 * However, to a 32-bit machine, there is a major difference.
3881
 *
3882
 * x ^= (x >> 47) looks like this:
3883
 *
3884
 *   x.lo ^= (x.hi >> (47 - 32));
3885
 *
3886
 * while x ^= (x >> 13) looks like this:
3887
 *
3888
 *   // note: funnel shifts are not usually cheap.
3889
 *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
3890
 *   x.hi ^= (x.hi >> 13);
3891
 *
3892
 * The first one is significantly faster than the second, simply because the
3893
 * shift is larger than 32. This means:
3894
 *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
3895
 *    32 bits in the shift.
3896
 *  - The shift result will always fit in the lower 32 bits, and therefore,
3897
 *    we can ignore the upper 32 bits in the xor.
3898
 *
3899
 * Thanks to this optimization, XXH3 only requires these features to be efficient:
3900
 *
3901
 *  - Usable unaligned access
3902
 *  - A 32-bit or 64-bit ALU
3903
 *      - If 32-bit, a decent ADC instruction
3904
 *  - A 32 or 64-bit multiply with a 64-bit result
3905
 *  - For the 128-bit variant, a decent byteswap helps short inputs.
3906
 *
3907
 * The first two are already required by XXH32, and almost all 32-bit and 64-bit
3908
 * platforms which can run XXH32 can run XXH3 efficiently.
3909
 *
3910
 * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
3911
 * notable exception.
3912
 *
3913
 * First of all, Thumb-1 lacks support for the UMULL instruction which
3914
 * performs the important long multiply. This means numerous __aeabi_lmul
3915
 * calls.
3916
 *
3917
 * Second of all, the 8 functional registers are just not enough.
3918
 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
3919
 * Lo registers, and this shuffling results in thousands more MOVs than A32.
3920
 *
3921
 * A32 and T32 don't have this limitation. They can access all 14 registers,
3922
 * do a 32->64 multiply with UMULL, and the flexible operand allowing free
3923
 * shifts is helpful, too.
3924
 *
3925
 * Therefore, we do a quick sanity check.
3926
 *
3927
 * If compiling Thumb-1 for a target which supports ARM instructions, we will
3928
 * emit a warning, as it is not a "sane" platform to compile for.
3929
 *
3930
 * Usually, if this happens, it is because of an accident and you probably need
3931
 * to specify -march, as you likely meant to compile for a newer architecture.
3932
 *
3933
 * Credit: large sections of the vectorial and asm source code paths
3934
 *         have been contributed by @easyaspi314
3935
 */
3936
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
3937
#   warning "XXH3 is highly inefficient without ARM or Thumb-2."
3938
#endif
3939
3940
/* ==========================================
3941
 * Vectorization detection
3942
 * ========================================== */
3943
3944
#ifdef XXH_DOXYGEN
3945
/*!
3946
 * @ingroup tuning
3947
 * @brief Overrides the vectorization implementation chosen for XXH3.
3948
 *
3949
 * Can be defined to 0 to disable SIMD or any of the values mentioned in
3950
 * @ref XXH_VECTOR_TYPE.
3951
 *
3952
 * If this is not defined, it uses predefined macros to determine the best
3953
 * implementation.
3954
 */
3955
#  define XXH_VECTOR XXH_SCALAR
3956
/*!
3957
 * @ingroup tuning
3958
 * @brief Selects the minimum alignment for XXH3's accumulators.
3959
 *
3960
 * When using SIMD, this should match the alignment required for said vector
3961
 * type, so, for example, 32 for AVX2.
3962
 *
3963
 * Default: Auto detected.
3964
 */
3965
#  define XXH_ACC_ALIGN 8
3966
#endif
3967
3968
/* Actual definition */
3969
#ifndef XXH_DOXYGEN
3970
#endif
3971
3972
#ifndef XXH_VECTOR    /* can be defined on command line */
3973
#  if defined(__ARM_FEATURE_SVE)
3974
#    define XXH_VECTOR XXH_SVE
3975
#  elif ( \
3976
        defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
3977
     || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
3978
     || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
3979
   ) && ( \
3980
        defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
3981
    || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
3982
   )
3983
#    define XXH_VECTOR XXH_NEON
3984
#  elif defined(__AVX512F__)
3985
#    define XXH_VECTOR XXH_AVX512
3986
#  elif defined(__AVX2__)
3987
#    define XXH_VECTOR XXH_AVX2
3988
#  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
3989
#    define XXH_VECTOR XXH_SSE2
3990
#  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
3991
     || (defined(__s390x__) && defined(__VEC__)) \
3992
     && defined(__GNUC__) /* TODO: IBM XL */
3993
#    define XXH_VECTOR XXH_VSX
3994
#  elif defined(__loongarch_sx)
3995
#    define XXH_VECTOR XXH_LSX
3996
#  else
3997
#    define XXH_VECTOR XXH_SCALAR
3998
#  endif
3999
#endif
4000
4001
/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
4002
#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
4003
#  ifdef _MSC_VER
4004
#    pragma warning(once : 4606)
4005
#  else
4006
#    warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
4007
#  endif
4008
#  undef XXH_VECTOR
4009
#  define XXH_VECTOR XXH_SCALAR
4010
#endif
4011
4012
/*
4013
 * Controls the alignment of the accumulator,
4014
 * for compatibility with aligned vector loads, which are usually faster.
4015
 */
4016
#ifndef XXH_ACC_ALIGN
4017
#  if defined(XXH_X86DISPATCH)
4018
#     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
4019
#  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
4020
#     define XXH_ACC_ALIGN 8
4021
#  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
4022
#     define XXH_ACC_ALIGN 16
4023
#  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
4024
#     define XXH_ACC_ALIGN 32
4025
#  elif XXH_VECTOR == XXH_NEON  /* neon */
4026
#     define XXH_ACC_ALIGN 16
4027
#  elif XXH_VECTOR == XXH_VSX   /* vsx */
4028
#     define XXH_ACC_ALIGN 16
4029
#  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
4030
#     define XXH_ACC_ALIGN 64
4031
#  elif XXH_VECTOR == XXH_SVE   /* sve */
4032
#     define XXH_ACC_ALIGN 64
4033
#  elif XXH_VECTOR == XXH_LSX   /* lsx */
4034
#     define XXH_ACC_ALIGN 64
4035
#  endif
4036
#endif
4037
4038
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
4039
    || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
4040
#  define XXH_SEC_ALIGN XXH_ACC_ALIGN
4041
#elif XXH_VECTOR == XXH_SVE
4042
#  define XXH_SEC_ALIGN XXH_ACC_ALIGN
4043
#else
4044
#  define XXH_SEC_ALIGN 8
4045
#endif
4046
4047
#if defined(__GNUC__) || defined(__clang__)
4048
#  define XXH_ALIASING __attribute__((__may_alias__))
4049
#else
4050
#  define XXH_ALIASING /* nothing */
4051
#endif
4052
4053
/*
4054
 * UGLY HACK:
4055
 * GCC usually generates the best code with -O3 for xxHash.
4056
 *
4057
 * However, when targeting AVX2, it is overzealous in its unrolling resulting
4058
 * in code roughly 3/4 the speed of Clang.
4059
 *
4060
 * There are other issues, such as GCC splitting _mm256_loadu_si256 into
4061
 * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
4062
 * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
4063
 *
4064
 * That is why when compiling the AVX2 version, it is recommended to use either
4065
 *   -O2 -mavx2 -march=haswell
4066
 * or
4067
 *   -O2 -mavx2 -mno-avx256-split-unaligned-load
4068
 * for decent performance, or to use Clang instead.
4069
 *
4070
 * Fortunately, we can control the first one with a pragma that forces GCC into
4071
 * -O2, but the other one we can't control without "failed to inline always
4072
 * inline function due to target mismatch" warnings.
4073
 */
4074
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
4075
  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
4076
  && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
4077
#  pragma GCC push_options
4078
#  pragma GCC optimize("-O2")
4079
#endif
4080
4081
#if XXH_VECTOR == XXH_NEON
4082
4083
/*
4084
 * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
4085
 * optimizes out the entire hashLong loop because of the aliasing violation.
4086
 *
4087
 * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
4088
 * so the only option is to mark it as aliasing.
4089
 */
4090
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
4091
4092
/*!
4093
 * @internal
4094
 * @brief `vld1q_u64` but faster and alignment-safe.
4095
 *
4096
 * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
4097
 * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
4098
 *
4099
 * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
4100
 * prohibits load-store optimizations. Therefore, a direct dereference is used.
4101
 *
4102
 * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
4103
 * unaligned load.
4104
 */
4105
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
4106
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
4107
{
4108
    return *(xxh_aliasing_uint64x2_t const *)ptr;
4109
}
4110
#else
4111
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
4112
{
4113
    return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
4114
}
4115
#endif
4116
4117
/*!
4118
 * @internal
4119
 * @brief `vmlal_u32` on low and high halves of a vector.
4120
 *
4121
 * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
4122
 * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
4123
 * with `vmlal_u32`.
4124
 */
4125
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
4126
XXH_FORCE_INLINE uint64x2_t
4127
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4128
{
4129
    /* Inline assembly is the only way */
4130
    __asm__("umlal   %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
4131
    return acc;
4132
}
4133
XXH_FORCE_INLINE uint64x2_t
4134
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4135
{
4136
    /* This intrinsic works as expected */
4137
    return vmlal_high_u32(acc, lhs, rhs);
4138
}
4139
#else
4140
/* Portable intrinsic versions */
4141
XXH_FORCE_INLINE uint64x2_t
4142
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4143
{
4144
    return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
4145
}
4146
/*! @copydoc XXH_vmlal_low_u32
4147
 * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
4148
XXH_FORCE_INLINE uint64x2_t
4149
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4150
{
4151
    return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
4152
}
4153
#endif
4154
4155
/*!
4156
 * @ingroup tuning
4157
 * @brief Controls the NEON to scalar ratio for XXH3
4158
 *
4159
 * This can be set to 2, 4, 6, or 8.
4160
 *
4161
 * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
4162
 *
4163
 * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
4164
 * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
4165
 * bandwidth.
4166
 *
4167
 * This is even more noticeable on the more advanced cores like the Cortex-A76 which
4168
 * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
4169
 *
4170
 * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
4171
 * and 2 scalar lanes, which is chosen by default.
4172
 *
4173
 * This does not apply to Apple processors or 32-bit processors, which run better with
4174
 * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
4175
 *
4176
 * This change benefits CPUs with large micro-op buffers without negatively affecting
4177
 * most other CPUs:
4178
 *
4179
 *  | Chipset               | Dispatch type       | NEON only | 6:2 hybrid | Diff. |
4180
 *  |:----------------------|:--------------------|----------:|-----------:|------:|
4181
 *  | Snapdragon 730 (A76)  | 2 NEON/8 micro-ops  |  8.8 GB/s |  10.1 GB/s |  ~16% |
4182
 *  | Snapdragon 835 (A73)  | 2 NEON/3 micro-ops  |  5.1 GB/s |   5.3 GB/s |   ~5% |
4183
 *  | Marvell PXA1928 (A53) | In-order dual-issue |  1.9 GB/s |   1.9 GB/s |    0% |
4184
 *  | Apple M1              | 4 NEON/8 micro-ops  | 37.3 GB/s |  36.1 GB/s |  ~-3% |
4185
 *
4186
 * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
4187
 *
4188
 * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
4189
 * it effectively becomes worse 4.
4190
 *
4191
 * @see XXH3_accumulate_512_neon()
4192
 */
4193
# ifndef XXH3_NEON_LANES
4194
#  if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
4195
   && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
4196
#   define XXH3_NEON_LANES 6
4197
#  else
4198
#   define XXH3_NEON_LANES XXH_ACC_NB
4199
#  endif
4200
# endif
4201
#endif  /* XXH_VECTOR == XXH_NEON */
4202
4203
/*
4204
 * VSX and Z Vector helpers.
4205
 *
4206
 * This is very messy, and any pull requests to clean this up are welcome.
4207
 *
4208
 * There are a lot of problems with supporting VSX and s390x, due to
4209
 * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
4210
 */
4211
#if XXH_VECTOR == XXH_VSX
4212
/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
4213
 * and `pixel`. This is a problem for obvious reasons.
4214
 *
4215
 * These keywords are unnecessary; the spec literally says they are
4216
 * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
4217
 * after including the header.
4218
 *
4219
 * We use pragma push_macro/pop_macro to keep the namespace clean. */
4220
#  pragma push_macro("bool")
4221
#  pragma push_macro("vector")
4222
#  pragma push_macro("pixel")
4223
/* silence potential macro redefined warnings */
4224
#  undef bool
4225
#  undef vector
4226
#  undef pixel
4227
4228
#  if defined(__s390x__)
4229
#    include <s390intrin.h>
4230
#  else
4231
#    include <altivec.h>
4232
#  endif
4233
4234
/* Restore the original macro values, if applicable. */
4235
#  pragma pop_macro("pixel")
4236
#  pragma pop_macro("vector")
4237
#  pragma pop_macro("bool")
4238
4239
typedef __vector unsigned long long xxh_u64x2;
4240
typedef __vector unsigned char xxh_u8x16;
4241
typedef __vector unsigned xxh_u32x4;
4242
4243
/*
4244
 * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
4245
 */
4246
typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
4247
4248
# ifndef XXH_VSX_BE
4249
#  if defined(__BIG_ENDIAN__) \
4250
  || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
4251
#    define XXH_VSX_BE 1
4252
#  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
4253
#    warning "-maltivec=be is not recommended. Please use native endianness."
4254
#    define XXH_VSX_BE 1
4255
#  else
4256
#    define XXH_VSX_BE 0
4257
#  endif
4258
# endif /* !defined(XXH_VSX_BE) */
4259
4260
# if XXH_VSX_BE
4261
#  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
4262
#    define XXH_vec_revb vec_revb
4263
#  else
4264
/*!
4265
 * A polyfill for POWER9's vec_revb().
4266
 */
4267
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
4268
{
4269
    xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
4270
                                  0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
4271
    return vec_perm(val, val, vByteSwap);
4272
}
4273
#  endif
4274
# endif /* XXH_VSX_BE */
4275
4276
/*!
4277
 * Performs an unaligned vector load and byte swaps it on big endian.
4278
 */
4279
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
4280
{
4281
    xxh_u64x2 ret;
4282
    XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
4283
# if XXH_VSX_BE
4284
    ret = XXH_vec_revb(ret);
4285
# endif
4286
    return ret;
4287
}
4288
4289
/*
4290
 * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
4291
 *
4292
 * These intrinsics weren't added until GCC 8, despite existing for a while,
4293
 * and they are endian dependent. Also, their meaning swap depending on version.
4294
 * */
4295
# if defined(__s390x__)
4296
 /* s390x is always big endian, no issue on this platform */
4297
#  define XXH_vec_mulo vec_mulo
4298
#  define XXH_vec_mule vec_mule
4299
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
4300
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
4301
 /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
4302
#  define XXH_vec_mulo __builtin_altivec_vmulouw
4303
#  define XXH_vec_mule __builtin_altivec_vmuleuw
4304
# else
4305
/* gcc needs inline assembly */
4306
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
4307
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
4308
{
4309
    xxh_u64x2 result;
4310
    __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
4311
    return result;
4312
}
4313
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
4314
{
4315
    xxh_u64x2 result;
4316
    __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
4317
    return result;
4318
}
4319
# endif /* XXH_vec_mulo, XXH_vec_mule */
4320
#endif /* XXH_VECTOR == XXH_VSX */
4321
4322
#if XXH_VECTOR == XXH_SVE
4323
#define ACCRND(acc, offset) \
4324
do { \
4325
    svuint64_t input_vec = svld1_u64(mask, xinput + offset);         \
4326
    svuint64_t secret_vec = svld1_u64(mask, xsecret + offset);       \
4327
    svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec);     \
4328
    svuint64_t swapped = svtbl_u64(input_vec, kSwap);                \
4329
    svuint64_t mixed_lo = svextw_u64_x(mask, mixed);                 \
4330
    svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32);            \
4331
    svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
4332
    acc = svadd_u64_x(mask, acc, mul);                               \
4333
} while (0)
4334
#endif /* XXH_VECTOR == XXH_SVE */
4335
4336
/* prefetch
4337
 * can be disabled, by declaring XXH_NO_PREFETCH build macro */
4338
#if defined(XXH_NO_PREFETCH)
4339
#  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
4340
#else
4341
#  if XXH_SIZE_OPT >= 1
4342
#    define XXH_PREFETCH(ptr) (void)(ptr)
4343
#  elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
4344
#    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
4345
#    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
4346
#  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
4347
#    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
4348
#  else
4349
#    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
4350
#  endif
4351
#endif  /* XXH_NO_PREFETCH */
4352
4353
4354
/* ==========================================
4355
 * XXH3 default settings
4356
 * ========================================== */
4357
4358
#define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
4359
4360
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
4361
#  error "default keyset is not large enough"
4362
#endif
4363
4364
/*! Pseudorandom secret taken directly from FARSH. */
4365
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
4366
    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
4367
    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
4368
    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
4369
    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
4370
    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
4371
    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
4372
    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
4373
    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
4374
    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
4375
    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
4376
    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
4377
    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
4378
};
4379
4380
static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL;  /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
4381
static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL;  /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
4382
4383
#ifdef XXH_OLD_NAMES
4384
#  define kSecret XXH3_kSecret
4385
#endif
4386
4387
#ifdef XXH_DOXYGEN
4388
/*!
4389
 * @brief Calculates a 32-bit to 64-bit long multiply.
4390
 *
4391
 * Implemented as a macro.
4392
 *
4393
 * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
4394
 * need to (but it shouldn't need to anyways, it is about 7 instructions to do
4395
 * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
4396
 * use that instead of the normal method.
4397
 *
4398
 * If you are compiling for platforms like Thumb-1 and don't have a better option,
4399
 * you may also want to write your own long multiply routine here.
4400
 *
4401
 * @param x, y Numbers to be multiplied
4402
 * @return 64-bit product of the low 32 bits of @p x and @p y.
4403
 */
4404
XXH_FORCE_INLINE xxh_u64
4405
XXH_mult32to64(xxh_u64 x, xxh_u64 y)
4406
{
4407
   return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
4408
}
4409
#elif defined(_MSC_VER) && defined(_M_IX86)
4410
#    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
4411
#else
4412
/*
4413
 * Downcast + upcast is usually better than masking on older compilers like
4414
 * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
4415
 *
4416
 * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
4417
 * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
4418
 */
4419
#    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
4420
#endif
4421
4422
/*!
4423
 * @brief Calculates a 64->128-bit long multiply.
4424
 *
4425
 * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
4426
 * version.
4427
 *
4428
 * @param lhs , rhs The 64-bit integers to be multiplied
4429
 * @return The 128-bit result represented in an @ref XXH128_hash_t.
4430
 */
4431
static XXH128_hash_t
4432
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
4433
0
{
4434
0
    /*
4435
0
     * GCC/Clang __uint128_t method.
4436
0
     *
4437
0
     * On most 64-bit targets, GCC and Clang define a __uint128_t type.
4438
0
     * This is usually the best way as it usually uses a native long 64-bit
4439
0
     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
4440
0
     *
4441
0
     * Usually.
4442
0
     *
4443
0
     * Despite being a 32-bit platform, Clang (and emscripten) define this type
4444
0
     * despite not having the arithmetic for it. This results in a laggy
4445
0
     * compiler builtin call which calculates a full 128-bit multiply.
4446
0
     * In that case it is best to use the portable one.
4447
0
     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
4448
0
     */
4449
0
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
4450
0
    && defined(__SIZEOF_INT128__) \
4451
0
    || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
4452
0
4453
0
    __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
4454
0
    XXH128_hash_t r128;
4455
0
    r128.low64  = (xxh_u64)(product);
4456
0
    r128.high64 = (xxh_u64)(product >> 64);
4457
0
    return r128;
4458
0
4459
0
    /*
4460
0
     * MSVC for x64's _umul128 method.
4461
0
     *
4462
0
     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
4463
0
     *
4464
0
     * This compiles to single operand MUL on x64.
4465
0
     */
4466
0
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
4467
0
4468
0
#ifndef _MSC_VER
4469
0
#   pragma intrinsic(_umul128)
4470
0
#endif
4471
0
    xxh_u64 product_high;
4472
0
    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
4473
0
    XXH128_hash_t r128;
4474
0
    r128.low64  = product_low;
4475
0
    r128.high64 = product_high;
4476
0
    return r128;
4477
0
4478
0
    /*
4479
0
     * MSVC for ARM64's __umulh method.
4480
0
     *
4481
0
     * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
4482
0
     */
4483
0
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
4484
0
4485
0
#ifndef _MSC_VER
4486
0
#   pragma intrinsic(__umulh)
4487
0
#endif
4488
0
    XXH128_hash_t r128;
4489
0
    r128.low64  = lhs * rhs;
4490
0
    r128.high64 = __umulh(lhs, rhs);
4491
0
    return r128;
4492
0
4493
0
#else
4494
0
    /*
4495
0
     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
4496
0
     *
4497
0
     * This is a fast and simple grade school multiply, which is shown below
4498
0
     * with base 10 arithmetic instead of base 0x100000000.
4499
0
     *
4500
0
     *           9 3 // D2 lhs = 93
4501
0
     *         x 7 5 // D2 rhs = 75
4502
0
     *     ----------
4503
0
     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
4504
0
     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
4505
0
     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
4506
0
     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
4507
0
     *     ---------
4508
0
     *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
4509
0
     *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
4510
0
     *     ---------
4511
0
     *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
4512
0
     *
4513
0
     * The reasons for adding the products like this are:
4514
0
     *  1. It avoids manual carry tracking. Just like how
4515
0
     *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
4516
0
     *     This avoids a lot of complexity.
4517
0
     *
4518
0
     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
4519
0
     *     instruction available in ARM's Digital Signal Processing extension
4520
0
     *     in 32-bit ARMv6 and later, which is shown below:
4521
0
     *
4522
0
     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
4523
0
     *         {
4524
0
     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
4525
0
     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
4526
0
     *             *RdHi = (xxh_u32)(product >> 32);
4527
0
     *         }
4528
0
     *
4529
0
     *     This instruction was designed for efficient long multiplication, and
4530
0
     *     allows this to be calculated in only 4 instructions at speeds
4531
0
     *     comparable to some 64-bit ALUs.
4532
0
     *
4533
0
     *  3. It isn't terrible on other platforms. Usually this will be a couple
4534
0
     *     of 32-bit ADD/ADCs.
4535
0
     */
4536
0
4537
0
    /* First calculate all of the cross products. */
4538
0
    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
4539
0
    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
4540
0
    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
4541
0
    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
4542
0
4543
0
    /* Now add the products together. These will never overflow. */
4544
0
    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
4545
0
    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
4546
0
    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
4547
0
4548
0
    XXH128_hash_t r128;
4549
0
    r128.low64  = lower;
4550
0
    r128.high64 = upper;
4551
0
    return r128;
4552
0
#endif
4553
0
}
4554
4555
/*!
4556
 * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
4557
 *
4558
 * The reason for the separate function is to prevent passing too many structs
4559
 * around by value. This will hopefully inline the multiply, but we don't force it.
4560
 *
4561
 * @param lhs , rhs The 64-bit integers to multiply
4562
 * @return The low 64 bits of the product XOR'd by the high 64 bits.
4563
 * @see XXH_mult64to128()
4564
 */
4565
static xxh_u64
4566
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
4567
0
{
4568
0
    XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
4569
0
    return product.low64 ^ product.high64;
4570
0
}
4571
4572
/*! Seems to produce slightly better code on GCC for some reason. */
4573
XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
4574
0
{
4575
0
    XXH_ASSERT(0 <= shift && shift < 64);
4576
0
    return v64 ^ (v64 >> shift);
4577
0
}
4578
4579
/*
4580
 * This is a fast avalanche stage,
4581
 * suitable when input bits are already partially mixed
4582
 */
4583
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
4584
0
{
4585
0
    h64 = XXH_xorshift64(h64, 37);
4586
0
    h64 *= PRIME_MX1;
4587
0
    h64 = XXH_xorshift64(h64, 32);
4588
0
    return h64;
4589
0
}
4590
4591
/*
4592
 * This is a stronger avalanche,
4593
 * inspired by Pelle Evensen's rrmxmx
4594
 * preferable when input has not been previously mixed
4595
 */
4596
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
4597
0
{
4598
0
    /* this mix is inspired by Pelle Evensen's rrmxmx */
4599
0
    h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
4600
0
    h64 *= PRIME_MX2;
4601
0
    h64 ^= (h64 >> 35) + len ;
4602
0
    h64 *= PRIME_MX2;
4603
0
    return XXH_xorshift64(h64, 28);
4604
0
}
4605
4606
4607
/* ==========================================
4608
 * Short keys
4609
 * ==========================================
4610
 * One of the shortcomings of XXH32 and XXH64 was that their performance was
4611
 * sub-optimal on short lengths. It used an iterative algorithm which strongly
4612
 * favored lengths that were a multiple of 4 or 8.
4613
 *
4614
 * Instead of iterating over individual inputs, we use a set of single shot
4615
 * functions which piece together a range of lengths and operate in constant time.
4616
 *
4617
 * Additionally, the number of multiplies has been significantly reduced. This
4618
 * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
4619
 *
4620
 * Depending on the platform, this may or may not be faster than XXH32, but it
4621
 * is almost guaranteed to be faster than XXH64.
4622
 */
4623
4624
/*
4625
 * At very short lengths, there isn't enough input to fully hide secrets, or use
4626
 * the entire secret.
4627
 *
4628
 * There is also only a limited amount of mixing we can do before significantly
4629
 * impacting performance.
4630
 *
4631
 * Therefore, we use different sections of the secret and always mix two secret
4632
 * samples with an XOR. This should have no effect on performance on the
4633
 * seedless or withSeed variants because everything _should_ be constant folded
4634
 * by modern compilers.
4635
 *
4636
 * The XOR mixing hides individual parts of the secret and increases entropy.
4637
 *
4638
 * This adds an extra layer of strength for custom secrets.
4639
 */
4640
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4641
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4642
0
{
4643
0
    XXH_ASSERT(input != NULL);
4644
0
    XXH_ASSERT(1 <= len && len <= 3);
4645
0
    XXH_ASSERT(secret != NULL);
4646
0
    /*
4647
0
     * len = 1: combined = { input[0], 0x01, input[0], input[0] }
4648
0
     * len = 2: combined = { input[1], 0x02, input[0], input[1] }
4649
0
     * len = 3: combined = { input[2], 0x03, input[0], input[1] }
4650
0
     */
4651
0
    {   xxh_u8  const c1 = input[0];
4652
0
        xxh_u8  const c2 = input[len >> 1];
4653
0
        xxh_u8  const c3 = input[len - 1];
4654
0
        xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
4655
0
                               | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
4656
0
        xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4657
0
        xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
4658
0
        return XXH64_avalanche(keyed);
4659
0
    }
4660
0
}
4661
4662
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4663
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4664
0
{
4665
0
    XXH_ASSERT(input != NULL);
4666
0
    XXH_ASSERT(secret != NULL);
4667
0
    XXH_ASSERT(4 <= len && len <= 8);
4668
0
    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4669
0
    {   xxh_u32 const input1 = XXH_readLE32(input);
4670
0
        xxh_u32 const input2 = XXH_readLE32(input + len - 4);
4671
0
        xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
4672
0
        xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
4673
0
        xxh_u64 const keyed = input64 ^ bitflip;
4674
0
        return XXH3_rrmxmx(keyed, len);
4675
0
    }
4676
0
}
4677
4678
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4679
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4680
0
{
4681
0
    XXH_ASSERT(input != NULL);
4682
0
    XXH_ASSERT(secret != NULL);
4683
0
    XXH_ASSERT(9 <= len && len <= 16);
4684
0
    {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
4685
0
        xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
4686
0
        xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
4687
0
        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
4688
0
        xxh_u64 const acc = len
4689
0
                          + XXH_swap64(input_lo) + input_hi
4690
0
                          + XXH3_mul128_fold64(input_lo, input_hi);
4691
0
        return XXH3_avalanche(acc);
4692
0
    }
4693
0
}
4694
4695
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4696
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4697
0
{
4698
0
    XXH_ASSERT(len <= 16);
4699
0
    {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
4700
0
        if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
4701
0
        if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
4702
0
        return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
4703
0
    }
4704
0
}
4705
4706
/*
4707
 * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
4708
 * multiplication by zero, affecting hashes of lengths 17 to 240.
4709
 *
4710
 * However, they are very unlikely.
4711
 *
4712
 * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
4713
 * unseeded non-cryptographic hashes, it does not attempt to defend itself
4714
 * against specially crafted inputs, only random inputs.
4715
 *
4716
 * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
4717
 * cancelling out the secret is taken an arbitrary number of times (addressed
4718
 * in XXH3_accumulate_512), this collision is very unlikely with random inputs
4719
 * and/or proper seeding:
4720
 *
4721
 * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
4722
 * function that is only called up to 16 times per hash with up to 240 bytes of
4723
 * input.
4724
 *
4725
 * This is not too bad for a non-cryptographic hash function, especially with
4726
 * only 64 bit outputs.
4727
 *
4728
 * The 128-bit variant (which trades some speed for strength) is NOT affected
4729
 * by this, although it is always a good idea to use a proper seed if you care
4730
 * about strength.
4731
 */
4732
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
4733
                                     const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
4734
0
{
4735
0
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
4736
0
  && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
4737
0
  && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
4738
0
    /*
4739
0
     * UGLY HACK:
4740
0
     * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
4741
0
     * slower code.
4742
0
     *
4743
0
     * By forcing seed64 into a register, we disrupt the cost model and
4744
0
     * cause it to scalarize. See `XXH32_round()`
4745
0
     *
4746
0
     * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
4747
0
     * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
4748
0
     * GCC 9.2, despite both emitting scalar code.
4749
0
     *
4750
0
     * GCC generates much better scalar code than Clang for the rest of XXH3,
4751
0
     * which is why finding a more optimal codepath is an interest.
4752
0
     */
4753
0
    XXH_COMPILER_GUARD(seed64);
4754
0
#endif
4755
0
    {   xxh_u64 const input_lo = XXH_readLE64(input);
4756
0
        xxh_u64 const input_hi = XXH_readLE64(input+8);
4757
0
        return XXH3_mul128_fold64(
4758
0
            input_lo ^ (XXH_readLE64(secret)   + seed64),
4759
0
            input_hi ^ (XXH_readLE64(secret+8) - seed64)
4760
0
        );
4761
0
    }
4762
0
}
4763
4764
/* For mid range keys, XXH3 uses a Mum-hash variant. */
4765
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4766
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
4767
                     const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4768
                     XXH64_hash_t seed)
4769
0
{
4770
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4771
0
    XXH_ASSERT(16 < len && len <= 128);
4772
0
4773
0
    {   xxh_u64 acc = len * XXH_PRIME64_1;
4774
0
#if XXH_SIZE_OPT >= 1
4775
0
        /* Smaller and cleaner, but slightly slower. */
4776
0
        unsigned int i = (unsigned int)(len - 1) / 32;
4777
0
        do {
4778
0
            acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
4779
0
            acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
4780
0
        } while (i-- != 0);
4781
0
#else
4782
0
        if (len > 32) {
4783
0
            if (len > 64) {
4784
0
                if (len > 96) {
4785
0
                    acc += XXH3_mix16B(input+48, secret+96, seed);
4786
0
                    acc += XXH3_mix16B(input+len-64, secret+112, seed);
4787
0
                }
4788
0
                acc += XXH3_mix16B(input+32, secret+64, seed);
4789
0
                acc += XXH3_mix16B(input+len-48, secret+80, seed);
4790
0
            }
4791
0
            acc += XXH3_mix16B(input+16, secret+32, seed);
4792
0
            acc += XXH3_mix16B(input+len-32, secret+48, seed);
4793
0
        }
4794
0
        acc += XXH3_mix16B(input+0, secret+0, seed);
4795
0
        acc += XXH3_mix16B(input+len-16, secret+16, seed);
4796
0
#endif
4797
0
        return XXH3_avalanche(acc);
4798
0
    }
4799
0
}
4800
4801
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
4802
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
4803
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4804
                      XXH64_hash_t seed)
4805
0
{
4806
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4807
0
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4808
0
4809
0
    #define XXH3_MIDSIZE_STARTOFFSET 3
4810
0
    #define XXH3_MIDSIZE_LASTOFFSET  17
4811
0
4812
0
    {   xxh_u64 acc = len * XXH_PRIME64_1;
4813
0
        xxh_u64 acc_end;
4814
0
        unsigned int const nbRounds = (unsigned int)len / 16;
4815
0
        unsigned int i;
4816
0
        XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4817
0
        for (i=0; i<8; i++) {
4818
0
            acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
4819
0
        }
4820
0
        /* last bytes */
4821
0
        acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
4822
0
        XXH_ASSERT(nbRounds >= 8);
4823
0
        acc = XXH3_avalanche(acc);
4824
0
#if defined(__clang__)                                /* Clang */ \
4825
0
    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
4826
0
    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
4827
0
        /*
4828
0
         * UGLY HACK:
4829
0
         * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
4830
0
         * In everywhere else, it uses scalar code.
4831
0
         *
4832
0
         * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
4833
0
         * would still be slower than UMAAL (see XXH_mult64to128).
4834
0
         *
4835
0
         * Unfortunately, Clang doesn't handle the long multiplies properly and
4836
0
         * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
4837
0
         * scalarized into an ugly mess of VMOV.32 instructions.
4838
0
         *
4839
0
         * This mess is difficult to avoid without turning autovectorization
4840
0
         * off completely, but they are usually relatively minor and/or not
4841
0
         * worth it to fix.
4842
0
         *
4843
0
         * This loop is the easiest to fix, as unlike XXH32, this pragma
4844
0
         * _actually works_ because it is a loop vectorization instead of an
4845
0
         * SLP vectorization.
4846
0
         */
4847
0
        #pragma clang loop vectorize(disable)
4848
0
#endif
4849
0
        for (i=8 ; i < nbRounds; i++) {
4850
0
            /*
4851
0
             * Prevents clang for unrolling the acc loop and interleaving with this one.
4852
0
             */
4853
0
            XXH_COMPILER_GUARD(acc);
4854
0
            acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
4855
0
        }
4856
0
        return XXH3_avalanche(acc + acc_end);
4857
0
    }
4858
0
}
4859
4860
4861
/* =======     Long Keys     ======= */
4862
4863
#define XXH_STRIPE_LEN 64
4864
#define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
4865
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
4866
4867
#ifdef XXH_OLD_NAMES
4868
#  define STRIPE_LEN XXH_STRIPE_LEN
4869
#  define ACC_NB XXH_ACC_NB
4870
#endif
4871
4872
#ifndef XXH_PREFETCH_DIST
4873
#  ifdef __clang__
4874
#    define XXH_PREFETCH_DIST 320
4875
#  else
4876
#    if (XXH_VECTOR == XXH_AVX512)
4877
#      define XXH_PREFETCH_DIST 512
4878
#    else
4879
#      define XXH_PREFETCH_DIST 384
4880
#    endif
4881
#  endif  /* __clang__ */
4882
#endif  /* XXH_PREFETCH_DIST */
4883
4884
/*
4885
 * These macros are to generate an XXH3_accumulate() function.
4886
 * The two arguments select the name suffix and target attribute.
4887
 *
4888
 * The name of this symbol is XXH3_accumulate_<name>() and it calls
4889
 * XXH3_accumulate_512_<name>().
4890
 *
4891
 * It may be useful to hand implement this function if the compiler fails to
4892
 * optimize the inline function.
4893
 */
4894
#define XXH3_ACCUMULATE_TEMPLATE(name)                      \
4895
void                                                        \
4896
XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc,           \
4897
                       const xxh_u8* XXH_RESTRICT input,    \
4898
                       const xxh_u8* XXH_RESTRICT secret,   \
4899
0
                       size_t nbStripes)                    \
4900
0
{                                                           \
4901
0
    size_t n;                                               \
4902
0
    for (n = 0; n < nbStripes; n++ ) {                      \
4903
0
        const xxh_u8* const in = input + n*XXH_STRIPE_LEN;  \
4904
0
        XXH_PREFETCH(in + XXH_PREFETCH_DIST);               \
4905
0
        XXH3_accumulate_512_##name(                         \
4906
0
                 acc,                                       \
4907
0
                 in,                                        \
4908
0
                 secret + n*XXH_SECRET_CONSUME_RATE);       \
4909
0
    }                                                       \
4910
0
}
Unexecuted instantiation: rtpp_hash_table.c:XXH3_accumulate_sse2
Unexecuted instantiation: rtpp_hash_table.c:XXH3_accumulate_scalar
4911
4912
4913
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
4914
0
{
4915
0
    if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
4916
0
    XXH_memcpy(dst, &v64, sizeof(v64));
4917
0
}
4918
4919
/* Several intrinsic functions below are supposed to accept __int64 as argument,
4920
 * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
4921
 * However, several environments do not define __int64 type,
4922
 * requiring a workaround.
4923
 */
4924
#if !defined (__VMS) \
4925
  && (defined (__cplusplus) \
4926
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
4927
    typedef int64_t xxh_i64;
4928
#else
4929
    /* the following type must have a width of 64-bit */
4930
    typedef long long xxh_i64;
4931
#endif
4932
4933
4934
/*
4935
 * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
4936
 *
4937
 * It is a hardened version of UMAC, based off of FARSH's implementation.
4938
 *
4939
 * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
4940
 * implementations, and it is ridiculously fast.
4941
 *
4942
 * We harden it by mixing the original input to the accumulators as well as the product.
4943
 *
4944
 * This means that in the (relatively likely) case of a multiply by zero, the
4945
 * original input is preserved.
4946
 *
4947
 * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
4948
 * cross-pollination, as otherwise the upper and lower halves would be
4949
 * essentially independent.
4950
 *
4951
 * This doesn't matter on 64-bit hashes since they all get merged together in
4952
 * the end, so we skip the extra step.
4953
 *
4954
 * Both XXH3_64bits and XXH3_128bits use this subroutine.
4955
 */
4956
4957
#if (XXH_VECTOR == XXH_AVX512) \
4958
     || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
4959
4960
#ifndef XXH_TARGET_AVX512
4961
# define XXH_TARGET_AVX512  /* disable attribute target */
4962
#endif
4963
4964
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
4965
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
4966
                     const void* XXH_RESTRICT input,
4967
                     const void* XXH_RESTRICT secret)
4968
{
4969
    __m512i* const xacc = (__m512i *) acc;
4970
    XXH_ASSERT((((size_t)acc) & 63) == 0);
4971
    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
4972
4973
    {
4974
        /* data_vec    = input[0]; */
4975
        __m512i const data_vec    = _mm512_loadu_si512   (input);
4976
        /* key_vec     = secret[0]; */
4977
        __m512i const key_vec     = _mm512_loadu_si512   (secret);
4978
        /* data_key    = data_vec ^ key_vec; */
4979
        __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
4980
        /* data_key_lo = data_key >> 32; */
4981
        __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
4982
        /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
4983
        __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
4984
        /* xacc[0] += swap(data_vec); */
4985
        __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
4986
        __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
4987
        /* xacc[0] += product; */
4988
        *xacc = _mm512_add_epi64(product, sum);
4989
    }
4990
}
4991
XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
4992
4993
/*
4994
 * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
4995
 *
4996
 * Multiplication isn't perfect, as explained by Google in HighwayHash:
4997
 *
4998
 *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
4999
 *  // varying degrees. In descending order of goodness, bytes
5000
 *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
5001
 *  // As expected, the upper and lower bytes are much worse.
5002
 *
5003
 * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
5004
 *
5005
 * Since our algorithm uses a pseudorandom secret to add some variance into the
5006
 * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
5007
 *
5008
 * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
5009
 * extraction.
5010
 *
5011
 * Both XXH3_64bits and XXH3_128bits use this subroutine.
5012
 */
5013
5014
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
5015
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5016
{
5017
    XXH_ASSERT((((size_t)acc) & 63) == 0);
5018
    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
5019
    {   __m512i* const xacc = (__m512i*) acc;
5020
        const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
5021
5022
        /* xacc[0] ^= (xacc[0] >> 47) */
5023
        __m512i const acc_vec     = *xacc;
5024
        __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
5025
        /* xacc[0] ^= secret; */
5026
        __m512i const key_vec     = _mm512_loadu_si512   (secret);
5027
        __m512i const data_key    = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
5028
5029
        /* xacc[0] *= XXH_PRIME32_1; */
5030
        __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
5031
        __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
5032
        __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
5033
        *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
5034
    }
5035
}
5036
5037
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
5038
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5039
{
5040
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
5041
    XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
5042
    XXH_ASSERT(((size_t)customSecret & 63) == 0);
5043
    (void)(&XXH_writeLE64);
5044
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
5045
        __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
5046
        __m512i const seed     = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
5047
5048
        const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
5049
              __m512i* const dest = (      __m512i*) customSecret;
5050
        int i;
5051
        XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
5052
        XXH_ASSERT(((size_t)dest & 63) == 0);
5053
        for (i=0; i < nbRounds; ++i) {
5054
            dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
5055
    }   }
5056
}
5057
5058
#endif
5059
5060
#if (XXH_VECTOR == XXH_AVX2) \
5061
    || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
5062
5063
#ifndef XXH_TARGET_AVX2
5064
# define XXH_TARGET_AVX2  /* disable attribute target */
5065
#endif
5066
5067
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
5068
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
5069
                    const void* XXH_RESTRICT input,
5070
                    const void* XXH_RESTRICT secret)
5071
{
5072
    XXH_ASSERT((((size_t)acc) & 31) == 0);
5073
    {   __m256i* const xacc    =       (__m256i *) acc;
5074
        /* Unaligned. This is mainly for pointer arithmetic, and because
5075
         * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
5076
        const         __m256i* const xinput  = (const __m256i *) input;
5077
        /* Unaligned. This is mainly for pointer arithmetic, and because
5078
         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
5079
        const         __m256i* const xsecret = (const __m256i *) secret;
5080
5081
        size_t i;
5082
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
5083
            /* data_vec    = xinput[i]; */
5084
            __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
5085
            /* key_vec     = xsecret[i]; */
5086
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
5087
            /* data_key    = data_vec ^ key_vec; */
5088
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
5089
            /* data_key_lo = data_key >> 32; */
5090
            __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
5091
            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
5092
            __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
5093
            /* xacc[i] += swap(data_vec); */
5094
            __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
5095
            __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
5096
            /* xacc[i] += product; */
5097
            xacc[i] = _mm256_add_epi64(product, sum);
5098
    }   }
5099
}
5100
XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
5101
5102
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
5103
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5104
{
5105
    XXH_ASSERT((((size_t)acc) & 31) == 0);
5106
    {   __m256i* const xacc = (__m256i*) acc;
5107
        /* Unaligned. This is mainly for pointer arithmetic, and because
5108
         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
5109
        const         __m256i* const xsecret = (const __m256i *) secret;
5110
        const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
5111
5112
        size_t i;
5113
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
5114
            /* xacc[i] ^= (xacc[i] >> 47) */
5115
            __m256i const acc_vec     = xacc[i];
5116
            __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
5117
            __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
5118
            /* xacc[i] ^= xsecret; */
5119
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
5120
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
5121
5122
            /* xacc[i] *= XXH_PRIME32_1; */
5123
            __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
5124
            __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
5125
            __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
5126
            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
5127
        }
5128
    }
5129
}
5130
5131
XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5132
{
5133
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
5134
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
5135
    XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
5136
    (void)(&XXH_writeLE64);
5137
    XXH_PREFETCH(customSecret);
5138
    {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
5139
5140
        const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
5141
              __m256i*       dest = (      __m256i*) customSecret;
5142
5143
#       if defined(__GNUC__) || defined(__clang__)
5144
        /*
5145
         * On GCC & Clang, marking 'dest' as modified will cause the compiler:
5146
         *   - do not extract the secret from sse registers in the internal loop
5147
         *   - use less common registers, and avoid pushing these reg into stack
5148
         */
5149
        XXH_COMPILER_GUARD(dest);
5150
#       endif
5151
        XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
5152
        XXH_ASSERT(((size_t)dest & 31) == 0);
5153
5154
        /* GCC -O2 need unroll loop manually */
5155
        dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
5156
        dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
5157
        dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
5158
        dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
5159
        dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
5160
        dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
5161
    }
5162
}
5163
5164
#endif
5165
5166
/* x86dispatch always generates SSE2 */
5167
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
5168
5169
#ifndef XXH_TARGET_SSE2
5170
# define XXH_TARGET_SSE2  /* disable attribute target */
5171
#endif
5172
5173
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
5174
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
5175
                    const void* XXH_RESTRICT input,
5176
                    const void* XXH_RESTRICT secret)
5177
0
{
5178
0
    /* SSE2 is just a half-scale version of the AVX2 version. */
5179
0
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5180
0
    {   __m128i* const xacc    =       (__m128i *) acc;
5181
0
        /* Unaligned. This is mainly for pointer arithmetic, and because
5182
0
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
5183
0
        const         __m128i* const xinput  = (const __m128i *) input;
5184
0
        /* Unaligned. This is mainly for pointer arithmetic, and because
5185
0
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
5186
0
        const         __m128i* const xsecret = (const __m128i *) secret;
5187
0
5188
0
        size_t i;
5189
0
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
5190
0
            /* data_vec    = xinput[i]; */
5191
0
            __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
5192
0
            /* key_vec     = xsecret[i]; */
5193
0
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
5194
0
            /* data_key    = data_vec ^ key_vec; */
5195
0
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
5196
0
            /* data_key_lo = data_key >> 32; */
5197
0
            __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
5198
0
            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
5199
0
            __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
5200
0
            /* xacc[i] += swap(data_vec); */
5201
0
            __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
5202
0
            __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
5203
0
            /* xacc[i] += product; */
5204
0
            xacc[i] = _mm_add_epi64(product, sum);
5205
0
    }   }
5206
0
}
5207
XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
5208
5209
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
5210
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5211
0
{
5212
0
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5213
0
    {   __m128i* const xacc = (__m128i*) acc;
5214
0
        /* Unaligned. This is mainly for pointer arithmetic, and because
5215
0
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
5216
0
        const         __m128i* const xsecret = (const __m128i *) secret;
5217
0
        const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
5218
0
5219
0
        size_t i;
5220
0
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
5221
0
            /* xacc[i] ^= (xacc[i] >> 47) */
5222
0
            __m128i const acc_vec     = xacc[i];
5223
0
            __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
5224
0
            __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
5225
0
            /* xacc[i] ^= xsecret[i]; */
5226
0
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
5227
0
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
5228
0
5229
0
            /* xacc[i] *= XXH_PRIME32_1; */
5230
0
            __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
5231
0
            __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
5232
0
            __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
5233
0
            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
5234
0
        }
5235
0
    }
5236
0
}
5237
5238
XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5239
0
{
5240
0
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
5241
0
    (void)(&XXH_writeLE64);
5242
0
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
5243
0
5244
0
#       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
5245
0
        /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
5246
0
        XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
5247
0
        __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
5248
0
#       else
5249
0
        __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
5250
0
#       endif
5251
0
        int i;
5252
0
5253
0
        const void* const src16 = XXH3_kSecret;
5254
0
        __m128i* dst16 = (__m128i*) customSecret;
5255
0
#       if defined(__GNUC__) || defined(__clang__)
5256
0
        /*
5257
0
         * On GCC & Clang, marking 'dest' as modified will cause the compiler:
5258
0
         *   - do not extract the secret from sse registers in the internal loop
5259
0
         *   - use less common registers, and avoid pushing these reg into stack
5260
0
         */
5261
0
        XXH_COMPILER_GUARD(dst16);
5262
0
#       endif
5263
0
        XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
5264
0
        XXH_ASSERT(((size_t)dst16 & 15) == 0);
5265
0
5266
0
        for (i=0; i < nbRounds; ++i) {
5267
0
            dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
5268
0
    }   }
5269
0
}
5270
5271
#endif
5272
5273
#if (XXH_VECTOR == XXH_NEON)
5274
5275
/* forward declarations for the scalar routines */
5276
XXH_FORCE_INLINE void
5277
XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
5278
                 void const* XXH_RESTRICT secret, size_t lane);
5279
5280
XXH_FORCE_INLINE void
5281
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
5282
                         void const* XXH_RESTRICT secret, size_t lane);
5283
5284
/*!
5285
 * @internal
5286
 * @brief The bulk processing loop for NEON and WASM SIMD128.
5287
 *
5288
 * The NEON code path is actually partially scalar when running on AArch64. This
5289
 * is to optimize the pipelining and can have up to 15% speedup depending on the
5290
 * CPU, and it also mitigates some GCC codegen issues.
5291
 *
5292
 * @see XXH3_NEON_LANES for configuring this and details about this optimization.
5293
 *
5294
 * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
5295
 * integers instead of the other platforms which mask full 64-bit vectors,
5296
 * so the setup is more complicated than just shifting right.
5297
 *
5298
 * Additionally, there is an optimization for 4 lanes at once noted below.
5299
 *
5300
 * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
5301
 * there needs to be *three* versions of the accumulate operation used
5302
 * for the remaining 2 lanes.
5303
 *
5304
 * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
5305
 * nearly perfectly.
5306
 */
5307
5308
XXH_FORCE_INLINE void
5309
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
5310
                    const void* XXH_RESTRICT input,
5311
                    const void* XXH_RESTRICT secret)
5312
{
5313
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5314
    XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
5315
    {   /* GCC for darwin arm64 does not like aliasing here */
5316
        xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
5317
        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
5318
        uint8_t const* xinput = (const uint8_t *) input;
5319
        uint8_t const* xsecret  = (const uint8_t *) secret;
5320
5321
        size_t i;
5322
#ifdef __wasm_simd128__
5323
        /*
5324
         * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
5325
         * is constant propagated, which results in it converting it to this
5326
         * inside the loop:
5327
         *
5328
         *    a = v128.load(XXH3_kSecret +  0 + $secret_offset, offset = 0)
5329
         *    b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
5330
         *    ...
5331
         *
5332
         * This requires a full 32-bit address immediate (and therefore a 6 byte
5333
         * instruction) as well as an add for each offset.
5334
         *
5335
         * Putting an asm guard prevents it from folding (at the cost of losing
5336
         * the alignment hint), and uses the free offset in `v128.load` instead
5337
         * of adding secret_offset each time which overall reduces code size by
5338
         * about a kilobyte and improves performance.
5339
         */
5340
        XXH_COMPILER_GUARD(xsecret);
5341
#endif
5342
        /* Scalar lanes use the normal scalarRound routine */
5343
        for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
5344
            XXH3_scalarRound(acc, input, secret, i);
5345
        }
5346
        i = 0;
5347
        /* 4 NEON lanes at a time. */
5348
        for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
5349
            /* data_vec = xinput[i]; */
5350
            uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput  + (i * 16));
5351
            uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput  + ((i+1) * 16));
5352
            /* key_vec  = xsecret[i];  */
5353
            uint64x2_t key_vec_1  = XXH_vld1q_u64(xsecret + (i * 16));
5354
            uint64x2_t key_vec_2  = XXH_vld1q_u64(xsecret + ((i+1) * 16));
5355
            /* data_swap = swap(data_vec) */
5356
            uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
5357
            uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
5358
            /* data_key = data_vec ^ key_vec; */
5359
            uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
5360
            uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
5361
5362
            /*
5363
             * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
5364
             * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
5365
             * get one vector with the low 32 bits of each lane, and one vector
5366
             * with the high 32 bits of each lane.
5367
             *
5368
             * The intrinsic returns a double vector because the original ARMv7-a
5369
             * instruction modified both arguments in place. AArch64 and SIMD128 emit
5370
             * two instructions from this intrinsic.
5371
             *
5372
             *  [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
5373
             *  [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
5374
             */
5375
            uint32x4x2_t unzipped = vuzpq_u32(
5376
                vreinterpretq_u32_u64(data_key_1),
5377
                vreinterpretq_u32_u64(data_key_2)
5378
            );
5379
            /* data_key_lo = data_key & 0xFFFFFFFF */
5380
            uint32x4_t data_key_lo = unzipped.val[0];
5381
            /* data_key_hi = data_key >> 32 */
5382
            uint32x4_t data_key_hi = unzipped.val[1];
5383
            /*
5384
             * Then, we can split the vectors horizontally and multiply which, as for most
5385
             * widening intrinsics, have a variant that works on both high half vectors
5386
             * for free on AArch64. A similar instruction is available on SIMD128.
5387
             *
5388
             * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
5389
             */
5390
            uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
5391
            uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
5392
            /*
5393
             * Clang reorders
5394
             *    a += b * c;     // umlal   swap.2d, dkl.2s, dkh.2s
5395
             *    c += a;         // add     acc.2d, acc.2d, swap.2d
5396
             * to
5397
             *    c += a;         // add     acc.2d, acc.2d, swap.2d
5398
             *    c += b * c;     // umlal   acc.2d, dkl.2s, dkh.2s
5399
             *
5400
             * While it would make sense in theory since the addition is faster,
5401
             * for reasons likely related to umlal being limited to certain NEON
5402
             * pipelines, this is worse. A compiler guard fixes this.
5403
             */
5404
            XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
5405
            XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
5406
            /* xacc[i] = acc_vec + sum; */
5407
            xacc[i]   = vaddq_u64(xacc[i], sum_1);
5408
            xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
5409
        }
5410
        /* Operate on the remaining NEON lanes 2 at a time. */
5411
        for (; i < XXH3_NEON_LANES / 2; i++) {
5412
            /* data_vec = xinput[i]; */
5413
            uint64x2_t data_vec = XXH_vld1q_u64(xinput  + (i * 16));
5414
            /* key_vec  = xsecret[i];  */
5415
            uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
5416
            /* acc_vec_2 = swap(data_vec) */
5417
            uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
5418
            /* data_key = data_vec ^ key_vec; */
5419
            uint64x2_t data_key = veorq_u64(data_vec, key_vec);
5420
            /* For two lanes, just use VMOVN and VSHRN. */
5421
            /* data_key_lo = data_key & 0xFFFFFFFF; */
5422
            uint32x2_t data_key_lo = vmovn_u64(data_key);
5423
            /* data_key_hi = data_key >> 32; */
5424
            uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
5425
            /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
5426
            uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
5427
            /* Same Clang workaround as before */
5428
            XXH_COMPILER_GUARD_CLANG_NEON(sum);
5429
            /* xacc[i] = acc_vec + sum; */
5430
            xacc[i] = vaddq_u64 (xacc[i], sum);
5431
        }
5432
    }
5433
}
5434
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
5435
5436
XXH_FORCE_INLINE void
5437
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5438
{
5439
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5440
5441
    {   xxh_aliasing_uint64x2_t* xacc       = (xxh_aliasing_uint64x2_t*) acc;
5442
        uint8_t const* xsecret = (uint8_t const*) secret;
5443
5444
        size_t i;
5445
        /* WASM uses operator overloads and doesn't need these. */
5446
#ifndef __wasm_simd128__
5447
        /* { prime32_1, prime32_1 } */
5448
        uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
5449
        /* { 0, prime32_1, 0, prime32_1 } */
5450
        uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
5451
#endif
5452
5453
        /* AArch64 uses both scalar and neon at the same time */
5454
        for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
5455
            XXH3_scalarScrambleRound(acc, secret, i);
5456
        }
5457
        for (i=0; i < XXH3_NEON_LANES / 2; i++) {
5458
            /* xacc[i] ^= (xacc[i] >> 47); */
5459
            uint64x2_t acc_vec  = xacc[i];
5460
            uint64x2_t shifted  = vshrq_n_u64(acc_vec, 47);
5461
            uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
5462
5463
            /* xacc[i] ^= xsecret[i]; */
5464
            uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
5465
            uint64x2_t data_key = veorq_u64(data_vec, key_vec);
5466
            /* xacc[i] *= XXH_PRIME32_1 */
5467
#ifdef __wasm_simd128__
5468
            /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
5469
            xacc[i] = data_key * XXH_PRIME32_1;
5470
#else
5471
            /*
5472
             * Expanded version with portable NEON intrinsics
5473
             *
5474
             *    lo(x) * lo(y) + (hi(x) * lo(y) << 32)
5475
             *
5476
             * prod_hi = hi(data_key) * lo(prime) << 32
5477
             *
5478
             * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
5479
             * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
5480
             * and avoid the shift.
5481
             */
5482
            uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
5483
            /* Extract low bits for vmlal_u32  */
5484
            uint32x2_t data_key_lo = vmovn_u64(data_key);
5485
            /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
5486
            xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
5487
#endif
5488
        }
5489
    }
5490
}
5491
#endif
5492
5493
#if (XXH_VECTOR == XXH_VSX)
5494
5495
XXH_FORCE_INLINE void
5496
XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
5497
                    const void* XXH_RESTRICT input,
5498
                    const void* XXH_RESTRICT secret)
5499
{
5500
    /* presumed aligned */
5501
    xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
5502
    xxh_u8 const* const xinput   = (xxh_u8 const*) input;   /* no alignment restriction */
5503
    xxh_u8 const* const xsecret  = (xxh_u8 const*) secret;    /* no alignment restriction */
5504
    xxh_u64x2 const v32 = { 32, 32 };
5505
    size_t i;
5506
    for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
5507
        /* data_vec = xinput[i]; */
5508
        xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
5509
        /* key_vec = xsecret[i]; */
5510
        xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
5511
        xxh_u64x2 const data_key = data_vec ^ key_vec;
5512
        /* shuffled = (data_key << 32) | (data_key >> 32); */
5513
        xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
5514
        /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
5515
        xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
5516
        /* acc_vec = xacc[i]; */
5517
        xxh_u64x2 acc_vec        = xacc[i];
5518
        acc_vec += product;
5519
5520
        /* swap high and low halves */
5521
#ifdef __s390x__
5522
        acc_vec += vec_permi(data_vec, data_vec, 2);
5523
#else
5524
        acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
5525
#endif
5526
        xacc[i] = acc_vec;
5527
    }
5528
}
5529
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
5530
5531
XXH_FORCE_INLINE void
5532
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5533
{
5534
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5535
5536
    {   xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
5537
        const xxh_u8* const xsecret = (const xxh_u8*) secret;
5538
        /* constants */
5539
        xxh_u64x2 const v32  = { 32, 32 };
5540
        xxh_u64x2 const v47 = { 47, 47 };
5541
        xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
5542
        size_t i;
5543
        for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
5544
            /* xacc[i] ^= (xacc[i] >> 47); */
5545
            xxh_u64x2 const acc_vec  = xacc[i];
5546
            xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
5547
5548
            /* xacc[i] ^= xsecret[i]; */
5549
            xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
5550
            xxh_u64x2 const data_key = data_vec ^ key_vec;
5551
5552
            /* xacc[i] *= XXH_PRIME32_1 */
5553
            /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
5554
            xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
5555
            /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
5556
            xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
5557
            xacc[i] = prod_odd + (prod_even << v32);
5558
    }   }
5559
}
5560
5561
#endif
5562
5563
#if (XXH_VECTOR == XXH_SVE)
5564
5565
XXH_FORCE_INLINE void
5566
XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
5567
                   const void* XXH_RESTRICT input,
5568
                   const void* XXH_RESTRICT secret)
5569
{
5570
    uint64_t *xacc = (uint64_t *)acc;
5571
    const uint64_t *xinput = (const uint64_t *)(const void *)input;
5572
    const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
5573
    svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
5574
    uint64_t element_count = svcntd();
5575
    if (element_count >= 8) {
5576
        svbool_t mask = svptrue_pat_b64(SV_VL8);
5577
        svuint64_t vacc = svld1_u64(mask, xacc);
5578
        ACCRND(vacc, 0);
5579
        svst1_u64(mask, xacc, vacc);
5580
    } else if (element_count == 2) {   /* sve128 */
5581
        svbool_t mask = svptrue_pat_b64(SV_VL2);
5582
        svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5583
        svuint64_t acc1 = svld1_u64(mask, xacc + 2);
5584
        svuint64_t acc2 = svld1_u64(mask, xacc + 4);
5585
        svuint64_t acc3 = svld1_u64(mask, xacc + 6);
5586
        ACCRND(acc0, 0);
5587
        ACCRND(acc1, 2);
5588
        ACCRND(acc2, 4);
5589
        ACCRND(acc3, 6);
5590
        svst1_u64(mask, xacc + 0, acc0);
5591
        svst1_u64(mask, xacc + 2, acc1);
5592
        svst1_u64(mask, xacc + 4, acc2);
5593
        svst1_u64(mask, xacc + 6, acc3);
5594
    } else {
5595
        svbool_t mask = svptrue_pat_b64(SV_VL4);
5596
        svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5597
        svuint64_t acc1 = svld1_u64(mask, xacc + 4);
5598
        ACCRND(acc0, 0);
5599
        ACCRND(acc1, 4);
5600
        svst1_u64(mask, xacc + 0, acc0);
5601
        svst1_u64(mask, xacc + 4, acc1);
5602
    }
5603
}
5604
5605
XXH_FORCE_INLINE void
5606
XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
5607
               const xxh_u8* XXH_RESTRICT input,
5608
               const xxh_u8* XXH_RESTRICT secret,
5609
               size_t nbStripes)
5610
{
5611
    if (nbStripes != 0) {
5612
        uint64_t *xacc = (uint64_t *)acc;
5613
        const uint64_t *xinput = (const uint64_t *)(const void *)input;
5614
        const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
5615
        svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
5616
        uint64_t element_count = svcntd();
5617
        if (element_count >= 8) {
5618
            svbool_t mask = svptrue_pat_b64(SV_VL8);
5619
            svuint64_t vacc = svld1_u64(mask, xacc + 0);
5620
            do {
5621
                /* svprfd(svbool_t, void *, enum svfprop); */
5622
                svprfd(mask, xinput + 128, SV_PLDL1STRM);
5623
                ACCRND(vacc, 0);
5624
                xinput += 8;
5625
                xsecret += 1;
5626
                nbStripes--;
5627
           } while (nbStripes != 0);
5628
5629
           svst1_u64(mask, xacc + 0, vacc);
5630
        } else if (element_count == 2) { /* sve128 */
5631
            svbool_t mask = svptrue_pat_b64(SV_VL2);
5632
            svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5633
            svuint64_t acc1 = svld1_u64(mask, xacc + 2);
5634
            svuint64_t acc2 = svld1_u64(mask, xacc + 4);
5635
            svuint64_t acc3 = svld1_u64(mask, xacc + 6);
5636
            do {
5637
                svprfd(mask, xinput + 128, SV_PLDL1STRM);
5638
                ACCRND(acc0, 0);
5639
                ACCRND(acc1, 2);
5640
                ACCRND(acc2, 4);
5641
                ACCRND(acc3, 6);
5642
                xinput += 8;
5643
                xsecret += 1;
5644
                nbStripes--;
5645
           } while (nbStripes != 0);
5646
5647
           svst1_u64(mask, xacc + 0, acc0);
5648
           svst1_u64(mask, xacc + 2, acc1);
5649
           svst1_u64(mask, xacc + 4, acc2);
5650
           svst1_u64(mask, xacc + 6, acc3);
5651
        } else {
5652
            svbool_t mask = svptrue_pat_b64(SV_VL4);
5653
            svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5654
            svuint64_t acc1 = svld1_u64(mask, xacc + 4);
5655
            do {
5656
                svprfd(mask, xinput + 128, SV_PLDL1STRM);
5657
                ACCRND(acc0, 0);
5658
                ACCRND(acc1, 4);
5659
                xinput += 8;
5660
                xsecret += 1;
5661
                nbStripes--;
5662
           } while (nbStripes != 0);
5663
5664
           svst1_u64(mask, xacc + 0, acc0);
5665
           svst1_u64(mask, xacc + 4, acc1);
5666
       }
5667
    }
5668
}
5669
5670
#endif
5671
5672
#if (XXH_VECTOR == XXH_LSX)
5673
#define _LSX_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
5674
5675
XXH_FORCE_INLINE void
5676
XXH3_accumulate_512_lsx( void* XXH_RESTRICT acc,
5677
                    const void* XXH_RESTRICT input,
5678
                    const void* XXH_RESTRICT secret)
5679
{
5680
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5681
    {
5682
        __m128i* const xacc    =       (__m128i *) acc;
5683
        const __m128i* const xinput  = (const __m128i *) input;
5684
        const __m128i* const xsecret = (const __m128i *) secret;
5685
5686
        for (size_t i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
5687
            /* data_vec = xinput[i]; */
5688
            __m128i const data_vec = __lsx_vld(xinput + i, 0);
5689
            /* key_vec = xsecret[i]; */
5690
            __m128i const key_vec = __lsx_vld(xsecret + i, 0);
5691
            /* data_key = data_vec ^ key_vec; */
5692
            __m128i const data_key = __lsx_vxor_v(data_vec, key_vec);
5693
            /* data_key_lo = data_key >> 32; */
5694
            __m128i const data_key_lo = __lsx_vsrli_d(data_key, 32);
5695
            // __m128i const data_key_lo = __lsx_vsrli_d(data_key, 32);
5696
            /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
5697
            __m128i const product = __lsx_vmulwev_d_wu(data_key, data_key_lo);
5698
            /* xacc[i] += swap(data_vec); */
5699
            __m128i const data_swap = __lsx_vshuf4i_w(data_vec, _LSX_SHUFFLE(1, 0, 3, 2));
5700
            __m128i const sum = __lsx_vadd_d(xacc[i], data_swap);
5701
            /* xacc[i] += product; */
5702
            xacc[i] = __lsx_vadd_d(product, sum);
5703
        }
5704
    }
5705
}
5706
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(lsx)
5707
5708
XXH_FORCE_INLINE void
5709
XXH3_scrambleAcc_lsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5710
{
5711
    XXH_ASSERT((((size_t)acc) & 15) == 0);
5712
    {
5713
        __m128i* const xacc = (__m128i*) acc;
5714
        const __m128i* const xsecret = (const __m128i *) secret;
5715
        const __m128i prime32 = __lsx_vreplgr2vr_w((int)XXH_PRIME32_1);
5716
5717
        for (size_t i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
5718
            /* xacc[i] ^= (xacc[i] >> 47) */
5719
            __m128i const acc_vec = xacc[i];
5720
            __m128i const shifted = __lsx_vsrli_d(acc_vec, 47);
5721
            __m128i const data_vec = __lsx_vxor_v(acc_vec, shifted);
5722
            /* xacc[i] ^= xsecret[i]; */
5723
            __m128i const key_vec = __lsx_vld(xsecret + i, 0);
5724
            __m128i const data_key = __lsx_vxor_v(data_vec, key_vec);
5725
5726
            /* xacc[i] *= XXH_PRIME32_1; */
5727
            __m128i const data_key_hi = __lsx_vsrli_d(data_key, 32);
5728
            __m128i const prod_lo = __lsx_vmulwev_d_wu(data_key, prime32);
5729
            __m128i const prod_hi = __lsx_vmulwev_d_wu(data_key_hi, prime32);
5730
            xacc[i] = __lsx_vadd_d(prod_lo, __lsx_vslli_d(prod_hi, 32));
5731
        }
5732
    }
5733
}
5734
5735
#endif
5736
5737
/* scalar variants - universal */
5738
5739
#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
5740
/*
5741
 * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
5742
 * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
5743
 *
5744
 * While this might not seem like much, as AArch64 is a 64-bit architecture, only
5745
 * big Cortex designs have a full 64-bit multiplier.
5746
 *
5747
 * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
5748
 * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
5749
 * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
5750
 *
5751
 * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
5752
 * not have this penalty and does the mask automatically.
5753
 */
5754
XXH_FORCE_INLINE xxh_u64
5755
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
5756
{
5757
    xxh_u64 ret;
5758
    /* note: %x = 64-bit register, %w = 32-bit register */
5759
    __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
5760
    return ret;
5761
}
5762
#else
5763
XXH_FORCE_INLINE xxh_u64
5764
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
5765
0
{
5766
0
    return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
5767
0
}
5768
#endif
5769
5770
/*!
5771
 * @internal
5772
 * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
5773
 *
5774
 * This is extracted to its own function because the NEON path uses a combination
5775
 * of NEON and scalar.
5776
 */
5777
XXH_FORCE_INLINE void
5778
XXH3_scalarRound(void* XXH_RESTRICT acc,
5779
                 void const* XXH_RESTRICT input,
5780
                 void const* XXH_RESTRICT secret,
5781
                 size_t lane)
5782
0
{
5783
0
    xxh_u64* xacc = (xxh_u64*) acc;
5784
0
    xxh_u8 const* xinput  = (xxh_u8 const*) input;
5785
0
    xxh_u8 const* xsecret = (xxh_u8 const*) secret;
5786
0
    XXH_ASSERT(lane < XXH_ACC_NB);
5787
0
    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
5788
0
    {
5789
0
        xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
5790
0
        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
5791
0
        xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
5792
0
        xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
5793
0
    }
5794
0
}
5795
5796
/*!
5797
 * @internal
5798
 * @brief Processes a 64 byte block of data using the scalar path.
5799
 */
5800
XXH_FORCE_INLINE void
5801
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
5802
                     const void* XXH_RESTRICT input,
5803
                     const void* XXH_RESTRICT secret)
5804
0
{
5805
0
    size_t i;
5806
0
    /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
5807
0
#if defined(__GNUC__) && !defined(__clang__) \
5808
0
  && (defined(__arm__) || defined(__thumb2__)) \
5809
0
  && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
5810
0
  && XXH_SIZE_OPT <= 0
5811
0
#  pragma GCC unroll 8
5812
0
#endif
5813
0
    for (i=0; i < XXH_ACC_NB; i++) {
5814
0
        XXH3_scalarRound(acc, input, secret, i);
5815
0
    }
5816
0
}
5817
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
5818
5819
/*!
5820
 * @internal
5821
 * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
5822
 *
5823
 * This is extracted to its own function because the NEON path uses a combination
5824
 * of NEON and scalar.
5825
 */
5826
XXH_FORCE_INLINE void
5827
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
5828
                         void const* XXH_RESTRICT secret,
5829
                         size_t lane)
5830
0
{
5831
0
    xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
5832
0
    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
5833
0
    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
5834
0
    XXH_ASSERT(lane < XXH_ACC_NB);
5835
0
    {
5836
0
        xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
5837
0
        xxh_u64 acc64 = xacc[lane];
5838
0
        acc64 = XXH_xorshift64(acc64, 47);
5839
0
        acc64 ^= key64;
5840
0
        acc64 *= XXH_PRIME32_1;
5841
0
        xacc[lane] = acc64;
5842
0
    }
5843
0
}
5844
5845
/*!
5846
 * @internal
5847
 * @brief Scrambles the accumulators after a large chunk has been read
5848
 */
5849
XXH_FORCE_INLINE void
5850
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5851
0
{
5852
0
    size_t i;
5853
0
    for (i=0; i < XXH_ACC_NB; i++) {
5854
0
        XXH3_scalarScrambleRound(acc, secret, i);
5855
0
    }
5856
0
}
5857
5858
XXH_FORCE_INLINE void
5859
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5860
0
{
5861
0
    /*
5862
0
     * We need a separate pointer for the hack below,
5863
0
     * which requires a non-const pointer.
5864
0
     * Any decent compiler will optimize this out otherwise.
5865
0
     */
5866
0
    const xxh_u8* kSecretPtr = XXH3_kSecret;
5867
0
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
5868
0
5869
0
#if defined(__GNUC__) && defined(__aarch64__)
5870
0
    /*
5871
0
     * UGLY HACK:
5872
0
     * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
5873
0
     * placed sequentially, in order, at the top of the unrolled loop.
5874
0
     *
5875
0
     * While MOVK is great for generating constants (2 cycles for a 64-bit
5876
0
     * constant compared to 4 cycles for LDR), it fights for bandwidth with
5877
0
     * the arithmetic instructions.
5878
0
     *
5879
0
     *   I   L   S
5880
0
     * MOVK
5881
0
     * MOVK
5882
0
     * MOVK
5883
0
     * MOVK
5884
0
     * ADD
5885
0
     * SUB      STR
5886
0
     *          STR
5887
0
     * By forcing loads from memory (as the asm line causes the compiler to assume
5888
0
     * that XXH3_kSecretPtr has been changed), the pipelines are used more
5889
0
     * efficiently:
5890
0
     *   I   L   S
5891
0
     *      LDR
5892
0
     *  ADD LDR
5893
0
     *  SUB     STR
5894
0
     *          STR
5895
0
     *
5896
0
     * See XXH3_NEON_LANES for details on the pipsline.
5897
0
     *
5898
0
     * XXH3_64bits_withSeed, len == 256, Snapdragon 835
5899
0
     *   without hack: 2654.4 MB/s
5900
0
     *   with hack:    3202.9 MB/s
5901
0
     */
5902
0
    XXH_COMPILER_GUARD(kSecretPtr);
5903
0
#endif
5904
0
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
5905
0
        int i;
5906
0
        for (i=0; i < nbRounds; i++) {
5907
0
            /*
5908
0
             * The asm hack causes the compiler to assume that kSecretPtr aliases with
5909
0
             * customSecret, and on aarch64, this prevented LDP from merging two
5910
0
             * loads together for free. Putting the loads together before the stores
5911
0
             * properly generates LDP.
5912
0
             */
5913
0
            xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
5914
0
            xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
5915
0
            XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
5916
0
            XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
5917
0
    }   }
5918
0
}
5919
5920
5921
typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
5922
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
5923
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
5924
5925
5926
#if (XXH_VECTOR == XXH_AVX512)
5927
5928
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
5929
#define XXH3_accumulate     XXH3_accumulate_avx512
5930
#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
5931
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
5932
5933
#elif (XXH_VECTOR == XXH_AVX2)
5934
5935
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
5936
#define XXH3_accumulate     XXH3_accumulate_avx2
5937
#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
5938
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
5939
5940
#elif (XXH_VECTOR == XXH_SSE2)
5941
5942
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
5943
#define XXH3_accumulate     XXH3_accumulate_sse2
5944
#define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
5945
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
5946
5947
#elif (XXH_VECTOR == XXH_NEON)
5948
5949
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
5950
#define XXH3_accumulate     XXH3_accumulate_neon
5951
#define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
5952
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5953
5954
#elif (XXH_VECTOR == XXH_VSX)
5955
5956
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
5957
#define XXH3_accumulate     XXH3_accumulate_vsx
5958
#define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
5959
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5960
5961
#elif (XXH_VECTOR == XXH_SVE)
5962
#define XXH3_accumulate_512 XXH3_accumulate_512_sve
5963
#define XXH3_accumulate     XXH3_accumulate_sve
5964
#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
5965
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5966
5967
#elif (XXH_VECTOR == XXH_LSX)
5968
#define XXH3_accumulate_512 XXH3_accumulate_512_lsx
5969
#define XXH3_accumulate     XXH3_accumulate_lsx
5970
#define XXH3_scrambleAcc    XXH3_scrambleAcc_lsx
5971
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5972
5973
#else /* scalar */
5974
5975
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
5976
#define XXH3_accumulate     XXH3_accumulate_scalar
5977
#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
5978
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5979
5980
#endif
5981
5982
#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
5983
#  undef XXH3_initCustomSecret
5984
#  define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5985
#endif
5986
5987
XXH_FORCE_INLINE void
5988
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
5989
                      const xxh_u8* XXH_RESTRICT input, size_t len,
5990
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5991
                            XXH3_f_accumulate f_acc,
5992
                            XXH3_f_scrambleAcc f_scramble)
5993
0
{
5994
0
    size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
5995
0
    size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
5996
0
    size_t const nb_blocks = (len - 1) / block_len;
5997
0
5998
0
    size_t n;
5999
0
6000
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
6001
0
6002
0
    for (n = 0; n < nb_blocks; n++) {
6003
0
        f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
6004
0
        f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
6005
0
    }
6006
0
6007
0
    /* last partial block */
6008
0
    XXH_ASSERT(len > XXH_STRIPE_LEN);
6009
0
    {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
6010
0
        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
6011
0
        f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
6012
0
6013
0
        /* last stripe */
6014
0
        {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
6015
0
#define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
6016
0
            XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
6017
0
    }   }
6018
0
}
6019
6020
XXH_FORCE_INLINE xxh_u64
6021
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
6022
0
{
6023
0
    return XXH3_mul128_fold64(
6024
0
               acc[0] ^ XXH_readLE64(secret),
6025
0
               acc[1] ^ XXH_readLE64(secret+8) );
6026
0
}
6027
6028
static XXH_PUREF XXH64_hash_t
6029
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
6030
0
{
6031
0
    xxh_u64 result64 = start;
6032
0
    size_t i = 0;
6033
0
6034
0
    for (i = 0; i < 4; i++) {
6035
0
        result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
6036
0
#if defined(__clang__)                                /* Clang */ \
6037
0
    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
6038
0
    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
6039
0
    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
6040
0
        /*
6041
0
         * UGLY HACK:
6042
0
         * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
6043
0
         * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
6044
0
         * XXH3_64bits, len == 256, Snapdragon 835:
6045
0
         *   without hack: 2063.7 MB/s
6046
0
         *   with hack:    2560.7 MB/s
6047
0
         */
6048
0
        XXH_COMPILER_GUARD(result64);
6049
0
#endif
6050
0
    }
6051
0
6052
0
    return XXH3_avalanche(result64);
6053
0
}
6054
6055
/* do not align on 8, so that the secret is different from the accumulator */
6056
#define XXH_SECRET_MERGEACCS_START 11
6057
6058
static XXH_PUREF XXH64_hash_t
6059
XXH3_finalizeLong_64b(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 len)
6060
0
{
6061
0
    return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, len * XXH_PRIME64_1);
6062
0
}
6063
6064
#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
6065
                        XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
6066
6067
XXH_FORCE_INLINE XXH64_hash_t
6068
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
6069
                           const void* XXH_RESTRICT secret, size_t secretSize,
6070
                           XXH3_f_accumulate f_acc,
6071
                           XXH3_f_scrambleAcc f_scramble)
6072
0
{
6073
0
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
6074
0
6075
0
    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
6076
0
6077
0
    /* converge into final hash */
6078
0
    XXH_STATIC_ASSERT(sizeof(acc) == 64);
6079
0
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
6080
0
    return XXH3_finalizeLong_64b(acc, (const xxh_u8*)secret, (xxh_u64)len);
6081
0
}
6082
6083
/*
6084
 * It's important for performance to transmit secret's size (when it's static)
6085
 * so that the compiler can properly optimize the vectorized loop.
6086
 * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
6087
 * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
6088
 * breaks -Og, this is XXH_NO_INLINE.
6089
 */
6090
XXH3_WITH_SECRET_INLINE XXH64_hash_t
6091
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
6092
                             XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
6093
0
{
6094
0
    (void)seed64;
6095
0
    return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
6096
0
}
6097
6098
/*
6099
 * It's preferable for performance that XXH3_hashLong is not inlined,
6100
 * as it results in a smaller function for small data, easier to the instruction cache.
6101
 * Note that inside this no_inline function, we do inline the internal loop,
6102
 * and provide a statically defined secret size to allow optimization of vector loop.
6103
 */
6104
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
6105
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
6106
                          XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
6107
0
{
6108
0
    (void)seed64; (void)secret; (void)secretLen;
6109
0
    return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
6110
0
}
6111
6112
/*
6113
 * XXH3_hashLong_64b_withSeed():
6114
 * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
6115
 * and then use this key for long mode hashing.
6116
 *
6117
 * This operation is decently fast but nonetheless costs a little bit of time.
6118
 * Try to avoid it whenever possible (typically when seed==0).
6119
 *
6120
 * It's important for performance that XXH3_hashLong is not inlined. Not sure
6121
 * why (uop cache maybe?), but the difference is large and easily measurable.
6122
 */
6123
XXH_FORCE_INLINE XXH64_hash_t
6124
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
6125
                                    XXH64_hash_t seed,
6126
                                    XXH3_f_accumulate f_acc,
6127
                                    XXH3_f_scrambleAcc f_scramble,
6128
                                    XXH3_f_initCustomSecret f_initSec)
6129
0
{
6130
0
#if XXH_SIZE_OPT <= 0
6131
0
    if (seed == 0)
6132
0
        return XXH3_hashLong_64b_internal(input, len,
6133
0
                                          XXH3_kSecret, sizeof(XXH3_kSecret),
6134
0
                                          f_acc, f_scramble);
6135
0
#endif
6136
0
    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
6137
0
        f_initSec(secret, seed);
6138
0
        return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
6139
0
                                          f_acc, f_scramble);
6140
0
    }
6141
0
}
6142
6143
/*
6144
 * It's important for performance that XXH3_hashLong is not inlined.
6145
 */
6146
XXH_NO_INLINE XXH64_hash_t
6147
XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
6148
                           XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
6149
0
{
6150
0
    (void)secret; (void)secretLen;
6151
0
    return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
6152
0
                XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
6153
0
}
6154
6155
6156
typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
6157
                                          XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
6158
6159
XXH_FORCE_INLINE XXH64_hash_t
6160
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
6161
                     XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
6162
                     XXH3_hashLong64_f f_hashLong)
6163
0
{
6164
0
    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
6165
0
    /*
6166
0
     * If an action is to be taken if `secretLen` condition is not respected,
6167
0
     * it should be done here.
6168
0
     * For now, it's a contract pre-condition.
6169
0
     * Adding a check and a branch here would cost performance at every hash.
6170
0
     * Also, note that function signature doesn't offer room to return an error.
6171
0
     */
6172
0
    if (len <= 16)
6173
0
        return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
6174
0
    if (len <= 128)
6175
0
        return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6176
0
    if (len <= XXH3_MIDSIZE_MAX)
6177
0
        return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6178
0
    return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
6179
0
}
6180
6181
6182
/* ===   Public entry point   === */
6183
6184
/*! @ingroup XXH3_family */
6185
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
6186
0
{
6187
0
    return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
6188
0
}
6189
6190
/*! @ingroup XXH3_family */
6191
XXH_PUBLIC_API XXH64_hash_t
6192
XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
6193
0
{
6194
0
    return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
6195
0
}
6196
6197
/*! @ingroup XXH3_family */
6198
XXH_PUBLIC_API XXH64_hash_t
6199
XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
6200
0
{
6201
0
    return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
6202
0
}
6203
6204
XXH_PUBLIC_API XXH64_hash_t
6205
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
6206
0
{
6207
0
    if (length <= XXH3_MIDSIZE_MAX)
6208
0
        return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
6209
0
    return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
6210
0
}
6211
6212
6213
/* ===   XXH3 streaming   === */
6214
#ifndef XXH_NO_STREAM
6215
/*
6216
 * Malloc's a pointer that is always aligned to @align.
6217
 *
6218
 * This must be freed with `XXH_alignedFree()`.
6219
 *
6220
 * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
6221
 * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
6222
 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
6223
 *
6224
 * This underalignment previously caused a rather obvious crash which went
6225
 * completely unnoticed due to XXH3_createState() not actually being tested.
6226
 * Credit to RedSpah for noticing this bug.
6227
 *
6228
 * The alignment is done manually: Functions like posix_memalign or _mm_malloc
6229
 * are avoided: To maintain portability, we would have to write a fallback
6230
 * like this anyways, and besides, testing for the existence of library
6231
 * functions without relying on external build tools is impossible.
6232
 *
6233
 * The method is simple: Overallocate, manually align, and store the offset
6234
 * to the original behind the returned pointer.
6235
 *
6236
 * Align must be a power of 2 and 8 <= align <= 128.
6237
 */
6238
static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
6239
0
{
6240
0
    XXH_ASSERT(align <= 128 && align >= 8); /* range check */
6241
0
    XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
6242
0
    XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
6243
0
    {   /* Overallocate to make room for manual realignment and an offset byte */
6244
0
        xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
6245
0
        if (base != NULL) {
6246
0
            /*
6247
0
             * Get the offset needed to align this pointer.
6248
0
             *
6249
0
             * Even if the returned pointer is aligned, there will always be
6250
0
             * at least one byte to store the offset to the original pointer.
6251
0
             */
6252
0
            size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
6253
0
            /* Add the offset for the now-aligned pointer */
6254
0
            xxh_u8* ptr = base + offset;
6255
0
6256
0
            XXH_ASSERT((size_t)ptr % align == 0);
6257
0
6258
0
            /* Store the offset immediately before the returned pointer. */
6259
0
            ptr[-1] = (xxh_u8)offset;
6260
0
            return ptr;
6261
0
        }
6262
0
        return NULL;
6263
0
    }
6264
0
}
6265
/*
6266
 * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
6267
 * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
6268
 */
6269
static void XXH_alignedFree(void* p)
6270
0
{
6271
0
    if (p != NULL) {
6272
0
        xxh_u8* ptr = (xxh_u8*)p;
6273
0
        /* Get the offset byte we added in XXH_malloc. */
6274
0
        xxh_u8 offset = ptr[-1];
6275
0
        /* Free the original malloc'd pointer */
6276
0
        xxh_u8* base = ptr - offset;
6277
0
        XXH_free(base);
6278
0
    }
6279
0
}
6280
/*! @ingroup XXH3_family */
6281
/*!
6282
 * @brief Allocate an @ref XXH3_state_t.
6283
 *
6284
 * @return An allocated pointer of @ref XXH3_state_t on success.
6285
 * @return `NULL` on failure.
6286
 *
6287
 * @note Must be freed with XXH3_freeState().
6288
 *
6289
 * @see @ref streaming_example "Streaming Example"
6290
 */
6291
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
6292
0
{
6293
0
    XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
6294
0
    if (state==NULL) return NULL;
6295
0
    XXH3_INITSTATE(state);
6296
0
    return state;
6297
0
}
6298
6299
/*! @ingroup XXH3_family */
6300
/*!
6301
 * @brief Frees an @ref XXH3_state_t.
6302
 *
6303
 * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
6304
 *
6305
 * @return @ref XXH_OK.
6306
 *
6307
 * @note Must be allocated with XXH3_createState().
6308
 *
6309
 * @see @ref streaming_example "Streaming Example"
6310
 */
6311
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
6312
0
{
6313
0
    XXH_alignedFree(statePtr);
6314
0
    return XXH_OK;
6315
0
}
6316
6317
/*! @ingroup XXH3_family */
6318
XXH_PUBLIC_API void
6319
XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
6320
0
{
6321
0
    XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
6322
0
}
6323
6324
static void
6325
XXH3_reset_internal(XXH3_state_t* statePtr,
6326
                    XXH64_hash_t seed,
6327
                    const void* secret, size_t secretSize)
6328
0
{
6329
0
    size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
6330
0
    size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
6331
0
    XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
6332
0
    XXH_ASSERT(statePtr != NULL);
6333
0
    /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
6334
0
    memset((char*)statePtr + initStart, 0, initLength);
6335
0
    statePtr->acc[0] = XXH_PRIME32_3;
6336
0
    statePtr->acc[1] = XXH_PRIME64_1;
6337
0
    statePtr->acc[2] = XXH_PRIME64_2;
6338
0
    statePtr->acc[3] = XXH_PRIME64_3;
6339
0
    statePtr->acc[4] = XXH_PRIME64_4;
6340
0
    statePtr->acc[5] = XXH_PRIME32_2;
6341
0
    statePtr->acc[6] = XXH_PRIME64_5;
6342
0
    statePtr->acc[7] = XXH_PRIME32_1;
6343
0
    statePtr->seed = seed;
6344
0
    statePtr->useSeed = (seed != 0);
6345
0
    statePtr->extSecret = (const unsigned char*)secret;
6346
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
6347
0
    statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
6348
0
    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
6349
0
}
6350
6351
/*! @ingroup XXH3_family */
6352
XXH_PUBLIC_API XXH_errorcode
6353
XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
6354
0
{
6355
0
    if (statePtr == NULL) return XXH_ERROR;
6356
0
    XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
6357
0
    return XXH_OK;
6358
0
}
6359
6360
/*! @ingroup XXH3_family */
6361
XXH_PUBLIC_API XXH_errorcode
6362
XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
6363
0
{
6364
0
    if (statePtr == NULL) return XXH_ERROR;
6365
0
    XXH3_reset_internal(statePtr, 0, secret, secretSize);
6366
0
    if (secret == NULL) return XXH_ERROR;
6367
0
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
6368
0
    return XXH_OK;
6369
0
}
6370
6371
/*! @ingroup XXH3_family */
6372
XXH_PUBLIC_API XXH_errorcode
6373
XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
6374
0
{
6375
0
    if (statePtr == NULL) return XXH_ERROR;
6376
0
    if (seed==0) return XXH3_64bits_reset(statePtr);
6377
0
    if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
6378
0
        XXH3_initCustomSecret(statePtr->customSecret, seed);
6379
0
    XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
6380
0
    return XXH_OK;
6381
0
}
6382
6383
/*! @ingroup XXH3_family */
6384
XXH_PUBLIC_API XXH_errorcode
6385
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
6386
0
{
6387
0
    if (statePtr == NULL) return XXH_ERROR;
6388
0
    if (secret == NULL) return XXH_ERROR;
6389
0
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
6390
0
    XXH3_reset_internal(statePtr, seed64, secret, secretSize);
6391
0
    statePtr->useSeed = 1; /* always, even if seed64==0 */
6392
0
    return XXH_OK;
6393
0
}
6394
6395
/*!
6396
 * @internal
6397
 * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
6398
 *
6399
 * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
6400
 *
6401
 * @param acc                Pointer to the 8 accumulator lanes
6402
 * @param nbStripesSoFarPtr  In/out pointer to the number of leftover stripes in the block*
6403
 * @param nbStripesPerBlock  Number of stripes in a block
6404
 * @param input              Input pointer
6405
 * @param nbStripes          Number of stripes to process
6406
 * @param secret             Secret pointer
6407
 * @param secretLimit        Offset of the last block in @p secret
6408
 * @param f_acc              Pointer to an XXH3_accumulate implementation
6409
 * @param f_scramble         Pointer to an XXH3_scrambleAcc implementation
6410
 * @return                   Pointer past the end of @p input after processing
6411
 */
6412
XXH_FORCE_INLINE const xxh_u8 *
6413
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
6414
                    size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
6415
                    const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
6416
                    const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
6417
                    XXH3_f_accumulate f_acc,
6418
                    XXH3_f_scrambleAcc f_scramble)
6419
0
{
6420
0
    const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
6421
0
    /* Process full blocks */
6422
0
    if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
6423
0
        /* Process the initial partial block... */
6424
0
        size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
6425
0
6426
0
        do {
6427
0
            /* Accumulate and scramble */
6428
0
            f_acc(acc, input, initialSecret, nbStripesThisIter);
6429
0
            f_scramble(acc, secret + secretLimit);
6430
0
            input += nbStripesThisIter * XXH_STRIPE_LEN;
6431
0
            nbStripes -= nbStripesThisIter;
6432
0
            /* Then continue the loop with the full block size */
6433
0
            nbStripesThisIter = nbStripesPerBlock;
6434
0
            initialSecret = secret;
6435
0
        } while (nbStripes >= nbStripesPerBlock);
6436
0
        *nbStripesSoFarPtr = 0;
6437
0
    }
6438
0
    /* Process a partial block */
6439
0
    if (nbStripes > 0) {
6440
0
        f_acc(acc, input, initialSecret, nbStripes);
6441
0
        input += nbStripes * XXH_STRIPE_LEN;
6442
0
        *nbStripesSoFarPtr += nbStripes;
6443
0
    }
6444
0
    /* Return end pointer */
6445
0
    return input;
6446
0
}
6447
6448
#ifndef XXH3_STREAM_USE_STACK
6449
# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
6450
#   define XXH3_STREAM_USE_STACK 1
6451
# endif
6452
#endif
6453
/*
6454
 * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
6455
 */
6456
XXH_FORCE_INLINE XXH_errorcode
6457
XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
6458
            const xxh_u8* XXH_RESTRICT input, size_t len,
6459
            XXH3_f_accumulate f_acc,
6460
            XXH3_f_scrambleAcc f_scramble)
6461
0
{
6462
0
    if (input==NULL) {
6463
0
        XXH_ASSERT(len == 0);
6464
0
        return XXH_OK;
6465
0
    }
6466
0
6467
0
    XXH_ASSERT(state != NULL);
6468
0
    {   const xxh_u8* const bEnd = input + len;
6469
0
        const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
6470
0
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
6471
0
        /* For some reason, gcc and MSVC seem to suffer greatly
6472
0
         * when operating accumulators directly into state.
6473
0
         * Operating into stack space seems to enable proper optimization.
6474
0
         * clang, on the other hand, doesn't seem to need this trick */
6475
0
        XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
6476
0
        XXH_memcpy(acc, state->acc, sizeof(acc));
6477
0
#else
6478
0
        xxh_u64* XXH_RESTRICT const acc = state->acc;
6479
0
#endif
6480
0
        state->totalLen += len;
6481
0
        XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
6482
0
6483
0
        /* small input : just fill in tmp buffer */
6484
0
        if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
6485
0
            XXH_memcpy(state->buffer + state->bufferedSize, input, len);
6486
0
            state->bufferedSize += (XXH32_hash_t)len;
6487
0
            return XXH_OK;
6488
0
        }
6489
0
6490
0
        /* total input is now > XXH3_INTERNALBUFFER_SIZE */
6491
0
        #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
6492
0
        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
6493
0
6494
0
        /*
6495
0
         * Internal buffer is partially filled (always, except at beginning)
6496
0
         * Complete it, then consume it.
6497
0
         */
6498
0
        if (state->bufferedSize) {
6499
0
            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
6500
0
            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
6501
0
            input += loadSize;
6502
0
            XXH3_consumeStripes(acc,
6503
0
                               &state->nbStripesSoFar, state->nbStripesPerBlock,
6504
0
                                state->buffer, XXH3_INTERNALBUFFER_STRIPES,
6505
0
                                secret, state->secretLimit,
6506
0
                                f_acc, f_scramble);
6507
0
            state->bufferedSize = 0;
6508
0
        }
6509
0
        XXH_ASSERT(input < bEnd);
6510
0
        if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
6511
0
            size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
6512
0
            input = XXH3_consumeStripes(acc,
6513
0
                                       &state->nbStripesSoFar, state->nbStripesPerBlock,
6514
0
                                       input, nbStripes,
6515
0
                                       secret, state->secretLimit,
6516
0
                                       f_acc, f_scramble);
6517
0
            XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
6518
0
6519
0
        }
6520
0
        /* Some remaining input (always) : buffer it */
6521
0
        XXH_ASSERT(input < bEnd);
6522
0
        XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
6523
0
        XXH_ASSERT(state->bufferedSize == 0);
6524
0
        XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
6525
0
        state->bufferedSize = (XXH32_hash_t)(bEnd-input);
6526
0
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
6527
0
        /* save stack accumulators into state */
6528
0
        XXH_memcpy(state->acc, acc, sizeof(acc));
6529
0
#endif
6530
0
    }
6531
0
6532
0
    return XXH_OK;
6533
0
}
6534
6535
/*! @ingroup XXH3_family */
6536
XXH_PUBLIC_API XXH_errorcode
6537
XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
6538
0
{
6539
0
    return XXH3_update(state, (const xxh_u8*)input, len,
6540
0
                       XXH3_accumulate, XXH3_scrambleAcc);
6541
0
}
6542
6543
6544
XXH_FORCE_INLINE void
6545
XXH3_digest_long (XXH64_hash_t* acc,
6546
                  const XXH3_state_t* state,
6547
                  const unsigned char* secret)
6548
0
{
6549
0
    xxh_u8 lastStripe[XXH_STRIPE_LEN];
6550
0
    const xxh_u8* lastStripePtr;
6551
0
6552
0
    /*
6553
0
     * Digest on a local copy. This way, the state remains unaltered, and it can
6554
0
     * continue ingesting more input afterwards.
6555
0
     */
6556
0
    XXH_memcpy(acc, state->acc, sizeof(state->acc));
6557
0
    if (state->bufferedSize >= XXH_STRIPE_LEN) {
6558
0
        /* Consume remaining stripes then point to remaining data in buffer */
6559
0
        size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
6560
0
        size_t nbStripesSoFar = state->nbStripesSoFar;
6561
0
        XXH3_consumeStripes(acc,
6562
0
                           &nbStripesSoFar, state->nbStripesPerBlock,
6563
0
                            state->buffer, nbStripes,
6564
0
                            secret, state->secretLimit,
6565
0
                            XXH3_accumulate, XXH3_scrambleAcc);
6566
0
        lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
6567
0
    } else {  /* bufferedSize < XXH_STRIPE_LEN */
6568
0
        /* Copy to temp buffer */
6569
0
        size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
6570
0
        XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
6571
0
        XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
6572
0
        XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
6573
0
        lastStripePtr = lastStripe;
6574
0
    }
6575
0
    /* Last stripe */
6576
0
    XXH3_accumulate_512(acc,
6577
0
                        lastStripePtr,
6578
0
                        secret + state->secretLimit - XXH_SECRET_LASTACC_START);
6579
0
}
6580
6581
/*! @ingroup XXH3_family */
6582
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
6583
0
{
6584
0
    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
6585
0
    if (state->totalLen > XXH3_MIDSIZE_MAX) {
6586
0
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
6587
0
        XXH3_digest_long(acc, state, secret);
6588
0
        return XXH3_finalizeLong_64b(acc, secret, (xxh_u64)state->totalLen);
6589
0
    }
6590
0
    /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
6591
0
    if (state->useSeed)
6592
0
        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
6593
0
    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
6594
0
                                  secret, state->secretLimit + XXH_STRIPE_LEN);
6595
0
}
6596
#endif /* !XXH_NO_STREAM */
6597
6598
6599
/* ==========================================
6600
 * XXH3 128 bits (a.k.a XXH128)
6601
 * ==========================================
6602
 * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
6603
 * even without counting the significantly larger output size.
6604
 *
6605
 * For example, extra steps are taken to avoid the seed-dependent collisions
6606
 * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
6607
 *
6608
 * This strength naturally comes at the cost of some speed, especially on short
6609
 * lengths. Note that longer hashes are about as fast as the 64-bit version
6610
 * due to it using only a slight modification of the 64-bit loop.
6611
 *
6612
 * XXH128 is also more oriented towards 64-bit machines. It is still extremely
6613
 * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
6614
 */
6615
6616
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6617
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6618
0
{
6619
0
    /* A doubled version of 1to3_64b with different constants. */
6620
0
    XXH_ASSERT(input != NULL);
6621
0
    XXH_ASSERT(1 <= len && len <= 3);
6622
0
    XXH_ASSERT(secret != NULL);
6623
0
    /*
6624
0
     * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
6625
0
     * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
6626
0
     * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
6627
0
     */
6628
0
    {   xxh_u8 const c1 = input[0];
6629
0
        xxh_u8 const c2 = input[len >> 1];
6630
0
        xxh_u8 const c3 = input[len - 1];
6631
0
        xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
6632
0
                                | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
6633
0
        xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
6634
0
        xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
6635
0
        xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
6636
0
        xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
6637
0
        xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
6638
0
        XXH128_hash_t h128;
6639
0
        h128.low64  = XXH64_avalanche(keyed_lo);
6640
0
        h128.high64 = XXH64_avalanche(keyed_hi);
6641
0
        return h128;
6642
0
    }
6643
0
}
6644
6645
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6646
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6647
0
{
6648
0
    XXH_ASSERT(input != NULL);
6649
0
    XXH_ASSERT(secret != NULL);
6650
0
    XXH_ASSERT(4 <= len && len <= 8);
6651
0
    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
6652
0
    {   xxh_u32 const input_lo = XXH_readLE32(input);
6653
0
        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
6654
0
        xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
6655
0
        xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
6656
0
        xxh_u64 const keyed = input_64 ^ bitflip;
6657
0
6658
0
        /* Shift len to the left to ensure it is even, this avoids even multiplies. */
6659
0
        XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
6660
0
6661
0
        m128.high64 += (m128.low64 << 1);
6662
0
        m128.low64  ^= (m128.high64 >> 3);
6663
0
6664
0
        m128.low64   = XXH_xorshift64(m128.low64, 35);
6665
0
        m128.low64  *= PRIME_MX2;
6666
0
        m128.low64   = XXH_xorshift64(m128.low64, 28);
6667
0
        m128.high64  = XXH3_avalanche(m128.high64);
6668
0
        return m128;
6669
0
    }
6670
0
}
6671
6672
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6673
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6674
0
{
6675
0
    XXH_ASSERT(input != NULL);
6676
0
    XXH_ASSERT(secret != NULL);
6677
0
    XXH_ASSERT(9 <= len && len <= 16);
6678
0
    {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
6679
0
        xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
6680
0
        xxh_u64 const input_lo = XXH_readLE64(input);
6681
0
        xxh_u64       input_hi = XXH_readLE64(input + len - 8);
6682
0
        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
6683
0
        /*
6684
0
         * Put len in the middle of m128 to ensure that the length gets mixed to
6685
0
         * both the low and high bits in the 128x64 multiply below.
6686
0
         */
6687
0
        m128.low64 += (xxh_u64)(len - 1) << 54;
6688
0
        input_hi   ^= bitfliph;
6689
0
        /*
6690
0
         * Add the high 32 bits of input_hi to the high 32 bits of m128, then
6691
0
         * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
6692
0
         * the high 64 bits of m128.
6693
0
         *
6694
0
         * The best approach to this operation is different on 32-bit and 64-bit.
6695
0
         */
6696
0
        if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
6697
0
            /*
6698
0
             * 32-bit optimized version, which is more readable.
6699
0
             *
6700
0
             * On 32-bit, it removes an ADC and delays a dependency between the two
6701
0
             * halves of m128.high64, but it generates an extra mask on 64-bit.
6702
0
             */
6703
0
            m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
6704
0
        } else {
6705
0
            /*
6706
0
             * 64-bit optimized (albeit more confusing) version.
6707
0
             *
6708
0
             * Uses some properties of addition and multiplication to remove the mask:
6709
0
             *
6710
0
             * Let:
6711
0
             *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
6712
0
             *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
6713
0
             *    c = XXH_PRIME32_2
6714
0
             *
6715
0
             *    a + (b * c)
6716
0
             * Inverse Property: x + y - x == y
6717
0
             *    a + (b * (1 + c - 1))
6718
0
             * Distributive Property: x * (y + z) == (x * y) + (x * z)
6719
0
             *    a + (b * 1) + (b * (c - 1))
6720
0
             * Identity Property: x * 1 == x
6721
0
             *    a + b + (b * (c - 1))
6722
0
             *
6723
0
             * Substitute a, b, and c:
6724
0
             *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
6725
0
             *
6726
0
             * Since input_hi.hi + input_hi.lo == input_hi, we get this:
6727
0
             *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
6728
0
             */
6729
0
            m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
6730
0
        }
6731
0
        /* m128 ^= XXH_swap64(m128 >> 64); */
6732
0
        m128.low64  ^= XXH_swap64(m128.high64);
6733
0
6734
0
        {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
6735
0
            XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
6736
0
            h128.high64 += m128.high64 * XXH_PRIME64_2;
6737
0
6738
0
            h128.low64   = XXH3_avalanche(h128.low64);
6739
0
            h128.high64  = XXH3_avalanche(h128.high64);
6740
0
            return h128;
6741
0
    }   }
6742
0
}
6743
6744
/*
6745
 * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
6746
 */
6747
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6748
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6749
0
{
6750
0
    XXH_ASSERT(len <= 16);
6751
0
    {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
6752
0
        if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
6753
0
        if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
6754
0
        {   XXH128_hash_t h128;
6755
0
            xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
6756
0
            xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
6757
0
            h128.low64 = XXH64_avalanche(seed ^ bitflipl);
6758
0
            h128.high64 = XXH64_avalanche( seed ^ bitfliph);
6759
0
            return h128;
6760
0
    }   }
6761
0
}
6762
6763
/*
6764
 * A bit slower than XXH3_mix16B, but handles multiply by zero better.
6765
 */
6766
XXH_FORCE_INLINE XXH128_hash_t
6767
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
6768
              const xxh_u8* secret, XXH64_hash_t seed)
6769
0
{
6770
0
    acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
6771
0
    acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
6772
0
    acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
6773
0
    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
6774
0
    return acc;
6775
0
}
6776
6777
6778
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6779
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
6780
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
6781
                      XXH64_hash_t seed)
6782
0
{
6783
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
6784
0
    XXH_ASSERT(16 < len && len <= 128);
6785
0
6786
0
    {   XXH128_hash_t acc;
6787
0
        acc.low64 = len * XXH_PRIME64_1;
6788
0
        acc.high64 = 0;
6789
0
6790
0
#if XXH_SIZE_OPT >= 1
6791
0
        {
6792
0
            /* Smaller, but slightly slower. */
6793
0
            unsigned int i = (unsigned int)(len - 1) / 32;
6794
0
            do {
6795
0
                acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
6796
0
            } while (i-- != 0);
6797
0
        }
6798
0
#else
6799
0
        if (len > 32) {
6800
0
            if (len > 64) {
6801
0
                if (len > 96) {
6802
0
                    acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
6803
0
                }
6804
0
                acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
6805
0
            }
6806
0
            acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
6807
0
        }
6808
0
        acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
6809
0
#endif
6810
0
        {   XXH128_hash_t h128;
6811
0
            h128.low64  = acc.low64 + acc.high64;
6812
0
            h128.high64 = (acc.low64    * XXH_PRIME64_1)
6813
0
                        + (acc.high64   * XXH_PRIME64_4)
6814
0
                        + ((len - seed) * XXH_PRIME64_2);
6815
0
            h128.low64  = XXH3_avalanche(h128.low64);
6816
0
            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
6817
0
            return h128;
6818
0
        }
6819
0
    }
6820
0
}
6821
6822
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
6823
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
6824
                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
6825
                       XXH64_hash_t seed)
6826
0
{
6827
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
6828
0
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
6829
0
6830
0
    {   XXH128_hash_t acc;
6831
0
        unsigned i;
6832
0
        acc.low64 = len * XXH_PRIME64_1;
6833
0
        acc.high64 = 0;
6834
0
        /*
6835
0
         *  We set as `i` as offset + 32. We do this so that unchanged
6836
0
         * `len` can be used as upper bound. This reaches a sweet spot
6837
0
         * where both x86 and aarch64 get simple agen and good codegen
6838
0
         * for the loop.
6839
0
         */
6840
0
        for (i = 32; i < 160; i += 32) {
6841
0
            acc = XXH128_mix32B(acc,
6842
0
                                input  + i - 32,
6843
0
                                input  + i - 16,
6844
0
                                secret + i - 32,
6845
0
                                seed);
6846
0
        }
6847
0
        acc.low64 = XXH3_avalanche(acc.low64);
6848
0
        acc.high64 = XXH3_avalanche(acc.high64);
6849
0
        /*
6850
0
         * NB: `i <= len` will duplicate the last 32-bytes if
6851
0
         * len % 32 was zero. This is an unfortunate necessity to keep
6852
0
         * the hash result stable.
6853
0
         */
6854
0
        for (i=160; i <= len; i += 32) {
6855
0
            acc = XXH128_mix32B(acc,
6856
0
                                input + i - 32,
6857
0
                                input + i - 16,
6858
0
                                secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
6859
0
                                seed);
6860
0
        }
6861
0
        /* last bytes */
6862
0
        acc = XXH128_mix32B(acc,
6863
0
                            input + len - 16,
6864
0
                            input + len - 32,
6865
0
                            secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
6866
0
                            (XXH64_hash_t)0 - seed);
6867
0
6868
0
        {   XXH128_hash_t h128;
6869
0
            h128.low64  = acc.low64 + acc.high64;
6870
0
            h128.high64 = (acc.low64    * XXH_PRIME64_1)
6871
0
                        + (acc.high64   * XXH_PRIME64_4)
6872
0
                        + ((len - seed) * XXH_PRIME64_2);
6873
0
            h128.low64  = XXH3_avalanche(h128.low64);
6874
0
            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
6875
0
            return h128;
6876
0
        }
6877
0
    }
6878
0
}
6879
6880
static XXH_PUREF XXH128_hash_t
6881
XXH3_finalizeLong_128b(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, xxh_u64 len)
6882
0
{
6883
0
    XXH128_hash_t h128;
6884
0
    h128.low64 = XXH3_finalizeLong_64b(acc, secret, len);
6885
0
    h128.high64 = XXH3_mergeAccs(acc, secret + secretSize
6886
0
                                             - XXH_STRIPE_LEN - XXH_SECRET_MERGEACCS_START,
6887
0
                                             ~(len * XXH_PRIME64_2));
6888
0
    return h128;
6889
0
}
6890
6891
XXH_FORCE_INLINE XXH128_hash_t
6892
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
6893
                            const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
6894
                            XXH3_f_accumulate f_acc,
6895
                            XXH3_f_scrambleAcc f_scramble)
6896
0
{
6897
0
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
6898
0
6899
0
    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
6900
0
6901
0
    /* converge into final hash */
6902
0
    XXH_STATIC_ASSERT(sizeof(acc) == 64);
6903
0
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
6904
0
    return XXH3_finalizeLong_128b(acc, secret, secretSize, (xxh_u64)len);
6905
0
}
6906
6907
/*
6908
 * It's important for performance that XXH3_hashLong() is not inlined.
6909
 */
6910
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
6911
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
6912
                           XXH64_hash_t seed64,
6913
                           const void* XXH_RESTRICT secret, size_t secretLen)
6914
0
{
6915
0
    (void)seed64; (void)secret; (void)secretLen;
6916
0
    return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
6917
0
                                       XXH3_accumulate, XXH3_scrambleAcc);
6918
0
}
6919
6920
/*
6921
 * It's important for performance to pass @p secretLen (when it's static)
6922
 * to the compiler, so that it can properly optimize the vectorized loop.
6923
 *
6924
 * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
6925
 * breaks -Og, this is XXH_NO_INLINE.
6926
 */
6927
XXH3_WITH_SECRET_INLINE XXH128_hash_t
6928
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
6929
                              XXH64_hash_t seed64,
6930
                              const void* XXH_RESTRICT secret, size_t secretLen)
6931
0
{
6932
0
    (void)seed64;
6933
0
    return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
6934
0
                                       XXH3_accumulate, XXH3_scrambleAcc);
6935
0
}
6936
6937
XXH_FORCE_INLINE XXH128_hash_t
6938
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
6939
                                XXH64_hash_t seed64,
6940
                                XXH3_f_accumulate f_acc,
6941
                                XXH3_f_scrambleAcc f_scramble,
6942
                                XXH3_f_initCustomSecret f_initSec)
6943
0
{
6944
0
    if (seed64 == 0)
6945
0
        return XXH3_hashLong_128b_internal(input, len,
6946
0
                                           XXH3_kSecret, sizeof(XXH3_kSecret),
6947
0
                                           f_acc, f_scramble);
6948
0
    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
6949
0
        f_initSec(secret, seed64);
6950
0
        return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
6951
0
                                           f_acc, f_scramble);
6952
0
    }
6953
0
}
6954
6955
/*
6956
 * It's important for performance that XXH3_hashLong is not inlined.
6957
 */
6958
XXH_NO_INLINE XXH128_hash_t
6959
XXH3_hashLong_128b_withSeed(const void* input, size_t len,
6960
                            XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
6961
0
{
6962
0
    (void)secret; (void)secretLen;
6963
0
    return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
6964
0
                XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
6965
0
}
6966
6967
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
6968
                                            XXH64_hash_t, const void* XXH_RESTRICT, size_t);
6969
6970
XXH_FORCE_INLINE XXH128_hash_t
6971
XXH3_128bits_internal(const void* input, size_t len,
6972
                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
6973
                      XXH3_hashLong128_f f_hl128)
6974
0
{
6975
0
    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
6976
0
    /*
6977
0
     * If an action is to be taken if `secret` conditions are not respected,
6978
0
     * it should be done here.
6979
0
     * For now, it's a contract pre-condition.
6980
0
     * Adding a check and a branch here would cost performance at every hash.
6981
0
     */
6982
0
    if (len <= 16)
6983
0
        return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
6984
0
    if (len <= 128)
6985
0
        return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6986
0
    if (len <= XXH3_MIDSIZE_MAX)
6987
0
        return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6988
0
    return f_hl128(input, len, seed64, secret, secretLen);
6989
0
}
6990
6991
6992
/* ===   Public XXH128 API   === */
6993
6994
/*! @ingroup XXH3_family */
6995
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
6996
0
{
6997
0
    return XXH3_128bits_internal(input, len, 0,
6998
0
                                 XXH3_kSecret, sizeof(XXH3_kSecret),
6999
0
                                 XXH3_hashLong_128b_default);
7000
0
}
7001
7002
/*! @ingroup XXH3_family */
7003
XXH_PUBLIC_API XXH128_hash_t
7004
XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
7005
0
{
7006
0
    return XXH3_128bits_internal(input, len, 0,
7007
0
                                 (const xxh_u8*)secret, secretSize,
7008
0
                                 XXH3_hashLong_128b_withSecret);
7009
0
}
7010
7011
/*! @ingroup XXH3_family */
7012
XXH_PUBLIC_API XXH128_hash_t
7013
XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
7014
0
{
7015
0
    return XXH3_128bits_internal(input, len, seed,
7016
0
                                 XXH3_kSecret, sizeof(XXH3_kSecret),
7017
0
                                 XXH3_hashLong_128b_withSeed);
7018
0
}
7019
7020
/*! @ingroup XXH3_family */
7021
XXH_PUBLIC_API XXH128_hash_t
7022
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
7023
0
{
7024
0
    if (len <= XXH3_MIDSIZE_MAX)
7025
0
        return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
7026
0
    return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
7027
0
}
7028
7029
/*! @ingroup XXH3_family */
7030
XXH_PUBLIC_API XXH128_hash_t
7031
XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
7032
0
{
7033
0
    return XXH3_128bits_withSeed(input, len, seed);
7034
0
}
7035
7036
7037
/* ===   XXH3 128-bit streaming   === */
7038
#ifndef XXH_NO_STREAM
7039
/*
7040
 * All initialization and update functions are identical to 64-bit streaming variant.
7041
 * The only difference is the finalization routine.
7042
 */
7043
7044
/*! @ingroup XXH3_family */
7045
XXH_PUBLIC_API XXH_errorcode
7046
XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
7047
0
{
7048
0
    return XXH3_64bits_reset(statePtr);
7049
0
}
7050
7051
/*! @ingroup XXH3_family */
7052
XXH_PUBLIC_API XXH_errorcode
7053
XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
7054
0
{
7055
0
    return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
7056
0
}
7057
7058
/*! @ingroup XXH3_family */
7059
XXH_PUBLIC_API XXH_errorcode
7060
XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
7061
0
{
7062
0
    return XXH3_64bits_reset_withSeed(statePtr, seed);
7063
0
}
7064
7065
/*! @ingroup XXH3_family */
7066
XXH_PUBLIC_API XXH_errorcode
7067
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
7068
0
{
7069
0
    return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
7070
0
}
7071
7072
/*! @ingroup XXH3_family */
7073
XXH_PUBLIC_API XXH_errorcode
7074
XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
7075
0
{
7076
0
    return XXH3_64bits_update(state, input, len);
7077
0
}
7078
7079
/*! @ingroup XXH3_family */
7080
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
7081
0
{
7082
0
    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
7083
0
    if (state->totalLen > XXH3_MIDSIZE_MAX) {
7084
0
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
7085
0
        XXH3_digest_long(acc, state, secret);
7086
0
        XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
7087
0
        return XXH3_finalizeLong_128b(acc, secret, state->secretLimit + XXH_STRIPE_LEN,  (xxh_u64)state->totalLen);
7088
0
    }
7089
0
    /* len <= XXH3_MIDSIZE_MAX : short code */
7090
0
    if (state->useSeed)
7091
0
        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
7092
0
    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
7093
0
                                   secret, state->secretLimit + XXH_STRIPE_LEN);
7094
0
}
7095
#endif /* !XXH_NO_STREAM */
7096
/* 128-bit utility functions */
7097
7098
#include <string.h>   /* memcmp, memcpy */
7099
7100
/* return : 1 is equal, 0 if different */
7101
/*! @ingroup XXH3_family */
7102
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
7103
0
{
7104
0
    /* note : XXH128_hash_t is compact, it has no padding byte */
7105
0
    return !(memcmp(&h1, &h2, sizeof(h1)));
7106
0
}
7107
7108
/* This prototype is compatible with stdlib's qsort().
7109
 * @return : >0 if *h128_1  > *h128_2
7110
 *           <0 if *h128_1  < *h128_2
7111
 *           =0 if *h128_1 == *h128_2  */
7112
/*! @ingroup XXH3_family */
7113
XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
7114
0
{
7115
0
    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
7116
0
    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
7117
0
    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
7118
0
    /* note : bets that, in most cases, hash values are different */
7119
0
    if (hcmp) return hcmp;
7120
0
    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
7121
0
}
7122
7123
7124
/*======   Canonical representation   ======*/
7125
/*! @ingroup XXH3_family */
7126
XXH_PUBLIC_API void
7127
XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
7128
0
{
7129
0
    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
7130
0
    if (XXH_CPU_LITTLE_ENDIAN) {
7131
0
        hash.high64 = XXH_swap64(hash.high64);
7132
0
        hash.low64  = XXH_swap64(hash.low64);
7133
0
    }
7134
0
    XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
7135
0
    XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
7136
0
}
7137
7138
/*! @ingroup XXH3_family */
7139
XXH_PUBLIC_API XXH128_hash_t
7140
XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
7141
0
{
7142
0
    XXH128_hash_t h;
7143
0
    h.high64 = XXH_readBE64(src);
7144
0
    h.low64  = XXH_readBE64(src->digest + 8);
7145
0
    return h;
7146
0
}
7147
7148
7149
7150
/* ==========================================
7151
 * Secret generators
7152
 * ==========================================
7153
 */
7154
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
7155
7156
XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
7157
0
{
7158
0
    XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
7159
0
    XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
7160
0
}
7161
7162
/*! @ingroup XXH3_family */
7163
XXH_PUBLIC_API XXH_errorcode
7164
XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
7165
0
{
7166
0
#if (XXH_DEBUGLEVEL >= 1)
7167
0
    XXH_ASSERT(secretBuffer != NULL);
7168
0
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
7169
0
#else
7170
0
    /* production mode, assert() are disabled */
7171
0
    if (secretBuffer == NULL) return XXH_ERROR;
7172
0
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
7173
0
#endif
7174
0
7175
0
    if (customSeedSize == 0) {
7176
0
        customSeed = XXH3_kSecret;
7177
0
        customSeedSize = XXH_SECRET_DEFAULT_SIZE;
7178
0
    }
7179
0
#if (XXH_DEBUGLEVEL >= 1)
7180
0
    XXH_ASSERT(customSeed != NULL);
7181
0
#else
7182
0
    if (customSeed == NULL) return XXH_ERROR;
7183
0
#endif
7184
0
7185
0
    /* Fill secretBuffer with a copy of customSeed - repeat as needed */
7186
0
    {   size_t pos = 0;
7187
0
        while (pos < secretSize) {
7188
0
            size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
7189
0
            memcpy((char*)secretBuffer + pos, customSeed, toCopy);
7190
0
            pos += toCopy;
7191
0
    }   }
7192
0
7193
0
    {   size_t const nbSeg16 = secretSize / 16;
7194
0
        size_t n;
7195
0
        XXH128_canonical_t scrambler;
7196
0
        XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
7197
0
        for (n=0; n<nbSeg16; n++) {
7198
0
            XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
7199
0
            XXH3_combine16((char*)secretBuffer + n*16, h128);
7200
0
        }
7201
0
        /* last segment */
7202
0
        XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
7203
0
    }
7204
0
    return XXH_OK;
7205
0
}
7206
7207
/*! @ingroup XXH3_family */
7208
XXH_PUBLIC_API void
7209
XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
7210
0
{
7211
0
    XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
7212
0
    XXH3_initCustomSecret(secret, seed);
7213
0
    XXH_ASSERT(secretBuffer != NULL);
7214
0
    memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
7215
0
}
7216
7217
7218
7219
/* Pop our optimization override from above */
7220
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
7221
  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
7222
  && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
7223
#  pragma GCC pop_options
7224
#endif
7225
7226
#endif  /* XXH_NO_LONG_LONG */
7227
7228
#endif  /* XXH_NO_XXH3 */
7229
7230
/*!
7231
 * @}
7232
 */
7233
#endif  /* XXH_IMPLEMENTATION */
7234
7235
7236
#if defined (__cplusplus)
7237
} /* extern "C" */
7238
#endif