Coverage Report

Created: 2025-11-24 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/rtpproxy/external/libucl/src/mum.h
Line
Count
Source
1
/* Copyright (c) 2016 Vladimir Makarov <vmakarov@gcc.gnu.org>
2
3
   Permission is hereby granted, free of charge, to any person
4
   obtaining a copy of this software and associated documentation
5
   files (the "Software"), to deal in the Software without
6
   restriction, including without limitation the rights to use, copy,
7
   modify, merge, publish, distribute, sublicense, and/or sell copies
8
   of the Software, and to permit persons to whom the Software is
9
   furnished to do so, subject to the following conditions:
10
11
   The above copyright notice and this permission notice shall be
12
   included in all copies or substantial portions of the Software.
13
14
   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17
   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
18
   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19
   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
   SOFTWARE.
22
*/
23
24
/* This file implements MUM (MUltiply and Mix) hashing.  We randomize
25
   input data by 64x64-bit multiplication and mixing hi- and low-parts
26
   of the multiplication result by using an addition and then mix it
27
   into the current state.  We use prime numbers randomly generated
28
   with the equal probability of their bit values for the
29
   multiplication.  When all primes are used once, the state is
30
   randomized and the same prime numbers are used again for data
31
   randomization.
32
33
   The MUM hashing passes all SMHasher tests.  Pseudo Random Number
34
   Generator based on MUM also passes NIST Statistical Test Suite for
35
   Random and Pseudorandom Number Generators for Cryptographic
36
   Applications (version 2.2.1) with 1000 bitstreams each containing
37
   1M bits.  MUM hashing is also faster Spooky64 and City64 on small
38
   strings (at least up to 512-bit) on Haswell and Power7.  The MUM bulk
39
   speed (speed on very long data) is bigger than Spooky and City on
40
   Power7.  On Haswell the bulk speed is bigger than Spooky one and
41
   close to City speed.  */
42
43
#ifndef __MUM_HASH__
44
#define __MUM_HASH__
45
46
#include <stddef.h>
47
#include <stdlib.h>
48
#include <string.h>
49
#include <limits.h>
50
51
#ifdef _MSC_VER
52
typedef unsigned __int16 uint16_t;
53
typedef unsigned __int32 uint32_t;
54
typedef unsigned __int64 uint64_t;
55
#else
56
#include <stdint.h>
57
#endif
58
59
/* Macro saying to use 128-bit integers implemented by GCC for some
60
   targets.  */
61
#ifndef _MUM_USE_INT128
62
/* In GCC uint128_t is defined if HOST_BITS_PER_WIDE_INT >= 64.
63
   HOST_WIDE_INT is long if HOST_BITS_PER_LONG > HOST_BITS_PER_INT,
64
   otherwise int. */
65
#if defined(__GNUC__) && UINT_MAX != ULONG_MAX
66
#define _MUM_USE_INT128 1
67
#else
68
#define _MUM_USE_INT128 0
69
#endif
70
#endif
71
72
#if defined(__GNUC__) && ((__GNUC__ == 4) &&  (__GNUC_MINOR__ >= 9) || (__GNUC__ > 4))
73
#define _MUM_FRESH_GCC
74
#endif
75
76
#if defined(__GNUC__) && !defined(__llvm__) && defined(_MUM_FRESH_GCC)
77
#define _MUM_ATTRIBUTE_UNUSED  __attribute__((unused))
78
#define _MUM_OPTIMIZE(opts) __attribute__((__optimize__ (opts)))
79
#define _MUM_TARGET(opts) __attribute__((__target__ (opts)))
80
#else
81
#define _MUM_ATTRIBUTE_UNUSED
82
#define _MUM_OPTIMIZE(opts)
83
#define _MUM_TARGET(opts)
84
#endif
85
86
87
/* Here are different primes randomly generated with the equal
88
   probability of their bit values.  They are used to randomize input
89
   values.  */
90
static uint64_t _mum_hash_step_prime = 0x2e0bb864e9ea7df5ULL;
91
static uint64_t _mum_key_step_prime = 0xcdb32970830fcaa1ULL;
92
static uint64_t _mum_block_start_prime = 0xc42b5e2e6480b23bULL;
93
static uint64_t _mum_unroll_prime = 0x7b51ec3d22f7096fULL;
94
static uint64_t _mum_tail_prime = 0xaf47d47c99b1461bULL;
95
static uint64_t _mum_finish_prime1 = 0xa9a7ae7ceff79f3fULL;
96
static uint64_t _mum_finish_prime2 = 0xaf47d47c99b1461bULL;
97
98
static uint64_t _mum_primes [] = {
99
  0X9ebdcae10d981691, 0X32b9b9b97a27ac7d, 0X29b5584d83d35bbd, 0X4b04e0e61401255f,
100
  0X25e8f7b1f1c9d027, 0X80d4c8c000f3e881, 0Xbd1255431904b9dd, 0X8a3bd4485eee6d81,
101
  0X3bc721b2aad05197, 0X71b1a19b907d6e33, 0X525e6c1084a8534b, 0X9e4c2cd340c1299f,
102
  0Xde3add92e94caa37, 0X7e14eadb1f65311d, 0X3f5aa40f89812853, 0X33b15a3b587d15c9,
103
};
104
105
/* Multiply 64-bit V and P and return sum of high and low parts of the
106
   result.  */
107
static inline uint64_t
108
0
_mum (uint64_t v, uint64_t p) {
109
0
  uint64_t hi, lo;
110
0
#if _MUM_USE_INT128
111
#if defined(__aarch64__) && defined(ROOT_OF_ALL_EVILS)
112
  /* AARCH64 needs 2 insns to calculate 128-bit result of the
113
     multiplication.  If we use a generic code we actually call a
114
     function doing 128x128->128 bit multiplication.  The function is
115
     very slow.  */
116
  lo = v * p, hi;
117
  __asm ("umulh %0, %1, %2" : "=r" (hi) : "r" (v), "r" (p));
118
#else
119
0
  __uint128_t r = (__uint128_t) v * (__uint128_t) p;
120
0
  hi = (uint64_t) (r >> 64);
121
0
  lo = (uint64_t) r;
122
0
#endif
123
#else
124
  /* Implementation of 64x64->128-bit multiplication by four 32x32->64
125
     bit multiplication.  */
126
  uint64_t hv = v >> 32, hp = p >> 32;
127
  uint64_t lv = (uint32_t) v, lp = (uint32_t) p;
128
  uint64_t rh =  hv * hp;
129
  uint64_t rm_0 = hv * lp;
130
  uint64_t rm_1 = hp * lv;
131
  uint64_t rl =  lv * lp;
132
  uint64_t t, carry = 0;
133
134
  /* We could ignore a carry bit here if we did not care about the
135
     same hash for 32-bit and 64-bit targets.  */
136
  t = rl + (rm_0 << 32);
137
#ifdef MUM_TARGET_INDEPENDENT_HASH
138
  carry = t < rl;
139
#endif
140
  lo = t + (rm_1 << 32);
141
#ifdef MUM_TARGET_INDEPENDENT_HASH
142
  carry += lo < t;
143
#endif
144
  hi = rh + (rm_0 >> 32) + (rm_1 >> 32) + carry;
145
#endif
146
  /* We could use XOR here too but, for some reasons, on Haswell and
147
     Power7 using an addition improves hashing performance by 10% for
148
     small strings.  */
149
0
  return hi + lo;
150
0
}
Unexecuted instantiation: ucl_emitter.c:_mum
Unexecuted instantiation: ucl_emitter_streamline.c:_mum
Unexecuted instantiation: ucl_emitter_utils.c:_mum
Unexecuted instantiation: ucl_hash.c:_mum
Unexecuted instantiation: ucl_msgpack.c:_mum
Unexecuted instantiation: ucl_parser.c:_mum
Unexecuted instantiation: ucl_schema.c:_mum
Unexecuted instantiation: ucl_sexp.c:_mum
Unexecuted instantiation: ucl_util.c:_mum
151
152
#if defined(_MSC_VER)
153
#define _mum_bswap_32(x) _byteswap_uint32_t (x)
154
#define _mum_bswap_64(x) _byteswap_uint64_t (x)
155
#elif defined(__APPLE__)
156
#include <libkern/OSByteOrder.h>
157
#define _mum_bswap_32(x) OSSwapInt32 (x)
158
#define _mum_bswap_64(x) OSSwapInt64 (x)
159
#elif defined(__GNUC__)
160
#define _mum_bswap32(x) __builtin_bswap32 (x)
161
#define _mum_bswap64(x) __builtin_bswap64 (x)
162
#else
163
#include <byteswap.h>
164
#define _mum_bswap32(x) bswap32 (x)
165
#define _mum_bswap64(x) bswap64 (x)
166
#endif
167
168
static inline uint64_t
169
0
_mum_le (uint64_t v) {
170
0
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || !defined(MUM_TARGET_INDEPENDENT_HASH)
171
0
  return v;
172
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
173
  return _mum_bswap64 (v);
174
#else
175
#error "Unknown endianness"
176
#endif
177
0
}
Unexecuted instantiation: ucl_emitter.c:_mum_le
Unexecuted instantiation: ucl_emitter_streamline.c:_mum_le
Unexecuted instantiation: ucl_emitter_utils.c:_mum_le
Unexecuted instantiation: ucl_hash.c:_mum_le
Unexecuted instantiation: ucl_msgpack.c:_mum_le
Unexecuted instantiation: ucl_parser.c:_mum_le
Unexecuted instantiation: ucl_schema.c:_mum_le
Unexecuted instantiation: ucl_sexp.c:_mum_le
Unexecuted instantiation: ucl_util.c:_mum_le
178
179
static inline uint32_t
180
0
_mum_le32 (uint32_t v) {
181
0
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || !defined(MUM_TARGET_INDEPENDENT_HASH)
182
0
  return v;
183
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
184
  return _mum_bswap32 (v);
185
#else
186
#error "Unknown endianness"
187
#endif
188
0
}
Unexecuted instantiation: ucl_emitter.c:_mum_le32
Unexecuted instantiation: ucl_emitter_streamline.c:_mum_le32
Unexecuted instantiation: ucl_emitter_utils.c:_mum_le32
Unexecuted instantiation: ucl_hash.c:_mum_le32
Unexecuted instantiation: ucl_msgpack.c:_mum_le32
Unexecuted instantiation: ucl_parser.c:_mum_le32
Unexecuted instantiation: ucl_schema.c:_mum_le32
Unexecuted instantiation: ucl_sexp.c:_mum_le32
Unexecuted instantiation: ucl_util.c:_mum_le32
189
190
/* Macro defining how many times the most nested loop in
191
   _mum_hash_aligned will be unrolled by the compiler (although it can
192
   make an own decision:).  Use only a constant here to help a
193
   compiler to unroll a major loop.
194
195
   The macro value affects the result hash for strings > 128 bit.  The
196
   unroll factor greatly affects the hashing speed.  We prefer the
197
   speed.  */
198
#ifndef _MUM_UNROLL_FACTOR_POWER
199
#if defined(__PPC64__) && !defined(MUM_TARGET_INDEPENDENT_HASH)
200
#define _MUM_UNROLL_FACTOR_POWER 3
201
#elif defined(__aarch64__) && !defined(MUM_TARGET_INDEPENDENT_HASH)
202
#define _MUM_UNROLL_FACTOR_POWER 4
203
#else
204
0
#define _MUM_UNROLL_FACTOR_POWER 2
205
#endif
206
#endif
207
208
#if _MUM_UNROLL_FACTOR_POWER < 1
209
#error "too small unroll factor"
210
#elif _MUM_UNROLL_FACTOR_POWER > 4
211
#error "We have not enough primes for such unroll factor"
212
#endif
213
214
0
#define _MUM_UNROLL_FACTOR (1 << _MUM_UNROLL_FACTOR_POWER)
215
216
static inline uint64_t _MUM_OPTIMIZE("unroll-loops")
217
0
_mum_hash_aligned (uint64_t start, const void *key, size_t len) {
218
0
  uint64_t result = start;
219
0
  const unsigned char *str = (const unsigned char *) key;
220
0
  uint64_t u64;
221
0
  int i;
222
0
  size_t n;
223
224
0
  result = _mum (result, _mum_block_start_prime);
225
0
  while  (len > _MUM_UNROLL_FACTOR * sizeof (uint64_t)) {
226
    /* This loop could be vectorized when we have vector insns for
227
       64x64->128-bit multiplication.  AVX2 currently only have a
228
       vector insn for 4 32x32->64-bit multiplication.  */
229
0
    for (i = 0; i < _MUM_UNROLL_FACTOR; i++)
230
0
      result ^= _mum (_mum_le (((uint64_t *) str)[i]), _mum_primes[i]);
231
0
    len -= _MUM_UNROLL_FACTOR * sizeof (uint64_t);
232
0
    str += _MUM_UNROLL_FACTOR * sizeof (uint64_t);
233
    /* We will use the same prime numbers on the next iterations --
234
       randomize the state.  */
235
0
    result = _mum (result, _mum_unroll_prime);
236
0
  }
237
0
  n = len / sizeof (uint64_t);
238
0
  for (i = 0; i < (int)n; i++)
239
0
    result ^= _mum (_mum_le (((uint64_t *) str)[i]), _mum_primes[i]);
240
0
  len -= n * sizeof (uint64_t); str += n * sizeof (uint64_t);
241
0
  switch (len) {
242
0
  case 7:
243
0
    u64 = _mum_le32 (*(uint32_t *) str);
244
0
    u64 |= (uint64_t) str[4] << 32;
245
0
    u64 |= (uint64_t) str[5] << 40;
246
0
    u64 |= (uint64_t) str[6] << 48;
247
0
    return result ^ _mum (u64, _mum_tail_prime);
248
0
  case 6:
249
0
    u64 = _mum_le32 (*(uint32_t *) str);
250
0
    u64 |= (uint64_t) str[4] << 32;
251
0
    u64 |= (uint64_t) str[5] << 40;
252
0
    return result ^ _mum (u64, _mum_tail_prime);
253
0
  case 5:
254
0
    u64 = _mum_le32 (*(uint32_t *) str);
255
0
    u64 |= (uint64_t) str[4] << 32;
256
0
    return result ^ _mum (u64, _mum_tail_prime);
257
0
  case 4:
258
0
    u64 = _mum_le32 (*(uint32_t *) str);
259
0
    return result ^ _mum (u64, _mum_tail_prime);
260
0
  case 3:
261
0
    u64 = str[0];
262
0
    u64 |= (uint64_t) str[1] << 8;
263
0
    u64 |= (uint64_t) str[2] << 16;
264
0
    return result ^ _mum (u64, _mum_tail_prime);
265
0
  case 2:
266
0
    u64 = str[0];
267
0
    u64 |= (uint64_t) str[1] << 8;
268
0
    return result ^ _mum (u64, _mum_tail_prime);
269
0
  case 1:
270
0
    u64 = str[0];
271
0
    return result ^ _mum (u64, _mum_tail_prime);
272
0
  }
273
0
  return result;
274
0
}
Unexecuted instantiation: ucl_emitter.c:_mum_hash_aligned
Unexecuted instantiation: ucl_emitter_streamline.c:_mum_hash_aligned
Unexecuted instantiation: ucl_emitter_utils.c:_mum_hash_aligned
Unexecuted instantiation: ucl_hash.c:_mum_hash_aligned
Unexecuted instantiation: ucl_msgpack.c:_mum_hash_aligned
Unexecuted instantiation: ucl_parser.c:_mum_hash_aligned
Unexecuted instantiation: ucl_schema.c:_mum_hash_aligned
Unexecuted instantiation: ucl_sexp.c:_mum_hash_aligned
Unexecuted instantiation: ucl_util.c:_mum_hash_aligned
275
276
/* Final randomization of H.  */
277
static inline uint64_t
278
0
_mum_final (uint64_t h) {
279
0
  h ^= _mum (h, _mum_finish_prime1);
280
0
  h ^= _mum (h, _mum_finish_prime2);
281
0
  return h;
282
0
}
Unexecuted instantiation: ucl_emitter.c:_mum_final
Unexecuted instantiation: ucl_emitter_streamline.c:_mum_final
Unexecuted instantiation: ucl_emitter_utils.c:_mum_final
Unexecuted instantiation: ucl_hash.c:_mum_final
Unexecuted instantiation: ucl_msgpack.c:_mum_final
Unexecuted instantiation: ucl_parser.c:_mum_final
Unexecuted instantiation: ucl_schema.c:_mum_final
Unexecuted instantiation: ucl_sexp.c:_mum_final
Unexecuted instantiation: ucl_util.c:_mum_final
283
284
#if defined(__x86_64__) && defined(_MUM_FRESH_GCC)
285
286
/* We want to use AVX2 insn MULX instead of generic x86-64 MULQ where
287
   it is possible.  Although on modern Intel processors MULQ takes
288
   3-cycles vs. 4 for MULX, MULX permits more freedom in insn
289
   scheduling as it uses less fixed registers.  */
290
static inline uint64_t _MUM_TARGET("arch=haswell")
291
_mum_hash_avx2 (const void * key, size_t len, uint64_t seed) {
292
  return _mum_final (_mum_hash_aligned (seed + len, key, len));
293
}
294
#endif
295
296
#ifndef _MUM_UNALIGNED_ACCESS
297
#if defined(__x86_64__) || defined(__i386__) || defined(__PPC64__) \
298
    || defined(__s390__) || defined(__m32c__) || defined(cris)     \
299
    || defined(__CR16__) || defined(__vax__) || defined(__m68k__) \
300
    || defined(__aarch64__)
301
0
#define _MUM_UNALIGNED_ACCESS 1
302
#else
303
#define _MUM_UNALIGNED_ACCESS 0
304
#endif
305
#endif
306
307
/* When we need an aligned access to data being hashed we move part of
308
   the unaligned data to an aligned block of given size and then
309
   process it, repeating processing the data by the block.  */
310
#ifndef _MUM_BLOCK_LEN
311
0
#define _MUM_BLOCK_LEN 1024
312
#endif
313
314
#if _MUM_BLOCK_LEN < 8
315
#error "too small block length"
316
#endif
317
318
static inline uint64_t
319
#if defined(__x86_64__)
320
_MUM_TARGET("inline-all-stringops")
321
#endif
322
0
_mum_hash_default (const void *key, size_t len, uint64_t seed) {
323
0
  uint64_t result;
324
0
  const unsigned char *str = (const unsigned char *) key;
325
0
  size_t block_len;
326
0
  uint64_t buf[_MUM_BLOCK_LEN / sizeof (uint64_t)];
327
328
0
  result = seed + len;
329
0
  if (_MUM_UNALIGNED_ACCESS || ((size_t) str & 0x7) == 0)
330
0
    result = _mum_hash_aligned (result, key, len);
331
0
  else {
332
0
    while (len != 0) {
333
0
      block_len = len < _MUM_BLOCK_LEN ? len : _MUM_BLOCK_LEN;
334
0
      memmove (buf, str, block_len);
335
0
      result = _mum_hash_aligned (result, buf, block_len);
336
0
      len -= block_len;
337
0
      str += block_len;
338
0
    }
339
0
  }
340
0
  return _mum_final (result);
341
0
}
Unexecuted instantiation: ucl_emitter.c:_mum_hash_default
Unexecuted instantiation: ucl_emitter_streamline.c:_mum_hash_default
Unexecuted instantiation: ucl_emitter_utils.c:_mum_hash_default
Unexecuted instantiation: ucl_hash.c:_mum_hash_default
Unexecuted instantiation: ucl_msgpack.c:_mum_hash_default
Unexecuted instantiation: ucl_parser.c:_mum_hash_default
Unexecuted instantiation: ucl_schema.c:_mum_hash_default
Unexecuted instantiation: ucl_sexp.c:_mum_hash_default
Unexecuted instantiation: ucl_util.c:_mum_hash_default
342
343
static inline uint64_t
344
0
_mum_next_factor (void) {
345
0
  uint64_t start = 0;
346
0
  int i;
347
0
348
0
  for (i = 0; i < 8; i++)
349
0
    start = (start << 8) | rand() % 256;
350
0
  return start;
351
0
}
Unexecuted instantiation: ucl_emitter.c:_mum_next_factor
Unexecuted instantiation: ucl_emitter_streamline.c:_mum_next_factor
Unexecuted instantiation: ucl_emitter_utils.c:_mum_next_factor
Unexecuted instantiation: ucl_hash.c:_mum_next_factor
Unexecuted instantiation: ucl_msgpack.c:_mum_next_factor
Unexecuted instantiation: ucl_parser.c:_mum_next_factor
Unexecuted instantiation: ucl_schema.c:_mum_next_factor
Unexecuted instantiation: ucl_sexp.c:_mum_next_factor
Unexecuted instantiation: ucl_util.c:_mum_next_factor
352
353
/* ++++++++++++++++++++++++++ Interface functions: +++++++++++++++++++  */
354
355
/* Set random multiplicators depending on SEED.  */
356
static inline void
357
0
mum_hash_randomize (uint64_t seed) {
358
0
  int i;
359
0
360
0
  srand (seed);
361
0
  _mum_hash_step_prime = _mum_next_factor ();
362
0
  _mum_key_step_prime = _mum_next_factor ();
363
0
  _mum_finish_prime1 = _mum_next_factor ();
364
0
  _mum_finish_prime2 = _mum_next_factor ();
365
0
  _mum_block_start_prime = _mum_next_factor ();
366
0
  _mum_unroll_prime = _mum_next_factor ();
367
0
  _mum_tail_prime = _mum_next_factor ();
368
0
  for (i = 0; i < (int)(sizeof (_mum_primes) / sizeof (uint64_t)); i++)
369
0
    _mum_primes[i] = _mum_next_factor ();
370
0
}
Unexecuted instantiation: ucl_emitter.c:mum_hash_randomize
Unexecuted instantiation: ucl_emitter_streamline.c:mum_hash_randomize
Unexecuted instantiation: ucl_emitter_utils.c:mum_hash_randomize
Unexecuted instantiation: ucl_hash.c:mum_hash_randomize
Unexecuted instantiation: ucl_msgpack.c:mum_hash_randomize
Unexecuted instantiation: ucl_parser.c:mum_hash_randomize
Unexecuted instantiation: ucl_schema.c:mum_hash_randomize
Unexecuted instantiation: ucl_sexp.c:mum_hash_randomize
Unexecuted instantiation: ucl_util.c:mum_hash_randomize
371
372
/* Start hashing data with SEED.  Return the state.  */
373
static inline uint64_t
374
0
mum_hash_init (uint64_t seed) {
375
0
  return seed;
376
0
}
Unexecuted instantiation: ucl_emitter.c:mum_hash_init
Unexecuted instantiation: ucl_emitter_streamline.c:mum_hash_init
Unexecuted instantiation: ucl_emitter_utils.c:mum_hash_init
Unexecuted instantiation: ucl_hash.c:mum_hash_init
Unexecuted instantiation: ucl_msgpack.c:mum_hash_init
Unexecuted instantiation: ucl_parser.c:mum_hash_init
Unexecuted instantiation: ucl_schema.c:mum_hash_init
Unexecuted instantiation: ucl_sexp.c:mum_hash_init
Unexecuted instantiation: ucl_util.c:mum_hash_init
377
378
/* Process data KEY with the state H and return the updated state.  */
379
static inline uint64_t
380
mum_hash_step (uint64_t h, uint64_t key)
381
0
{
382
0
  return _mum (h, _mum_hash_step_prime) ^ _mum (key, _mum_key_step_prime);
383
0
}
Unexecuted instantiation: ucl_emitter.c:mum_hash_step
Unexecuted instantiation: ucl_emitter_streamline.c:mum_hash_step
Unexecuted instantiation: ucl_emitter_utils.c:mum_hash_step
Unexecuted instantiation: ucl_hash.c:mum_hash_step
Unexecuted instantiation: ucl_msgpack.c:mum_hash_step
Unexecuted instantiation: ucl_parser.c:mum_hash_step
Unexecuted instantiation: ucl_schema.c:mum_hash_step
Unexecuted instantiation: ucl_sexp.c:mum_hash_step
Unexecuted instantiation: ucl_util.c:mum_hash_step
384
385
/* Return the result of hashing using the current state H.  */
386
static inline uint64_t
387
0
mum_hash_finish (uint64_t h) {
388
0
  return _mum_final (h);
389
0
}
Unexecuted instantiation: ucl_emitter.c:mum_hash_finish
Unexecuted instantiation: ucl_emitter_streamline.c:mum_hash_finish
Unexecuted instantiation: ucl_emitter_utils.c:mum_hash_finish
Unexecuted instantiation: ucl_hash.c:mum_hash_finish
Unexecuted instantiation: ucl_msgpack.c:mum_hash_finish
Unexecuted instantiation: ucl_parser.c:mum_hash_finish
Unexecuted instantiation: ucl_schema.c:mum_hash_finish
Unexecuted instantiation: ucl_sexp.c:mum_hash_finish
Unexecuted instantiation: ucl_util.c:mum_hash_finish
390
391
/* Fast hashing of KEY with SEED.  The hash is always the same for the
392
   same key on any target. */
393
static inline size_t
394
0
mum_hash64 (uint64_t key, uint64_t seed) {
395
0
  return mum_hash_finish (mum_hash_step (mum_hash_init (seed), key));
396
0
}
Unexecuted instantiation: ucl_emitter.c:mum_hash64
Unexecuted instantiation: ucl_emitter_streamline.c:mum_hash64
Unexecuted instantiation: ucl_emitter_utils.c:mum_hash64
Unexecuted instantiation: ucl_hash.c:mum_hash64
Unexecuted instantiation: ucl_msgpack.c:mum_hash64
Unexecuted instantiation: ucl_parser.c:mum_hash64
Unexecuted instantiation: ucl_schema.c:mum_hash64
Unexecuted instantiation: ucl_sexp.c:mum_hash64
Unexecuted instantiation: ucl_util.c:mum_hash64
397
398
/* Hash data KEY of length LEN and SEED.  The hash depends on the
399
   target endianness and the unroll factor.  */
400
static inline uint64_t
401
0
mum_hash (const void *key, size_t len, uint64_t seed) {
402
#if defined(__x86_64__) && defined(_MUM_FRESH_GCC)
403
  static int avx2_support = 0;
404
405
  if (avx2_support > 0)
406
    return _mum_hash_avx2 (key, len, seed);
407
  else if (! avx2_support) {
408
    __builtin_cpu_init ();
409
    avx2_support =  __builtin_cpu_supports ("avx2") ? 1 : -1;
410
    if (avx2_support > 0)
411
      return _mum_hash_avx2 (key, len, seed);
412
  }
413
#endif
414
0
  return _mum_hash_default (key, len, seed);
415
0
}
Unexecuted instantiation: ucl_emitter.c:mum_hash
Unexecuted instantiation: ucl_emitter_streamline.c:mum_hash
Unexecuted instantiation: ucl_emitter_utils.c:mum_hash
Unexecuted instantiation: ucl_hash.c:mum_hash
Unexecuted instantiation: ucl_msgpack.c:mum_hash
Unexecuted instantiation: ucl_parser.c:mum_hash
Unexecuted instantiation: ucl_schema.c:mum_hash
Unexecuted instantiation: ucl_sexp.c:mum_hash
Unexecuted instantiation: ucl_util.c:mum_hash
416
417
#endif