/src/regex/regex-automata/src/dfa/dense.rs
Line | Count | Source |
1 | | /*! |
2 | | Types and routines specific to dense DFAs. |
3 | | |
4 | | This module is the home of [`dense::DFA`](DFA). |
5 | | |
6 | | This module also contains a [`dense::Builder`](Builder) and a |
7 | | [`dense::Config`](Config) for building and configuring a dense DFA. |
8 | | */ |
9 | | |
10 | | #[cfg(feature = "dfa-build")] |
11 | | use core::cmp; |
12 | | use core::{fmt, iter, mem::size_of, slice}; |
13 | | |
14 | | #[cfg(feature = "dfa-build")] |
15 | | use alloc::{ |
16 | | collections::{BTreeMap, BTreeSet}, |
17 | | vec, |
18 | | vec::Vec, |
19 | | }; |
20 | | |
21 | | #[cfg(feature = "dfa-build")] |
22 | | use crate::{ |
23 | | dfa::{ |
24 | | accel::Accel, determinize, minimize::Minimizer, remapper::Remapper, |
25 | | sparse, |
26 | | }, |
27 | | nfa::thompson, |
28 | | util::{look::LookMatcher, search::MatchKind}, |
29 | | }; |
30 | | use crate::{ |
31 | | dfa::{ |
32 | | accel::Accels, |
33 | | automaton::{fmt_state_indicator, Automaton, StartError}, |
34 | | special::Special, |
35 | | start::StartKind, |
36 | | DEAD, |
37 | | }, |
38 | | util::{ |
39 | | alphabet::{self, ByteClasses, ByteSet}, |
40 | | int::{Pointer, Usize}, |
41 | | prefilter::Prefilter, |
42 | | primitives::{PatternID, StateID}, |
43 | | search::Anchored, |
44 | | start::{self, Start, StartByteMap}, |
45 | | wire::{self, DeserializeError, Endian, SerializeError}, |
46 | | }, |
47 | | }; |
48 | | |
49 | | /// The label that is pre-pended to a serialized DFA. |
50 | | const LABEL: &str = "rust-regex-automata-dfa-dense"; |
51 | | |
52 | | /// The format version of dense regexes. This version gets incremented when a |
53 | | /// change occurs. A change may not necessarily be a breaking change, but the |
54 | | /// version does permit good error messages in the case where a breaking change |
55 | | /// is made. |
56 | | const VERSION: u32 = 2; |
57 | | |
58 | | /// The configuration used for compiling a dense DFA. |
59 | | /// |
60 | | /// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The |
61 | | /// advantage of the former is that it often lets you avoid importing the |
62 | | /// `Config` type directly. |
63 | | /// |
64 | | /// A dense DFA configuration is a simple data object that is typically used |
65 | | /// with [`dense::Builder::configure`](self::Builder::configure). |
66 | | /// |
67 | | /// The default configuration guarantees that a search will never return |
68 | | /// a "quit" error, although it is possible for a search to fail if |
69 | | /// [`Config::starts_for_each_pattern`] wasn't enabled (which it is |
70 | | /// not by default) and an [`Anchored::Pattern`] mode is requested via |
71 | | /// [`Input`](crate::Input). |
72 | | #[cfg(feature = "dfa-build")] |
73 | | #[derive(Clone, Debug, Default)] |
74 | | pub struct Config { |
75 | | // As with other configuration types in this crate, we put all our knobs |
76 | | // in options so that we can distinguish between "default" and "not set." |
77 | | // This makes it possible to easily combine multiple configurations |
78 | | // without default values overwriting explicitly specified values. See the |
79 | | // 'overwrite' method. |
80 | | // |
81 | | // For docs on the fields below, see the corresponding method setters. |
82 | | accelerate: Option<bool>, |
83 | | pre: Option<Option<Prefilter>>, |
84 | | minimize: Option<bool>, |
85 | | match_kind: Option<MatchKind>, |
86 | | start_kind: Option<StartKind>, |
87 | | starts_for_each_pattern: Option<bool>, |
88 | | byte_classes: Option<bool>, |
89 | | unicode_word_boundary: Option<bool>, |
90 | | quitset: Option<ByteSet>, |
91 | | specialize_start_states: Option<bool>, |
92 | | dfa_size_limit: Option<Option<usize>>, |
93 | | determinize_size_limit: Option<Option<usize>>, |
94 | | } |
95 | | |
96 | | #[cfg(feature = "dfa-build")] |
97 | | impl Config { |
98 | | /// Return a new default dense DFA compiler configuration. |
99 | 40.8k | pub fn new() -> Config { |
100 | 40.8k | Config::default() |
101 | 40.8k | } |
102 | | |
103 | | /// Enable state acceleration. |
104 | | /// |
105 | | /// When enabled, DFA construction will analyze each state to determine |
106 | | /// whether it is eligible for simple acceleration. Acceleration typically |
107 | | /// occurs when most of a state's transitions loop back to itself, leaving |
108 | | /// only a select few bytes that will exit the state. When this occurs, |
109 | | /// other routines like `memchr` can be used to look for those bytes which |
110 | | /// may be much faster than traversing the DFA. |
111 | | /// |
112 | | /// Callers may elect to disable this if consistent performance is more |
113 | | /// desirable than variable performance. Namely, acceleration can sometimes |
114 | | /// make searching slower than it otherwise would be if the transitions |
115 | | /// that leave accelerated states are traversed frequently. |
116 | | /// |
117 | | /// See [`Automaton::accelerator`] for an example. |
118 | | /// |
119 | | /// This is enabled by default. |
120 | 2.61k | pub fn accelerate(mut self, yes: bool) -> Config { |
121 | 2.61k | self.accelerate = Some(yes); |
122 | 2.61k | self |
123 | 2.61k | } |
124 | | |
125 | | /// Set a prefilter to be used whenever a start state is entered. |
126 | | /// |
127 | | /// A [`Prefilter`] in this context is meant to accelerate searches by |
128 | | /// looking for literal prefixes that every match for the corresponding |
129 | | /// pattern (or patterns) must start with. Once a prefilter produces a |
130 | | /// match, the underlying search routine continues on to try and confirm |
131 | | /// the match. |
132 | | /// |
133 | | /// Be warned that setting a prefilter does not guarantee that the search |
134 | | /// will be faster. While it's usually a good bet, if the prefilter |
135 | | /// produces a lot of false positive candidates (i.e., positions matched |
136 | | /// by the prefilter but not by the regex), then the overall result can |
137 | | /// be slower than if you had just executed the regex engine without any |
138 | | /// prefilters. |
139 | | /// |
140 | | /// Note that unless [`Config::specialize_start_states`] has been |
141 | | /// explicitly set, then setting this will also enable (when `pre` is |
142 | | /// `Some`) or disable (when `pre` is `None`) start state specialization. |
143 | | /// This occurs because without start state specialization, a prefilter |
144 | | /// is likely to be less effective. And without a prefilter, start state |
145 | | /// specialization is usually pointless. |
146 | | /// |
147 | | /// **WARNING:** Note that prefilters are not preserved as part of |
148 | | /// serialization. Serializing a DFA will drop its prefilter. |
149 | | /// |
150 | | /// By default no prefilter is set. |
151 | | /// |
152 | | /// # Example |
153 | | /// |
154 | | /// ``` |
155 | | /// use regex_automata::{ |
156 | | /// dfa::{dense::DFA, Automaton}, |
157 | | /// util::prefilter::Prefilter, |
158 | | /// Input, HalfMatch, MatchKind, |
159 | | /// }; |
160 | | /// |
161 | | /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]); |
162 | | /// let re = DFA::builder() |
163 | | /// .configure(DFA::config().prefilter(pre)) |
164 | | /// .build(r"(foo|bar)[a-z]+")?; |
165 | | /// let input = Input::new("foo1 barfox bar"); |
166 | | /// assert_eq!( |
167 | | /// Some(HalfMatch::must(0, 11)), |
168 | | /// re.try_search_fwd(&input)?, |
169 | | /// ); |
170 | | /// |
171 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
172 | | /// ``` |
173 | | /// |
174 | | /// Be warned though that an incorrect prefilter can lead to incorrect |
175 | | /// results! |
176 | | /// |
177 | | /// ``` |
178 | | /// use regex_automata::{ |
179 | | /// dfa::{dense::DFA, Automaton}, |
180 | | /// util::prefilter::Prefilter, |
181 | | /// Input, HalfMatch, MatchKind, |
182 | | /// }; |
183 | | /// |
184 | | /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]); |
185 | | /// let re = DFA::builder() |
186 | | /// .configure(DFA::config().prefilter(pre)) |
187 | | /// .build(r"(foo|bar)[a-z]+")?; |
188 | | /// let input = Input::new("foo1 barfox bar"); |
189 | | /// assert_eq!( |
190 | | /// // No match reported even though there clearly is one! |
191 | | /// None, |
192 | | /// re.try_search_fwd(&input)?, |
193 | | /// ); |
194 | | /// |
195 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
196 | | /// ``` |
197 | 77.6k | pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config { |
198 | 77.6k | self.pre = Some(pre); |
199 | 77.6k | if self.specialize_start_states.is_none() { |
200 | 40.8k | self.specialize_start_states = |
201 | 40.8k | Some(self.get_prefilter().is_some()); |
202 | 40.8k | } |
203 | 77.6k | self |
204 | 77.6k | } |
205 | | |
206 | | /// Minimize the DFA. |
207 | | /// |
208 | | /// When enabled, the DFA built will be minimized such that it is as small |
209 | | /// as possible. |
210 | | /// |
211 | | /// Whether one enables minimization or not depends on the types of costs |
212 | | /// you're willing to pay and how much you care about its benefits. In |
213 | | /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)` |
214 | | /// space, where `n` is the number of DFA states and `k` is the alphabet |
215 | | /// size. In practice, minimization can be quite costly in terms of both |
216 | | /// space and time, so it should only be done if you're willing to wait |
217 | | /// longer to produce a DFA. In general, you might want a minimal DFA in |
218 | | /// the following circumstances: |
219 | | /// |
220 | | /// 1. You would like to optimize for the size of the automaton. This can |
221 | | /// manifest in one of two ways. Firstly, if you're converting the |
222 | | /// DFA into Rust code (or a table embedded in the code), then a minimal |
223 | | /// DFA will translate into a corresponding reduction in code size, and |
224 | | /// thus, also the final compiled binary size. Secondly, if you are |
225 | | /// building many DFAs and putting them on the heap, you'll be able to |
226 | | /// fit more if they are smaller. Note though that building a minimal |
227 | | /// DFA itself requires additional space; you only realize the space |
228 | | /// savings once the minimal DFA is constructed (at which point, the |
229 | | /// space used for minimization is freed). |
230 | | /// 2. You've observed that a smaller DFA results in faster match |
231 | | /// performance. Naively, this isn't guaranteed since there is no |
232 | | /// inherent difference between matching with a bigger-than-minimal |
233 | | /// DFA and a minimal DFA. However, a smaller DFA may make use of your |
234 | | /// CPU's cache more efficiently. |
235 | | /// 3. You are trying to establish an equivalence between regular |
236 | | /// languages. The standard method for this is to build a minimal DFA |
237 | | /// for each language and then compare them. If the DFAs are equivalent |
238 | | /// (up to state renaming), then the languages are equivalent. |
239 | | /// |
240 | | /// Typically, minimization only makes sense as an offline process. That |
241 | | /// is, one might minimize a DFA before serializing it to persistent |
242 | | /// storage. In practical terms, minimization can take around an order of |
243 | | /// magnitude more time than compiling the initial DFA via determinization. |
244 | | /// |
245 | | /// This option is disabled by default. |
246 | 0 | pub fn minimize(mut self, yes: bool) -> Config { |
247 | 0 | self.minimize = Some(yes); |
248 | 0 | self |
249 | 0 | } |
250 | | |
251 | | /// Set the desired match semantics. |
252 | | /// |
253 | | /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the |
254 | | /// match semantics of Perl-like regex engines. That is, when multiple |
255 | | /// patterns would match at the same leftmost position, the pattern that |
256 | | /// appears first in the concrete syntax is chosen. |
257 | | /// |
258 | | /// Currently, the only other kind of match semantics supported is |
259 | | /// [`MatchKind::All`]. This corresponds to classical DFA construction |
260 | | /// where all possible matches are added to the DFA. |
261 | | /// |
262 | | /// Typically, `All` is used when one wants to execute an overlapping |
263 | | /// search and `LeftmostFirst` otherwise. In particular, it rarely makes |
264 | | /// sense to use `All` with the various "leftmost" find routines, since the |
265 | | /// leftmost routines depend on the `LeftmostFirst` automata construction |
266 | | /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA |
267 | | /// as a way to terminate the search and report a match. `LeftmostFirst` |
268 | | /// also supports non-greedy matches using this strategy where as `All` |
269 | | /// does not. |
270 | | /// |
271 | | /// # Example: overlapping search |
272 | | /// |
273 | | /// This example shows the typical use of `MatchKind::All`, which is to |
274 | | /// report overlapping matches. |
275 | | /// |
276 | | /// ``` |
277 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
278 | | /// use regex_automata::{ |
279 | | /// dfa::{Automaton, OverlappingState, dense}, |
280 | | /// HalfMatch, Input, MatchKind, |
281 | | /// }; |
282 | | /// |
283 | | /// let dfa = dense::Builder::new() |
284 | | /// .configure(dense::Config::new().match_kind(MatchKind::All)) |
285 | | /// .build_many(&[r"\w+$", r"\S+$"])?; |
286 | | /// let input = Input::new("@foo"); |
287 | | /// let mut state = OverlappingState::start(); |
288 | | /// |
289 | | /// let expected = Some(HalfMatch::must(1, 4)); |
290 | | /// dfa.try_search_overlapping_fwd(&input, &mut state)?; |
291 | | /// assert_eq!(expected, state.get_match()); |
292 | | /// |
293 | | /// // The first pattern also matches at the same position, so re-running |
294 | | /// // the search will yield another match. Notice also that the first |
295 | | /// // pattern is returned after the second. This is because the second |
296 | | /// // pattern begins its match before the first, is therefore an earlier |
297 | | /// // match and is thus reported first. |
298 | | /// let expected = Some(HalfMatch::must(0, 4)); |
299 | | /// dfa.try_search_overlapping_fwd(&input, &mut state)?; |
300 | | /// assert_eq!(expected, state.get_match()); |
301 | | /// |
302 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
303 | | /// ``` |
304 | | /// |
305 | | /// # Example: reverse automaton to find start of match |
306 | | /// |
307 | | /// Another example for using `MatchKind::All` is for constructing a |
308 | | /// reverse automaton to find the start of a match. `All` semantics are |
309 | | /// used for this in order to find the longest possible match, which |
310 | | /// corresponds to the leftmost starting position. |
311 | | /// |
312 | | /// Note that if you need the starting position then |
313 | | /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for |
314 | | /// you, so it's usually not necessary to do this yourself. |
315 | | /// |
316 | | /// ``` |
317 | | /// use regex_automata::{ |
318 | | /// dfa::{dense, Automaton, StartKind}, |
319 | | /// nfa::thompson::NFA, |
320 | | /// Anchored, HalfMatch, Input, MatchKind, |
321 | | /// }; |
322 | | /// |
323 | | /// let haystack = "123foobar456".as_bytes(); |
324 | | /// let pattern = r"[a-z]+r"; |
325 | | /// |
326 | | /// let dfa_fwd = dense::DFA::new(pattern)?; |
327 | | /// let dfa_rev = dense::Builder::new() |
328 | | /// .thompson(NFA::config().reverse(true)) |
329 | | /// .configure(dense::Config::new() |
330 | | /// // This isn't strictly necessary since both anchored and |
331 | | /// // unanchored searches are supported by default. But since |
332 | | /// // finding the start-of-match only requires anchored searches, |
333 | | /// // we can get rid of the unanchored configuration and possibly |
334 | | /// // slim down our DFA considerably. |
335 | | /// .start_kind(StartKind::Anchored) |
336 | | /// .match_kind(MatchKind::All) |
337 | | /// ) |
338 | | /// .build(pattern)?; |
339 | | /// let expected_fwd = HalfMatch::must(0, 9); |
340 | | /// let expected_rev = HalfMatch::must(0, 3); |
341 | | /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap(); |
342 | | /// // Here we don't specify the pattern to search for since there's only |
343 | | /// // one pattern and we're doing a leftmost search. But if this were an |
344 | | /// // overlapping search, you'd need to specify the pattern that matched |
345 | | /// // in the forward direction. (Otherwise, you might wind up finding the |
346 | | /// // starting position of a match of some other pattern.) That in turn |
347 | | /// // requires building the reverse automaton with starts_for_each_pattern |
348 | | /// // enabled. Indeed, this is what Regex does internally. |
349 | | /// let input = Input::new(haystack) |
350 | | /// .range(..got_fwd.offset()) |
351 | | /// .anchored(Anchored::Yes); |
352 | | /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap(); |
353 | | /// assert_eq!(expected_fwd, got_fwd); |
354 | | /// assert_eq!(expected_rev, got_rev); |
355 | | /// |
356 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
357 | | /// ``` |
358 | 77.6k | pub fn match_kind(mut self, kind: MatchKind) -> Config { |
359 | 77.6k | self.match_kind = Some(kind); |
360 | 77.6k | self |
361 | 77.6k | } |
362 | | |
363 | | /// The type of starting state configuration to use for a DFA. |
364 | | /// |
365 | | /// By default, the starting state configuration is [`StartKind::Both`]. |
366 | | /// |
367 | | /// # Example |
368 | | /// |
369 | | /// ``` |
370 | | /// use regex_automata::{ |
371 | | /// dfa::{dense::DFA, Automaton, StartKind}, |
372 | | /// Anchored, HalfMatch, Input, |
373 | | /// }; |
374 | | /// |
375 | | /// let haystack = "quux foo123"; |
376 | | /// let expected = HalfMatch::must(0, 11); |
377 | | /// |
378 | | /// // By default, DFAs support both anchored and unanchored searches. |
379 | | /// let dfa = DFA::new(r"[0-9]+")?; |
380 | | /// let input = Input::new(haystack); |
381 | | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
382 | | /// |
383 | | /// // But if we only need anchored searches, then we can build a DFA |
384 | | /// // that only supports anchored searches. This leads to a smaller DFA |
385 | | /// // (potentially significantly smaller in some cases), but a DFA that |
386 | | /// // will panic if you try to use it with an unanchored search. |
387 | | /// let dfa = DFA::builder() |
388 | | /// .configure(DFA::config().start_kind(StartKind::Anchored)) |
389 | | /// .build(r"[0-9]+")?; |
390 | | /// let input = Input::new(haystack) |
391 | | /// .range(8..) |
392 | | /// .anchored(Anchored::Yes); |
393 | | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
394 | | /// |
395 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
396 | | /// ``` |
397 | 39.4k | pub fn start_kind(mut self, kind: StartKind) -> Config { |
398 | 39.4k | self.start_kind = Some(kind); |
399 | 39.4k | self |
400 | 39.4k | } |
401 | | |
402 | | /// Whether to compile a separate start state for each pattern in the |
403 | | /// automaton. |
404 | | /// |
405 | | /// When enabled, a separate **anchored** start state is added for each |
406 | | /// pattern in the DFA. When this start state is used, then the DFA will |
407 | | /// only search for matches for the pattern specified, even if there are |
408 | | /// other patterns in the DFA. |
409 | | /// |
410 | | /// The main downside of this option is that it can potentially increase |
411 | | /// the size of the DFA and/or increase the time it takes to build the DFA. |
412 | | /// |
413 | | /// There are a few reasons one might want to enable this (it's disabled |
414 | | /// by default): |
415 | | /// |
416 | | /// 1. When looking for the start of an overlapping match (using a |
417 | | /// reverse DFA), doing it correctly requires starting the reverse search |
418 | | /// using the starting state of the pattern that matched in the forward |
419 | | /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex), |
420 | | /// it will automatically enable this option when building the reverse DFA |
421 | | /// internally. |
422 | | /// 2. When you want to use a DFA with multiple patterns to both search |
423 | | /// for matches of any pattern or to search for anchored matches of one |
424 | | /// particular pattern while using the same DFA. (Otherwise, you would need |
425 | | /// to compile a new DFA for each pattern.) |
426 | | /// 3. Since the start states added for each pattern are anchored, if you |
427 | | /// compile an unanchored DFA with one pattern while also enabling this |
428 | | /// option, then you can use the same DFA to perform anchored or unanchored |
429 | | /// searches. The latter you get with the standard search APIs. The former |
430 | | /// you get from the various `_at` search methods that allow you specify a |
431 | | /// pattern ID to search for. |
432 | | /// |
433 | | /// By default this is disabled. |
434 | | /// |
435 | | /// # Example |
436 | | /// |
437 | | /// This example shows how to use this option to permit the same DFA to |
438 | | /// run both anchored and unanchored searches for a single pattern. |
439 | | /// |
440 | | /// ``` |
441 | | /// use regex_automata::{ |
442 | | /// dfa::{dense, Automaton}, |
443 | | /// Anchored, HalfMatch, PatternID, Input, |
444 | | /// }; |
445 | | /// |
446 | | /// let dfa = dense::Builder::new() |
447 | | /// .configure(dense::Config::new().starts_for_each_pattern(true)) |
448 | | /// .build(r"foo[0-9]+")?; |
449 | | /// let haystack = "quux foo123"; |
450 | | /// |
451 | | /// // Here's a normal unanchored search. Notice that we use 'None' for the |
452 | | /// // pattern ID. Since the DFA was built as an unanchored machine, it |
453 | | /// // use its default unanchored starting state. |
454 | | /// let expected = HalfMatch::must(0, 11); |
455 | | /// let input = Input::new(haystack); |
456 | | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
457 | | /// // But now if we explicitly specify the pattern to search ('0' being |
458 | | /// // the only pattern in the DFA), then it will use the starting state |
459 | | /// // for that specific pattern which is always anchored. Since the |
460 | | /// // pattern doesn't have a match at the beginning of the haystack, we |
461 | | /// // find nothing. |
462 | | /// let input = Input::new(haystack) |
463 | | /// .anchored(Anchored::Pattern(PatternID::must(0))); |
464 | | /// assert_eq!(None, dfa.try_search_fwd(&input)?); |
465 | | /// // And finally, an anchored search is not the same as putting a '^' at |
466 | | /// // beginning of the pattern. An anchored search can only match at the |
467 | | /// // beginning of the *search*, which we can change: |
468 | | /// let input = Input::new(haystack) |
469 | | /// .anchored(Anchored::Pattern(PatternID::must(0))) |
470 | | /// .range(5..); |
471 | | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
472 | | /// |
473 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
474 | | /// ``` |
475 | 40.8k | pub fn starts_for_each_pattern(mut self, yes: bool) -> Config { |
476 | 40.8k | self.starts_for_each_pattern = Some(yes); |
477 | 40.8k | self |
478 | 40.8k | } |
479 | | |
480 | | /// Whether to attempt to shrink the size of the DFA's alphabet or not. |
481 | | /// |
482 | | /// This option is enabled by default and should never be disabled unless |
483 | | /// one is debugging a generated DFA. |
484 | | /// |
485 | | /// When enabled, the DFA will use a map from all possible bytes to their |
486 | | /// corresponding equivalence class. Each equivalence class represents a |
487 | | /// set of bytes that does not discriminate between a match and a non-match |
488 | | /// in the DFA. For example, the pattern `[ab]+` has at least two |
489 | | /// equivalence classes: a set containing `a` and `b` and a set containing |
490 | | /// every byte except for `a` and `b`. `a` and `b` are in the same |
491 | | /// equivalence class because they never discriminate between a match and a |
492 | | /// non-match. |
493 | | /// |
494 | | /// The advantage of this map is that the size of the transition table |
495 | | /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to |
496 | | /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence |
497 | | /// classes (rounded up to the nearest power of 2). As a result, total |
498 | | /// space usage can decrease substantially. Moreover, since a smaller |
499 | | /// alphabet is used, DFA compilation becomes faster as well. |
500 | | /// |
501 | | /// **WARNING:** This is only useful for debugging DFAs. Disabling this |
502 | | /// does not yield any speed advantages. Namely, even when this is |
503 | | /// disabled, a byte class map is still used while searching. The only |
504 | | /// difference is that every byte will be forced into its own distinct |
505 | | /// equivalence class. This is useful for debugging the actual generated |
506 | | /// transitions because it lets one see the transitions defined on actual |
507 | | /// bytes instead of the equivalence classes. |
508 | 40.8k | pub fn byte_classes(mut self, yes: bool) -> Config { |
509 | 40.8k | self.byte_classes = Some(yes); |
510 | 40.8k | self |
511 | 40.8k | } |
512 | | |
513 | | /// Heuristically enable Unicode word boundaries. |
514 | | /// |
515 | | /// When set, this will attempt to implement Unicode word boundaries as if |
516 | | /// they were ASCII word boundaries. This only works when the search input |
517 | | /// is ASCII only. If a non-ASCII byte is observed while searching, then a |
518 | | /// [`MatchError::quit`](crate::MatchError::quit) error is returned. |
519 | | /// |
520 | | /// A possible alternative to enabling this option is to simply use an |
521 | | /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this |
522 | | /// option is if you absolutely need Unicode support. This option lets one |
523 | | /// use a fast search implementation (a DFA) for some potentially very |
524 | | /// common cases, while providing the option to fall back to some other |
525 | | /// regex engine to handle the general case when an error is returned. |
526 | | /// |
527 | | /// If the pattern provided has no Unicode word boundary in it, then this |
528 | | /// option has no effect. (That is, quitting on a non-ASCII byte only |
529 | | /// occurs when this option is enabled _and_ a Unicode word boundary is |
530 | | /// present in the pattern.) |
531 | | /// |
532 | | /// This is almost equivalent to setting all non-ASCII bytes to be quit |
533 | | /// bytes. The only difference is that this will cause non-ASCII bytes to |
534 | | /// be quit bytes _only_ when a Unicode word boundary is present in the |
535 | | /// pattern. |
536 | | /// |
537 | | /// When enabling this option, callers _must_ be prepared to handle |
538 | | /// a [`MatchError`](crate::MatchError) error during search. |
539 | | /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds |
540 | | /// to using the `try_` suite of methods. Alternatively, if |
541 | | /// callers can guarantee that their input is ASCII only, then a |
542 | | /// [`MatchError::quit`](crate::MatchError::quit) error will never be |
543 | | /// returned while searching. |
544 | | /// |
545 | | /// This is disabled by default. |
546 | | /// |
547 | | /// # Example |
548 | | /// |
549 | | /// This example shows how to heuristically enable Unicode word boundaries |
550 | | /// in a pattern. It also shows what happens when a search comes across a |
551 | | /// non-ASCII byte. |
552 | | /// |
553 | | /// ``` |
554 | | /// use regex_automata::{ |
555 | | /// dfa::{Automaton, dense}, |
556 | | /// HalfMatch, Input, MatchError, |
557 | | /// }; |
558 | | /// |
559 | | /// let dfa = dense::Builder::new() |
560 | | /// .configure(dense::Config::new().unicode_word_boundary(true)) |
561 | | /// .build(r"\b[0-9]+\b")?; |
562 | | /// |
563 | | /// // The match occurs before the search ever observes the snowman |
564 | | /// // character, so no error occurs. |
565 | | /// let haystack = "foo 123 ☃".as_bytes(); |
566 | | /// let expected = Some(HalfMatch::must(0, 7)); |
567 | | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
568 | | /// assert_eq!(expected, got); |
569 | | /// |
570 | | /// // Notice that this search fails, even though the snowman character |
571 | | /// // occurs after the ending match offset. This is because search |
572 | | /// // routines read one byte past the end of the search to account for |
573 | | /// // look-around, and indeed, this is required here to determine whether |
574 | | /// // the trailing \b matches. |
575 | | /// let haystack = "foo 123 ☃".as_bytes(); |
576 | | /// let expected = MatchError::quit(0xE2, 8); |
577 | | /// let got = dfa.try_search_fwd(&Input::new(haystack)); |
578 | | /// assert_eq!(Err(expected), got); |
579 | | /// |
580 | | /// // Another example is executing a search where the span of the haystack |
581 | | /// // we specify is all ASCII, but there is non-ASCII just before it. This |
582 | | /// // correctly also reports an error. |
583 | | /// let input = Input::new("β123").range(2..); |
584 | | /// let expected = MatchError::quit(0xB2, 1); |
585 | | /// let got = dfa.try_search_fwd(&input); |
586 | | /// assert_eq!(Err(expected), got); |
587 | | /// |
588 | | /// // And similarly for the trailing word boundary. |
589 | | /// let input = Input::new("123β").range(..3); |
590 | | /// let expected = MatchError::quit(0xCE, 3); |
591 | | /// let got = dfa.try_search_fwd(&input); |
592 | | /// assert_eq!(Err(expected), got); |
593 | | /// |
594 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
595 | | /// ``` |
596 | 40.8k | pub fn unicode_word_boundary(mut self, yes: bool) -> Config { |
597 | | // We have a separate option for this instead of just setting the |
598 | | // appropriate quit bytes here because we don't want to set quit bytes |
599 | | // for every regex. We only want to set them when the regex contains a |
600 | | // Unicode word boundary. |
601 | 40.8k | self.unicode_word_boundary = Some(yes); |
602 | 40.8k | self |
603 | 40.8k | } |
604 | | |
605 | | /// Add a "quit" byte to the DFA. |
606 | | /// |
607 | | /// When a quit byte is seen during search time, then search will return |
608 | | /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the |
609 | | /// offset at which the search stopped. |
610 | | /// |
611 | | /// A quit byte will always overrule any other aspects of a regex. For |
612 | | /// example, if the `x` byte is added as a quit byte and the regex `\w` is |
613 | | /// used, then observing `x` will cause the search to quit immediately |
614 | | /// despite the fact that `x` is in the `\w` class. |
615 | | /// |
616 | | /// This mechanism is primarily useful for heuristically enabling certain |
617 | | /// features like Unicode word boundaries in a DFA. Namely, if the input |
618 | | /// to search is ASCII, then a Unicode word boundary can be implemented |
619 | | /// via an ASCII word boundary with no change in semantics. Thus, a DFA |
620 | | /// can attempt to match a Unicode word boundary but give up as soon as it |
621 | | /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes |
622 | | /// to be quit bytes, then Unicode word boundaries will be permitted when |
623 | | /// building DFAs. Of course, callers should enable |
624 | | /// [`Config::unicode_word_boundary`] if they want this behavior instead. |
625 | | /// (The advantage being that non-ASCII quit bytes will only be added if a |
626 | | /// Unicode word boundary is in the pattern.) |
627 | | /// |
628 | | /// When enabling this option, callers _must_ be prepared to handle a |
629 | | /// [`MatchError`](crate::MatchError) error during search. When using a |
630 | | /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the |
631 | | /// `try_` suite of methods. |
632 | | /// |
633 | | /// By default, there are no quit bytes set. |
634 | | /// |
635 | | /// # Panics |
636 | | /// |
637 | | /// This panics if heuristic Unicode word boundaries are enabled and any |
638 | | /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling |
639 | | /// Unicode word boundaries requires setting every non-ASCII byte to a quit |
640 | | /// byte. So if the caller attempts to undo any of that, then this will |
641 | | /// panic. |
642 | | /// |
643 | | /// # Example |
644 | | /// |
645 | | /// This example shows how to cause a search to terminate if it sees a |
646 | | /// `\n` byte. This could be useful if, for example, you wanted to prevent |
647 | | /// a user supplied pattern from matching across a line boundary. |
648 | | /// |
649 | | /// ``` |
650 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
651 | | /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError}; |
652 | | /// |
653 | | /// let dfa = dense::Builder::new() |
654 | | /// .configure(dense::Config::new().quit(b'\n', true)) |
655 | | /// .build(r"foo\p{any}+bar")?; |
656 | | /// |
657 | | /// let haystack = "foo\nbar".as_bytes(); |
658 | | /// // Normally this would produce a match, since \p{any} contains '\n'. |
659 | | /// // But since we instructed the automaton to enter a quit state if a |
660 | | /// // '\n' is observed, this produces a match error instead. |
661 | | /// let expected = MatchError::quit(b'\n', 3); |
662 | | /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err(); |
663 | | /// assert_eq!(expected, got); |
664 | | /// |
665 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
666 | | /// ``` |
667 | 0 | pub fn quit(mut self, byte: u8, yes: bool) -> Config { |
668 | 0 | if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes { |
669 | 0 | panic!( |
670 | 0 | "cannot set non-ASCII byte to be non-quit when \ |
671 | 0 | Unicode word boundaries are enabled" |
672 | | ); |
673 | 0 | } |
674 | 0 | if self.quitset.is_none() { |
675 | 0 | self.quitset = Some(ByteSet::empty()); |
676 | 0 | } |
677 | 0 | if yes { |
678 | 0 | self.quitset.as_mut().unwrap().add(byte); |
679 | 0 | } else { |
680 | 0 | self.quitset.as_mut().unwrap().remove(byte); |
681 | 0 | } |
682 | 0 | self |
683 | 0 | } |
684 | | |
685 | | /// Enable specializing start states in the DFA. |
686 | | /// |
687 | | /// When start states are specialized, an implementor of a search routine |
688 | | /// using a lazy DFA can tell when the search has entered a starting state. |
689 | | /// When start states aren't specialized, then it is impossible to know |
690 | | /// whether the search has entered a start state. |
691 | | /// |
692 | | /// Ideally, this option wouldn't need to exist and we could always |
693 | | /// specialize start states. The problem is that start states can be quite |
694 | | /// active. This in turn means that an efficient search routine is likely |
695 | | /// to ping-pong between a heavily optimized hot loop that handles most |
696 | | /// states and to a less optimized specialized handling of start states. |
697 | | /// This causes branches to get heavily mispredicted and overall can |
698 | | /// materially decrease throughput. Therefore, specializing start states |
699 | | /// should only be enabled when it is needed. |
700 | | /// |
701 | | /// Knowing whether a search is in a start state is typically useful when a |
702 | | /// prefilter is active for the search. A prefilter is typically only run |
703 | | /// when in a start state and a prefilter can greatly accelerate a search. |
704 | | /// Therefore, the possible cost of specializing start states is worth it |
705 | | /// in this case. Otherwise, if you have no prefilter, there is likely no |
706 | | /// reason to specialize start states. |
707 | | /// |
708 | | /// This is disabled by default, but note that it is automatically |
709 | | /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless |
710 | | /// `specialize_start_states` has already been set, [`Config::prefilter`] |
711 | | /// will automatically enable or disable it based on whether a prefilter |
712 | | /// is present or not, respectively. This is done because a prefilter's |
713 | | /// effectiveness is rooted in being executed whenever the DFA is in a |
714 | | /// start state, and that's only possible to do when they are specialized. |
715 | | /// |
716 | | /// Note that it is plausibly reasonable to _disable_ this option |
717 | | /// explicitly while _enabling_ a prefilter. In that case, a prefilter |
718 | | /// will still be run at the beginning of a search, but never again. This |
719 | | /// in theory could strike a good balance if you're in a situation where a |
720 | | /// prefilter is likely to produce many false positive candidates. |
721 | | /// |
722 | | /// # Example |
723 | | /// |
724 | | /// This example shows how to enable start state specialization and then |
725 | | /// shows how to check whether a state is a start state or not. |
726 | | /// |
727 | | /// ``` |
728 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input}; |
729 | | /// |
730 | | /// let dfa = DFA::builder() |
731 | | /// .configure(DFA::config().specialize_start_states(true)) |
732 | | /// .build(r"[a-z]+")?; |
733 | | /// |
734 | | /// let haystack = "123 foobar 4567".as_bytes(); |
735 | | /// let sid = dfa.start_state_forward(&Input::new(haystack))?; |
736 | | /// // The ID returned by 'start_state_forward' will always be tagged as |
737 | | /// // a start state when start state specialization is enabled. |
738 | | /// assert!(dfa.is_special_state(sid)); |
739 | | /// assert!(dfa.is_start_state(sid)); |
740 | | /// |
741 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
742 | | /// ``` |
743 | | /// |
744 | | /// Compare the above with the default DFA configuration where start states |
745 | | /// are _not_ specialized. In this case, the start state is not tagged at |
746 | | /// all: |
747 | | /// |
748 | | /// ``` |
749 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input}; |
750 | | /// |
751 | | /// let dfa = DFA::new(r"[a-z]+")?; |
752 | | /// |
753 | | /// let haystack = "123 foobar 4567"; |
754 | | /// let sid = dfa.start_state_forward(&Input::new(haystack))?; |
755 | | /// // Start states are not special in the default configuration! |
756 | | /// assert!(!dfa.is_special_state(sid)); |
757 | | /// assert!(!dfa.is_start_state(sid)); |
758 | | /// |
759 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
760 | | /// ``` |
761 | 77.6k | pub fn specialize_start_states(mut self, yes: bool) -> Config { |
762 | 77.6k | self.specialize_start_states = Some(yes); |
763 | 77.6k | self |
764 | 77.6k | } |
765 | | |
766 | | /// Set a size limit on the total heap used by a DFA. |
767 | | /// |
768 | | /// This size limit is expressed in bytes and is applied during |
769 | | /// determinization of an NFA into a DFA. If the DFA's heap usage, and only |
770 | | /// the DFA, exceeds this configured limit, then determinization is stopped |
771 | | /// and an error is returned. |
772 | | /// |
773 | | /// This limit does not apply to auxiliary storage used during |
774 | | /// determinization that isn't part of the generated DFA. |
775 | | /// |
776 | | /// This limit is only applied during determinization. Currently, there is |
777 | | /// no way to post-pone this check to after minimization if minimization |
778 | | /// was enabled. |
779 | | /// |
780 | | /// The total limit on heap used during determinization is the sum of the |
781 | | /// DFA and determinization size limits. |
782 | | /// |
783 | | /// The default is no limit. |
784 | | /// |
785 | | /// # Example |
786 | | /// |
787 | | /// This example shows a DFA that fails to build because of a configured |
788 | | /// size limit. This particular example also serves as a cautionary tale |
789 | | /// demonstrating just how big DFAs with large Unicode character classes |
790 | | /// can get. |
791 | | /// |
792 | | /// ``` |
793 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
794 | | /// use regex_automata::{dfa::{dense, Automaton}, Input}; |
795 | | /// |
796 | | /// // 6MB isn't enough! |
797 | | /// dense::Builder::new() |
798 | | /// .configure(dense::Config::new().dfa_size_limit(Some(6_000_000))) |
799 | | /// .build(r"\w{20}") |
800 | | /// .unwrap_err(); |
801 | | /// |
802 | | /// // ... but 7MB probably is! |
803 | | /// // (Note that DFA sizes aren't necessarily stable between releases.) |
804 | | /// let dfa = dense::Builder::new() |
805 | | /// .configure(dense::Config::new().dfa_size_limit(Some(7_000_000))) |
806 | | /// .build(r"\w{20}")?; |
807 | | /// let haystack = "A".repeat(20).into_bytes(); |
808 | | /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some()); |
809 | | /// |
810 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
811 | | /// ``` |
812 | | /// |
813 | | /// While one needs a little more than 6MB to represent `\w{20}`, it |
814 | | /// turns out that you only need a little more than 6KB to represent |
815 | | /// `(?-u:\w{20})`. So only use Unicode if you need it! |
816 | | /// |
817 | | /// As with [`Config::determinize_size_limit`], the size of a DFA is |
818 | | /// influenced by other factors, such as what start state configurations |
819 | | /// to support. For example, if you only need unanchored searches and not |
820 | | /// anchored searches, then configuring the DFA to only support unanchored |
821 | | /// searches can reduce its size. By default, DFAs support both unanchored |
822 | | /// and anchored searches. |
823 | | /// |
824 | | /// ``` |
825 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
826 | | /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input}; |
827 | | /// |
828 | | /// // 3MB isn't enough! |
829 | | /// dense::Builder::new() |
830 | | /// .configure(dense::Config::new() |
831 | | /// .dfa_size_limit(Some(3_000_000)) |
832 | | /// .start_kind(StartKind::Unanchored) |
833 | | /// ) |
834 | | /// .build(r"\w{20}") |
835 | | /// .unwrap_err(); |
836 | | /// |
837 | | /// // ... but 4MB probably is! |
838 | | /// // (Note that DFA sizes aren't necessarily stable between releases.) |
839 | | /// let dfa = dense::Builder::new() |
840 | | /// .configure(dense::Config::new() |
841 | | /// .dfa_size_limit(Some(4_000_000)) |
842 | | /// .start_kind(StartKind::Unanchored) |
843 | | /// ) |
844 | | /// .build(r"\w{20}")?; |
845 | | /// let haystack = "A".repeat(20).into_bytes(); |
846 | | /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some()); |
847 | | /// |
848 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
849 | | /// ``` |
850 | 40.8k | pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config { |
851 | 40.8k | self.dfa_size_limit = Some(bytes); |
852 | 40.8k | self |
853 | 40.8k | } |
854 | | |
855 | | /// Set a size limit on the total heap used by determinization. |
856 | | /// |
857 | | /// This size limit is expressed in bytes and is applied during |
858 | | /// determinization of an NFA into a DFA. If the heap used for auxiliary |
859 | | /// storage during determinization (memory that is not in the DFA but |
860 | | /// necessary for building the DFA) exceeds this configured limit, then |
861 | | /// determinization is stopped and an error is returned. |
862 | | /// |
863 | | /// This limit does not apply to heap used by the DFA itself. |
864 | | /// |
865 | | /// The total limit on heap used during determinization is the sum of the |
866 | | /// DFA and determinization size limits. |
867 | | /// |
868 | | /// The default is no limit. |
869 | | /// |
870 | | /// # Example |
871 | | /// |
872 | | /// This example shows a DFA that fails to build because of a |
873 | | /// configured size limit on the amount of heap space used by |
874 | | /// determinization. This particular example complements the example for |
875 | | /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode |
876 | | /// potentially make DFAs themselves big, but it also results in more |
877 | | /// auxiliary storage during determinization. (Although, auxiliary storage |
878 | | /// is still not as much as the DFA itself.) |
879 | | /// |
880 | | /// ``` |
881 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
882 | | /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039 |
883 | | /// use regex_automata::{dfa::{dense, Automaton}, Input}; |
884 | | /// |
885 | | /// // 700KB isn't enough! |
886 | | /// dense::Builder::new() |
887 | | /// .configure(dense::Config::new() |
888 | | /// .determinize_size_limit(Some(700_000)) |
889 | | /// ) |
890 | | /// .build(r"\w{20}") |
891 | | /// .unwrap_err(); |
892 | | /// |
893 | | /// // ... but 800KB probably is! |
894 | | /// // (Note that auxiliary storage sizes aren't necessarily stable between |
895 | | /// // releases.) |
896 | | /// let dfa = dense::Builder::new() |
897 | | /// .configure(dense::Config::new() |
898 | | /// .determinize_size_limit(Some(800_000)) |
899 | | /// ) |
900 | | /// .build(r"\w{20}")?; |
901 | | /// let haystack = "A".repeat(20).into_bytes(); |
902 | | /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some()); |
903 | | /// |
904 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
905 | | /// ``` |
906 | | /// |
907 | | /// Note that some parts of the configuration on a DFA can have a |
908 | | /// big impact on how big the DFA is, and thus, how much memory is |
909 | | /// used. For example, the default setting for [`Config::start_kind`] is |
910 | | /// [`StartKind::Both`]. But if you only need an anchored search, for |
911 | | /// example, then it can be much cheaper to build a DFA that only supports |
912 | | /// anchored searches. (Running an unanchored search with it would panic.) |
913 | | /// |
914 | | /// ``` |
915 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
916 | | /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039 |
917 | | /// use regex_automata::{ |
918 | | /// dfa::{dense, Automaton, StartKind}, |
919 | | /// Anchored, Input, |
920 | | /// }; |
921 | | /// |
922 | | /// // 200KB isn't enough! |
923 | | /// dense::Builder::new() |
924 | | /// .configure(dense::Config::new() |
925 | | /// .determinize_size_limit(Some(200_000)) |
926 | | /// .start_kind(StartKind::Anchored) |
927 | | /// ) |
928 | | /// .build(r"\w{20}") |
929 | | /// .unwrap_err(); |
930 | | /// |
931 | | /// // ... but 300KB probably is! |
932 | | /// // (Note that auxiliary storage sizes aren't necessarily stable between |
933 | | /// // releases.) |
934 | | /// let dfa = dense::Builder::new() |
935 | | /// .configure(dense::Config::new() |
936 | | /// .determinize_size_limit(Some(300_000)) |
937 | | /// .start_kind(StartKind::Anchored) |
938 | | /// ) |
939 | | /// .build(r"\w{20}")?; |
940 | | /// let haystack = "A".repeat(20).into_bytes(); |
941 | | /// let input = Input::new(&haystack).anchored(Anchored::Yes); |
942 | | /// assert!(dfa.try_search_fwd(&input)?.is_some()); |
943 | | /// |
944 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
945 | | /// ``` |
946 | 40.8k | pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config { |
947 | 40.8k | self.determinize_size_limit = Some(bytes); |
948 | 40.8k | self |
949 | 40.8k | } |
950 | | |
951 | | /// Returns whether this configuration has enabled simple state |
952 | | /// acceleration. |
953 | 76.1k | pub fn get_accelerate(&self) -> bool { |
954 | 76.1k | self.accelerate.unwrap_or(true) |
955 | 76.1k | } |
956 | | |
957 | | /// Returns the prefilter attached to this configuration, if any. |
958 | 118k | pub fn get_prefilter(&self) -> Option<&Prefilter> { |
959 | 118k | self.pre.as_ref().unwrap_or(&None).as_ref() |
960 | 118k | } |
961 | | |
962 | | /// Returns whether this configuration has enabled the expensive process |
963 | | /// of minimizing a DFA. |
964 | 76.1k | pub fn get_minimize(&self) -> bool { |
965 | 76.1k | self.minimize.unwrap_or(false) |
966 | 76.1k | } |
967 | | |
968 | | /// Returns the match semantics set in this configuration. |
969 | 77.6k | pub fn get_match_kind(&self) -> MatchKind { |
970 | 77.6k | self.match_kind.unwrap_or(MatchKind::LeftmostFirst) |
971 | 77.6k | } |
972 | | |
973 | | /// Returns the starting state configuration for a DFA. |
974 | 77.6k | pub fn get_starts(&self) -> StartKind { |
975 | 77.6k | self.start_kind.unwrap_or(StartKind::Both) |
976 | 77.6k | } |
977 | | |
978 | | /// Returns whether this configuration has enabled anchored starting states |
979 | | /// for every pattern in the DFA. |
980 | 77.6k | pub fn get_starts_for_each_pattern(&self) -> bool { |
981 | 77.6k | self.starts_for_each_pattern.unwrap_or(false) |
982 | 77.6k | } |
983 | | |
984 | | /// Returns whether this configuration has enabled byte classes or not. |
985 | | /// This is typically a debugging oriented option, as disabling it confers |
986 | | /// no speed benefit. |
987 | 77.6k | pub fn get_byte_classes(&self) -> bool { |
988 | 77.6k | self.byte_classes.unwrap_or(true) |
989 | 77.6k | } |
990 | | |
991 | | /// Returns whether this configuration has enabled heuristic Unicode word |
992 | | /// boundary support. When enabled, it is possible for a search to return |
993 | | /// an error. |
994 | 77.6k | pub fn get_unicode_word_boundary(&self) -> bool { |
995 | 77.6k | self.unicode_word_boundary.unwrap_or(false) |
996 | 77.6k | } |
997 | | |
998 | | /// Returns whether this configuration will instruct the DFA to enter a |
999 | | /// quit state whenever the given byte is seen during a search. When at |
1000 | | /// least one byte has this enabled, it is possible for a search to return |
1001 | | /// an error. |
1002 | 0 | pub fn get_quit(&self, byte: u8) -> bool { |
1003 | 0 | self.quitset.map_or(false, |q| q.contains(byte)) |
1004 | 0 | } |
1005 | | |
1006 | | /// Returns whether this configuration will instruct the DFA to |
1007 | | /// "specialize" start states. When enabled, the DFA will mark start states |
1008 | | /// as "special" so that search routines using the DFA can detect when |
1009 | | /// it's in a start state and do some kind of optimization (like run a |
1010 | | /// prefilter). |
1011 | 76.1k | pub fn get_specialize_start_states(&self) -> bool { |
1012 | 76.1k | self.specialize_start_states.unwrap_or(false) |
1013 | 76.1k | } |
1014 | | |
1015 | | /// Returns the DFA size limit of this configuration if one was set. |
1016 | | /// The size limit is total number of bytes on the heap that a DFA is |
1017 | | /// permitted to use. If the DFA exceeds this limit during construction, |
1018 | | /// then construction is stopped and an error is returned. |
1019 | 77.6k | pub fn get_dfa_size_limit(&self) -> Option<usize> { |
1020 | 77.6k | self.dfa_size_limit.unwrap_or(None) |
1021 | 77.6k | } |
1022 | | |
1023 | | /// Returns the determinization size limit of this configuration if one |
1024 | | /// was set. The size limit is total number of bytes on the heap that |
1025 | | /// determinization is permitted to use. If determinization exceeds this |
1026 | | /// limit during construction, then construction is stopped and an error is |
1027 | | /// returned. |
1028 | | /// |
1029 | | /// This is different from the DFA size limit in that this only applies to |
1030 | | /// the auxiliary storage used during determinization. Once determinization |
1031 | | /// is complete, this memory is freed. |
1032 | | /// |
1033 | | /// The limit on the total heap memory used is the sum of the DFA and |
1034 | | /// determinization size limits. |
1035 | 77.6k | pub fn get_determinize_size_limit(&self) -> Option<usize> { |
1036 | 77.6k | self.determinize_size_limit.unwrap_or(None) |
1037 | 77.6k | } |
1038 | | |
1039 | | /// Overwrite the default configuration such that the options in `o` are |
1040 | | /// always used. If an option in `o` is not set, then the corresponding |
1041 | | /// option in `self` is used. If it's not set in `self` either, then it |
1042 | | /// remains not set. |
1043 | 77.6k | pub(crate) fn overwrite(&self, o: Config) -> Config { |
1044 | | Config { |
1045 | 77.6k | accelerate: o.accelerate.or(self.accelerate), |
1046 | 77.6k | pre: o.pre.or_else(|| self.pre.clone()), |
1047 | 77.6k | minimize: o.minimize.or(self.minimize), |
1048 | 77.6k | match_kind: o.match_kind.or(self.match_kind), |
1049 | 77.6k | start_kind: o.start_kind.or(self.start_kind), |
1050 | 77.6k | starts_for_each_pattern: o |
1051 | 77.6k | .starts_for_each_pattern |
1052 | 77.6k | .or(self.starts_for_each_pattern), |
1053 | 77.6k | byte_classes: o.byte_classes.or(self.byte_classes), |
1054 | 77.6k | unicode_word_boundary: o |
1055 | 77.6k | .unicode_word_boundary |
1056 | 77.6k | .or(self.unicode_word_boundary), |
1057 | 77.6k | quitset: o.quitset.or(self.quitset), |
1058 | 77.6k | specialize_start_states: o |
1059 | 77.6k | .specialize_start_states |
1060 | 77.6k | .or(self.specialize_start_states), |
1061 | 77.6k | dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit), |
1062 | 77.6k | determinize_size_limit: o |
1063 | 77.6k | .determinize_size_limit |
1064 | 77.6k | .or(self.determinize_size_limit), |
1065 | | } |
1066 | 77.6k | } |
1067 | | } |
1068 | | |
1069 | | /// A builder for constructing a deterministic finite automaton from regular |
1070 | | /// expressions. |
1071 | | /// |
1072 | | /// This builder provides two main things: |
1073 | | /// |
1074 | | /// 1. It provides a few different `build` routines for actually constructing |
1075 | | /// a DFA from different kinds of inputs. The most convenient is |
1076 | | /// [`Builder::build`], which builds a DFA directly from a pattern string. The |
1077 | | /// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight |
1078 | | /// from an NFA. |
1079 | | /// 2. The builder permits configuring a number of things. |
1080 | | /// [`Builder::configure`] is used with [`Config`] to configure aspects of |
1081 | | /// the DFA and the construction process itself. [`Builder::syntax`] and |
1082 | | /// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA |
1083 | | /// construction, respectively. The syntax and thompson configurations only |
1084 | | /// apply when building from a pattern string. |
1085 | | /// |
1086 | | /// This builder always constructs a *single* DFA. As such, this builder |
1087 | | /// can only be used to construct regexes that either detect the presence |
1088 | | /// of a match or find the end location of a match. A single DFA cannot |
1089 | | /// produce both the start and end of a match. For that information, use a |
1090 | | /// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured |
1091 | | /// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to |
1092 | | /// use a DFA directly is if the end location of a match is enough for your use |
1093 | | /// case. Namely, a `Regex` will construct two DFAs instead of one, since a |
1094 | | /// second reverse DFA is needed to find the start of a match. |
1095 | | /// |
1096 | | /// Note that if one wants to build a sparse DFA, you must first build a dense |
1097 | | /// DFA and convert that to a sparse DFA. There is no way to build a sparse |
1098 | | /// DFA without first building a dense DFA. |
1099 | | /// |
1100 | | /// # Example |
1101 | | /// |
1102 | | /// This example shows how to build a minimized DFA that completely disables |
1103 | | /// Unicode. That is: |
1104 | | /// |
1105 | | /// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w` |
1106 | | /// and `\b` are ASCII-only while `.` matches any byte except for `\n` |
1107 | | /// (instead of any UTF-8 encoding of a Unicode scalar value except for |
1108 | | /// `\n`). Things that are Unicode only, such as `\pL`, are not allowed. |
1109 | | /// * The pattern itself is permitted to match invalid UTF-8. For example, |
1110 | | /// things like `[^a]` that match any byte except for `a` are permitted. |
1111 | | /// |
1112 | | /// ``` |
1113 | | /// use regex_automata::{ |
1114 | | /// dfa::{Automaton, dense}, |
1115 | | /// util::syntax, |
1116 | | /// HalfMatch, Input, |
1117 | | /// }; |
1118 | | /// |
1119 | | /// let dfa = dense::Builder::new() |
1120 | | /// .configure(dense::Config::new().minimize(false)) |
1121 | | /// .syntax(syntax::Config::new().unicode(false).utf8(false)) |
1122 | | /// .build(r"foo[^b]ar.*")?; |
1123 | | /// |
1124 | | /// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n"; |
1125 | | /// let expected = Some(HalfMatch::must(0, 10)); |
1126 | | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
1127 | | /// assert_eq!(expected, got); |
1128 | | /// |
1129 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1130 | | /// ``` |
1131 | | #[cfg(feature = "dfa-build")] |
1132 | | #[derive(Clone, Debug)] |
1133 | | pub struct Builder { |
1134 | | config: Config, |
1135 | | #[cfg(feature = "syntax")] |
1136 | | thompson: thompson::Compiler, |
1137 | | } |
1138 | | |
1139 | | #[cfg(feature = "dfa-build")] |
1140 | | impl Builder { |
1141 | | /// Create a new dense DFA builder with the default configuration. |
1142 | 114k | pub fn new() -> Builder { |
1143 | 114k | Builder { |
1144 | 114k | config: Config::default(), |
1145 | 114k | #[cfg(feature = "syntax")] |
1146 | 114k | thompson: thompson::Compiler::new(), |
1147 | 114k | } |
1148 | 114k | } |
1149 | | |
1150 | | /// Build a DFA from the given pattern. |
1151 | | /// |
1152 | | /// If there was a problem parsing or compiling the pattern, then an error |
1153 | | /// is returned. |
1154 | | #[cfg(feature = "syntax")] |
1155 | 0 | pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> { |
1156 | 0 | self.build_many(&[pattern]) |
1157 | 0 | } |
1158 | | |
1159 | | /// Build a DFA from the given patterns. |
1160 | | /// |
1161 | | /// When matches are returned, the pattern ID corresponds to the index of |
1162 | | /// the pattern in the slice given. |
1163 | | #[cfg(feature = "syntax")] |
1164 | 0 | pub fn build_many<P: AsRef<str>>( |
1165 | 0 | &self, |
1166 | 0 | patterns: &[P], |
1167 | 0 | ) -> Result<OwnedDFA, BuildError> { |
1168 | 0 | let nfa = self |
1169 | 0 | .thompson |
1170 | 0 | .clone() |
1171 | 0 | // We can always forcefully disable captures because DFAs do not |
1172 | 0 | // support them. |
1173 | 0 | .configure( |
1174 | 0 | thompson::Config::new() |
1175 | 0 | .which_captures(thompson::WhichCaptures::None), |
1176 | 0 | ) |
1177 | 0 | .build_many(patterns) |
1178 | 0 | .map_err(BuildError::nfa)?; |
1179 | 0 | self.build_from_nfa(&nfa) |
1180 | 0 | } |
1181 | | |
1182 | | /// Build a DFA from the given NFA. |
1183 | | /// |
1184 | | /// # Example |
1185 | | /// |
1186 | | /// This example shows how to build a DFA if you already have an NFA in |
1187 | | /// hand. |
1188 | | /// |
1189 | | /// ``` |
1190 | | /// use regex_automata::{ |
1191 | | /// dfa::{Automaton, dense}, |
1192 | | /// nfa::thompson::NFA, |
1193 | | /// HalfMatch, Input, |
1194 | | /// }; |
1195 | | /// |
1196 | | /// let haystack = "foo123bar".as_bytes(); |
1197 | | /// |
1198 | | /// // This shows how to set non-default options for building an NFA. |
1199 | | /// let nfa = NFA::compiler() |
1200 | | /// .configure(NFA::config().shrink(true)) |
1201 | | /// .build(r"[0-9]+")?; |
1202 | | /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?; |
1203 | | /// let expected = Some(HalfMatch::must(0, 6)); |
1204 | | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
1205 | | /// assert_eq!(expected, got); |
1206 | | /// |
1207 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1208 | | /// ``` |
1209 | 77.6k | pub fn build_from_nfa( |
1210 | 77.6k | &self, |
1211 | 77.6k | nfa: &thompson::NFA, |
1212 | 77.6k | ) -> Result<OwnedDFA, BuildError> { |
1213 | 77.6k | let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty()); |
1214 | 77.6k | if self.config.get_unicode_word_boundary() |
1215 | 77.6k | && nfa.look_set_any().contains_word_unicode() |
1216 | | { |
1217 | 3.64M | for b in 0x80..=0xFF { |
1218 | 3.62M | quitset.add(b); |
1219 | 3.62M | } |
1220 | 49.3k | } |
1221 | 77.6k | let classes = if !self.config.get_byte_classes() { |
1222 | | // DFAs will always use the equivalence class map, but enabling |
1223 | | // this option is useful for debugging. Namely, this will cause all |
1224 | | // transitions to be defined over their actual bytes instead of an |
1225 | | // opaque equivalence class identifier. The former is much easier |
1226 | | // to grok as a human. |
1227 | 0 | ByteClasses::singletons() |
1228 | | } else { |
1229 | 77.6k | let mut set = nfa.byte_class_set().clone(); |
1230 | | // It is important to distinguish any "quit" bytes from all other |
1231 | | // bytes. Otherwise, a non-quit byte may end up in the same |
1232 | | // class as a quit byte, and thus cause the DFA to stop when it |
1233 | | // shouldn't. |
1234 | | // |
1235 | | // Test case: |
1236 | | // |
1237 | | // regex-cli find match dense --unicode-word-boundary \ |
1238 | | // -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log |
1239 | 77.6k | if !quitset.is_empty() { |
1240 | 28.2k | set.add_set(&quitset); |
1241 | 49.3k | } |
1242 | 77.6k | set.byte_classes() |
1243 | | }; |
1244 | | |
1245 | 77.6k | let mut dfa = DFA::initial( |
1246 | 77.6k | classes, |
1247 | 77.6k | nfa.pattern_len(), |
1248 | 77.6k | self.config.get_starts(), |
1249 | 77.6k | nfa.look_matcher(), |
1250 | 77.6k | self.config.get_starts_for_each_pattern(), |
1251 | 77.6k | self.config.get_prefilter().map(|p| p.clone()), |
1252 | 77.6k | quitset, |
1253 | 77.6k | Flags::from_nfa(&nfa), |
1254 | 0 | )?; |
1255 | 77.6k | determinize::Config::new() |
1256 | 77.6k | .match_kind(self.config.get_match_kind()) |
1257 | 77.6k | .quit(quitset) |
1258 | 77.6k | .dfa_size_limit(self.config.get_dfa_size_limit()) |
1259 | 77.6k | .determinize_size_limit(self.config.get_determinize_size_limit()) |
1260 | 77.6k | .run(nfa, &mut dfa)?; |
1261 | 76.1k | if self.config.get_minimize() { |
1262 | 0 | dfa.minimize(); |
1263 | 76.1k | } |
1264 | 76.1k | if self.config.get_accelerate() { |
1265 | 73.5k | dfa.accelerate(); |
1266 | 73.5k | } |
1267 | | // The state shuffling done before this point always assumes that start |
1268 | | // states should be marked as "special," even though it isn't the |
1269 | | // default configuration. State shuffling is complex enough as it is, |
1270 | | // so it's simpler to just "fix" our special state ID ranges to not |
1271 | | // include starting states after-the-fact. |
1272 | 76.1k | if !self.config.get_specialize_start_states() { |
1273 | 61.4k | dfa.special.set_no_special_start_states(); |
1274 | 61.4k | } |
1275 | | // Look for and set the universal starting states. |
1276 | 76.1k | dfa.set_universal_starts(); |
1277 | 76.1k | dfa.tt.table.shrink_to_fit(); |
1278 | 76.1k | dfa.st.table.shrink_to_fit(); |
1279 | 76.1k | dfa.ms.slices.shrink_to_fit(); |
1280 | 76.1k | dfa.ms.pattern_ids.shrink_to_fit(); |
1281 | 76.1k | Ok(dfa) |
1282 | 77.6k | } |
1283 | | |
1284 | | /// Apply the given dense DFA configuration options to this builder. |
1285 | 77.6k | pub fn configure(&mut self, config: Config) -> &mut Builder { |
1286 | 77.6k | self.config = self.config.overwrite(config); |
1287 | 77.6k | self |
1288 | 77.6k | } |
1289 | | |
1290 | | /// Set the syntax configuration for this builder using |
1291 | | /// [`syntax::Config`](crate::util::syntax::Config). |
1292 | | /// |
1293 | | /// This permits setting things like case insensitivity, Unicode and multi |
1294 | | /// line mode. |
1295 | | /// |
1296 | | /// These settings only apply when constructing a DFA directly from a |
1297 | | /// pattern. |
1298 | | #[cfg(feature = "syntax")] |
1299 | 0 | pub fn syntax( |
1300 | 0 | &mut self, |
1301 | 0 | config: crate::util::syntax::Config, |
1302 | 0 | ) -> &mut Builder { |
1303 | 0 | self.thompson.syntax(config); |
1304 | 0 | self |
1305 | 0 | } |
1306 | | |
1307 | | /// Set the Thompson NFA configuration for this builder using |
1308 | | /// [`nfa::thompson::Config`](crate::nfa::thompson::Config). |
1309 | | /// |
1310 | | /// This permits setting things like whether the DFA should match the regex |
1311 | | /// in reverse or if additional time should be spent shrinking the size of |
1312 | | /// the NFA. |
1313 | | /// |
1314 | | /// These settings only apply when constructing a DFA directly from a |
1315 | | /// pattern. |
1316 | | #[cfg(feature = "syntax")] |
1317 | 0 | pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder { |
1318 | 0 | self.thompson.configure(config); |
1319 | 0 | self |
1320 | 0 | } |
1321 | | } |
1322 | | |
1323 | | #[cfg(feature = "dfa-build")] |
1324 | | impl Default for Builder { |
1325 | 0 | fn default() -> Builder { |
1326 | 0 | Builder::new() |
1327 | 0 | } |
1328 | | } |
1329 | | |
1330 | | /// A convenience alias for an owned DFA. We use this particular instantiation |
1331 | | /// a lot in this crate, so it's worth giving it a name. This instantiation |
1332 | | /// is commonly used for mutable APIs on the DFA while building it. The main |
1333 | | /// reason for making DFAs generic is no_std support, and more generally, |
1334 | | /// making it possible to load a DFA from an arbitrary slice of bytes. |
1335 | | #[cfg(feature = "alloc")] |
1336 | | pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>; |
1337 | | |
1338 | | /// A dense table-based deterministic finite automaton (DFA). |
1339 | | /// |
1340 | | /// All dense DFAs have one or more start states, zero or more match states |
1341 | | /// and a transition table that maps the current state and the current byte |
1342 | | /// of input to the next state. A DFA can use this information to implement |
1343 | | /// fast searching. In particular, the use of a dense DFA generally makes the |
1344 | | /// trade off that match speed is the most valuable characteristic, even if |
1345 | | /// building the DFA may take significant time *and* space. (More concretely, |
1346 | | /// building a DFA takes time and space that is exponential in the size of the |
1347 | | /// pattern in the worst case.) As such, the processing of every byte of input |
1348 | | /// is done with a small constant number of operations that does not vary with |
1349 | | /// the pattern, its size or the size of the alphabet. If your needs don't line |
1350 | | /// up with this trade off, then a dense DFA may not be an adequate solution to |
1351 | | /// your problem. |
1352 | | /// |
1353 | | /// In contrast, a [`sparse::DFA`] makes the opposite |
1354 | | /// trade off: it uses less space but will execute a variable number of |
1355 | | /// instructions per byte at match time, which makes it slower for matching. |
1356 | | /// (Note that space usage is still exponential in the size of the pattern in |
1357 | | /// the worst case.) |
1358 | | /// |
1359 | | /// A DFA can be built using the default configuration via the |
1360 | | /// [`DFA::new`] constructor. Otherwise, one can |
1361 | | /// configure various aspects via [`dense::Builder`](Builder). |
1362 | | /// |
1363 | | /// A single DFA fundamentally supports the following operations: |
1364 | | /// |
1365 | | /// 1. Detection of a match. |
1366 | | /// 2. Location of the end of a match. |
1367 | | /// 3. In the case of a DFA with multiple patterns, which pattern matched is |
1368 | | /// reported as well. |
1369 | | /// |
1370 | | /// A notable absence from the above list of capabilities is the location of |
1371 | | /// the *start* of a match. In order to provide both the start and end of |
1372 | | /// a match, *two* DFAs are required. This functionality is provided by a |
1373 | | /// [`Regex`](crate::dfa::regex::Regex). |
1374 | | /// |
1375 | | /// # Type parameters |
1376 | | /// |
1377 | | /// A `DFA` has one type parameter, `T`, which is used to represent state IDs, |
1378 | | /// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`. |
1379 | | /// |
1380 | | /// # The `Automaton` trait |
1381 | | /// |
1382 | | /// This type implements the [`Automaton`] trait, which means it can be used |
1383 | | /// for searching. For example: |
1384 | | /// |
1385 | | /// ``` |
1386 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
1387 | | /// |
1388 | | /// let dfa = DFA::new("foo[0-9]+")?; |
1389 | | /// let expected = HalfMatch::must(0, 8); |
1390 | | /// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345"))?); |
1391 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1392 | | /// ``` |
1393 | | #[derive(Clone)] |
1394 | | pub struct DFA<T> { |
1395 | | /// The transition table for this DFA. This includes the transitions |
1396 | | /// themselves, along with the stride, number of states and the equivalence |
1397 | | /// class mapping. |
1398 | | tt: TransitionTable<T>, |
1399 | | /// The set of starting state identifiers for this DFA. The starting state |
1400 | | /// IDs act as pointers into the transition table. The specific starting |
1401 | | /// state chosen for each search is dependent on the context at which the |
1402 | | /// search begins. |
1403 | | st: StartTable<T>, |
1404 | | /// The set of match states and the patterns that match for each |
1405 | | /// corresponding match state. |
1406 | | /// |
1407 | | /// This structure is technically only needed because of support for |
1408 | | /// multi-regexes. Namely, multi-regexes require answering not just whether |
1409 | | /// a match exists, but _which_ patterns match. So we need to store the |
1410 | | /// matching pattern IDs for each match state. We do this even when there |
1411 | | /// is only one pattern for the sake of simplicity. In practice, this uses |
1412 | | /// up very little space for the case of one pattern. |
1413 | | ms: MatchStates<T>, |
1414 | | /// Information about which states are "special." Special states are states |
1415 | | /// that are dead, quit, matching, starting or accelerated. For more info, |
1416 | | /// see the docs for `Special`. |
1417 | | special: Special, |
1418 | | /// The accelerators for this DFA. |
1419 | | /// |
1420 | | /// If a state is accelerated, then there exist only a small number of |
1421 | | /// bytes that can cause the DFA to leave the state. This permits searching |
1422 | | /// to use optimized routines to find those specific bytes instead of using |
1423 | | /// the transition table. |
1424 | | /// |
1425 | | /// All accelerated states exist in a contiguous range in the DFA's |
1426 | | /// transition table. See dfa/special.rs for more details on how states are |
1427 | | /// arranged. |
1428 | | accels: Accels<T>, |
1429 | | /// Any prefilter attached to this DFA. |
1430 | | /// |
1431 | | /// Note that currently prefilters are not serialized. When deserializing |
1432 | | /// a DFA from bytes, this is always set to `None`. |
1433 | | pre: Option<Prefilter>, |
1434 | | /// The set of "quit" bytes for this DFA. |
1435 | | /// |
1436 | | /// This is only used when computing the start state for a particular |
1437 | | /// position in a haystack. Namely, in the case where there is a quit |
1438 | | /// byte immediately before the start of the search, this set needs to be |
1439 | | /// explicitly consulted. In all other cases, quit bytes are detected by |
1440 | | /// the DFA itself, by transitioning all quit bytes to a special "quit |
1441 | | /// state." |
1442 | | quitset: ByteSet, |
1443 | | /// Various flags describing the behavior of this DFA. |
1444 | | flags: Flags, |
1445 | | } |
1446 | | |
1447 | | #[cfg(feature = "dfa-build")] |
1448 | | impl OwnedDFA { |
1449 | | /// Parse the given regular expression using a default configuration and |
1450 | | /// return the corresponding DFA. |
1451 | | /// |
1452 | | /// If you want a non-default configuration, then use the |
1453 | | /// [`dense::Builder`](Builder) to set your own configuration. |
1454 | | /// |
1455 | | /// # Example |
1456 | | /// |
1457 | | /// ``` |
1458 | | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
1459 | | /// |
1460 | | /// let dfa = dense::DFA::new("foo[0-9]+bar")?; |
1461 | | /// let expected = Some(HalfMatch::must(0, 11)); |
1462 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?); |
1463 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1464 | | /// ``` |
1465 | | #[cfg(feature = "syntax")] |
1466 | 0 | pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> { |
1467 | 0 | Builder::new().build(pattern) |
1468 | 0 | } |
1469 | | |
1470 | | /// Parse the given regular expressions using a default configuration and |
1471 | | /// return the corresponding multi-DFA. |
1472 | | /// |
1473 | | /// If you want a non-default configuration, then use the |
1474 | | /// [`dense::Builder`](Builder) to set your own configuration. |
1475 | | /// |
1476 | | /// # Example |
1477 | | /// |
1478 | | /// ``` |
1479 | | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
1480 | | /// |
1481 | | /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?; |
1482 | | /// let expected = Some(HalfMatch::must(1, 3)); |
1483 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?); |
1484 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1485 | | /// ``` |
1486 | | #[cfg(feature = "syntax")] |
1487 | | pub fn new_many<P: AsRef<str>>( |
1488 | | patterns: &[P], |
1489 | | ) -> Result<OwnedDFA, BuildError> { |
1490 | | Builder::new().build_many(patterns) |
1491 | | } |
1492 | | } |
1493 | | |
1494 | | #[cfg(feature = "dfa-build")] |
1495 | | impl OwnedDFA { |
1496 | | /// Create a new DFA that matches every input. |
1497 | | /// |
1498 | | /// # Example |
1499 | | /// |
1500 | | /// ``` |
1501 | | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
1502 | | /// |
1503 | | /// let dfa = dense::DFA::always_match()?; |
1504 | | /// |
1505 | | /// let expected = Some(HalfMatch::must(0, 0)); |
1506 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?); |
1507 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?); |
1508 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1509 | | /// ``` |
1510 | 0 | pub fn always_match() -> Result<OwnedDFA, BuildError> { |
1511 | 0 | let nfa = thompson::NFA::always_match(); |
1512 | 0 | Builder::new().build_from_nfa(&nfa) |
1513 | 0 | } |
1514 | | |
1515 | | /// Create a new DFA that never matches any input. |
1516 | | /// |
1517 | | /// # Example |
1518 | | /// |
1519 | | /// ``` |
1520 | | /// use regex_automata::{dfa::{Automaton, dense}, Input}; |
1521 | | /// |
1522 | | /// let dfa = dense::DFA::never_match()?; |
1523 | | /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?); |
1524 | | /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?); |
1525 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1526 | | /// ``` |
1527 | 0 | pub fn never_match() -> Result<OwnedDFA, BuildError> { |
1528 | 0 | let nfa = thompson::NFA::never_match(); |
1529 | 0 | Builder::new().build_from_nfa(&nfa) |
1530 | 0 | } |
1531 | | |
1532 | | /// Create an initial DFA with the given equivalence classes, pattern |
1533 | | /// length and whether anchored starting states are enabled for each |
1534 | | /// pattern. An initial DFA can be further mutated via determinization. |
1535 | 77.6k | fn initial( |
1536 | 77.6k | classes: ByteClasses, |
1537 | 77.6k | pattern_len: usize, |
1538 | 77.6k | starts: StartKind, |
1539 | 77.6k | lookm: &LookMatcher, |
1540 | 77.6k | starts_for_each_pattern: bool, |
1541 | 77.6k | pre: Option<Prefilter>, |
1542 | 77.6k | quitset: ByteSet, |
1543 | 77.6k | flags: Flags, |
1544 | 77.6k | ) -> Result<OwnedDFA, BuildError> { |
1545 | 77.6k | let start_pattern_len = |
1546 | 77.6k | if starts_for_each_pattern { Some(pattern_len) } else { None }; |
1547 | | Ok(DFA { |
1548 | 77.6k | tt: TransitionTable::minimal(classes), |
1549 | 77.6k | st: StartTable::dead(starts, lookm, start_pattern_len)?, |
1550 | 77.6k | ms: MatchStates::empty(pattern_len), |
1551 | 77.6k | special: Special::new(), |
1552 | 77.6k | accels: Accels::empty(), |
1553 | 77.6k | pre, |
1554 | 77.6k | quitset, |
1555 | 77.6k | flags, |
1556 | | }) |
1557 | 77.6k | } |
1558 | | } |
1559 | | |
1560 | | #[cfg(feature = "dfa-build")] |
1561 | | impl DFA<&[u32]> { |
1562 | | /// Return a new default dense DFA compiler configuration. |
1563 | | /// |
1564 | | /// This is a convenience routine to avoid needing to import the [`Config`] |
1565 | | /// type when customizing the construction of a dense DFA. |
1566 | 0 | pub fn config() -> Config { |
1567 | 0 | Config::new() |
1568 | 0 | } |
1569 | | |
1570 | | /// Create a new dense DFA builder with the default configuration. |
1571 | | /// |
1572 | | /// This is a convenience routine to avoid needing to import the |
1573 | | /// [`Builder`] type in common cases. |
1574 | 0 | pub fn builder() -> Builder { |
1575 | 0 | Builder::new() |
1576 | 0 | } |
1577 | | } |
1578 | | |
1579 | | impl<T: AsRef<[u32]>> DFA<T> { |
1580 | | /// Cheaply return a borrowed version of this dense DFA. Specifically, |
1581 | | /// the DFA returned always uses `&[u32]` for its transition table. |
1582 | | pub fn as_ref(&self) -> DFA<&'_ [u32]> { |
1583 | | DFA { |
1584 | | tt: self.tt.as_ref(), |
1585 | | st: self.st.as_ref(), |
1586 | | ms: self.ms.as_ref(), |
1587 | | special: self.special, |
1588 | | accels: self.accels(), |
1589 | | pre: self.pre.clone(), |
1590 | | quitset: self.quitset, |
1591 | | flags: self.flags, |
1592 | | } |
1593 | | } |
1594 | | |
1595 | | /// Return an owned version of this sparse DFA. Specifically, the DFA |
1596 | | /// returned always uses `Vec<u32>` for its transition table. |
1597 | | /// |
1598 | | /// Effectively, this returns a dense DFA whose transition table lives on |
1599 | | /// the heap. |
1600 | | #[cfg(feature = "alloc")] |
1601 | | pub fn to_owned(&self) -> OwnedDFA { |
1602 | | DFA { |
1603 | | tt: self.tt.to_owned(), |
1604 | | st: self.st.to_owned(), |
1605 | | ms: self.ms.to_owned(), |
1606 | | special: self.special, |
1607 | | accels: self.accels().to_owned(), |
1608 | | pre: self.pre.clone(), |
1609 | | quitset: self.quitset, |
1610 | | flags: self.flags, |
1611 | | } |
1612 | | } |
1613 | | |
1614 | | /// Returns the starting state configuration for this DFA. |
1615 | | /// |
1616 | | /// The default is [`StartKind::Both`], which means the DFA supports both |
1617 | | /// unanchored and anchored searches. However, this can generally lead to |
1618 | | /// bigger DFAs. Therefore, a DFA might be compiled with support for just |
1619 | | /// unanchored or anchored searches. In that case, running a search with |
1620 | | /// an unsupported configuration will panic. |
1621 | 307k | pub fn start_kind(&self) -> StartKind { |
1622 | 307k | self.st.kind |
1623 | 307k | } |
1624 | | |
1625 | | /// Returns the start byte map used for computing the `Start` configuration |
1626 | | /// at the beginning of a search. |
1627 | 0 | pub(crate) fn start_map(&self) -> &StartByteMap { |
1628 | 0 | &self.st.start_map |
1629 | 0 | } |
1630 | | |
1631 | | /// Returns true only if this DFA has starting states for each pattern. |
1632 | | /// |
1633 | | /// When a DFA has starting states for each pattern, then a search with the |
1634 | | /// DFA can be configured to only look for anchored matches of a specific |
1635 | | /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can |
1636 | | /// accept a non-None `pattern_id` if and only if this method returns true. |
1637 | | /// Otherwise, calling `try_search_fwd` will panic. |
1638 | | /// |
1639 | | /// Note that if the DFA has no patterns, this always returns false. |
1640 | 77.6k | pub fn starts_for_each_pattern(&self) -> bool { |
1641 | 77.6k | self.st.pattern_len.is_some() |
1642 | 77.6k | } |
1643 | | |
1644 | | /// Returns the equivalence classes that make up the alphabet for this DFA. |
1645 | | /// |
1646 | | /// Unless [`Config::byte_classes`] was disabled, it is possible that |
1647 | | /// multiple distinct bytes are grouped into the same equivalence class |
1648 | | /// if it is impossible for them to discriminate between a match and a |
1649 | | /// non-match. This has the effect of reducing the overall alphabet size |
1650 | | /// and in turn potentially substantially reducing the size of the DFA's |
1651 | | /// transition table. |
1652 | | /// |
1653 | | /// The downside of using equivalence classes like this is that every state |
1654 | | /// transition will automatically use this map to convert an arbitrary |
1655 | | /// byte to its corresponding equivalence class. In practice this has a |
1656 | | /// negligible impact on performance. |
1657 | 4.54M | pub fn byte_classes(&self) -> &ByteClasses { |
1658 | 4.54M | &self.tt.classes |
1659 | 4.54M | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::byte_classes Line | Count | Source | 1657 | 4.33M | pub fn byte_classes(&self) -> &ByteClasses { | 1658 | 4.33M | &self.tt.classes | 1659 | 4.33M | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::byte_classes Line | Count | Source | 1657 | 205k | pub fn byte_classes(&self) -> &ByteClasses { | 1658 | 205k | &self.tt.classes | 1659 | 205k | } |
|
1660 | | |
1661 | | /// Returns the total number of elements in the alphabet for this DFA. |
1662 | | /// |
1663 | | /// That is, this returns the total number of transitions that each state |
1664 | | /// in this DFA must have. Typically, a normal byte oriented DFA would |
1665 | | /// always have an alphabet size of 256, corresponding to the number of |
1666 | | /// unique values in a single byte. However, this implementation has two |
1667 | | /// peculiarities that impact the alphabet length: |
1668 | | /// |
1669 | | /// * Every state has a special "EOI" transition that is only followed |
1670 | | /// after the end of some haystack is reached. This EOI transition is |
1671 | | /// necessary to account for one byte of look-ahead when implementing |
1672 | | /// things like `\b` and `$`. |
1673 | | /// * Bytes are grouped into equivalence classes such that no two bytes in |
1674 | | /// the same class can distinguish a match from a non-match. For example, |
1675 | | /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the |
1676 | | /// same equivalence class. This leads to a massive space savings. |
1677 | | /// |
1678 | | /// Note though that the alphabet length does _not_ necessarily equal the |
1679 | | /// total stride space taken up by a single DFA state in the transition |
1680 | | /// table. Namely, for performance reasons, the stride is always the |
1681 | | /// smallest power of two that is greater than or equal to the alphabet |
1682 | | /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are |
1683 | | /// often more useful. The alphabet length is typically useful only for |
1684 | | /// informational purposes. |
1685 | 0 | pub fn alphabet_len(&self) -> usize { |
1686 | 0 | self.tt.alphabet_len() |
1687 | 0 | } |
1688 | | |
1689 | | /// Returns the total stride for every state in this DFA, expressed as the |
1690 | | /// exponent of a power of 2. The stride is the amount of space each state |
1691 | | /// takes up in the transition table, expressed as a number of transitions. |
1692 | | /// (Unused transitions map to dead states.) |
1693 | | /// |
1694 | | /// The stride of a DFA is always equivalent to the smallest power of 2 |
1695 | | /// that is greater than or equal to the DFA's alphabet length. This |
1696 | | /// definition uses extra space, but permits faster translation between |
1697 | | /// premultiplied state identifiers and contiguous indices (by using shifts |
1698 | | /// instead of relying on integer division). |
1699 | | /// |
1700 | | /// For example, if the DFA's stride is 16 transitions, then its `stride2` |
1701 | | /// is `4` since `2^4 = 16`. |
1702 | | /// |
1703 | | /// The minimum `stride2` value is `1` (corresponding to a stride of `2`) |
1704 | | /// while the maximum `stride2` value is `9` (corresponding to a stride of |
1705 | | /// `512`). The maximum is not `8` since the maximum alphabet size is `257` |
1706 | | /// when accounting for the special EOI transition. However, an alphabet |
1707 | | /// length of that size is exceptionally rare since the alphabet is shrunk |
1708 | | /// into equivalence classes. |
1709 | 184k | pub fn stride2(&self) -> usize { |
1710 | 184k | self.tt.stride2 |
1711 | 184k | } |
1712 | | |
1713 | | /// Returns the total stride for every state in this DFA. This corresponds |
1714 | | /// to the total number of transitions used by each state in this DFA's |
1715 | | /// transition table. |
1716 | | /// |
1717 | | /// Please see [`DFA::stride2`] for more information. In particular, this |
1718 | | /// returns the stride as the number of transitions, where as `stride2` |
1719 | | /// returns it as the exponent of a power of 2. |
1720 | 6.96k | pub fn stride(&self) -> usize { |
1721 | 6.96k | self.tt.stride() |
1722 | 6.96k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::stride Line | Count | Source | 1720 | 6.59k | pub fn stride(&self) -> usize { | 1721 | 6.59k | self.tt.stride() | 1722 | 6.59k | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::stride Line | Count | Source | 1720 | 368 | pub fn stride(&self) -> usize { | 1721 | 368 | self.tt.stride() | 1722 | 368 | } |
|
1723 | | |
1724 | | /// Returns the memory usage, in bytes, of this DFA. |
1725 | | /// |
1726 | | /// The memory usage is computed based on the number of bytes used to |
1727 | | /// represent this DFA. |
1728 | | /// |
1729 | | /// This does **not** include the stack size used up by this DFA. To |
1730 | | /// compute that, use `std::mem::size_of::<dense::DFA>()`. |
1731 | 806k | pub fn memory_usage(&self) -> usize { |
1732 | 806k | self.tt.memory_usage() |
1733 | 806k | + self.st.memory_usage() |
1734 | 806k | + self.ms.memory_usage() |
1735 | 806k | + self.accels.memory_usage() |
1736 | 806k | } |
1737 | | } |
1738 | | |
1739 | | /// Routines for converting a dense DFA to other representations, such as |
1740 | | /// sparse DFAs or raw bytes suitable for persistent storage. |
1741 | | impl<T: AsRef<[u32]>> DFA<T> { |
1742 | | /// Convert this dense DFA to a sparse DFA. |
1743 | | /// |
1744 | | /// If a `StateID` is too small to represent all states in the sparse |
1745 | | /// DFA, then this returns an error. In most cases, if a dense DFA is |
1746 | | /// constructable with `StateID` then a sparse DFA will be as well. |
1747 | | /// However, it is not guaranteed. |
1748 | | /// |
1749 | | /// # Example |
1750 | | /// |
1751 | | /// ``` |
1752 | | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
1753 | | /// |
1754 | | /// let dense = dense::DFA::new("foo[0-9]+")?; |
1755 | | /// let sparse = dense.to_sparse()?; |
1756 | | /// |
1757 | | /// let expected = Some(HalfMatch::must(0, 8)); |
1758 | | /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?); |
1759 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1760 | | /// ``` |
1761 | | #[cfg(feature = "dfa-build")] |
1762 | 0 | pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> { |
1763 | 0 | sparse::DFA::from_dense(self) |
1764 | 0 | } |
1765 | | |
1766 | | /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian |
1767 | | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
1768 | | /// returned. |
1769 | | /// |
1770 | | /// The written bytes are guaranteed to be deserialized correctly and |
1771 | | /// without errors in a semver compatible release of this crate by a |
1772 | | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
1773 | | /// deserialization APIs has been satisfied): |
1774 | | /// |
1775 | | /// * [`DFA::from_bytes`] |
1776 | | /// * [`DFA::from_bytes_unchecked`] |
1777 | | /// |
1778 | | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
1779 | | /// an address that does not have the same alignment as `u32`. The padding |
1780 | | /// corresponds to the number of leading bytes written to the returned |
1781 | | /// `Vec<u8>`. |
1782 | | /// |
1783 | | /// # Example |
1784 | | /// |
1785 | | /// This example shows how to serialize and deserialize a DFA: |
1786 | | /// |
1787 | | /// ``` |
1788 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
1789 | | /// |
1790 | | /// // Compile our original DFA. |
1791 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
1792 | | /// |
1793 | | /// // N.B. We use native endianness here to make the example work, but |
1794 | | /// // using to_bytes_little_endian would work on a little endian target. |
1795 | | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
1796 | | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
1797 | | /// // ignore it. |
1798 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
1799 | | /// |
1800 | | /// let expected = Some(HalfMatch::must(0, 8)); |
1801 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
1802 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1803 | | /// ``` |
1804 | | #[cfg(feature = "dfa-build")] |
1805 | | pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) { |
1806 | | self.to_bytes::<wire::LE>() |
1807 | | } |
1808 | | |
1809 | | /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian |
1810 | | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
1811 | | /// returned. |
1812 | | /// |
1813 | | /// The written bytes are guaranteed to be deserialized correctly and |
1814 | | /// without errors in a semver compatible release of this crate by a |
1815 | | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
1816 | | /// deserialization APIs has been satisfied): |
1817 | | /// |
1818 | | /// * [`DFA::from_bytes`] |
1819 | | /// * [`DFA::from_bytes_unchecked`] |
1820 | | /// |
1821 | | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
1822 | | /// an address that does not have the same alignment as `u32`. The padding |
1823 | | /// corresponds to the number of leading bytes written to the returned |
1824 | | /// `Vec<u8>`. |
1825 | | /// |
1826 | | /// # Example |
1827 | | /// |
1828 | | /// This example shows how to serialize and deserialize a DFA: |
1829 | | /// |
1830 | | /// ``` |
1831 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
1832 | | /// |
1833 | | /// // Compile our original DFA. |
1834 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
1835 | | /// |
1836 | | /// // N.B. We use native endianness here to make the example work, but |
1837 | | /// // using to_bytes_big_endian would work on a big endian target. |
1838 | | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
1839 | | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
1840 | | /// // ignore it. |
1841 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
1842 | | /// |
1843 | | /// let expected = Some(HalfMatch::must(0, 8)); |
1844 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
1845 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1846 | | /// ``` |
1847 | | #[cfg(feature = "dfa-build")] |
1848 | | pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) { |
1849 | | self.to_bytes::<wire::BE>() |
1850 | | } |
1851 | | |
1852 | | /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian |
1853 | | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
1854 | | /// returned. |
1855 | | /// |
1856 | | /// The written bytes are guaranteed to be deserialized correctly and |
1857 | | /// without errors in a semver compatible release of this crate by a |
1858 | | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
1859 | | /// deserialization APIs has been satisfied): |
1860 | | /// |
1861 | | /// * [`DFA::from_bytes`] |
1862 | | /// * [`DFA::from_bytes_unchecked`] |
1863 | | /// |
1864 | | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
1865 | | /// an address that does not have the same alignment as `u32`. The padding |
1866 | | /// corresponds to the number of leading bytes written to the returned |
1867 | | /// `Vec<u8>`. |
1868 | | /// |
1869 | | /// Generally speaking, native endian format should only be used when |
1870 | | /// you know that the target you're compiling the DFA for matches the |
1871 | | /// endianness of the target on which you're compiling DFA. For example, |
1872 | | /// if serialization and deserialization happen in the same process or on |
1873 | | /// the same machine. Otherwise, when serializing a DFA for use in a |
1874 | | /// portable environment, you'll almost certainly want to serialize _both_ |
1875 | | /// a little endian and a big endian version and then load the correct one |
1876 | | /// based on the target's configuration. |
1877 | | /// |
1878 | | /// # Example |
1879 | | /// |
1880 | | /// This example shows how to serialize and deserialize a DFA: |
1881 | | /// |
1882 | | /// ``` |
1883 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
1884 | | /// |
1885 | | /// // Compile our original DFA. |
1886 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
1887 | | /// |
1888 | | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
1889 | | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
1890 | | /// // ignore it. |
1891 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
1892 | | /// |
1893 | | /// let expected = Some(HalfMatch::must(0, 8)); |
1894 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
1895 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1896 | | /// ``` |
1897 | | #[cfg(feature = "dfa-build")] |
1898 | | pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) { |
1899 | | self.to_bytes::<wire::NE>() |
1900 | | } |
1901 | | |
1902 | | /// The implementation of the public `to_bytes` serialization methods, |
1903 | | /// which is generic over endianness. |
1904 | | #[cfg(feature = "dfa-build")] |
1905 | | fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) { |
1906 | | let len = self.write_to_len(); |
1907 | | let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len); |
1908 | | // This should always succeed since the only possible serialization |
1909 | | // error is providing a buffer that's too small, but we've ensured that |
1910 | | // `buf` is big enough here. |
1911 | | self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap(); |
1912 | | (buf, padding) |
1913 | | } |
1914 | | |
1915 | | /// Serialize this DFA as raw bytes to the given slice, in little endian |
1916 | | /// format. Upon success, the total number of bytes written to `dst` is |
1917 | | /// returned. |
1918 | | /// |
1919 | | /// The written bytes are guaranteed to be deserialized correctly and |
1920 | | /// without errors in a semver compatible release of this crate by a |
1921 | | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
1922 | | /// deserialization APIs has been satisfied): |
1923 | | /// |
1924 | | /// * [`DFA::from_bytes`] |
1925 | | /// * [`DFA::from_bytes_unchecked`] |
1926 | | /// |
1927 | | /// Note that unlike the various `to_byte_*` routines, this does not write |
1928 | | /// any padding. Callers are responsible for handling alignment correctly. |
1929 | | /// |
1930 | | /// # Errors |
1931 | | /// |
1932 | | /// This returns an error if the given destination slice is not big enough |
1933 | | /// to contain the full serialized DFA. If an error occurs, then nothing |
1934 | | /// is written to `dst`. |
1935 | | /// |
1936 | | /// # Example |
1937 | | /// |
1938 | | /// This example shows how to serialize and deserialize a DFA without |
1939 | | /// dynamic memory allocation. |
1940 | | /// |
1941 | | /// ``` |
1942 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
1943 | | /// |
1944 | | /// // Compile our original DFA. |
1945 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
1946 | | /// |
1947 | | /// // Create a 4KB buffer on the stack to store our serialized DFA. We |
1948 | | /// // need to use a special type to force the alignment of our [u8; N] |
1949 | | /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing |
1950 | | /// // the DFA may fail because of an alignment mismatch. |
1951 | | /// #[repr(C)] |
1952 | | /// struct Aligned<B: ?Sized> { |
1953 | | /// _align: [u32; 0], |
1954 | | /// bytes: B, |
1955 | | /// } |
1956 | | /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] }; |
1957 | | /// // N.B. We use native endianness here to make the example work, but |
1958 | | /// // using write_to_little_endian would work on a little endian target. |
1959 | | /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?; |
1960 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0; |
1961 | | /// |
1962 | | /// let expected = Some(HalfMatch::must(0, 8)); |
1963 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
1964 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1965 | | /// ``` |
1966 | | pub fn write_to_little_endian( |
1967 | | &self, |
1968 | | dst: &mut [u8], |
1969 | | ) -> Result<usize, SerializeError> { |
1970 | | self.as_ref().write_to::<wire::LE>(dst) |
1971 | | } |
1972 | | |
1973 | | /// Serialize this DFA as raw bytes to the given slice, in big endian |
1974 | | /// format. Upon success, the total number of bytes written to `dst` is |
1975 | | /// returned. |
1976 | | /// |
1977 | | /// The written bytes are guaranteed to be deserialized correctly and |
1978 | | /// without errors in a semver compatible release of this crate by a |
1979 | | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
1980 | | /// deserialization APIs has been satisfied): |
1981 | | /// |
1982 | | /// * [`DFA::from_bytes`] |
1983 | | /// * [`DFA::from_bytes_unchecked`] |
1984 | | /// |
1985 | | /// Note that unlike the various `to_byte_*` routines, this does not write |
1986 | | /// any padding. Callers are responsible for handling alignment correctly. |
1987 | | /// |
1988 | | /// # Errors |
1989 | | /// |
1990 | | /// This returns an error if the given destination slice is not big enough |
1991 | | /// to contain the full serialized DFA. If an error occurs, then nothing |
1992 | | /// is written to `dst`. |
1993 | | /// |
1994 | | /// # Example |
1995 | | /// |
1996 | | /// This example shows how to serialize and deserialize a DFA without |
1997 | | /// dynamic memory allocation. |
1998 | | /// |
1999 | | /// ``` |
2000 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
2001 | | /// |
2002 | | /// // Compile our original DFA. |
2003 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
2004 | | /// |
2005 | | /// // Create a 4KB buffer on the stack to store our serialized DFA. We |
2006 | | /// // need to use a special type to force the alignment of our [u8; N] |
2007 | | /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing |
2008 | | /// // the DFA may fail because of an alignment mismatch. |
2009 | | /// #[repr(C)] |
2010 | | /// struct Aligned<B: ?Sized> { |
2011 | | /// _align: [u32; 0], |
2012 | | /// bytes: B, |
2013 | | /// } |
2014 | | /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] }; |
2015 | | /// // N.B. We use native endianness here to make the example work, but |
2016 | | /// // using write_to_big_endian would work on a big endian target. |
2017 | | /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?; |
2018 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0; |
2019 | | /// |
2020 | | /// let expected = Some(HalfMatch::must(0, 8)); |
2021 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
2022 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2023 | | /// ``` |
2024 | | pub fn write_to_big_endian( |
2025 | | &self, |
2026 | | dst: &mut [u8], |
2027 | | ) -> Result<usize, SerializeError> { |
2028 | | self.as_ref().write_to::<wire::BE>(dst) |
2029 | | } |
2030 | | |
2031 | | /// Serialize this DFA as raw bytes to the given slice, in native endian |
2032 | | /// format. Upon success, the total number of bytes written to `dst` is |
2033 | | /// returned. |
2034 | | /// |
2035 | | /// The written bytes are guaranteed to be deserialized correctly and |
2036 | | /// without errors in a semver compatible release of this crate by a |
2037 | | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
2038 | | /// deserialization APIs has been satisfied): |
2039 | | /// |
2040 | | /// * [`DFA::from_bytes`] |
2041 | | /// * [`DFA::from_bytes_unchecked`] |
2042 | | /// |
2043 | | /// Generally speaking, native endian format should only be used when |
2044 | | /// you know that the target you're compiling the DFA for matches the |
2045 | | /// endianness of the target on which you're compiling DFA. For example, |
2046 | | /// if serialization and deserialization happen in the same process or on |
2047 | | /// the same machine. Otherwise, when serializing a DFA for use in a |
2048 | | /// portable environment, you'll almost certainly want to serialize _both_ |
2049 | | /// a little endian and a big endian version and then load the correct one |
2050 | | /// based on the target's configuration. |
2051 | | /// |
2052 | | /// Note that unlike the various `to_byte_*` routines, this does not write |
2053 | | /// any padding. Callers are responsible for handling alignment correctly. |
2054 | | /// |
2055 | | /// # Errors |
2056 | | /// |
2057 | | /// This returns an error if the given destination slice is not big enough |
2058 | | /// to contain the full serialized DFA. If an error occurs, then nothing |
2059 | | /// is written to `dst`. |
2060 | | /// |
2061 | | /// # Example |
2062 | | /// |
2063 | | /// This example shows how to serialize and deserialize a DFA without |
2064 | | /// dynamic memory allocation. |
2065 | | /// |
2066 | | /// ``` |
2067 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
2068 | | /// |
2069 | | /// // Compile our original DFA. |
2070 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
2071 | | /// |
2072 | | /// // Create a 4KB buffer on the stack to store our serialized DFA. We |
2073 | | /// // need to use a special type to force the alignment of our [u8; N] |
2074 | | /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing |
2075 | | /// // the DFA may fail because of an alignment mismatch. |
2076 | | /// #[repr(C)] |
2077 | | /// struct Aligned<B: ?Sized> { |
2078 | | /// _align: [u32; 0], |
2079 | | /// bytes: B, |
2080 | | /// } |
2081 | | /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] }; |
2082 | | /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?; |
2083 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0; |
2084 | | /// |
2085 | | /// let expected = Some(HalfMatch::must(0, 8)); |
2086 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
2087 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2088 | | /// ``` |
2089 | | pub fn write_to_native_endian( |
2090 | | &self, |
2091 | | dst: &mut [u8], |
2092 | | ) -> Result<usize, SerializeError> { |
2093 | | self.as_ref().write_to::<wire::NE>(dst) |
2094 | | } |
2095 | | |
2096 | | /// Return the total number of bytes required to serialize this DFA. |
2097 | | /// |
2098 | | /// This is useful for determining the size of the buffer required to pass |
2099 | | /// to one of the serialization routines: |
2100 | | /// |
2101 | | /// * [`DFA::write_to_little_endian`] |
2102 | | /// * [`DFA::write_to_big_endian`] |
2103 | | /// * [`DFA::write_to_native_endian`] |
2104 | | /// |
2105 | | /// Passing a buffer smaller than the size returned by this method will |
2106 | | /// result in a serialization error. Serialization routines are guaranteed |
2107 | | /// to succeed when the buffer is big enough. |
2108 | | /// |
2109 | | /// # Example |
2110 | | /// |
2111 | | /// This example shows how to dynamically allocate enough room to serialize |
2112 | | /// a DFA. |
2113 | | /// |
2114 | | /// ``` |
2115 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
2116 | | /// |
2117 | | /// let original_dfa = DFA::new("foo[0-9]+")?; |
2118 | | /// |
2119 | | /// let mut buf = vec![0; original_dfa.write_to_len()]; |
2120 | | /// // This is guaranteed to succeed, because the only serialization error |
2121 | | /// // that can occur is when the provided buffer is too small. But |
2122 | | /// // write_to_len guarantees a correct size. |
2123 | | /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap(); |
2124 | | /// // But this is not guaranteed to succeed! In particular, |
2125 | | /// // deserialization requires proper alignment for &[u32], but our buffer |
2126 | | /// // was allocated as a &[u8] whose required alignment is smaller than |
2127 | | /// // &[u32]. However, it's likely to work in practice because of how most |
2128 | | /// // allocators work. So if you write code like this, make sure to either |
2129 | | /// // handle the error correctly and/or run it under Miri since Miri will |
2130 | | /// // likely provoke the error by returning Vec<u8> buffers with alignment |
2131 | | /// // less than &[u32]. |
2132 | | /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) { |
2133 | | /// // As mentioned above, it is legal for an error to be returned |
2134 | | /// // here. It is quite difficult to get a Vec<u8> with a guaranteed |
2135 | | /// // alignment equivalent to Vec<u32>. |
2136 | | /// Err(_) => return Ok(()), |
2137 | | /// Ok((dfa, _)) => dfa, |
2138 | | /// }; |
2139 | | /// |
2140 | | /// let expected = Some(HalfMatch::must(0, 8)); |
2141 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
2142 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2143 | | /// ``` |
2144 | | /// |
2145 | | /// Note that this example isn't actually guaranteed to work! In |
2146 | | /// particular, if `buf` is not aligned to a 4-byte boundary, then the |
2147 | | /// `DFA::from_bytes` call will fail. If you need this to work, then you |
2148 | | /// either need to deal with adding some initial padding yourself, or use |
2149 | | /// one of the `to_bytes` methods, which will do it for you. |
2150 | | pub fn write_to_len(&self) -> usize { |
2151 | | wire::write_label_len(LABEL) |
2152 | | + wire::write_endianness_check_len() |
2153 | | + wire::write_version_len() |
2154 | | + size_of::<u32>() // unused, intended for future flexibility |
2155 | | + self.flags.write_to_len() |
2156 | | + self.tt.write_to_len() |
2157 | | + self.st.write_to_len() |
2158 | | + self.ms.write_to_len() |
2159 | | + self.special.write_to_len() |
2160 | | + self.accels.write_to_len() |
2161 | | + self.quitset.write_to_len() |
2162 | | } |
2163 | | } |
2164 | | |
2165 | | impl<'a> DFA<&'a [u32]> { |
2166 | | /// Safely deserialize a DFA with a specific state identifier |
2167 | | /// representation. Upon success, this returns both the deserialized DFA |
2168 | | /// and the number of bytes read from the given slice. Namely, the contents |
2169 | | /// of the slice beyond the DFA are not read. |
2170 | | /// |
2171 | | /// Deserializing a DFA using this routine will never allocate heap memory. |
2172 | | /// For safety purposes, the DFA's transition table will be verified such |
2173 | | /// that every transition points to a valid state. If this verification is |
2174 | | /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which |
2175 | | /// will always execute in constant time. |
2176 | | /// |
2177 | | /// The bytes given must be generated by one of the serialization APIs |
2178 | | /// of a `DFA` using a semver compatible release of this crate. Those |
2179 | | /// include: |
2180 | | /// |
2181 | | /// * [`DFA::to_bytes_little_endian`] |
2182 | | /// * [`DFA::to_bytes_big_endian`] |
2183 | | /// * [`DFA::to_bytes_native_endian`] |
2184 | | /// * [`DFA::write_to_little_endian`] |
2185 | | /// * [`DFA::write_to_big_endian`] |
2186 | | /// * [`DFA::write_to_native_endian`] |
2187 | | /// |
2188 | | /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along |
2189 | | /// with handling alignment correctly. The `write_to` methods do not |
2190 | | /// allocate and write to an existing slice (which may be on the stack). |
2191 | | /// Since deserialization always uses the native endianness of the target |
2192 | | /// platform, the serialization API you use should match the endianness of |
2193 | | /// the target platform. (It's often a good idea to generate serialized |
2194 | | /// DFAs for both forms of endianness and then load the correct one based |
2195 | | /// on endianness.) |
2196 | | /// |
2197 | | /// # Errors |
2198 | | /// |
2199 | | /// Generally speaking, it's easier to state the conditions in which an |
2200 | | /// error is _not_ returned. All of the following must be true: |
2201 | | /// |
2202 | | /// * The bytes given must be produced by one of the serialization APIs |
2203 | | /// on this DFA, as mentioned above. |
2204 | | /// * The endianness of the target platform matches the endianness used to |
2205 | | /// serialized the provided DFA. |
2206 | | /// * The slice given must have the same alignment as `u32`. |
2207 | | /// |
2208 | | /// If any of the above are not true, then an error will be returned. |
2209 | | /// |
2210 | | /// # Panics |
2211 | | /// |
2212 | | /// This routine will never panic for any input. |
2213 | | /// |
2214 | | /// # Example |
2215 | | /// |
2216 | | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
2217 | | /// and then use it for searching. |
2218 | | /// |
2219 | | /// ``` |
2220 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
2221 | | /// |
2222 | | /// let initial = DFA::new("foo[0-9]+")?; |
2223 | | /// let (bytes, _) = initial.to_bytes_native_endian(); |
2224 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0; |
2225 | | /// |
2226 | | /// let expected = Some(HalfMatch::must(0, 8)); |
2227 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
2228 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2229 | | /// ``` |
2230 | | /// |
2231 | | /// # Example: dealing with alignment and padding |
2232 | | /// |
2233 | | /// In the above example, we used the `to_bytes_native_endian` method to |
2234 | | /// serialize a DFA, but we ignored part of its return value corresponding |
2235 | | /// to padding added to the beginning of the serialized DFA. This is OK |
2236 | | /// because deserialization will skip this initial padding. What matters |
2237 | | /// is that the address immediately following the padding has an alignment |
2238 | | /// that matches `u32`. That is, the following is an equivalent but |
2239 | | /// alternative way to write the above example: |
2240 | | /// |
2241 | | /// ``` |
2242 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
2243 | | /// |
2244 | | /// let initial = DFA::new("foo[0-9]+")?; |
2245 | | /// // Serialization returns the number of leading padding bytes added to |
2246 | | /// // the returned Vec<u8>. |
2247 | | /// let (bytes, pad) = initial.to_bytes_native_endian(); |
2248 | | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0; |
2249 | | /// |
2250 | | /// let expected = Some(HalfMatch::must(0, 8)); |
2251 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
2252 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2253 | | /// ``` |
2254 | | /// |
2255 | | /// This padding is necessary because Rust's standard library does |
2256 | | /// not expose any safe and robust way of creating a `Vec<u8>` with a |
2257 | | /// guaranteed alignment other than 1. Now, in practice, the underlying |
2258 | | /// allocator is likely to provide a `Vec<u8>` that meets our alignment |
2259 | | /// requirements, which means `pad` is zero in practice most of the time. |
2260 | | /// |
2261 | | /// The purpose of exposing the padding like this is flexibility for the |
2262 | | /// caller. For example, if one wants to embed a serialized DFA into a |
2263 | | /// compiled program, then it's important to guarantee that it starts at a |
2264 | | /// `u32`-aligned address. The simplest way to do this is to discard the |
2265 | | /// padding bytes and set it up so that the serialized DFA itself begins at |
2266 | | /// a properly aligned address. We can show this in two parts. The first |
2267 | | /// part is serializing the DFA to a file: |
2268 | | /// |
2269 | | /// ```no_run |
2270 | | /// use regex_automata::dfa::dense::DFA; |
2271 | | /// |
2272 | | /// let dfa = DFA::new("foo[0-9]+")?; |
2273 | | /// |
2274 | | /// let (bytes, pad) = dfa.to_bytes_big_endian(); |
2275 | | /// // Write the contents of the DFA *without* the initial padding. |
2276 | | /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?; |
2277 | | /// |
2278 | | /// // Do it again, but this time for little endian. |
2279 | | /// let (bytes, pad) = dfa.to_bytes_little_endian(); |
2280 | | /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?; |
2281 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2282 | | /// ``` |
2283 | | /// |
2284 | | /// And now the second part is embedding the DFA into the compiled program |
2285 | | /// and deserializing it at runtime on first use. We use conditional |
2286 | | /// compilation to choose the correct endianness. |
2287 | | /// |
2288 | | /// ```no_run |
2289 | | /// use regex_automata::{ |
2290 | | /// dfa::{Automaton, dense::DFA}, |
2291 | | /// util::{lazy::Lazy, wire::AlignAs}, |
2292 | | /// HalfMatch, Input, |
2293 | | /// }; |
2294 | | /// |
2295 | | /// // This crate provides its own "lazy" type, kind of like |
2296 | | /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc |
2297 | | /// // no-std environments and let's us write this using completely |
2298 | | /// // safe code. |
2299 | | /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| { |
2300 | | /// # const _: &str = stringify! { |
2301 | | /// // This assignment is made possible (implicitly) via the |
2302 | | /// // CoerceUnsized trait. This is what guarantees that our |
2303 | | /// // bytes are stored in memory on a 4 byte boundary. You |
2304 | | /// // *must* do this or something equivalent for correct |
2305 | | /// // deserialization. |
2306 | | /// static ALIGNED: &AlignAs<[u8], u32> = &AlignAs { |
2307 | | /// _align: [], |
2308 | | /// #[cfg(target_endian = "big")] |
2309 | | /// bytes: *include_bytes!("foo.bigendian.dfa"), |
2310 | | /// #[cfg(target_endian = "little")] |
2311 | | /// bytes: *include_bytes!("foo.littleendian.dfa"), |
2312 | | /// }; |
2313 | | /// # }; |
2314 | | /// # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs { |
2315 | | /// # _align: [], |
2316 | | /// # bytes: [], |
2317 | | /// # }; |
2318 | | /// |
2319 | | /// let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes) |
2320 | | /// .expect("serialized DFA should be valid"); |
2321 | | /// dfa |
2322 | | /// }); |
2323 | | /// |
2324 | | /// let expected = Ok(Some(HalfMatch::must(0, 8))); |
2325 | | /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345"))); |
2326 | | /// ``` |
2327 | | /// |
2328 | | /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy) |
2329 | | /// is [`lazy_static`](https://crates.io/crates/lazy_static) or |
2330 | | /// [`once_cell`](https://crates.io/crates/once_cell), which provide |
2331 | | /// stronger guarantees (like the initialization function only being |
2332 | | /// executed once). And `once_cell` in particular provides a more |
2333 | | /// expressive API. But a `Lazy` value from this crate is likely just fine |
2334 | | /// in most circumstances. |
2335 | | /// |
2336 | | /// Note that regardless of which initialization method you use, you |
2337 | | /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs) |
2338 | | /// trick above to force correct alignment, but this is safe to do and |
2339 | | /// `from_bytes` will return an error if you get it wrong. |
2340 | 597 | pub fn from_bytes( |
2341 | 597 | slice: &'a [u8], |
2342 | 597 | ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> { |
2343 | | // SAFETY: This is safe because we validate the transition table, start |
2344 | | // table, match states and accelerators below. If any validation fails, |
2345 | | // then we return an error. |
2346 | 597 | let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? }; |
2347 | 394 | dfa.tt.validate(&dfa)?; |
2348 | 373 | dfa.st.validate(&dfa)?; |
2349 | 368 | dfa.ms.validate(&dfa)?; |
2350 | 355 | dfa.accels.validate()?; |
2351 | | // N.B. dfa.special doesn't have a way to do unchecked deserialization, |
2352 | | // so it has already been validated. |
2353 | 40.7k | for state in dfa.states() { |
2354 | | // If the state is an accel state, then it must have a non-empty |
2355 | | // accelerator. |
2356 | 40.7k | if dfa.is_accel_state(state.id()) { |
2357 | 126 | let index = dfa.accelerator_index(state.id()); |
2358 | 126 | if index >= dfa.accels.len() { |
2359 | 4 | return Err(DeserializeError::generic( |
2360 | 4 | "found DFA state with invalid accelerator index", |
2361 | 4 | )); |
2362 | 122 | } |
2363 | 122 | let needles = dfa.accels.needles(index); |
2364 | 122 | if !(1 <= needles.len() && needles.len() <= 3) { |
2365 | 1 | return Err(DeserializeError::generic( |
2366 | 1 | "accelerator needles has invalid length", |
2367 | 1 | )); |
2368 | 121 | } |
2369 | 40.6k | } |
2370 | | } |
2371 | 333 | Ok((dfa, nread)) |
2372 | 597 | } |
2373 | | |
2374 | | /// Deserialize a DFA with a specific state identifier representation in |
2375 | | /// constant time by omitting the verification of the validity of the |
2376 | | /// transition table and other data inside the DFA. |
2377 | | /// |
2378 | | /// This is just like [`DFA::from_bytes`], except it can potentially return |
2379 | | /// a DFA that exhibits undefined behavior if its transition table contains |
2380 | | /// invalid state identifiers. |
2381 | | /// |
2382 | | /// This routine is useful if you need to deserialize a DFA cheaply |
2383 | | /// and cannot afford the transition table validation performed by |
2384 | | /// `from_bytes`. |
2385 | | /// |
2386 | | /// # Example |
2387 | | /// |
2388 | | /// ``` |
2389 | | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
2390 | | /// |
2391 | | /// let initial = DFA::new("foo[0-9]+")?; |
2392 | | /// let (bytes, _) = initial.to_bytes_native_endian(); |
2393 | | /// // SAFETY: This is guaranteed to be safe since the bytes given come |
2394 | | /// // directly from a compatible serialization routine. |
2395 | | /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 }; |
2396 | | /// |
2397 | | /// let expected = Some(HalfMatch::must(0, 8)); |
2398 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
2399 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2400 | | /// ``` |
2401 | 597 | pub unsafe fn from_bytes_unchecked( |
2402 | 597 | slice: &'a [u8], |
2403 | 597 | ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> { |
2404 | 597 | let mut nr = 0; |
2405 | | |
2406 | 597 | nr += wire::skip_initial_padding(slice); |
2407 | 597 | wire::check_alignment::<StateID>(&slice[nr..])?; |
2408 | 597 | nr += wire::read_label(&slice[nr..], LABEL)?; |
2409 | 597 | nr += wire::read_endianness_check(&slice[nr..])?; |
2410 | 597 | nr += wire::read_version(&slice[nr..], VERSION)?; |
2411 | | |
2412 | 597 | let _unused = wire::try_read_u32(&slice[nr..], "unused space")?; |
2413 | 597 | nr += size_of::<u32>(); |
2414 | | |
2415 | 597 | let (flags, nread) = Flags::from_bytes(&slice[nr..])?; |
2416 | 597 | nr += nread; |
2417 | | |
2418 | 597 | let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?; |
2419 | 553 | nr += nread; |
2420 | | |
2421 | 553 | let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?; |
2422 | 544 | nr += nread; |
2423 | | |
2424 | 544 | let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?; |
2425 | 532 | nr += nread; |
2426 | | |
2427 | 532 | let (special, nread) = Special::from_bytes(&slice[nr..])?; |
2428 | 493 | nr += nread; |
2429 | 493 | special.validate_state_len(tt.len(), tt.stride2)?; |
2430 | | |
2431 | 407 | let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?; |
2432 | 405 | nr += nread; |
2433 | | |
2434 | 405 | let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?; |
2435 | 394 | nr += nread; |
2436 | | |
2437 | | // Prefilters don't support serialization, so they're always absent. |
2438 | 394 | let pre = None; |
2439 | 394 | Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr)) |
2440 | 597 | } |
2441 | | |
2442 | | /// The implementation of the public `write_to` serialization methods, |
2443 | | /// which is generic over endianness. |
2444 | | /// |
2445 | | /// This is defined only for &[u32] to reduce binary size/compilation time. |
2446 | | fn write_to<E: Endian>( |
2447 | | &self, |
2448 | | mut dst: &mut [u8], |
2449 | | ) -> Result<usize, SerializeError> { |
2450 | | let nwrite = self.write_to_len(); |
2451 | | if dst.len() < nwrite { |
2452 | | return Err(SerializeError::buffer_too_small("dense DFA")); |
2453 | | } |
2454 | | dst = &mut dst[..nwrite]; |
2455 | | |
2456 | | let mut nw = 0; |
2457 | | nw += wire::write_label(LABEL, &mut dst[nw..])?; |
2458 | | nw += wire::write_endianness_check::<E>(&mut dst[nw..])?; |
2459 | | nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?; |
2460 | | nw += { |
2461 | | // Currently unused, intended for future flexibility |
2462 | | E::write_u32(0, &mut dst[nw..]); |
2463 | | size_of::<u32>() |
2464 | | }; |
2465 | | nw += self.flags.write_to::<E>(&mut dst[nw..])?; |
2466 | | nw += self.tt.write_to::<E>(&mut dst[nw..])?; |
2467 | | nw += self.st.write_to::<E>(&mut dst[nw..])?; |
2468 | | nw += self.ms.write_to::<E>(&mut dst[nw..])?; |
2469 | | nw += self.special.write_to::<E>(&mut dst[nw..])?; |
2470 | | nw += self.accels.write_to::<E>(&mut dst[nw..])?; |
2471 | | nw += self.quitset.write_to::<E>(&mut dst[nw..])?; |
2472 | | Ok(nw) |
2473 | | } |
2474 | | } |
2475 | | |
2476 | | /// Other routines that work for all `T`. |
2477 | | impl<T> DFA<T> { |
2478 | | /// Set or unset the prefilter attached to this DFA. |
2479 | | /// |
2480 | | /// This is useful when one has deserialized a DFA from `&[u8]`. |
2481 | | /// Deserialization does not currently include prefilters, so if you |
2482 | | /// want prefilter acceleration, you'll need to rebuild it and attach |
2483 | | /// it here. |
2484 | | pub fn set_prefilter(&mut self, prefilter: Option<Prefilter>) { |
2485 | | self.pre = prefilter |
2486 | | } |
2487 | | } |
2488 | | |
2489 | | // The following methods implement mutable routines on the internal |
2490 | | // representation of a DFA. As such, we must fix the first type parameter to a |
2491 | | // `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We |
2492 | | // can get away with this because these methods are internal to the crate and |
2493 | | // are exclusively used during construction of the DFA. |
2494 | | #[cfg(feature = "dfa-build")] |
2495 | | impl OwnedDFA { |
2496 | | /// Add a start state of this DFA. |
2497 | 1.14M | pub(crate) fn set_start_state( |
2498 | 1.14M | &mut self, |
2499 | 1.14M | anchored: Anchored, |
2500 | 1.14M | start: Start, |
2501 | 1.14M | id: StateID, |
2502 | 1.14M | ) { |
2503 | 1.14M | assert!(self.tt.is_valid(id), "invalid start state"); |
2504 | 1.14M | self.st.set_start(anchored, start, id); |
2505 | 1.14M | } |
2506 | | |
2507 | | /// Set the given transition to this DFA. Both the `from` and `to` states |
2508 | | /// must already exist. |
2509 | 37.8M | pub(crate) fn set_transition( |
2510 | 37.8M | &mut self, |
2511 | 37.8M | from: StateID, |
2512 | 37.8M | byte: alphabet::Unit, |
2513 | 37.8M | to: StateID, |
2514 | 37.8M | ) { |
2515 | 37.8M | self.tt.set(from, byte, to); |
2516 | 37.8M | } |
2517 | | |
2518 | | /// An empty state (a state where all transitions lead to a dead state) |
2519 | | /// and return its identifier. The identifier returned is guaranteed to |
2520 | | /// not point to any other existing state. |
2521 | | /// |
2522 | | /// If adding a state would exceed `StateID::LIMIT`, then this returns an |
2523 | | /// error. |
2524 | 806k | pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> { |
2525 | 806k | self.tt.add_empty_state() |
2526 | 806k | } |
2527 | | |
2528 | | /// Swap the two states given in the transition table. |
2529 | | /// |
2530 | | /// This routine does not do anything to check the correctness of this |
2531 | | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
2532 | | /// updated appropriately. |
2533 | 163k | pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) { |
2534 | 163k | self.tt.swap(id1, id2); |
2535 | 163k | } |
2536 | | |
2537 | | /// Remap all of the state identifiers in this DFA according to the map |
2538 | | /// function given. This includes all transitions and all starting state |
2539 | | /// identifiers. |
2540 | 82.7k | pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) { |
2541 | | // We could loop over each state ID and call 'remap_state' here, but |
2542 | | // this is more direct: just map every transition directly. This |
2543 | | // technically might do a little extra work since the alphabet length |
2544 | | // is likely less than the stride, but if that is indeed an issue we |
2545 | | // should benchmark it and fix it. |
2546 | 25.4M | for sid in self.tt.table_mut().iter_mut() { |
2547 | 25.4M | *sid = map(*sid); |
2548 | 25.4M | } |
2549 | 1.47M | for sid in self.st.table_mut().iter_mut() { |
2550 | 1.47M | *sid = map(*sid); |
2551 | 1.47M | } |
2552 | 82.7k | } |
2553 | | |
2554 | | /// Remap the transitions for the state given according to the function |
2555 | | /// given. This applies the given map function to every transition in the |
2556 | | /// given state and changes the transition in place to the result of the |
2557 | | /// map function for that transition. |
2558 | 0 | pub(crate) fn remap_state( |
2559 | 0 | &mut self, |
2560 | 0 | id: StateID, |
2561 | 0 | map: impl Fn(StateID) -> StateID, |
2562 | 0 | ) { |
2563 | 0 | self.tt.remap(id, map); |
2564 | 0 | } |
2565 | | |
2566 | | /// Truncate the states in this DFA to the given length. |
2567 | | /// |
2568 | | /// This routine does not do anything to check the correctness of this |
2569 | | /// truncation. Callers must ensure that other states pointing to truncated |
2570 | | /// states are updated appropriately. |
2571 | 0 | pub(crate) fn truncate_states(&mut self, len: usize) { |
2572 | 0 | self.tt.truncate(len); |
2573 | 0 | } |
2574 | | |
2575 | | /// Minimize this DFA in place using Hopcroft's algorithm. |
2576 | 0 | pub(crate) fn minimize(&mut self) { |
2577 | 0 | Minimizer::new(self).run(); |
2578 | 0 | } |
2579 | | |
2580 | | /// Updates the match state pattern ID map to use the one provided. |
2581 | | /// |
2582 | | /// This is useful when it's convenient to manipulate matching states |
2583 | | /// (and their corresponding pattern IDs) as a map. In particular, the |
2584 | | /// representation used by a DFA for this map is not amenable to mutation, |
2585 | | /// so if things need to be changed (like when shuffling states), it's |
2586 | | /// often easier to work with the map form. |
2587 | 82.7k | pub(crate) fn set_pattern_map( |
2588 | 82.7k | &mut self, |
2589 | 82.7k | map: &BTreeMap<StateID, Vec<PatternID>>, |
2590 | 82.7k | ) -> Result<(), BuildError> { |
2591 | 82.7k | self.ms = self.ms.new_with_map(map)?; |
2592 | 82.7k | Ok(()) |
2593 | 82.7k | } |
2594 | | |
2595 | | /// Find states that have a small number of non-loop transitions and mark |
2596 | | /// them as candidates for acceleration during search. |
2597 | 73.5k | pub(crate) fn accelerate(&mut self) { |
2598 | | // dead and quit states can never be accelerated. |
2599 | 73.5k | if self.state_len() <= 2 { |
2600 | 0 | return; |
2601 | 73.5k | } |
2602 | | |
2603 | | // Go through every state and record their accelerator, if possible. |
2604 | 73.5k | let mut accels = BTreeMap::new(); |
2605 | | // Count the number of accelerated match, start and non-match/start |
2606 | | // states. |
2607 | 73.5k | let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0); |
2608 | 853k | for state in self.states() { |
2609 | 853k | if let Some(accel) = state.accelerate(self.byte_classes()) { |
2610 | 11.8k | debug!( |
2611 | 0 | "accelerating full DFA state {}: {:?}", |
2612 | 0 | state.id().as_usize(), |
2613 | | accel, |
2614 | | ); |
2615 | 11.8k | accels.insert(state.id(), accel); |
2616 | 11.8k | if self.is_match_state(state.id()) { |
2617 | 2.37k | cmatch += 1; |
2618 | 9.49k | } else if self.is_start_state(state.id()) { |
2619 | 5.50k | cstart += 1; |
2620 | 5.50k | } else { |
2621 | 3.98k | assert!(!self.is_dead_state(state.id())); |
2622 | 3.98k | assert!(!self.is_quit_state(state.id())); |
2623 | 3.98k | cnormal += 1; |
2624 | | } |
2625 | 841k | } |
2626 | | } |
2627 | | // If no states were able to be accelerated, then we're done. |
2628 | 73.5k | if accels.is_empty() { |
2629 | 66.9k | return; |
2630 | 6.59k | } |
2631 | 6.59k | let original_accels_len = accels.len(); |
2632 | | |
2633 | | // A remapper keeps track of state ID changes. Once we're done |
2634 | | // shuffling, the remapper is used to rewrite all transitions in the |
2635 | | // DFA based on the new positions of states. |
2636 | 6.59k | let mut remapper = Remapper::new(self); |
2637 | | |
2638 | | // As we swap states, if they are match states, we need to swap their |
2639 | | // pattern ID lists too (for multi-regexes). We do this by converting |
2640 | | // the lists to an easily swappable map, and then convert back to |
2641 | | // MatchStates once we're done. |
2642 | 6.59k | let mut new_matches = self.ms.to_map(self); |
2643 | | |
2644 | | // There is at least one state that gets accelerated, so these are |
2645 | | // guaranteed to get set to sensible values below. |
2646 | 6.59k | self.special.min_accel = StateID::MAX; |
2647 | 6.59k | self.special.max_accel = StateID::ZERO; |
2648 | 6.59k | let update_special_accel = |
2649 | 11.8k | |special: &mut Special, accel_id: StateID| { |
2650 | 11.8k | special.min_accel = cmp::min(special.min_accel, accel_id); |
2651 | 11.8k | special.max_accel = cmp::max(special.max_accel, accel_id); |
2652 | 11.8k | }; |
2653 | | |
2654 | | // Start by shuffling match states. Any match states that are |
2655 | | // accelerated get moved to the end of the match state range. |
2656 | 6.59k | if cmatch > 0 && self.special.matches() { |
2657 | | // N.B. special.{min,max}_match do not need updating, since the |
2658 | | // range/number of match states does not change. Only the ordering |
2659 | | // of match states may change. |
2660 | 752 | let mut next_id = self.special.max_match; |
2661 | 752 | let mut cur_id = next_id; |
2662 | 10.7k | while cur_id >= self.special.min_match { |
2663 | 10.0k | if let Some(accel) = accels.remove(&cur_id) { |
2664 | 2.37k | accels.insert(next_id, accel); |
2665 | 2.37k | update_special_accel(&mut self.special, next_id); |
2666 | | |
2667 | | // No need to do any actual swapping for equivalent IDs. |
2668 | 2.37k | if cur_id != next_id { |
2669 | 2.24k | remapper.swap(self, cur_id, next_id); |
2670 | 2.24k | |
2671 | 2.24k | // Swap pattern IDs for match states. |
2672 | 2.24k | let cur_pids = new_matches.remove(&cur_id).unwrap(); |
2673 | 2.24k | let next_pids = new_matches.remove(&next_id).unwrap(); |
2674 | 2.24k | new_matches.insert(cur_id, next_pids); |
2675 | 2.24k | new_matches.insert(next_id, cur_pids); |
2676 | 2.24k | } |
2677 | 2.37k | next_id = self.tt.prev_state_id(next_id); |
2678 | 7.64k | } |
2679 | 10.0k | cur_id = self.tt.prev_state_id(cur_id); |
2680 | | } |
2681 | 5.84k | } |
2682 | | |
2683 | | // This is where it gets tricky. Without acceleration, start states |
2684 | | // normally come right after match states. But we want accelerated |
2685 | | // states to be a single contiguous range (to make it very fast |
2686 | | // to determine whether a state *is* accelerated), while also keeping |
2687 | | // match and starting states as contiguous ranges for the same reason. |
2688 | | // So what we do here is shuffle states such that it looks like this: |
2689 | | // |
2690 | | // DQMMMMAAAAASSSSSSNNNNNNN |
2691 | | // | | |
2692 | | // |---------| |
2693 | | // accelerated states |
2694 | | // |
2695 | | // Where: |
2696 | | // D - dead state |
2697 | | // Q - quit state |
2698 | | // M - match state (may be accelerated) |
2699 | | // A - normal state that is accelerated |
2700 | | // S - start state (may be accelerated) |
2701 | | // N - normal state that is NOT accelerated |
2702 | | // |
2703 | | // We implement this by shuffling states, which is done by a sequence |
2704 | | // of pairwise swaps. We start by looking at all normal states to be |
2705 | | // accelerated. When we find one, we swap it with the earliest starting |
2706 | | // state, and then swap that with the earliest normal state. This |
2707 | | // preserves the contiguous property. |
2708 | | // |
2709 | | // Once we're done looking for accelerated normal states, now we look |
2710 | | // for accelerated starting states by moving them to the beginning |
2711 | | // of the starting state range (just like we moved accelerated match |
2712 | | // states to the end of the matching state range). |
2713 | | // |
2714 | | // For a more detailed/different perspective on this, see the docs |
2715 | | // in dfa/special.rs. |
2716 | 6.59k | if cnormal > 0 { |
2717 | | // our next available starting and normal states for swapping. |
2718 | 1.09k | let mut next_start_id = self.special.min_start; |
2719 | 1.09k | let mut cur_id = self.to_state_id(self.state_len() - 1); |
2720 | | // This is guaranteed to exist since cnormal > 0. |
2721 | 1.09k | let mut next_norm_id = |
2722 | 1.09k | self.tt.next_state_id(self.special.max_start); |
2723 | 24.8k | while cur_id >= next_norm_id { |
2724 | 23.8k | if let Some(accel) = accels.remove(&cur_id) { |
2725 | 3.98k | remapper.swap(self, next_start_id, cur_id); |
2726 | 3.98k | remapper.swap(self, next_norm_id, cur_id); |
2727 | | // Keep our accelerator map updated with new IDs if the |
2728 | | // states we swapped were also accelerated. |
2729 | 3.98k | if let Some(accel2) = accels.remove(&next_norm_id) { |
2730 | 1.01k | accels.insert(cur_id, accel2); |
2731 | 2.97k | } |
2732 | 3.98k | if let Some(accel2) = accels.remove(&next_start_id) { |
2733 | 749 | accels.insert(next_norm_id, accel2); |
2734 | 3.23k | } |
2735 | 3.98k | accels.insert(next_start_id, accel); |
2736 | 3.98k | update_special_accel(&mut self.special, next_start_id); |
2737 | | // Our start range shifts one to the right now. |
2738 | 3.98k | self.special.min_start = |
2739 | 3.98k | self.tt.next_state_id(self.special.min_start); |
2740 | 3.98k | self.special.max_start = |
2741 | 3.98k | self.tt.next_state_id(self.special.max_start); |
2742 | 3.98k | next_start_id = self.tt.next_state_id(next_start_id); |
2743 | 3.98k | next_norm_id = self.tt.next_state_id(next_norm_id); |
2744 | 19.8k | } |
2745 | | // This is pretty tricky, but if our 'next_norm_id' state also |
2746 | | // happened to be accelerated, then the result is that it is |
2747 | | // now in the position of cur_id, so we need to consider it |
2748 | | // again. This loop is still guaranteed to terminate though, |
2749 | | // because when accels contains cur_id, we're guaranteed to |
2750 | | // increment next_norm_id even if cur_id remains unchanged. |
2751 | 23.8k | if !accels.contains_key(&cur_id) { |
2752 | 22.7k | cur_id = self.tt.prev_state_id(cur_id); |
2753 | 22.7k | } |
2754 | | } |
2755 | 5.50k | } |
2756 | | // Just like we did for match states, but we want to move accelerated |
2757 | | // start states to the beginning of the range instead of the end. |
2758 | 6.59k | if cstart > 0 { |
2759 | | // N.B. special.{min,max}_start do not need updating, since the |
2760 | | // range/number of start states does not change at this point. Only |
2761 | | // the ordering of start states may change. |
2762 | 5.50k | let mut next_id = self.special.min_start; |
2763 | 5.50k | let mut cur_id = next_id; |
2764 | 19.3k | while cur_id <= self.special.max_start { |
2765 | 13.8k | if let Some(accel) = accels.remove(&cur_id) { |
2766 | 5.50k | remapper.swap(self, cur_id, next_id); |
2767 | 5.50k | accels.insert(next_id, accel); |
2768 | 5.50k | update_special_accel(&mut self.special, next_id); |
2769 | 5.50k | next_id = self.tt.next_state_id(next_id); |
2770 | 8.36k | } |
2771 | 13.8k | cur_id = self.tt.next_state_id(cur_id); |
2772 | | } |
2773 | 1.08k | } |
2774 | | |
2775 | | // Remap all transitions in our DFA and assert some things. |
2776 | 6.59k | remapper.remap(self); |
2777 | | // This unwrap is OK because acceleration never changes the number of |
2778 | | // match states or patterns in those match states. Since acceleration |
2779 | | // runs after the pattern map has been set at least once, we know that |
2780 | | // our match states cannot error. |
2781 | 6.59k | self.set_pattern_map(&new_matches).unwrap(); |
2782 | 6.59k | self.special.set_max(); |
2783 | 6.59k | self.special.validate().expect("special state ranges should validate"); |
2784 | 6.59k | self.special |
2785 | 6.59k | .validate_state_len(self.state_len(), self.stride2()) |
2786 | 6.59k | .expect( |
2787 | 6.59k | "special state ranges should be consistent with state length", |
2788 | | ); |
2789 | 6.59k | assert_eq!( |
2790 | 6.59k | self.special.accel_len(self.stride()), |
2791 | | // We record the number of accelerated states initially detected |
2792 | | // since the accels map is itself mutated in the process above. |
2793 | | // If mutated incorrectly, its size may change, and thus can't be |
2794 | | // trusted as a source of truth of how many accelerated states we |
2795 | | // expected there to be. |
2796 | | original_accels_len, |
2797 | 0 | "mismatch with expected number of accelerated states", |
2798 | | ); |
2799 | | |
2800 | | // And finally record our accelerators. We kept our accels map updated |
2801 | | // as we shuffled states above, so the accelerators should now |
2802 | | // correspond to a contiguous range in the state ID space. (Which we |
2803 | | // assert.) |
2804 | 6.59k | let mut prev: Option<StateID> = None; |
2805 | 18.4k | for (id, accel) in accels { |
2806 | 11.8k | assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id)); |
2807 | 11.8k | prev = Some(id); |
2808 | 11.8k | self.accels.add(accel); |
2809 | | } |
2810 | 73.5k | } |
2811 | | |
2812 | | /// Shuffle the states in this DFA so that starting states, match |
2813 | | /// states and accelerated states are all contiguous. |
2814 | | /// |
2815 | | /// See dfa/special.rs for more details. |
2816 | 76.1k | pub(crate) fn shuffle( |
2817 | 76.1k | &mut self, |
2818 | 76.1k | mut matches: BTreeMap<StateID, Vec<PatternID>>, |
2819 | 76.1k | ) -> Result<(), BuildError> { |
2820 | | // The determinizer always adds a quit state and it is always second. |
2821 | 76.1k | self.special.quit_id = self.to_state_id(1); |
2822 | | // If all we have are the dead and quit states, then we're done and |
2823 | | // the DFA will never produce a match. |
2824 | 76.1k | if self.state_len() <= 2 { |
2825 | 0 | self.special.set_max(); |
2826 | 0 | return Ok(()); |
2827 | 76.1k | } |
2828 | | |
2829 | | // Collect all our non-DEAD start states into a convenient set and |
2830 | | // confirm there is no overlap with match states. In the classical DFA |
2831 | | // construction, start states can be match states. But because of |
2832 | | // look-around, we delay all matches by a byte, which prevents start |
2833 | | // states from being match states. |
2834 | 76.1k | let mut is_start: BTreeSet<StateID> = BTreeSet::new(); |
2835 | 1.35M | for (start_id, _, _) in self.starts() { |
2836 | | // If a starting configuration points to a DEAD state, then we |
2837 | | // don't want to shuffle it. The DEAD state is always the first |
2838 | | // state with ID=0. So we can just leave it be. |
2839 | 1.35M | if start_id == DEAD { |
2840 | 235k | continue; |
2841 | 1.11M | } |
2842 | 1.11M | assert!( |
2843 | 1.11M | !matches.contains_key(&start_id), |
2844 | 0 | "{start_id:?} is both a start and a match state, \ |
2845 | 0 | which is not allowed", |
2846 | | ); |
2847 | 1.11M | is_start.insert(start_id); |
2848 | | } |
2849 | | |
2850 | | // We implement shuffling by a sequence of pairwise swaps of states. |
2851 | | // Since we have a number of things referencing states via their |
2852 | | // IDs and swapping them changes their IDs, we need to record every |
2853 | | // swap we make so that we can remap IDs. The remapper handles this |
2854 | | // book-keeping for us. |
2855 | 76.1k | let mut remapper = Remapper::new(self); |
2856 | | |
2857 | | // Shuffle matching states. |
2858 | 76.1k | if matches.is_empty() { |
2859 | 20.0k | self.special.min_match = DEAD; |
2860 | 20.0k | self.special.max_match = DEAD; |
2861 | 20.0k | } else { |
2862 | | // The determinizer guarantees that the first two states are the |
2863 | | // dead and quit states, respectively. We want our match states to |
2864 | | // come right after quit. |
2865 | 56.0k | let mut next_id = self.to_state_id(2); |
2866 | 56.0k | let mut new_matches = BTreeMap::new(); |
2867 | 56.0k | self.special.min_match = next_id; |
2868 | 163k | for (id, pids) in matches { |
2869 | 107k | remapper.swap(self, next_id, id); |
2870 | 107k | new_matches.insert(next_id, pids); |
2871 | | // If we swapped a start state, then update our set. |
2872 | 107k | if is_start.contains(&next_id) { |
2873 | 78.5k | is_start.remove(&next_id); |
2874 | 78.5k | is_start.insert(id); |
2875 | 78.5k | } |
2876 | 107k | next_id = self.tt.next_state_id(next_id); |
2877 | | } |
2878 | 56.0k | matches = new_matches; |
2879 | 56.0k | self.special.max_match = cmp::max( |
2880 | 56.0k | self.special.min_match, |
2881 | 56.0k | self.tt.prev_state_id(next_id), |
2882 | 56.0k | ); |
2883 | | } |
2884 | | |
2885 | | // Shuffle starting states. |
2886 | | { |
2887 | 76.1k | let mut next_id = self.to_state_id(2); |
2888 | 76.1k | if self.special.matches() { |
2889 | 56.0k | next_id = self.tt.next_state_id(self.special.max_match); |
2890 | 56.0k | } |
2891 | 76.1k | self.special.min_start = next_id; |
2892 | 236k | for id in is_start { |
2893 | 160k | remapper.swap(self, next_id, id); |
2894 | 160k | next_id = self.tt.next_state_id(next_id); |
2895 | 160k | } |
2896 | 76.1k | self.special.max_start = cmp::max( |
2897 | 76.1k | self.special.min_start, |
2898 | 76.1k | self.tt.prev_state_id(next_id), |
2899 | 76.1k | ); |
2900 | | } |
2901 | | |
2902 | | // Finally remap all transitions in our DFA. |
2903 | 76.1k | remapper.remap(self); |
2904 | 76.1k | self.set_pattern_map(&matches)?; |
2905 | 76.1k | self.special.set_max(); |
2906 | 76.1k | self.special.validate().expect("special state ranges should validate"); |
2907 | 76.1k | self.special |
2908 | 76.1k | .validate_state_len(self.state_len(), self.stride2()) |
2909 | 76.1k | .expect( |
2910 | 76.1k | "special state ranges should be consistent with state length", |
2911 | | ); |
2912 | 76.1k | Ok(()) |
2913 | 76.1k | } |
2914 | | |
2915 | | /// Checks whether there are universal start states (both anchored and |
2916 | | /// unanchored), and if so, sets the relevant fields to the start state |
2917 | | /// IDs. |
2918 | | /// |
2919 | | /// Universal start states occur precisely when the all patterns in the |
2920 | | /// DFA have no look-around assertions in their prefix. |
2921 | 76.1k | fn set_universal_starts(&mut self) { |
2922 | 76.1k | assert_eq!(6, Start::len(), "expected 6 start configurations"); |
2923 | | |
2924 | 76.1k | let start_id = |dfa: &mut OwnedDFA, |
2925 | | anchored: Anchored, |
2926 | 548k | start: Start| { |
2927 | | // This OK because we only call 'start' under conditions |
2928 | | // in which we know it will succeed. |
2929 | 548k | dfa.st.start(anchored, start).expect("valid Input configuration") |
2930 | 548k | }; |
2931 | 76.1k | if self.start_kind().has_unanchored() { |
2932 | 36.8k | let anchor = Anchored::No; |
2933 | 36.8k | let sid = start_id(self, anchor, Start::NonWordByte); |
2934 | 36.8k | if sid == start_id(self, anchor, Start::WordByte) |
2935 | 29.0k | && sid == start_id(self, anchor, Start::Text) |
2936 | 26.4k | && sid == start_id(self, anchor, Start::LineLF) |
2937 | 26.4k | && sid == start_id(self, anchor, Start::LineCR) |
2938 | 26.4k | && sid == start_id(self, anchor, Start::CustomLineTerminator) |
2939 | 26.4k | { |
2940 | 26.4k | self.st.universal_start_unanchored = Some(sid); |
2941 | 26.4k | } |
2942 | 39.3k | } |
2943 | 76.1k | if self.start_kind().has_anchored() { |
2944 | 76.1k | let anchor = Anchored::Yes; |
2945 | 76.1k | let sid = start_id(self, anchor, Start::NonWordByte); |
2946 | 76.1k | if sid == start_id(self, anchor, Start::WordByte) |
2947 | 57.8k | && sid == start_id(self, anchor, Start::Text) |
2948 | 52.2k | && sid == start_id(self, anchor, Start::LineLF) |
2949 | 52.2k | && sid == start_id(self, anchor, Start::LineCR) |
2950 | 52.2k | && sid == start_id(self, anchor, Start::CustomLineTerminator) |
2951 | 52.2k | { |
2952 | 52.2k | self.st.universal_start_anchored = Some(sid); |
2953 | 52.2k | } |
2954 | 0 | } |
2955 | 76.1k | } |
2956 | | } |
2957 | | |
2958 | | // A variety of generic internal methods for accessing DFA internals. |
2959 | | impl<T: AsRef<[u32]>> DFA<T> { |
2960 | | /// Return the info about special states. |
2961 | 300k | pub(crate) fn special(&self) -> &Special { |
2962 | 300k | &self.special |
2963 | 300k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::special Line | Count | Source | 2961 | 101k | pub(crate) fn special(&self) -> &Special { | 2962 | 101k | &self.special | 2963 | 101k | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::special Line | Count | Source | 2961 | 201 | pub(crate) fn special(&self) -> &Special { | 2962 | 201 | &self.special | 2963 | 201 | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::special Line | Count | Source | 2961 | 199k | pub(crate) fn special(&self) -> &Special { | 2962 | 199k | &self.special | 2963 | 199k | } |
|
2964 | | |
2965 | | /// Return the info about special states as a mutable borrow. |
2966 | | #[cfg(feature = "dfa-build")] |
2967 | 0 | pub(crate) fn special_mut(&mut self) -> &mut Special { |
2968 | 0 | &mut self.special |
2969 | 0 | } |
2970 | | |
2971 | | /// Returns the quit set (may be empty) used by this DFA. |
2972 | 0 | pub(crate) fn quitset(&self) -> &ByteSet { |
2973 | 0 | &self.quitset |
2974 | 0 | } |
2975 | | |
2976 | | /// Returns the flags for this DFA. |
2977 | 0 | pub(crate) fn flags(&self) -> &Flags { |
2978 | 0 | &self.flags |
2979 | 0 | } |
2980 | | |
2981 | | /// Returns an iterator over all states in this DFA. |
2982 | | /// |
2983 | | /// This iterator yields a tuple for each state. The first element of the |
2984 | | /// tuple corresponds to a state's identifier, and the second element |
2985 | | /// corresponds to the state itself (comprised of its transitions). |
2986 | 73.9k | pub(crate) fn states(&self) -> StateIter<'_, T> { |
2987 | 73.9k | self.tt.states() |
2988 | 73.9k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::states Line | Count | Source | 2986 | 73.5k | pub(crate) fn states(&self) -> StateIter<'_, T> { | 2987 | 73.5k | self.tt.states() | 2988 | 73.5k | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::states Line | Count | Source | 2986 | 338 | pub(crate) fn states(&self) -> StateIter<'_, T> { | 2987 | 338 | self.tt.states() | 2988 | 338 | } |
|
2989 | | |
2990 | | /// Return the total number of states in this DFA. Every DFA has at least |
2991 | | /// 1 state, even the empty DFA. |
2992 | 398k | pub(crate) fn state_len(&self) -> usize { |
2993 | 398k | self.tt.len() |
2994 | 398k | } |
2995 | | |
2996 | | /// Return an iterator over all pattern IDs for the given match state. |
2997 | | /// |
2998 | | /// If the given state is not a match state, then this panics. |
2999 | | #[cfg(feature = "dfa-build")] |
3000 | 0 | pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] { |
3001 | 0 | assert!(self.is_match_state(id)); |
3002 | 0 | self.ms.pattern_id_slice(self.match_state_index(id)) |
3003 | 0 | } |
3004 | | |
3005 | | /// Return the total number of pattern IDs for the given match state. |
3006 | | /// |
3007 | | /// If the given state is not a match state, then this panics. |
3008 | 75 | pub(crate) fn match_pattern_len(&self, id: StateID) -> usize { |
3009 | 75 | assert!(self.is_match_state(id)); |
3010 | 75 | self.ms.pattern_len(self.match_state_index(id)) |
3011 | 75 | } Unexecuted instantiation: <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::match_pattern_len <regex_automata::dfa::dense::DFA<&[u32]>>::match_pattern_len Line | Count | Source | 3008 | 75 | pub(crate) fn match_pattern_len(&self, id: StateID) -> usize { | 3009 | 75 | assert!(self.is_match_state(id)); | 3010 | 75 | self.ms.pattern_len(self.match_state_index(id)) | 3011 | 75 | } |
|
3012 | | |
3013 | | /// Returns the total number of patterns matched by this DFA. |
3014 | 0 | pub(crate) fn pattern_len(&self) -> usize { |
3015 | 0 | self.ms.pattern_len |
3016 | 0 | } |
3017 | | |
3018 | | /// Returns a map from match state ID to a list of pattern IDs that match |
3019 | | /// in that state. |
3020 | | #[cfg(feature = "dfa-build")] |
3021 | 0 | pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> { |
3022 | 0 | self.ms.to_map(self) |
3023 | 0 | } |
3024 | | |
3025 | | /// Returns the ID of the quit state for this DFA. |
3026 | | #[cfg(feature = "dfa-build")] |
3027 | 23.7M | pub(crate) fn quit_id(&self) -> StateID { |
3028 | 23.7M | self.to_state_id(1) |
3029 | 23.7M | } |
3030 | | |
3031 | | /// Convert the given state identifier to the state's index. The state's |
3032 | | /// index corresponds to the position in which it appears in the transition |
3033 | | /// table. When a DFA is NOT premultiplied, then a state's identifier is |
3034 | | /// also its index. When a DFA is premultiplied, then a state's identifier |
3035 | | /// is equal to `index * alphabet_len`. This routine reverses that. |
3036 | 14.3M | pub(crate) fn to_index(&self, id: StateID) -> usize { |
3037 | 14.3M | self.tt.to_index(id) |
3038 | 14.3M | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::to_index Line | Count | Source | 3036 | 14.1M | pub(crate) fn to_index(&self, id: StateID) -> usize { | 3037 | 14.1M | self.tt.to_index(id) | 3038 | 14.1M | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::to_index Line | Count | Source | 3036 | 201 | pub(crate) fn to_index(&self, id: StateID) -> usize { | 3037 | 201 | self.tt.to_index(id) | 3038 | 201 | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::to_index Line | Count | Source | 3036 | 199k | pub(crate) fn to_index(&self, id: StateID) -> usize { | 3037 | 199k | self.tt.to_index(id) | 3038 | 199k | } |
|
3039 | | |
3040 | | /// Convert an index to a state (in the range 0..self.state_len()) to an |
3041 | | /// actual state identifier. |
3042 | | /// |
3043 | | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
3044 | | /// to some other information (such as a remapped state ID). |
3045 | | #[cfg(feature = "dfa-build")] |
3046 | 24.0M | pub(crate) fn to_state_id(&self, index: usize) -> StateID { |
3047 | 24.0M | self.tt.to_state_id(index) |
3048 | 24.0M | } |
3049 | | |
3050 | | /// Return the table of state IDs for this DFA's start states. |
3051 | 76.1k | pub(crate) fn starts(&self) -> StartStateIter<'_> { |
3052 | 76.1k | self.st.iter() |
3053 | 76.1k | } |
3054 | | |
3055 | | /// Returns the index of the match state for the given ID. If the |
3056 | | /// given ID does not correspond to a match state, then this may |
3057 | | /// panic or produce an incorrect result. |
3058 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3059 | 142k | fn match_state_index(&self, id: StateID) -> usize { |
3060 | 142k | debug_assert!(self.is_match_state(id)); |
3061 | | // This is one of the places where we rely on the fact that match |
3062 | | // states are contiguous in the transition table. Namely, that the |
3063 | | // first match state ID always corresponds to dfa.special.min_match. |
3064 | | // From there, since we know the stride, we can compute the overall |
3065 | | // index of any match state given the match state's ID. |
3066 | 142k | let min = self.special().min_match.as_usize(); |
3067 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, |
3068 | | // so both the subtraction and the unchecked StateID construction is |
3069 | | // OK. |
3070 | 142k | self.to_index(StateID::new_unchecked(id.as_usize() - min)) |
3071 | 142k | } Unexecuted instantiation: <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::match_state_index <regex_automata::dfa::dense::DFA<&[u32]>>::match_state_index Line | Count | Source | 3059 | 75 | fn match_state_index(&self, id: StateID) -> usize { | 3060 | 75 | debug_assert!(self.is_match_state(id)); | 3061 | | // This is one of the places where we rely on the fact that match | 3062 | | // states are contiguous in the transition table. Namely, that the | 3063 | | // first match state ID always corresponds to dfa.special.min_match. | 3064 | | // From there, since we know the stride, we can compute the overall | 3065 | | // index of any match state given the match state's ID. | 3066 | 75 | let min = self.special().min_match.as_usize(); | 3067 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, | 3068 | | // so both the subtraction and the unchecked StateID construction is | 3069 | | // OK. | 3070 | 75 | self.to_index(StateID::new_unchecked(id.as_usize() - min)) | 3071 | 75 | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::match_state_index Line | Count | Source | 3059 | 141k | fn match_state_index(&self, id: StateID) -> usize { | 3060 | 141k | debug_assert!(self.is_match_state(id)); | 3061 | | // This is one of the places where we rely on the fact that match | 3062 | | // states are contiguous in the transition table. Namely, that the | 3063 | | // first match state ID always corresponds to dfa.special.min_match. | 3064 | | // From there, since we know the stride, we can compute the overall | 3065 | | // index of any match state given the match state's ID. | 3066 | 141k | let min = self.special().min_match.as_usize(); | 3067 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, | 3068 | | // so both the subtraction and the unchecked StateID construction is | 3069 | | // OK. | 3070 | 141k | self.to_index(StateID::new_unchecked(id.as_usize() - min)) | 3071 | 141k | } |
|
3072 | | |
3073 | | /// Returns the index of the accelerator state for the given ID. If the |
3074 | | /// given ID does not correspond to an accelerator state, then this may |
3075 | | /// panic or produce an incorrect result. |
3076 | 158k | fn accelerator_index(&self, id: StateID) -> usize { |
3077 | 158k | let min = self.special().min_accel.as_usize(); |
3078 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, |
3079 | | // so both the subtraction and the unchecked StateID construction is |
3080 | | // OK. |
3081 | 158k | self.to_index(StateID::new_unchecked(id.as_usize() - min)) |
3082 | 158k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::accelerator_index Line | Count | Source | 3076 | 101k | fn accelerator_index(&self, id: StateID) -> usize { | 3077 | 101k | let min = self.special().min_accel.as_usize(); | 3078 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, | 3079 | | // so both the subtraction and the unchecked StateID construction is | 3080 | | // OK. | 3081 | 101k | self.to_index(StateID::new_unchecked(id.as_usize() - min)) | 3082 | 101k | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::accelerator_index Line | Count | Source | 3076 | 126 | fn accelerator_index(&self, id: StateID) -> usize { | 3077 | 126 | let min = self.special().min_accel.as_usize(); | 3078 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, | 3079 | | // so both the subtraction and the unchecked StateID construction is | 3080 | | // OK. | 3081 | 126 | self.to_index(StateID::new_unchecked(id.as_usize() - min)) | 3082 | 126 | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::accelerator_index Line | Count | Source | 3076 | 57.6k | fn accelerator_index(&self, id: StateID) -> usize { | 3077 | 57.6k | let min = self.special().min_accel.as_usize(); | 3078 | | // CORRECTNESS: We're allowed to produce an incorrect result or panic, | 3079 | | // so both the subtraction and the unchecked StateID construction is | 3080 | | // OK. | 3081 | 57.6k | self.to_index(StateID::new_unchecked(id.as_usize() - min)) | 3082 | 57.6k | } |
|
3083 | | |
3084 | | /// Return the accelerators for this DFA. |
3085 | | fn accels(&self) -> Accels<&[u32]> { |
3086 | | self.accels.as_ref() |
3087 | | } |
3088 | | |
3089 | | /// Return this DFA's transition table as a slice. |
3090 | 3.61M | fn trans(&self) -> &[StateID] { |
3091 | 3.61M | self.tt.table() |
3092 | 3.61M | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>>>::trans Line | Count | Source | 3090 | 3.40M | fn trans(&self) -> &[StateID] { | 3091 | 3.40M | self.tt.table() | 3092 | 3.40M | } |
<regex_automata::dfa::dense::DFA<&[u32]>>::trans Line | Count | Source | 3090 | 205k | fn trans(&self) -> &[StateID] { | 3091 | 205k | self.tt.table() | 3092 | 205k | } |
|
3093 | | } |
3094 | | |
3095 | | impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> { |
3096 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3097 | 0 | writeln!(f, "dense::DFA(")?; |
3098 | 0 | for state in self.states() { |
3099 | 0 | fmt_state_indicator(f, self, state.id())?; |
3100 | 0 | let id = if f.alternate() { |
3101 | 0 | state.id().as_usize() |
3102 | | } else { |
3103 | 0 | self.to_index(state.id()) |
3104 | | }; |
3105 | 0 | write!(f, "{id:06?}: ")?; |
3106 | 0 | state.fmt(f)?; |
3107 | 0 | write!(f, "\n")?; |
3108 | | } |
3109 | 0 | writeln!(f, "")?; |
3110 | 0 | for (i, (start_id, anchored, sty)) in self.starts().enumerate() { |
3111 | 0 | let id = if f.alternate() { |
3112 | 0 | start_id.as_usize() |
3113 | | } else { |
3114 | 0 | self.to_index(start_id) |
3115 | | }; |
3116 | 0 | if i % self.st.stride == 0 { |
3117 | 0 | match anchored { |
3118 | 0 | Anchored::No => writeln!(f, "START-GROUP(unanchored)")?, |
3119 | 0 | Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?, |
3120 | 0 | Anchored::Pattern(pid) => { |
3121 | 0 | writeln!(f, "START_GROUP(pattern: {pid:?})")? |
3122 | | } |
3123 | | } |
3124 | 0 | } |
3125 | 0 | writeln!(f, " {sty:?} => {id:06?}")?; |
3126 | | } |
3127 | 0 | if self.pattern_len() > 1 { |
3128 | 0 | writeln!(f, "")?; |
3129 | 0 | for i in 0..self.ms.len() { |
3130 | 0 | let id = self.ms.match_state_id(self, i); |
3131 | 0 | let id = if f.alternate() { |
3132 | 0 | id.as_usize() |
3133 | | } else { |
3134 | 0 | self.to_index(id) |
3135 | | }; |
3136 | 0 | write!(f, "MATCH({id:06?}): ")?; |
3137 | 0 | for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate() |
3138 | | { |
3139 | 0 | if i > 0 { |
3140 | 0 | write!(f, ", ")?; |
3141 | 0 | } |
3142 | 0 | write!(f, "{pid:?}")?; |
3143 | | } |
3144 | 0 | writeln!(f, "")?; |
3145 | | } |
3146 | 0 | } |
3147 | 0 | writeln!(f, "state length: {:?}", self.state_len())?; |
3148 | 0 | writeln!(f, "pattern length: {:?}", self.pattern_len())?; |
3149 | 0 | writeln!(f, "flags: {:?}", self.flags)?; |
3150 | 0 | writeln!(f, ")")?; |
3151 | 0 | Ok(()) |
3152 | 0 | } |
3153 | | } |
3154 | | |
3155 | | // SAFETY: We assert that our implementation of each method is correct. |
3156 | | unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> { |
3157 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3158 | 4.43M | fn is_special_state(&self, id: StateID) -> bool { |
3159 | 4.43M | self.special.is_special_state(id) |
3160 | 4.43M | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_special_state Line | Count | Source | 3158 | 4.03M | fn is_special_state(&self, id: StateID) -> bool { | 3159 | 4.03M | self.special.is_special_state(id) | 3160 | 4.03M | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_special_state Line | Count | Source | 3158 | 400k | fn is_special_state(&self, id: StateID) -> bool { | 3159 | 400k | self.special.is_special_state(id) | 3160 | 400k | } |
|
3161 | | |
3162 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3163 | 389k | fn is_dead_state(&self, id: StateID) -> bool { |
3164 | 389k | self.special.is_dead_state(id) |
3165 | 389k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_dead_state Line | Count | Source | 3163 | 389k | fn is_dead_state(&self, id: StateID) -> bool { | 3164 | 389k | self.special.is_dead_state(id) | 3165 | 389k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_dead_state Line | Count | Source | 3163 | 31 | fn is_dead_state(&self, id: StateID) -> bool { | 3164 | 31 | self.special.is_dead_state(id) | 3165 | 31 | } |
|
3166 | | |
3167 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3168 | 5.69k | fn is_quit_state(&self, id: StateID) -> bool { |
3169 | 5.69k | self.special.is_quit_state(id) |
3170 | 5.69k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_quit_state Line | Count | Source | 3168 | 5.69k | fn is_quit_state(&self, id: StateID) -> bool { | 3169 | 5.69k | self.special.is_quit_state(id) | 3170 | 5.69k | } |
Unexecuted instantiation: <regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_quit_state |
3171 | | |
3172 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3173 | 1.07M | fn is_match_state(&self, id: StateID) -> bool { |
3174 | 1.07M | self.special.is_match_state(id) |
3175 | 1.07M | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_match_state Line | Count | Source | 3173 | 916k | fn is_match_state(&self, id: StateID) -> bool { | 3174 | 916k | self.special.is_match_state(id) | 3175 | 916k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_match_state Line | Count | Source | 3173 | 75 | fn is_match_state(&self, id: StateID) -> bool { | 3174 | 75 | self.special.is_match_state(id) | 3175 | 75 | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_match_state Line | Count | Source | 3173 | 155k | fn is_match_state(&self, id: StateID) -> bool { | 3174 | 155k | self.special.is_match_state(id) | 3175 | 155k | } |
|
3176 | | |
3177 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3178 | 852k | fn is_start_state(&self, id: StateID) -> bool { |
3179 | 852k | self.special.is_start_state(id) |
3180 | 852k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_start_state Line | Count | Source | 3178 | 652k | fn is_start_state(&self, id: StateID) -> bool { | 3179 | 652k | self.special.is_start_state(id) | 3180 | 652k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_start_state Line | Count | Source | 3178 | 199k | fn is_start_state(&self, id: StateID) -> bool { | 3179 | 199k | self.special.is_start_state(id) | 3180 | 199k | } |
|
3181 | | |
3182 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3183 | 851k | fn is_accel_state(&self, id: StateID) -> bool { |
3184 | 851k | self.special.is_accel_state(id) |
3185 | 851k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_accel_state Line | Count | Source | 3183 | 553k | fn is_accel_state(&self, id: StateID) -> bool { | 3184 | 553k | self.special.is_accel_state(id) | 3185 | 553k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_accel_state Line | Count | Source | 3183 | 40.7k | fn is_accel_state(&self, id: StateID) -> bool { | 3184 | 40.7k | self.special.is_accel_state(id) | 3185 | 40.7k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_accel_state Line | Count | Source | 3183 | 257k | fn is_accel_state(&self, id: StateID) -> bool { | 3184 | 257k | self.special.is_accel_state(id) | 3185 | 257k | } |
|
3186 | | |
3187 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3188 | 453k | fn next_state(&self, current: StateID, input: u8) -> StateID { |
3189 | 453k | let input = self.byte_classes().get(input); |
3190 | 453k | let o = current.as_usize() + usize::from(input); |
3191 | 453k | self.trans()[o] |
3192 | 453k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_state Line | Count | Source | 3188 | 453k | fn next_state(&self, current: StateID, input: u8) -> StateID { | 3189 | 453k | let input = self.byte_classes().get(input); | 3190 | 453k | let o = current.as_usize() + usize::from(input); | 3191 | 453k | self.trans()[o] | 3192 | 453k | } |
Unexecuted instantiation: <regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_state |
3193 | | |
3194 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3195 | 3.12M | unsafe fn next_state_unchecked( |
3196 | 3.12M | &self, |
3197 | 3.12M | current: StateID, |
3198 | 3.12M | byte: u8, |
3199 | 3.12M | ) -> StateID { |
3200 | | // We don't (or shouldn't) need an unchecked variant for the byte |
3201 | | // class mapping, since bound checks should be omitted automatically |
3202 | | // by virtue of its representation. If this ends up not being true as |
3203 | | // confirmed by codegen, please file an issue. ---AG |
3204 | 3.12M | let class = self.byte_classes().get(byte); |
3205 | 3.12M | let o = current.as_usize() + usize::from(class); |
3206 | 3.12M | let next = *self.trans().get_unchecked(o); |
3207 | 3.12M | next |
3208 | 3.12M | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked Line | Count | Source | 3195 | 2.92M | unsafe fn next_state_unchecked( | 3196 | 2.92M | &self, | 3197 | 2.92M | current: StateID, | 3198 | 2.92M | byte: u8, | 3199 | 2.92M | ) -> StateID { | 3200 | | // We don't (or shouldn't) need an unchecked variant for the byte | 3201 | | // class mapping, since bound checks should be omitted automatically | 3202 | | // by virtue of its representation. If this ends up not being true as | 3203 | | // confirmed by codegen, please file an issue. ---AG | 3204 | 2.92M | let class = self.byte_classes().get(byte); | 3205 | 2.92M | let o = current.as_usize() + usize::from(class); | 3206 | 2.92M | let next = *self.trans().get_unchecked(o); | 3207 | 2.92M | next | 3208 | 2.92M | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked Line | Count | Source | 3195 | 200k | unsafe fn next_state_unchecked( | 3196 | 200k | &self, | 3197 | 200k | current: StateID, | 3198 | 200k | byte: u8, | 3199 | 200k | ) -> StateID { | 3200 | | // We don't (or shouldn't) need an unchecked variant for the byte | 3201 | | // class mapping, since bound checks should be omitted automatically | 3202 | | // by virtue of its representation. If this ends up not being true as | 3203 | | // confirmed by codegen, please file an issue. ---AG | 3204 | 200k | let class = self.byte_classes().get(byte); | 3205 | 200k | let o = current.as_usize() + usize::from(class); | 3206 | 200k | let next = *self.trans().get_unchecked(o); | 3207 | 200k | next | 3208 | 200k | } |
|
3209 | | |
3210 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3211 | 32.2k | fn next_eoi_state(&self, current: StateID) -> StateID { |
3212 | 32.2k | let eoi = self.byte_classes().eoi().as_usize(); |
3213 | 32.2k | let o = current.as_usize() + eoi; |
3214 | 32.2k | self.trans()[o] |
3215 | 32.2k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_eoi_state Line | Count | Source | 3211 | 27.8k | fn next_eoi_state(&self, current: StateID) -> StateID { | 3212 | 27.8k | let eoi = self.byte_classes().eoi().as_usize(); | 3213 | 27.8k | let o = current.as_usize() + eoi; | 3214 | 27.8k | self.trans()[o] | 3215 | 27.8k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_eoi_state Line | Count | Source | 3211 | 4.35k | fn next_eoi_state(&self, current: StateID) -> StateID { | 3212 | 4.35k | let eoi = self.byte_classes().eoi().as_usize(); | 3213 | 4.35k | let o = current.as_usize() + eoi; | 3214 | 4.35k | self.trans()[o] | 3215 | 4.35k | } |
|
3216 | | |
3217 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3218 | | fn pattern_len(&self) -> usize { |
3219 | | self.ms.pattern_len |
3220 | | } |
3221 | | |
3222 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3223 | 75 | fn match_len(&self, id: StateID) -> usize { |
3224 | 75 | self.match_pattern_len(id) |
3225 | 75 | } <regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::match_len Line | Count | Source | 3223 | 75 | fn match_len(&self, id: StateID) -> usize { | 3224 | 75 | self.match_pattern_len(id) | 3225 | 75 | } |
Unexecuted instantiation: <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::match_len |
3226 | | |
3227 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3228 | 542k | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { |
3229 | | // This is an optimization for the very common case of a DFA with a |
3230 | | // single pattern. This conditional avoids a somewhat more costly path |
3231 | | // that finds the pattern ID from the state machine, which requires |
3232 | | // a bit of slicing/pointer-chasing. This optimization tends to only |
3233 | | // matter when matches are frequent. |
3234 | 542k | if self.ms.pattern_len == 1 { |
3235 | 400k | return PatternID::ZERO; |
3236 | 141k | } |
3237 | 141k | let state_index = self.match_state_index(id); |
3238 | 141k | self.ms.pattern_id(state_index, match_index) |
3239 | 542k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::match_pattern Line | Count | Source | 3228 | 400k | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { | 3229 | | // This is an optimization for the very common case of a DFA with a | 3230 | | // single pattern. This conditional avoids a somewhat more costly path | 3231 | | // that finds the pattern ID from the state machine, which requires | 3232 | | // a bit of slicing/pointer-chasing. This optimization tends to only | 3233 | | // matter when matches are frequent. | 3234 | 400k | if self.ms.pattern_len == 1 { | 3235 | 400k | return PatternID::ZERO; | 3236 | 0 | } | 3237 | 0 | let state_index = self.match_state_index(id); | 3238 | 0 | self.ms.pattern_id(state_index, match_index) | 3239 | 400k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::match_pattern Line | Count | Source | 3228 | 141k | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { | 3229 | | // This is an optimization for the very common case of a DFA with a | 3230 | | // single pattern. This conditional avoids a somewhat more costly path | 3231 | | // that finds the pattern ID from the state machine, which requires | 3232 | | // a bit of slicing/pointer-chasing. This optimization tends to only | 3233 | | // matter when matches are frequent. | 3234 | 141k | if self.ms.pattern_len == 1 { | 3235 | 0 | return PatternID::ZERO; | 3236 | 141k | } | 3237 | 141k | let state_index = self.match_state_index(id); | 3238 | 141k | self.ms.pattern_id(state_index, match_index) | 3239 | 141k | } |
|
3240 | | |
3241 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3242 | 61.4k | fn has_empty(&self) -> bool { |
3243 | 61.4k | self.flags.has_empty |
3244 | 61.4k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::has_empty Line | Count | Source | 3242 | 61.1k | fn has_empty(&self) -> bool { | 3243 | 61.1k | self.flags.has_empty | 3244 | 61.1k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::has_empty Line | Count | Source | 3242 | 333 | fn has_empty(&self) -> bool { | 3243 | 333 | self.flags.has_empty | 3244 | 333 | } |
|
3245 | | |
3246 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3247 | 21.1k | fn is_utf8(&self) -> bool { |
3248 | 21.1k | self.flags.is_utf8 |
3249 | 21.1k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_utf8 Line | Count | Source | 3247 | 20.8k | fn is_utf8(&self) -> bool { | 3248 | 20.8k | self.flags.is_utf8 | 3249 | 20.8k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_utf8 Line | Count | Source | 3247 | 283 | fn is_utf8(&self) -> bool { | 3248 | 283 | self.flags.is_utf8 | 3249 | 283 | } |
|
3250 | | |
3251 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3252 | 2.93k | fn is_always_start_anchored(&self) -> bool { |
3253 | 2.93k | self.flags.is_always_start_anchored |
3254 | 2.93k | } |
3255 | | |
3256 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3257 | 464k | fn start_state( |
3258 | 464k | &self, |
3259 | 464k | config: &start::Config, |
3260 | 464k | ) -> Result<StateID, StartError> { |
3261 | 464k | let anchored = config.get_anchored(); |
3262 | 464k | let start = match config.get_look_behind() { |
3263 | 62.2k | None => Start::Text, |
3264 | 401k | Some(byte) => { |
3265 | 401k | if !self.quitset.is_empty() && self.quitset.contains(byte) { |
3266 | 1.32k | return Err(StartError::quit(byte)); |
3267 | 400k | } |
3268 | 400k | self.st.start_map.get(byte) |
3269 | | } |
3270 | | }; |
3271 | 462k | self.st.start(anchored, start) |
3272 | 464k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state Line | Count | Source | 3257 | 459k | fn start_state( | 3258 | 459k | &self, | 3259 | 459k | config: &start::Config, | 3260 | 459k | ) -> Result<StateID, StartError> { | 3261 | 459k | let anchored = config.get_anchored(); | 3262 | 459k | let start = match config.get_look_behind() { | 3263 | 61.9k | None => Start::Text, | 3264 | 397k | Some(byte) => { | 3265 | 397k | if !self.quitset.is_empty() && self.quitset.contains(byte) { | 3266 | 1.31k | return Err(StartError::quit(byte)); | 3267 | 396k | } | 3268 | 396k | self.st.start_map.get(byte) | 3269 | | } | 3270 | | }; | 3271 | 458k | self.st.start(anchored, start) | 3272 | 459k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state Line | Count | Source | 3257 | 4.40k | fn start_state( | 3258 | 4.40k | &self, | 3259 | 4.40k | config: &start::Config, | 3260 | 4.40k | ) -> Result<StateID, StartError> { | 3261 | 4.40k | let anchored = config.get_anchored(); | 3262 | 4.40k | let start = match config.get_look_behind() { | 3263 | 333 | None => Start::Text, | 3264 | 4.07k | Some(byte) => { | 3265 | 4.07k | if !self.quitset.is_empty() && self.quitset.contains(byte) { | 3266 | 16 | return Err(StartError::quit(byte)); | 3267 | 4.05k | } | 3268 | 4.05k | self.st.start_map.get(byte) | 3269 | | } | 3270 | | }; | 3271 | 4.39k | self.st.start(anchored, start) | 3272 | 4.40k | } |
|
3273 | | |
3274 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3275 | 74.3k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { |
3276 | 74.3k | match mode { |
3277 | 74.3k | Anchored::No => self.st.universal_start_unanchored, |
3278 | 0 | Anchored::Yes => self.st.universal_start_anchored, |
3279 | 0 | Anchored::Pattern(_) => None, |
3280 | | } |
3281 | 74.3k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::universal_start_state Line | Count | Source | 3275 | 69.8k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { | 3276 | 69.8k | match mode { | 3277 | 69.8k | Anchored::No => self.st.universal_start_unanchored, | 3278 | 0 | Anchored::Yes => self.st.universal_start_anchored, | 3279 | 0 | Anchored::Pattern(_) => None, | 3280 | | } | 3281 | 69.8k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::universal_start_state Line | Count | Source | 3275 | 4.40k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { | 3276 | 4.40k | match mode { | 3277 | 4.40k | Anchored::No => self.st.universal_start_unanchored, | 3278 | 0 | Anchored::Yes => self.st.universal_start_anchored, | 3279 | 0 | Anchored::Pattern(_) => None, | 3280 | | } | 3281 | 4.40k | } |
|
3282 | | |
3283 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3284 | 158k | fn accelerator(&self, id: StateID) -> &[u8] { |
3285 | 158k | if !self.is_accel_state(id) { |
3286 | 0 | return &[]; |
3287 | 158k | } |
3288 | 158k | self.accels.needles(self.accelerator_index(id)) |
3289 | 158k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::accelerator Line | Count | Source | 3284 | 101k | fn accelerator(&self, id: StateID) -> &[u8] { | 3285 | 101k | if !self.is_accel_state(id) { | 3286 | 0 | return &[]; | 3287 | 101k | } | 3288 | 101k | self.accels.needles(self.accelerator_index(id)) | 3289 | 101k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::accelerator Line | Count | Source | 3284 | 57.6k | fn accelerator(&self, id: StateID) -> &[u8] { | 3285 | 57.6k | if !self.is_accel_state(id) { | 3286 | 0 | return &[]; | 3287 | 57.6k | } | 3288 | 57.6k | self.accels.needles(self.accelerator_index(id)) | 3289 | 57.6k | } |
|
3290 | | |
3291 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
3292 | 74.0k | fn get_prefilter(&self) -> Option<&Prefilter> { |
3293 | 74.0k | self.pre.as_ref() |
3294 | 74.0k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::get_prefilter Line | Count | Source | 3292 | 69.6k | fn get_prefilter(&self) -> Option<&Prefilter> { | 3293 | 69.6k | self.pre.as_ref() | 3294 | 69.6k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::get_prefilter Line | Count | Source | 3292 | 4.40k | fn get_prefilter(&self) -> Option<&Prefilter> { | 3293 | 4.40k | self.pre.as_ref() | 3294 | 4.40k | } |
|
3295 | | } |
3296 | | |
3297 | | /// The transition table portion of a dense DFA. |
3298 | | /// |
3299 | | /// The transition table is the core part of the DFA in that it describes how |
3300 | | /// to move from one state to another based on the input sequence observed. |
3301 | | #[derive(Clone)] |
3302 | | pub(crate) struct TransitionTable<T> { |
3303 | | /// A contiguous region of memory representing the transition table in |
3304 | | /// row-major order. The representation is dense. That is, every state |
3305 | | /// has precisely the same number of transitions. The maximum number of |
3306 | | /// transitions per state is 257 (256 for each possible byte value, plus 1 |
3307 | | /// for the special EOI transition). If a DFA has been instructed to use |
3308 | | /// byte classes (the default), then the number of transitions is usually |
3309 | | /// substantially fewer. |
3310 | | /// |
3311 | | /// In practice, T is either `Vec<u32>` or `&[u32]`. |
3312 | | table: T, |
3313 | | /// A set of equivalence classes, where a single equivalence class |
3314 | | /// represents a set of bytes that never discriminate between a match |
3315 | | /// and a non-match in the DFA. Each equivalence class corresponds to a |
3316 | | /// single character in this DFA's alphabet, where the maximum number of |
3317 | | /// characters is 257 (each possible value of a byte plus the special |
3318 | | /// EOI transition). Consequently, the number of equivalence classes |
3319 | | /// corresponds to the number of transitions for each DFA state. Note |
3320 | | /// though that the *space* used by each DFA state in the transition table |
3321 | | /// may be larger. The total space used by each DFA state is known as the |
3322 | | /// stride. |
3323 | | /// |
3324 | | /// The only time the number of equivalence classes is fewer than 257 is if |
3325 | | /// the DFA's kind uses byte classes (which is the default). Equivalence |
3326 | | /// classes should generally only be disabled when debugging, so that |
3327 | | /// the transitions themselves aren't obscured. Disabling them has no |
3328 | | /// other benefit, since the equivalence class map is always used while |
3329 | | /// searching. In the vast majority of cases, the number of equivalence |
3330 | | /// classes is substantially smaller than 257, particularly when large |
3331 | | /// Unicode classes aren't used. |
3332 | | classes: ByteClasses, |
3333 | | /// The stride of each DFA state, expressed as a power-of-two exponent. |
3334 | | /// |
3335 | | /// The stride of a DFA corresponds to the total amount of space used by |
3336 | | /// each DFA state in the transition table. This may be bigger than the |
3337 | | /// size of a DFA's alphabet, since the stride is always the smallest |
3338 | | /// power of two greater than or equal to the alphabet size. |
3339 | | /// |
3340 | | /// While this wastes space, this avoids the need for integer division |
3341 | | /// to convert between premultiplied state IDs and their corresponding |
3342 | | /// indices. Instead, we can use simple bit-shifts. |
3343 | | /// |
3344 | | /// See the docs for the `stride2` method for more details. |
3345 | | /// |
3346 | | /// The minimum `stride2` value is `1` (corresponding to a stride of `2`) |
3347 | | /// while the maximum `stride2` value is `9` (corresponding to a stride of |
3348 | | /// `512`). The maximum is not `8` since the maximum alphabet size is `257` |
3349 | | /// when accounting for the special EOI transition. However, an alphabet |
3350 | | /// length of that size is exceptionally rare since the alphabet is shrunk |
3351 | | /// into equivalence classes. |
3352 | | stride2: usize, |
3353 | | } |
3354 | | |
3355 | | impl<'a> TransitionTable<&'a [u32]> { |
3356 | | /// Deserialize a transition table starting at the beginning of `slice`. |
3357 | | /// Upon success, return the total number of bytes read along with the |
3358 | | /// transition table. |
3359 | | /// |
3360 | | /// If there was a problem deserializing any part of the transition table, |
3361 | | /// then this returns an error. Notably, if the given slice does not have |
3362 | | /// the same alignment as `StateID`, then this will return an error (among |
3363 | | /// other possible errors). |
3364 | | /// |
3365 | | /// This is guaranteed to execute in constant time. |
3366 | | /// |
3367 | | /// # Safety |
3368 | | /// |
3369 | | /// This routine is not safe because it does not check the validity of the |
3370 | | /// transition table itself. In particular, the transition table can be |
3371 | | /// quite large, so checking its validity can be somewhat expensive. An |
3372 | | /// invalid transition table is not safe because other code may rely on the |
3373 | | /// transition table being correct (such as explicit bounds check elision). |
3374 | | /// Therefore, an invalid transition table can lead to undefined behavior. |
3375 | | /// |
3376 | | /// Callers that use this function must either pass on the safety invariant |
3377 | | /// or guarantee that the bytes given contain a valid transition table. |
3378 | | /// This guarantee is upheld by the bytes written by `write_to`. |
3379 | 597 | unsafe fn from_bytes_unchecked( |
3380 | 597 | mut slice: &'a [u8], |
3381 | 597 | ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> { |
3382 | 597 | let slice_start = slice.as_ptr().as_usize(); |
3383 | | |
3384 | 597 | let (state_len, nr) = |
3385 | 597 | wire::try_read_u32_as_usize(slice, "state length")?; |
3386 | 597 | slice = &slice[nr..]; |
3387 | | |
3388 | 597 | let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2")?; |
3389 | 597 | slice = &slice[nr..]; |
3390 | | |
3391 | 597 | let (classes, nr) = ByteClasses::from_bytes(slice)?; |
3392 | 565 | slice = &slice[nr..]; |
3393 | | |
3394 | | // The alphabet length (determined by the byte class map) cannot be |
3395 | | // bigger than the stride (total space used by each DFA state). |
3396 | 565 | if stride2 > 9 { |
3397 | 1 | return Err(DeserializeError::generic( |
3398 | 1 | "dense DFA has invalid stride2 (too big)", |
3399 | 1 | )); |
3400 | 564 | } |
3401 | | // It also cannot be zero, since even a DFA that never matches anything |
3402 | | // has a non-zero number of states with at least two equivalence |
3403 | | // classes: one for all 256 byte values and another for the EOI |
3404 | | // sentinel. |
3405 | 564 | if stride2 < 1 { |
3406 | 9 | return Err(DeserializeError::generic( |
3407 | 9 | "dense DFA has invalid stride2 (too small)", |
3408 | 9 | )); |
3409 | 555 | } |
3410 | | // This is OK since 1 <= stride2 <= 9. |
3411 | 555 | let stride = |
3412 | 555 | 1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap(); |
3413 | 555 | if classes.alphabet_len() > stride { |
3414 | 0 | return Err(DeserializeError::generic( |
3415 | 0 | "alphabet size cannot be bigger than transition table stride", |
3416 | 0 | )); |
3417 | 555 | } |
3418 | | |
3419 | 555 | let trans_len = |
3420 | 555 | wire::shl(state_len, stride2, "dense table transition length")?; |
3421 | 555 | let table_bytes_len = wire::mul( |
3422 | 555 | trans_len, |
3423 | | StateID::SIZE, |
3424 | | "dense table state byte length", |
3425 | 0 | )?; |
3426 | 555 | wire::check_slice_len(slice, table_bytes_len, "transition table")?; |
3427 | 553 | wire::check_alignment::<StateID>(slice)?; |
3428 | 553 | let table_bytes = &slice[..table_bytes_len]; |
3429 | 553 | slice = &slice[table_bytes_len..]; |
3430 | | // SAFETY: Since StateID is always representable as a u32, all we need |
3431 | | // to do is ensure that we have the proper length and alignment. We've |
3432 | | // checked both above, so the cast below is safe. |
3433 | | // |
3434 | | // N.B. This is the only not-safe code in this function. |
3435 | 553 | let table = core::slice::from_raw_parts( |
3436 | 553 | table_bytes.as_ptr().cast::<u32>(), |
3437 | 553 | trans_len, |
3438 | | ); |
3439 | 553 | let tt = TransitionTable { table, classes, stride2 }; |
3440 | 553 | Ok((tt, slice.as_ptr().as_usize() - slice_start)) |
3441 | 597 | } |
3442 | | } |
3443 | | |
3444 | | #[cfg(feature = "dfa-build")] |
3445 | | impl TransitionTable<Vec<u32>> { |
3446 | | /// Create a minimal transition table with just two states: a dead state |
3447 | | /// and a quit state. The alphabet length and stride of the transition |
3448 | | /// table is determined by the given set of equivalence classes. |
3449 | 77.6k | fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> { |
3450 | 77.6k | let mut tt = TransitionTable { |
3451 | 77.6k | table: vec![], |
3452 | 77.6k | classes, |
3453 | 77.6k | stride2: classes.stride2(), |
3454 | 77.6k | }; |
3455 | | // Two states, regardless of alphabet size, can always fit into u32. |
3456 | 77.6k | tt.add_empty_state().unwrap(); // dead state |
3457 | 77.6k | tt.add_empty_state().unwrap(); // quit state |
3458 | 77.6k | tt |
3459 | 77.6k | } |
3460 | | |
3461 | | /// Set a transition in this table. Both the `from` and `to` states must |
3462 | | /// already exist, otherwise this panics. `unit` should correspond to the |
3463 | | /// transition out of `from` to set to `to`. |
3464 | 37.8M | fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) { |
3465 | 37.8M | assert!(self.is_valid(from), "invalid 'from' state"); |
3466 | 37.8M | assert!(self.is_valid(to), "invalid 'to' state"); |
3467 | 37.8M | self.table[from.as_usize() + self.classes.get_by_unit(unit)] = |
3468 | 37.8M | to.as_u32(); |
3469 | 37.8M | } |
3470 | | |
3471 | | /// Add an empty state (a state where all transitions lead to a dead state) |
3472 | | /// and return its identifier. The identifier returned is guaranteed to |
3473 | | /// not point to any other existing state. |
3474 | | /// |
3475 | | /// If adding a state would exhaust the state identifier space, then this |
3476 | | /// returns an error. |
3477 | 961k | fn add_empty_state(&mut self) -> Result<StateID, BuildError> { |
3478 | | // Normally, to get a fresh state identifier, we would just |
3479 | | // take the index of the next state added to the transition |
3480 | | // table. However, we actually perform an optimization here |
3481 | | // that pre-multiplies state IDs by the stride, such that they |
3482 | | // point immediately at the beginning of their transitions in |
3483 | | // the transition table. This avoids an extra multiplication |
3484 | | // instruction for state lookup at search time. |
3485 | | // |
3486 | | // Premultiplied identifiers means that instead of your matching |
3487 | | // loop looking something like this: |
3488 | | // |
3489 | | // state = dfa.start |
3490 | | // for byte in haystack: |
3491 | | // next = dfa.transitions[state * stride + byte] |
3492 | | // if dfa.is_match(next): |
3493 | | // return true |
3494 | | // return false |
3495 | | // |
3496 | | // it can instead look like this: |
3497 | | // |
3498 | | // state = dfa.start |
3499 | | // for byte in haystack: |
3500 | | // next = dfa.transitions[state + byte] |
3501 | | // if dfa.is_match(next): |
3502 | | // return true |
3503 | | // return false |
3504 | | // |
3505 | | // In other words, we save a multiplication instruction in the |
3506 | | // critical path. This turns out to be a decent performance win. |
3507 | | // The cost of using premultiplied state ids is that they can |
3508 | | // require a bigger state id representation. (And they also make |
3509 | | // the code a bit more complex, especially during minimization and |
3510 | | // when reshuffling states, as one needs to convert back and forth |
3511 | | // between state IDs and state indices.) |
3512 | | // |
3513 | | // To do this, we simply take the index of the state into the |
3514 | | // entire transition table, rather than the index of the state |
3515 | | // itself. e.g., If the stride is 64, then the ID of the 3rd state |
3516 | | // is 192, not 2. |
3517 | 961k | let next = self.table.len(); |
3518 | 961k | let id = |
3519 | 961k | StateID::new(next).map_err(|_| BuildError::too_many_states())?; |
3520 | 961k | self.table.extend(iter::repeat(0).take(self.stride())); |
3521 | 961k | Ok(id) |
3522 | 961k | } |
3523 | | |
3524 | | /// Swap the two states given in this transition table. |
3525 | | /// |
3526 | | /// This routine does not do anything to check the correctness of this |
3527 | | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
3528 | | /// updated appropriately. |
3529 | | /// |
3530 | | /// Both id1 and id2 must point to valid states, otherwise this panics. |
3531 | 163k | fn swap(&mut self, id1: StateID, id2: StateID) { |
3532 | 163k | assert!(self.is_valid(id1), "invalid 'id1' state: {id1:?}"); |
3533 | 163k | assert!(self.is_valid(id2), "invalid 'id2' state: {id2:?}"); |
3534 | | // We only need to swap the parts of the state that are used. So if the |
3535 | | // stride is 64, but the alphabet length is only 33, then we save a lot |
3536 | | // of work. |
3537 | 2.73M | for b in 0..self.classes.alphabet_len() { |
3538 | 2.73M | self.table.swap(id1.as_usize() + b, id2.as_usize() + b); |
3539 | 2.73M | } |
3540 | 163k | } |
3541 | | |
3542 | | /// Remap the transitions for the state given according to the function |
3543 | | /// given. This applies the given map function to every transition in the |
3544 | | /// given state and changes the transition in place to the result of the |
3545 | | /// map function for that transition. |
3546 | 0 | fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) { |
3547 | 0 | for byte in 0..self.alphabet_len() { |
3548 | 0 | let i = id.as_usize() + byte; |
3549 | 0 | let next = self.table()[i]; |
3550 | 0 | self.table_mut()[id.as_usize() + byte] = map(next); |
3551 | 0 | } |
3552 | 0 | } |
3553 | | |
3554 | | /// Truncate the states in this transition table to the given length. |
3555 | | /// |
3556 | | /// This routine does not do anything to check the correctness of this |
3557 | | /// truncation. Callers must ensure that other states pointing to truncated |
3558 | | /// states are updated appropriately. |
3559 | 0 | fn truncate(&mut self, len: usize) { |
3560 | 0 | self.table.truncate(len << self.stride2); |
3561 | 0 | } |
3562 | | } |
3563 | | |
3564 | | impl<T: AsRef<[u32]>> TransitionTable<T> { |
3565 | | /// Writes a serialized form of this transition table to the buffer given. |
3566 | | /// If the buffer is too small, then an error is returned. To determine |
3567 | | /// how big the buffer must be, use `write_to_len`. |
3568 | | fn write_to<E: Endian>( |
3569 | | &self, |
3570 | | mut dst: &mut [u8], |
3571 | | ) -> Result<usize, SerializeError> { |
3572 | | let nwrite = self.write_to_len(); |
3573 | | if dst.len() < nwrite { |
3574 | | return Err(SerializeError::buffer_too_small("transition table")); |
3575 | | } |
3576 | | dst = &mut dst[..nwrite]; |
3577 | | |
3578 | | // write state length |
3579 | | // Unwrap is OK since number of states is guaranteed to fit in a u32. |
3580 | | E::write_u32(u32::try_from(self.len()).unwrap(), dst); |
3581 | | dst = &mut dst[size_of::<u32>()..]; |
3582 | | |
3583 | | // write state stride (as power of 2) |
3584 | | // Unwrap is OK since stride2 is guaranteed to be <= 9. |
3585 | | E::write_u32(u32::try_from(self.stride2).unwrap(), dst); |
3586 | | dst = &mut dst[size_of::<u32>()..]; |
3587 | | |
3588 | | // write byte class map |
3589 | | let n = self.classes.write_to(dst)?; |
3590 | | dst = &mut dst[n..]; |
3591 | | |
3592 | | // write actual transitions |
3593 | | for &sid in self.table() { |
3594 | | let n = wire::write_state_id::<E>(sid, &mut dst); |
3595 | | dst = &mut dst[n..]; |
3596 | | } |
3597 | | Ok(nwrite) |
3598 | | } |
3599 | | |
3600 | | /// Returns the number of bytes the serialized form of this transition |
3601 | | /// table will use. |
3602 | | fn write_to_len(&self) -> usize { |
3603 | | size_of::<u32>() // state length |
3604 | | + size_of::<u32>() // stride2 |
3605 | | + self.classes.write_to_len() |
3606 | | + (self.table().len() * StateID::SIZE) |
3607 | | } |
3608 | | |
3609 | | /// Validates that every state ID in this transition table is valid. |
3610 | | /// |
3611 | | /// That is, every state ID can be used to correctly index a state in this |
3612 | | /// table. |
3613 | 394 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
3614 | 394 | let sp = &dfa.special; |
3615 | 47.9k | for state in self.states() { |
3616 | | // We check that the ID itself is well formed. That is, if it's |
3617 | | // a special state then it must actually be a quit, dead, accel, |
3618 | | // match or start state. |
3619 | 47.9k | if sp.is_special_state(state.id()) { |
3620 | 2.95k | let is_actually_special = sp.is_dead_state(state.id()) |
3621 | 2.56k | || sp.is_quit_state(state.id()) |
3622 | 2.52k | || sp.is_match_state(state.id()) |
3623 | 2.45k | || sp.is_start_state(state.id()) |
3624 | 906 | || sp.is_accel_state(state.id()); |
3625 | 2.95k | if !is_actually_special { |
3626 | | // This is kind of a cryptic error message... |
3627 | 11 | return Err(DeserializeError::generic( |
3628 | 11 | "found dense state tagged as special but \ |
3629 | 11 | wasn't actually special", |
3630 | 11 | )); |
3631 | 2.94k | } |
3632 | 2.94k | if sp.is_match_state(state.id()) |
3633 | 75 | && dfa.match_len(state.id()) == 0 |
3634 | | { |
3635 | 0 | return Err(DeserializeError::generic( |
3636 | 0 | "found match state with zero pattern IDs", |
3637 | 0 | )); |
3638 | 2.94k | } |
3639 | 45.0k | } |
3640 | 98.5k | for (_, to) in state.transitions() { |
3641 | 98.5k | if !self.is_valid(to) { |
3642 | 10 | return Err(DeserializeError::generic( |
3643 | 10 | "found invalid state ID in transition table", |
3644 | 10 | )); |
3645 | 98.5k | } |
3646 | | } |
3647 | | } |
3648 | 373 | Ok(()) |
3649 | 394 | } |
3650 | | |
3651 | | /// Converts this transition table to a borrowed value. |
3652 | | fn as_ref(&self) -> TransitionTable<&'_ [u32]> { |
3653 | | TransitionTable { |
3654 | | table: self.table.as_ref(), |
3655 | | classes: self.classes.clone(), |
3656 | | stride2: self.stride2, |
3657 | | } |
3658 | | } |
3659 | | |
3660 | | /// Converts this transition table to an owned value. |
3661 | | #[cfg(feature = "alloc")] |
3662 | | fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> { |
3663 | | TransitionTable { |
3664 | | table: self.table.as_ref().to_vec(), |
3665 | | classes: self.classes.clone(), |
3666 | | stride2: self.stride2, |
3667 | | } |
3668 | | } |
3669 | | |
3670 | | /// Return the state for the given ID. If the given ID is not valid, then |
3671 | | /// this panics. |
3672 | 942k | fn state(&self, id: StateID) -> State<'_> { |
3673 | 942k | assert!(self.is_valid(id)); |
3674 | | |
3675 | 942k | let i = id.as_usize(); |
3676 | 942k | State { |
3677 | 942k | id, |
3678 | 942k | stride2: self.stride2, |
3679 | 942k | transitions: &self.table()[i..i + self.alphabet_len()], |
3680 | 942k | } |
3681 | 942k | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::state Line | Count | Source | 3672 | 853k | fn state(&self, id: StateID) -> State<'_> { | 3673 | 853k | assert!(self.is_valid(id)); | 3674 | | | 3675 | 853k | let i = id.as_usize(); | 3676 | 853k | State { | 3677 | 853k | id, | 3678 | 853k | stride2: self.stride2, | 3679 | 853k | transitions: &self.table()[i..i + self.alphabet_len()], | 3680 | 853k | } | 3681 | 853k | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::state Line | Count | Source | 3672 | 88.6k | fn state(&self, id: StateID) -> State<'_> { | 3673 | 88.6k | assert!(self.is_valid(id)); | 3674 | | | 3675 | 88.6k | let i = id.as_usize(); | 3676 | 88.6k | State { | 3677 | 88.6k | id, | 3678 | 88.6k | stride2: self.stride2, | 3679 | 88.6k | transitions: &self.table()[i..i + self.alphabet_len()], | 3680 | 88.6k | } | 3681 | 88.6k | } |
|
3682 | | |
3683 | | /// Returns an iterator over all states in this transition table. |
3684 | | /// |
3685 | | /// This iterator yields a tuple for each state. The first element of the |
3686 | | /// tuple corresponds to a state's identifier, and the second element |
3687 | | /// corresponds to the state itself (comprised of its transitions). |
3688 | 74.2k | fn states(&self) -> StateIter<'_, T> { |
3689 | 74.2k | StateIter { |
3690 | 74.2k | tt: self, |
3691 | 74.2k | it: self.table().chunks(self.stride()).enumerate(), |
3692 | 74.2k | } |
3693 | 74.2k | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::states Line | Count | Source | 3688 | 73.5k | fn states(&self) -> StateIter<'_, T> { | 3689 | 73.5k | StateIter { | 3690 | 73.5k | tt: self, | 3691 | 73.5k | it: self.table().chunks(self.stride()).enumerate(), | 3692 | 73.5k | } | 3693 | 73.5k | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::states Line | Count | Source | 3688 | 732 | fn states(&self) -> StateIter<'_, T> { | 3689 | 732 | StateIter { | 3690 | 732 | tt: self, | 3691 | 732 | it: self.table().chunks(self.stride()).enumerate(), | 3692 | 732 | } | 3693 | 732 | } |
|
3694 | | |
3695 | | /// Convert a state identifier to an index to a state (in the range |
3696 | | /// 0..self.len()). |
3697 | | /// |
3698 | | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
3699 | | /// to some other information (such as a remapped state ID). |
3700 | | /// |
3701 | | /// If the given ID is not valid, then this may panic or produce an |
3702 | | /// incorrect index. |
3703 | 14.9M | fn to_index(&self, id: StateID) -> usize { |
3704 | 14.9M | id.as_usize() >> self.stride2 |
3705 | 14.9M | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::to_index Line | Count | Source | 3703 | 14.7M | fn to_index(&self, id: StateID) -> usize { | 3704 | 14.7M | id.as_usize() >> self.stride2 | 3705 | 14.7M | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::to_index Line | Count | Source | 3703 | 201 | fn to_index(&self, id: StateID) -> usize { | 3704 | 201 | id.as_usize() >> self.stride2 | 3705 | 201 | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::to_index Line | Count | Source | 3703 | 199k | fn to_index(&self, id: StateID) -> usize { | 3704 | 199k | id.as_usize() >> self.stride2 | 3705 | 199k | } |
|
3706 | | |
3707 | | /// Convert an index to a state (in the range 0..self.len()) to an actual |
3708 | | /// state identifier. |
3709 | | /// |
3710 | | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
3711 | | /// to some other information (such as a remapped state ID). |
3712 | | /// |
3713 | | /// If the given index is not in the specified range, then this may panic |
3714 | | /// or produce an incorrect state ID. |
3715 | 25.5M | fn to_state_id(&self, index: usize) -> StateID { |
3716 | | // CORRECTNESS: If the given index is not valid, then it is not |
3717 | | // required for this to panic or return a valid state ID. |
3718 | 25.5M | StateID::new_unchecked(index << self.stride2) |
3719 | 25.5M | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::to_state_id Line | Count | Source | 3715 | 25.4M | fn to_state_id(&self, index: usize) -> StateID { | 3716 | | // CORRECTNESS: If the given index is not valid, then it is not | 3717 | | // required for this to panic or return a valid state ID. | 3718 | 25.4M | StateID::new_unchecked(index << self.stride2) | 3719 | 25.4M | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::to_state_id Line | Count | Source | 3715 | 88.6k | fn to_state_id(&self, index: usize) -> StateID { | 3716 | | // CORRECTNESS: If the given index is not valid, then it is not | 3717 | | // required for this to panic or return a valid state ID. | 3718 | 88.6k | StateID::new_unchecked(index << self.stride2) | 3719 | 88.6k | } |
|
3720 | | |
3721 | | /// Returns the state ID for the state immediately following the one given. |
3722 | | /// |
3723 | | /// This does not check whether the state ID returned is invalid. In fact, |
3724 | | /// if the state ID given is the last state in this DFA, then the state ID |
3725 | | /// returned is guaranteed to be invalid. |
3726 | | #[cfg(feature = "dfa-build")] |
3727 | 366k | fn next_state_id(&self, id: StateID) -> StateID { |
3728 | 366k | self.to_state_id(self.to_index(id).checked_add(1).unwrap()) |
3729 | 366k | } |
3730 | | |
3731 | | /// Returns the state ID for the state immediately preceding the one given. |
3732 | | /// |
3733 | | /// If the dead ID given (which is zero), then this panics. |
3734 | | #[cfg(feature = "dfa-build")] |
3735 | 167k | fn prev_state_id(&self, id: StateID) -> StateID { |
3736 | 167k | self.to_state_id(self.to_index(id).checked_sub(1).unwrap()) |
3737 | 167k | } |
3738 | | |
3739 | | /// Returns the table as a slice of state IDs. |
3740 | 84.0M | fn table(&self) -> &[StateID] { |
3741 | 84.0M | wire::u32s_to_state_ids(self.table.as_ref()) |
3742 | 84.0M | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::table Line | Count | Source | 3740 | 83.5M | fn table(&self) -> &[StateID] { | 3741 | 83.5M | wire::u32s_to_state_ids(self.table.as_ref()) | 3742 | 83.5M | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::table Line | Count | Source | 3740 | 285k | fn table(&self) -> &[StateID] { | 3741 | 285k | wire::u32s_to_state_ids(self.table.as_ref()) | 3742 | 285k | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::table Line | Count | Source | 3740 | 205k | fn table(&self) -> &[StateID] { | 3741 | 205k | wire::u32s_to_state_ids(self.table.as_ref()) | 3742 | 205k | } |
|
3743 | | |
3744 | | /// Returns the total number of states in this transition table. |
3745 | | /// |
3746 | | /// Note that a DFA always has at least two states: the dead and quit |
3747 | | /// states. In particular, the dead state always has ID 0 and is |
3748 | | /// correspondingly always the first state. The dead state is never a match |
3749 | | /// state. |
3750 | 399k | fn len(&self) -> usize { |
3751 | 399k | self.table().len() >> self.stride2 |
3752 | 399k | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::len Line | Count | Source | 3750 | 398k | fn len(&self) -> usize { | 3751 | 398k | self.table().len() >> self.stride2 | 3752 | 398k | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::len Line | Count | Source | 3750 | 493 | fn len(&self) -> usize { | 3751 | 493 | self.table().len() >> self.stride2 | 3752 | 493 | } |
|
3753 | | |
3754 | | /// Returns the total stride for every state in this DFA. This corresponds |
3755 | | /// to the total number of transitions used by each state in this DFA's |
3756 | | /// transition table. |
3757 | 79.2M | fn stride(&self) -> usize { |
3758 | 79.2M | 1 << self.stride2 |
3759 | 79.2M | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::stride Line | Count | Source | 3757 | 79.0M | fn stride(&self) -> usize { | 3758 | 79.0M | 1 << self.stride2 | 3759 | 79.0M | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::stride Line | Count | Source | 3757 | 196k | fn stride(&self) -> usize { | 3758 | 196k | 1 << self.stride2 | 3759 | 196k | } |
|
3760 | | |
3761 | | /// Returns the total number of elements in the alphabet for this |
3762 | | /// transition table. This is always less than or equal to `self.stride()`. |
3763 | | /// It is only equal when the alphabet length is a power of 2. Otherwise, |
3764 | | /// it is always strictly less. |
3765 | 942k | fn alphabet_len(&self) -> usize { |
3766 | 942k | self.classes.alphabet_len() |
3767 | 942k | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::alphabet_len Line | Count | Source | 3765 | 853k | fn alphabet_len(&self) -> usize { | 3766 | 853k | self.classes.alphabet_len() | 3767 | 853k | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::alphabet_len Line | Count | Source | 3765 | 88.6k | fn alphabet_len(&self) -> usize { | 3766 | 88.6k | self.classes.alphabet_len() | 3767 | 88.6k | } |
|
3768 | | |
3769 | | /// Returns true if and only if the given state ID is valid for this |
3770 | | /// transition table. Validity in this context means that the given ID can |
3771 | | /// be used as a valid offset with `self.stride()` to index this transition |
3772 | | /// table. |
3773 | 78.2M | fn is_valid(&self, id: StateID) -> bool { |
3774 | 78.2M | let id = id.as_usize(); |
3775 | 78.2M | id < self.table().len() && id % self.stride() == 0 |
3776 | 78.2M | } <regex_automata::dfa::dense::TransitionTable<alloc::vec::Vec<u32>>>::is_valid Line | Count | Source | 3773 | 78.0M | fn is_valid(&self, id: StateID) -> bool { | 3774 | 78.0M | let id = id.as_usize(); | 3775 | 78.0M | id < self.table().len() && id % self.stride() == 0 | 3776 | 78.0M | } |
<regex_automata::dfa::dense::TransitionTable<&[u32]>>::is_valid Line | Count | Source | 3773 | 195k | fn is_valid(&self, id: StateID) -> bool { | 3774 | 195k | let id = id.as_usize(); | 3775 | 195k | id < self.table().len() && id % self.stride() == 0 | 3776 | 195k | } |
|
3777 | | |
3778 | | /// Return the memory usage, in bytes, of this transition table. |
3779 | | /// |
3780 | | /// This does not include the size of a `TransitionTable` value itself. |
3781 | 806k | fn memory_usage(&self) -> usize { |
3782 | 806k | self.table().len() * StateID::SIZE |
3783 | 806k | } |
3784 | | } |
3785 | | |
3786 | | #[cfg(feature = "dfa-build")] |
3787 | | impl<T: AsMut<[u32]>> TransitionTable<T> { |
3788 | | /// Returns the table as a slice of state IDs. |
3789 | 82.7k | fn table_mut(&mut self) -> &mut [StateID] { |
3790 | 82.7k | wire::u32s_to_state_ids_mut(self.table.as_mut()) |
3791 | 82.7k | } |
3792 | | } |
3793 | | |
3794 | | /// The set of all possible starting states in a DFA. |
3795 | | /// |
3796 | | /// The set of starting states corresponds to the possible choices one can make |
3797 | | /// in terms of starting a DFA. That is, before following the first transition, |
3798 | | /// you first need to select the state that you start in. |
3799 | | /// |
3800 | | /// Normally, a DFA converted from an NFA that has a single starting state |
3801 | | /// would itself just have one starting state. However, our support for look |
3802 | | /// around generally requires more starting states. The correct starting state |
3803 | | /// is chosen based on certain properties of the position at which we begin |
3804 | | /// our search. |
3805 | | /// |
3806 | | /// Before listing those properties, we first must define two terms: |
3807 | | /// |
3808 | | /// * `haystack` - The bytes to execute the search. The search always starts |
3809 | | /// at the beginning of `haystack` and ends before or at the end of |
3810 | | /// `haystack`. |
3811 | | /// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack` |
3812 | | /// must be contained within `context` such that `context` is at least as big |
3813 | | /// as `haystack`. |
3814 | | /// |
3815 | | /// This split is crucial for dealing with look-around. For example, consider |
3816 | | /// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This |
3817 | | /// regex should _not_ match the haystack since `bar` does not appear at the |
3818 | | /// beginning of the input. Similarly, the regex `\Bbar\B` should match the |
3819 | | /// haystack because `bar` is not surrounded by word boundaries. But a search |
3820 | | /// that does not take context into account would not permit `\B` to match |
3821 | | /// since the beginning of any string matches a word boundary. Similarly, a |
3822 | | /// search that does not take context into account when searching `^bar$` in |
3823 | | /// the haystack `bar` would produce a match when it shouldn't. |
3824 | | /// |
3825 | | /// Thus, it follows that the starting state is chosen based on the following |
3826 | | /// criteria, derived from the position at which the search starts in the |
3827 | | /// `context` (corresponding to the start of `haystack`): |
3828 | | /// |
3829 | | /// 1. If the search starts at the beginning of `context`, then the `Text` |
3830 | | /// start state is used. (Since `^` corresponds to |
3831 | | /// `hir::Anchor::Start`.) |
3832 | | /// 2. If the search starts at a position immediately following a line |
3833 | | /// terminator, then the `Line` start state is used. (Since `(?m:^)` |
3834 | | /// corresponds to `hir::Anchor::StartLF`.) |
3835 | | /// 3. If the search starts at a position immediately following a byte |
3836 | | /// classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte` |
3837 | | /// start state is used. (Since `(?-u:\b)` corresponds to a word boundary.) |
3838 | | /// 4. Otherwise, if the search starts at a position immediately following |
3839 | | /// a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`), |
3840 | | /// then the `NonWordByte` start state is used. (Since `(?-u:\B)` |
3841 | | /// corresponds to a not-word-boundary.) |
3842 | | /// |
3843 | | /// (N.B. Unicode word boundaries are not supported by the DFA because they |
3844 | | /// require multi-byte look-around and this is difficult to support in a DFA.) |
3845 | | /// |
3846 | | /// To further complicate things, we also support constructing individual |
3847 | | /// anchored start states for each pattern in the DFA. (Which is required to |
3848 | | /// implement overlapping regexes correctly, but is also generally useful.) |
3849 | | /// Thus, when individual start states for each pattern are enabled, then the |
3850 | | /// total number of start states represented is `4 + (4 * #patterns)`, where |
3851 | | /// the 4 comes from each of the 4 possibilities above. The first 4 represents |
3852 | | /// the starting states for the entire DFA, which support searching for |
3853 | | /// multiple patterns simultaneously (possibly unanchored). |
3854 | | /// |
3855 | | /// If individual start states are disabled, then this will only store 4 |
3856 | | /// start states. Typically, individual start states are only enabled when |
3857 | | /// constructing the reverse DFA for regex matching. But they are also useful |
3858 | | /// for building DFAs that can search for a specific pattern or even to support |
3859 | | /// both anchored and unanchored searches with the same DFA. |
3860 | | /// |
3861 | | /// Note though that while the start table always has either `4` or |
3862 | | /// `4 + (4 * #patterns)` starting state *ids*, the total number of states |
3863 | | /// might be considerably smaller. That is, many of the IDs may be duplicative. |
3864 | | /// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no |
3865 | | /// reason to generate a unique starting state for handling word boundaries. |
3866 | | /// Similarly for start/end anchors.) |
3867 | | #[derive(Clone)] |
3868 | | pub(crate) struct StartTable<T> { |
3869 | | /// The initial start state IDs. |
3870 | | /// |
3871 | | /// In practice, T is either `Vec<u32>` or `&[u32]`. |
3872 | | /// |
3873 | | /// The first `2 * stride` (currently always 8) entries always correspond |
3874 | | /// to the starts states for the entire DFA, with the first 4 entries being |
3875 | | /// for unanchored searches and the second 4 entries being for anchored |
3876 | | /// searches. To keep things simple, we always use 8 entries even if the |
3877 | | /// `StartKind` is not both. |
3878 | | /// |
3879 | | /// After that, there are `stride * patterns` state IDs, where `patterns` |
3880 | | /// may be zero in the case of a DFA with no patterns or in the case where |
3881 | | /// the DFA was built without enabling starting states for each pattern. |
3882 | | table: T, |
3883 | | /// The starting state configuration supported. When 'both', both |
3884 | | /// unanchored and anchored searches work. When 'unanchored', anchored |
3885 | | /// searches panic. When 'anchored', unanchored searches panic. |
3886 | | kind: StartKind, |
3887 | | /// The start state configuration for every possible byte. |
3888 | | start_map: StartByteMap, |
3889 | | /// The number of starting state IDs per pattern. |
3890 | | stride: usize, |
3891 | | /// The total number of patterns for which starting states are encoded. |
3892 | | /// This is `None` for DFAs that were built without start states for each |
3893 | | /// pattern. Thus, one cannot use this field to say how many patterns |
3894 | | /// are in the DFA in all cases. It is specific to how many patterns are |
3895 | | /// represented in this start table. |
3896 | | pattern_len: Option<usize>, |
3897 | | /// The universal starting state for unanchored searches. This is only |
3898 | | /// present when the DFA supports unanchored searches and when all starting |
3899 | | /// state IDs for an unanchored search are equivalent. |
3900 | | universal_start_unanchored: Option<StateID>, |
3901 | | /// The universal starting state for anchored searches. This is only |
3902 | | /// present when the DFA supports anchored searches and when all starting |
3903 | | /// state IDs for an anchored search are equivalent. |
3904 | | universal_start_anchored: Option<StateID>, |
3905 | | } |
3906 | | |
3907 | | #[cfg(feature = "dfa-build")] |
3908 | | impl StartTable<Vec<u32>> { |
3909 | | /// Create a valid set of start states all pointing to the dead state. |
3910 | | /// |
3911 | | /// When the corresponding DFA is constructed with start states for each |
3912 | | /// pattern, then `patterns` should be the number of patterns. Otherwise, |
3913 | | /// it should be zero. |
3914 | | /// |
3915 | | /// If the total table size could exceed the allocatable limit, then this |
3916 | | /// returns an error. In practice, this is unlikely to be able to occur, |
3917 | | /// since it's likely that allocation would have failed long before it got |
3918 | | /// to this point. |
3919 | 77.6k | fn dead( |
3920 | 77.6k | kind: StartKind, |
3921 | 77.6k | lookm: &LookMatcher, |
3922 | 77.6k | pattern_len: Option<usize>, |
3923 | 77.6k | ) -> Result<StartTable<Vec<u32>>, BuildError> { |
3924 | 77.6k | if let Some(len) = pattern_len { |
3925 | 75.0k | assert!(len <= PatternID::LIMIT); |
3926 | 2.61k | } |
3927 | 77.6k | let stride = Start::len(); |
3928 | | // OK because 2*4 is never going to overflow anything. |
3929 | 77.6k | let starts_len = stride.checked_mul(2).unwrap(); |
3930 | 77.6k | let pattern_starts_len = |
3931 | 77.6k | match stride.checked_mul(pattern_len.unwrap_or(0)) { |
3932 | 77.6k | Some(x) => x, |
3933 | 0 | None => return Err(BuildError::too_many_start_states()), |
3934 | | }; |
3935 | 77.6k | let table_len = match starts_len.checked_add(pattern_starts_len) { |
3936 | 77.6k | Some(x) => x, |
3937 | 0 | None => return Err(BuildError::too_many_start_states()), |
3938 | | }; |
3939 | 77.6k | if let Err(_) = isize::try_from(table_len) { |
3940 | 0 | return Err(BuildError::too_many_start_states()); |
3941 | 77.6k | } |
3942 | 77.6k | let table = vec![DEAD.as_u32(); table_len]; |
3943 | 77.6k | let start_map = StartByteMap::new(lookm); |
3944 | 77.6k | Ok(StartTable { |
3945 | 77.6k | table, |
3946 | 77.6k | kind, |
3947 | 77.6k | start_map, |
3948 | 77.6k | stride, |
3949 | 77.6k | pattern_len, |
3950 | 77.6k | universal_start_unanchored: None, |
3951 | 77.6k | universal_start_anchored: None, |
3952 | 77.6k | }) |
3953 | 77.6k | } |
3954 | | } |
3955 | | |
3956 | | impl<'a> StartTable<&'a [u32]> { |
3957 | | /// Deserialize a table of start state IDs starting at the beginning of |
3958 | | /// `slice`. Upon success, return the total number of bytes read along with |
3959 | | /// the table of starting state IDs. |
3960 | | /// |
3961 | | /// If there was a problem deserializing any part of the starting IDs, |
3962 | | /// then this returns an error. Notably, if the given slice does not have |
3963 | | /// the same alignment as `StateID`, then this will return an error (among |
3964 | | /// other possible errors). |
3965 | | /// |
3966 | | /// This is guaranteed to execute in constant time. |
3967 | | /// |
3968 | | /// # Safety |
3969 | | /// |
3970 | | /// This routine is not safe because it does not check the validity of the |
3971 | | /// starting state IDs themselves. In particular, the number of starting |
3972 | | /// IDs can be of variable length, so it's possible that checking their |
3973 | | /// validity cannot be done in constant time. An invalid starting state |
3974 | | /// ID is not safe because other code may rely on the starting IDs being |
3975 | | /// correct (such as explicit bounds check elision). Therefore, an invalid |
3976 | | /// start ID can lead to undefined behavior. |
3977 | | /// |
3978 | | /// Callers that use this function must either pass on the safety invariant |
3979 | | /// or guarantee that the bytes given contain valid starting state IDs. |
3980 | | /// This guarantee is upheld by the bytes written by `write_to`. |
3981 | 553 | unsafe fn from_bytes_unchecked( |
3982 | 553 | mut slice: &'a [u8], |
3983 | 553 | ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> { |
3984 | 553 | let slice_start = slice.as_ptr().as_usize(); |
3985 | | |
3986 | 553 | let (kind, nr) = StartKind::from_bytes(slice)?; |
3987 | 553 | slice = &slice[nr..]; |
3988 | | |
3989 | 553 | let (start_map, nr) = StartByteMap::from_bytes(slice)?; |
3990 | 545 | slice = &slice[nr..]; |
3991 | | |
3992 | 545 | let (stride, nr) = |
3993 | 545 | wire::try_read_u32_as_usize(slice, "start table stride")?; |
3994 | 545 | slice = &slice[nr..]; |
3995 | 545 | if stride != Start::len() { |
3996 | 1 | return Err(DeserializeError::generic( |
3997 | 1 | "invalid starting table stride", |
3998 | 1 | )); |
3999 | 544 | } |
4000 | | |
4001 | 544 | let (maybe_pattern_len, nr) = |
4002 | 544 | wire::try_read_u32_as_usize(slice, "start table patterns")?; |
4003 | 544 | slice = &slice[nr..]; |
4004 | 544 | let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX { |
4005 | 66 | None |
4006 | | } else { |
4007 | 478 | Some(maybe_pattern_len) |
4008 | | }; |
4009 | 544 | if pattern_len.map_or(false, |len| len > PatternID::LIMIT) { |
4010 | 0 | return Err(DeserializeError::generic( |
4011 | 0 | "invalid number of patterns", |
4012 | 0 | )); |
4013 | 544 | } |
4014 | | |
4015 | 544 | let (universal_unanchored, nr) = |
4016 | 544 | wire::try_read_u32(slice, "universal unanchored start")?; |
4017 | 544 | slice = &slice[nr..]; |
4018 | 544 | let universal_start_unanchored = if universal_unanchored == u32::MAX { |
4019 | 13 | None |
4020 | | } else { |
4021 | 531 | Some(StateID::try_from(universal_unanchored).map_err(|e| { |
4022 | 0 | DeserializeError::state_id_error( |
4023 | 0 | e, |
4024 | | "universal unanchored start", |
4025 | | ) |
4026 | 0 | })?) |
4027 | | }; |
4028 | | |
4029 | 544 | let (universal_anchored, nr) = |
4030 | 544 | wire::try_read_u32(slice, "universal anchored start")?; |
4031 | 544 | slice = &slice[nr..]; |
4032 | 544 | let universal_start_anchored = if universal_anchored == u32::MAX { |
4033 | 19 | None |
4034 | | } else { |
4035 | 525 | Some(StateID::try_from(universal_anchored).map_err(|e| { |
4036 | 0 | DeserializeError::state_id_error(e, "universal anchored start") |
4037 | 0 | })?) |
4038 | | }; |
4039 | | |
4040 | 544 | let pattern_table_size = wire::mul( |
4041 | 544 | stride, |
4042 | 544 | pattern_len.unwrap_or(0), |
4043 | | "invalid pattern length", |
4044 | 0 | )?; |
4045 | | // Our start states always start with a two stride of start states for |
4046 | | // the entire automaton. The first stride is for unanchored starting |
4047 | | // states and the second stride is for anchored starting states. What |
4048 | | // follows it are an optional set of start states for each pattern. |
4049 | 544 | let start_state_len = wire::add( |
4050 | 544 | wire::mul(2, stride, "start state stride too big")?, |
4051 | 544 | pattern_table_size, |
4052 | | "invalid 'any' pattern starts size", |
4053 | 0 | )?; |
4054 | 544 | let table_bytes_len = wire::mul( |
4055 | 544 | start_state_len, |
4056 | | StateID::SIZE, |
4057 | | "pattern table bytes length", |
4058 | 0 | )?; |
4059 | 544 | wire::check_slice_len(slice, table_bytes_len, "start ID table")?; |
4060 | 544 | wire::check_alignment::<StateID>(slice)?; |
4061 | 544 | let table_bytes = &slice[..table_bytes_len]; |
4062 | 544 | slice = &slice[table_bytes_len..]; |
4063 | | // SAFETY: Since StateID is always representable as a u32, all we need |
4064 | | // to do is ensure that we have the proper length and alignment. We've |
4065 | | // checked both above, so the cast below is safe. |
4066 | | // |
4067 | | // N.B. This is the only not-safe code in this function. |
4068 | 544 | let table = core::slice::from_raw_parts( |
4069 | 544 | table_bytes.as_ptr().cast::<u32>(), |
4070 | 544 | start_state_len, |
4071 | | ); |
4072 | 544 | let st = StartTable { |
4073 | 544 | table, |
4074 | 544 | kind, |
4075 | 544 | start_map, |
4076 | 544 | stride, |
4077 | 544 | pattern_len, |
4078 | 544 | universal_start_unanchored, |
4079 | 544 | universal_start_anchored, |
4080 | 544 | }; |
4081 | 544 | Ok((st, slice.as_ptr().as_usize() - slice_start)) |
4082 | 553 | } |
4083 | | } |
4084 | | |
4085 | | impl<T: AsRef<[u32]>> StartTable<T> { |
4086 | | /// Writes a serialized form of this start table to the buffer given. If |
4087 | | /// the buffer is too small, then an error is returned. To determine how |
4088 | | /// big the buffer must be, use `write_to_len`. |
4089 | | fn write_to<E: Endian>( |
4090 | | &self, |
4091 | | mut dst: &mut [u8], |
4092 | | ) -> Result<usize, SerializeError> { |
4093 | | let nwrite = self.write_to_len(); |
4094 | | if dst.len() < nwrite { |
4095 | | return Err(SerializeError::buffer_too_small( |
4096 | | "starting table ids", |
4097 | | )); |
4098 | | } |
4099 | | dst = &mut dst[..nwrite]; |
4100 | | |
4101 | | // write start kind |
4102 | | let nw = self.kind.write_to::<E>(dst)?; |
4103 | | dst = &mut dst[nw..]; |
4104 | | // write start byte map |
4105 | | let nw = self.start_map.write_to(dst)?; |
4106 | | dst = &mut dst[nw..]; |
4107 | | // write stride |
4108 | | // Unwrap is OK since the stride is always 4 (currently). |
4109 | | E::write_u32(u32::try_from(self.stride).unwrap(), dst); |
4110 | | dst = &mut dst[size_of::<u32>()..]; |
4111 | | // write pattern length |
4112 | | // Unwrap is OK since number of patterns is guaranteed to fit in a u32. |
4113 | | E::write_u32( |
4114 | | u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(), |
4115 | | dst, |
4116 | | ); |
4117 | | dst = &mut dst[size_of::<u32>()..]; |
4118 | | // write universal start unanchored state id, u32::MAX if absent |
4119 | | E::write_u32( |
4120 | | self.universal_start_unanchored |
4121 | | .map_or(u32::MAX, |sid| sid.as_u32()), |
4122 | | dst, |
4123 | | ); |
4124 | | dst = &mut dst[size_of::<u32>()..]; |
4125 | | // write universal start anchored state id, u32::MAX if absent |
4126 | | E::write_u32( |
4127 | | self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()), |
4128 | | dst, |
4129 | | ); |
4130 | | dst = &mut dst[size_of::<u32>()..]; |
4131 | | // write start IDs |
4132 | | for &sid in self.table() { |
4133 | | let n = wire::write_state_id::<E>(sid, &mut dst); |
4134 | | dst = &mut dst[n..]; |
4135 | | } |
4136 | | Ok(nwrite) |
4137 | | } |
4138 | | |
4139 | | /// Returns the number of bytes the serialized form of this start ID table |
4140 | | /// will use. |
4141 | | fn write_to_len(&self) -> usize { |
4142 | | self.kind.write_to_len() |
4143 | | + self.start_map.write_to_len() |
4144 | | + size_of::<u32>() // stride |
4145 | | + size_of::<u32>() // # patterns |
4146 | | + size_of::<u32>() // universal unanchored start |
4147 | | + size_of::<u32>() // universal anchored start |
4148 | | + (self.table().len() * StateID::SIZE) |
4149 | | } |
4150 | | |
4151 | | /// Validates that every state ID in this start table is valid by checking |
4152 | | /// it against the given transition table (which must be for the same DFA). |
4153 | | /// |
4154 | | /// That is, every state ID can be used to correctly index a state. |
4155 | 373 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
4156 | 373 | let tt = &dfa.tt; |
4157 | 373 | if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) { |
4158 | 1 | return Err(DeserializeError::generic( |
4159 | 1 | "found invalid universal unanchored starting state ID", |
4160 | 1 | )); |
4161 | 372 | } |
4162 | 372 | if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) { |
4163 | 1 | return Err(DeserializeError::generic( |
4164 | 1 | "found invalid universal anchored starting state ID", |
4165 | 1 | )); |
4166 | 371 | } |
4167 | 7.76k | for &id in self.table() { |
4168 | 7.76k | if !tt.is_valid(id) { |
4169 | 3 | return Err(DeserializeError::generic( |
4170 | 3 | "found invalid starting state ID", |
4171 | 3 | )); |
4172 | 7.76k | } |
4173 | | } |
4174 | 368 | Ok(()) |
4175 | 373 | } |
4176 | | |
4177 | | /// Converts this start list to a borrowed value. |
4178 | 76.1k | fn as_ref(&self) -> StartTable<&'_ [u32]> { |
4179 | 76.1k | StartTable { |
4180 | 76.1k | table: self.table.as_ref(), |
4181 | 76.1k | kind: self.kind, |
4182 | 76.1k | start_map: self.start_map.clone(), |
4183 | 76.1k | stride: self.stride, |
4184 | 76.1k | pattern_len: self.pattern_len, |
4185 | 76.1k | universal_start_unanchored: self.universal_start_unanchored, |
4186 | 76.1k | universal_start_anchored: self.universal_start_anchored, |
4187 | 76.1k | } |
4188 | 76.1k | } |
4189 | | |
4190 | | /// Converts this start list to an owned value. |
4191 | | #[cfg(feature = "alloc")] |
4192 | | fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> { |
4193 | | StartTable { |
4194 | | table: self.table.as_ref().to_vec(), |
4195 | | kind: self.kind, |
4196 | | start_map: self.start_map.clone(), |
4197 | | stride: self.stride, |
4198 | | pattern_len: self.pattern_len, |
4199 | | universal_start_unanchored: self.universal_start_unanchored, |
4200 | | universal_start_anchored: self.universal_start_anchored, |
4201 | | } |
4202 | | } |
4203 | | |
4204 | | /// Return the start state for the given input and starting configuration. |
4205 | | /// This returns an error if the input configuration is not supported by |
4206 | | /// this DFA. For example, requesting an unanchored search when the DFA was |
4207 | | /// not built with unanchored starting states. Or asking for an anchored |
4208 | | /// pattern search with an invalid pattern ID or on a DFA that was not |
4209 | | /// built with start states for each pattern. |
4210 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4211 | 1.01M | fn start( |
4212 | 1.01M | &self, |
4213 | 1.01M | anchored: Anchored, |
4214 | 1.01M | start: Start, |
4215 | 1.01M | ) -> Result<StateID, StartError> { |
4216 | 1.01M | let start_index = start.as_usize(); |
4217 | 1.01M | let index = match anchored { |
4218 | | Anchored::No => { |
4219 | 283k | if !self.kind.has_unanchored() { |
4220 | 1 | return Err(StartError::unsupported_anchored(anchored)); |
4221 | 283k | } |
4222 | 283k | start_index |
4223 | | } |
4224 | | Anchored::Yes => { |
4225 | 720k | if !self.kind.has_anchored() { |
4226 | 0 | return Err(StartError::unsupported_anchored(anchored)); |
4227 | 720k | } |
4228 | 720k | self.stride + start_index |
4229 | | } |
4230 | 7.53k | Anchored::Pattern(pid) => { |
4231 | 7.53k | let len = match self.pattern_len { |
4232 | | None => { |
4233 | 0 | return Err(StartError::unsupported_anchored(anchored)) |
4234 | | } |
4235 | 7.53k | Some(len) => len, |
4236 | | }; |
4237 | 7.53k | if pid.as_usize() >= len { |
4238 | 0 | return Ok(DEAD); |
4239 | 7.53k | } |
4240 | 7.53k | (2 * self.stride) |
4241 | 7.53k | + (self.stride * pid.as_usize()) |
4242 | 7.53k | + start_index |
4243 | | } |
4244 | | }; |
4245 | 1.01M | Ok(self.table()[index]) |
4246 | 1.01M | } <regex_automata::dfa::dense::StartTable<alloc::vec::Vec<u32>>>::start Line | Count | Source | 4211 | 1.00M | fn start( | 4212 | 1.00M | &self, | 4213 | 1.00M | anchored: Anchored, | 4214 | 1.00M | start: Start, | 4215 | 1.00M | ) -> Result<StateID, StartError> { | 4216 | 1.00M | let start_index = start.as_usize(); | 4217 | 1.00M | let index = match anchored { | 4218 | | Anchored::No => { | 4219 | 279k | if !self.kind.has_unanchored() { | 4220 | 0 | return Err(StartError::unsupported_anchored(anchored)); | 4221 | 279k | } | 4222 | 279k | start_index | 4223 | | } | 4224 | | Anchored::Yes => { | 4225 | 720k | if !self.kind.has_anchored() { | 4226 | 0 | return Err(StartError::unsupported_anchored(anchored)); | 4227 | 720k | } | 4228 | 720k | self.stride + start_index | 4229 | | } | 4230 | 7.53k | Anchored::Pattern(pid) => { | 4231 | 7.53k | let len = match self.pattern_len { | 4232 | | None => { | 4233 | 0 | return Err(StartError::unsupported_anchored(anchored)) | 4234 | | } | 4235 | 7.53k | Some(len) => len, | 4236 | | }; | 4237 | 7.53k | if pid.as_usize() >= len { | 4238 | 0 | return Ok(DEAD); | 4239 | 7.53k | } | 4240 | 7.53k | (2 * self.stride) | 4241 | 7.53k | + (self.stride * pid.as_usize()) | 4242 | 7.53k | + start_index | 4243 | | } | 4244 | | }; | 4245 | 1.00M | Ok(self.table()[index]) | 4246 | 1.00M | } |
<regex_automata::dfa::dense::StartTable<&[u32]>>::start Line | Count | Source | 4211 | 4.39k | fn start( | 4212 | 4.39k | &self, | 4213 | 4.39k | anchored: Anchored, | 4214 | 4.39k | start: Start, | 4215 | 4.39k | ) -> Result<StateID, StartError> { | 4216 | 4.39k | let start_index = start.as_usize(); | 4217 | 4.39k | let index = match anchored { | 4218 | | Anchored::No => { | 4219 | 4.39k | if !self.kind.has_unanchored() { | 4220 | 1 | return Err(StartError::unsupported_anchored(anchored)); | 4221 | 4.39k | } | 4222 | 4.39k | start_index | 4223 | | } | 4224 | | Anchored::Yes => { | 4225 | 0 | if !self.kind.has_anchored() { | 4226 | 0 | return Err(StartError::unsupported_anchored(anchored)); | 4227 | 0 | } | 4228 | 0 | self.stride + start_index | 4229 | | } | 4230 | 0 | Anchored::Pattern(pid) => { | 4231 | 0 | let len = match self.pattern_len { | 4232 | | None => { | 4233 | 0 | return Err(StartError::unsupported_anchored(anchored)) | 4234 | | } | 4235 | 0 | Some(len) => len, | 4236 | | }; | 4237 | 0 | if pid.as_usize() >= len { | 4238 | 0 | return Ok(DEAD); | 4239 | 0 | } | 4240 | 0 | (2 * self.stride) | 4241 | 0 | + (self.stride * pid.as_usize()) | 4242 | 0 | + start_index | 4243 | | } | 4244 | | }; | 4245 | 4.39k | Ok(self.table()[index]) | 4246 | 4.39k | } |
|
4247 | | |
4248 | | /// Returns an iterator over all start state IDs in this table. |
4249 | | /// |
4250 | | /// Each item is a triple of: start state ID, the start state type and the |
4251 | | /// pattern ID (if any). |
4252 | 76.1k | fn iter(&self) -> StartStateIter<'_> { |
4253 | 76.1k | StartStateIter { st: self.as_ref(), i: 0 } |
4254 | 76.1k | } |
4255 | | |
4256 | | /// Returns the table as a slice of state IDs. |
4257 | 3.24M | fn table(&self) -> &[StateID] { |
4258 | 3.24M | wire::u32s_to_state_ids(self.table.as_ref()) |
4259 | 3.24M | } <regex_automata::dfa::dense::StartTable<alloc::vec::Vec<u32>>>::table Line | Count | Source | 4257 | 1.81M | fn table(&self) -> &[StateID] { | 4258 | 1.81M | wire::u32s_to_state_ids(self.table.as_ref()) | 4259 | 1.81M | } |
<regex_automata::dfa::dense::StartTable<&[u32]>>::table Line | Count | Source | 4257 | 1.43M | fn table(&self) -> &[StateID] { | 4258 | 1.43M | wire::u32s_to_state_ids(self.table.as_ref()) | 4259 | 1.43M | } |
<regex_automata::dfa::dense::StartTable<&[u32]>>::table Line | Count | Source | 4257 | 4.39k | fn table(&self) -> &[StateID] { | 4258 | 4.39k | wire::u32s_to_state_ids(self.table.as_ref()) | 4259 | 4.39k | } |
|
4260 | | |
4261 | | /// Return the memory usage, in bytes, of this start list. |
4262 | | /// |
4263 | | /// This does not include the size of a `StartList` value itself. |
4264 | 806k | fn memory_usage(&self) -> usize { |
4265 | 806k | self.table().len() * StateID::SIZE |
4266 | 806k | } |
4267 | | } |
4268 | | |
4269 | | #[cfg(feature = "dfa-build")] |
4270 | | impl<T: AsMut<[u32]>> StartTable<T> { |
4271 | | /// Set the start state for the given index and pattern. |
4272 | | /// |
4273 | | /// If the pattern ID or state ID are not valid, then this will panic. |
4274 | 1.14M | fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) { |
4275 | 1.14M | let start_index = start.as_usize(); |
4276 | 1.14M | let index = match anchored { |
4277 | 229k | Anchored::No => start_index, |
4278 | 465k | Anchored::Yes => self.stride + start_index, |
4279 | 450k | Anchored::Pattern(pid) => { |
4280 | 450k | let pid = pid.as_usize(); |
4281 | 450k | let len = self |
4282 | 450k | .pattern_len |
4283 | 450k | .expect("start states for each pattern enabled"); |
4284 | 450k | assert!(pid < len, "invalid pattern ID {pid:?}"); |
4285 | 450k | self.stride |
4286 | 450k | .checked_mul(pid) |
4287 | 450k | .unwrap() |
4288 | 450k | .checked_add(self.stride.checked_mul(2).unwrap()) |
4289 | 450k | .unwrap() |
4290 | 450k | .checked_add(start_index) |
4291 | 450k | .unwrap() |
4292 | | } |
4293 | | }; |
4294 | 1.14M | self.table_mut()[index] = id; |
4295 | 1.14M | } |
4296 | | |
4297 | | /// Returns the table as a mutable slice of state IDs. |
4298 | 1.22M | fn table_mut(&mut self) -> &mut [StateID] { |
4299 | 1.22M | wire::u32s_to_state_ids_mut(self.table.as_mut()) |
4300 | 1.22M | } |
4301 | | } |
4302 | | |
4303 | | /// An iterator over start state IDs. |
4304 | | /// |
4305 | | /// This iterator yields a triple of start state ID, the anchored mode and the |
4306 | | /// start state type. If a pattern ID is relevant, then the anchored mode will |
4307 | | /// contain it. Start states with an anchored mode containing a pattern ID will |
4308 | | /// only occur when the DFA was compiled with start states for each pattern |
4309 | | /// (which is disabled by default). |
4310 | | pub(crate) struct StartStateIter<'a> { |
4311 | | st: StartTable<&'a [u32]>, |
4312 | | i: usize, |
4313 | | } |
4314 | | |
4315 | | impl<'a> Iterator for StartStateIter<'a> { |
4316 | | type Item = (StateID, Anchored, Start); |
4317 | | |
4318 | 1.43M | fn next(&mut self) -> Option<(StateID, Anchored, Start)> { |
4319 | 1.43M | let i = self.i; |
4320 | 1.43M | let table = self.st.table(); |
4321 | 1.43M | if i >= table.len() { |
4322 | 76.1k | return None; |
4323 | 1.35M | } |
4324 | 1.35M | self.i += 1; |
4325 | | |
4326 | | // This unwrap is okay since the stride of the starting state table |
4327 | | // must always match the number of start state types. |
4328 | 1.35M | let start_type = Start::from_usize(i % self.st.stride).unwrap(); |
4329 | 1.35M | let anchored = if i < self.st.stride { |
4330 | 456k | Anchored::No |
4331 | 898k | } else if i < (2 * self.st.stride) { |
4332 | 456k | Anchored::Yes |
4333 | | } else { |
4334 | 441k | let pid = (i - (2 * self.st.stride)) / self.st.stride; |
4335 | 441k | Anchored::Pattern(PatternID::new(pid).unwrap()) |
4336 | | }; |
4337 | 1.35M | Some((table[i], anchored, start_type)) |
4338 | 1.43M | } |
4339 | | } |
4340 | | |
4341 | | /// This type represents that patterns that should be reported whenever a DFA |
4342 | | /// enters a match state. This structure exists to support DFAs that search for |
4343 | | /// matches for multiple regexes. |
4344 | | /// |
4345 | | /// This structure relies on the fact that all match states in a DFA occur |
4346 | | /// contiguously in the DFA's transition table. (See dfa/special.rs for a more |
4347 | | /// detailed breakdown of the representation.) Namely, when a match occurs, we |
4348 | | /// know its state ID. Since we know the start and end of the contiguous region |
4349 | | /// of match states, we can use that to compute the position at which the match |
4350 | | /// state occurs. That in turn is used as an offset into this structure. |
4351 | | #[derive(Clone, Debug)] |
4352 | | struct MatchStates<T> { |
4353 | | /// Slices is a flattened sequence of pairs, where each pair points to a |
4354 | | /// sub-slice of pattern_ids. The first element of the pair is an offset |
4355 | | /// into pattern_ids and the second element of the pair is the number |
4356 | | /// of 32-bit pattern IDs starting at that position. That is, each pair |
4357 | | /// corresponds to a single DFA match state and its corresponding match |
4358 | | /// IDs. The number of pairs always corresponds to the number of distinct |
4359 | | /// DFA match states. |
4360 | | /// |
4361 | | /// In practice, T is either Vec<u32> or &[u32]. |
4362 | | slices: T, |
4363 | | /// A flattened sequence of pattern IDs for each DFA match state. The only |
4364 | | /// way to correctly read this sequence is indirectly via `slices`. |
4365 | | /// |
4366 | | /// In practice, T is either Vec<u32> or &[u32]. |
4367 | | pattern_ids: T, |
4368 | | /// The total number of unique patterns represented by these match states. |
4369 | | pattern_len: usize, |
4370 | | } |
4371 | | |
4372 | | impl<'a> MatchStates<&'a [u32]> { |
4373 | 544 | unsafe fn from_bytes_unchecked( |
4374 | 544 | mut slice: &'a [u8], |
4375 | 544 | ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> { |
4376 | 544 | let slice_start = slice.as_ptr().as_usize(); |
4377 | | |
4378 | | // Read the total number of match states. |
4379 | 544 | let (state_len, nr) = |
4380 | 544 | wire::try_read_u32_as_usize(slice, "match state length")?; |
4381 | 544 | slice = &slice[nr..]; |
4382 | | |
4383 | | // Read the slice start/length pairs. |
4384 | 544 | let pair_len = wire::mul(2, state_len, "match state offset pairs")?; |
4385 | 544 | let slices_bytes_len = wire::mul( |
4386 | 544 | pair_len, |
4387 | | PatternID::SIZE, |
4388 | | "match state slice offset byte length", |
4389 | 0 | )?; |
4390 | 544 | wire::check_slice_len(slice, slices_bytes_len, "match state slices")?; |
4391 | 542 | wire::check_alignment::<PatternID>(slice)?; |
4392 | 542 | let slices_bytes = &slice[..slices_bytes_len]; |
4393 | 542 | slice = &slice[slices_bytes_len..]; |
4394 | | // SAFETY: Since PatternID is always representable as a u32, all we |
4395 | | // need to do is ensure that we have the proper length and alignment. |
4396 | | // We've checked both above, so the cast below is safe. |
4397 | | // |
4398 | | // N.B. This is one of the few not-safe snippets in this function, |
4399 | | // so we mark it explicitly to call it out. |
4400 | 542 | let slices = core::slice::from_raw_parts( |
4401 | 542 | slices_bytes.as_ptr().cast::<u32>(), |
4402 | 542 | pair_len, |
4403 | | ); |
4404 | | |
4405 | | // Read the total number of unique pattern IDs (which is always 1 more |
4406 | | // than the maximum pattern ID in this automaton, since pattern IDs are |
4407 | | // handed out contiguously starting at 0). |
4408 | 542 | let (pattern_len, nr) = |
4409 | 542 | wire::try_read_u32_as_usize(slice, "pattern length")?; |
4410 | 542 | slice = &slice[nr..]; |
4411 | | |
4412 | | // Now read the pattern ID length. We don't need to store this |
4413 | | // explicitly, but we need it to know how many pattern IDs to read. |
4414 | 542 | let (idlen, nr) = |
4415 | 542 | wire::try_read_u32_as_usize(slice, "pattern ID length")?; |
4416 | 542 | slice = &slice[nr..]; |
4417 | | |
4418 | | // Read the actual pattern IDs. |
4419 | 542 | let pattern_ids_len = |
4420 | 542 | wire::mul(idlen, PatternID::SIZE, "pattern ID byte length")?; |
4421 | 542 | wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?; |
4422 | 532 | wire::check_alignment::<PatternID>(slice)?; |
4423 | 532 | let pattern_ids_bytes = &slice[..pattern_ids_len]; |
4424 | 532 | slice = &slice[pattern_ids_len..]; |
4425 | | // SAFETY: Since PatternID is always representable as a u32, all we |
4426 | | // need to do is ensure that we have the proper length and alignment. |
4427 | | // We've checked both above, so the cast below is safe. |
4428 | | // |
4429 | | // N.B. This is one of the few not-safe snippets in this function, |
4430 | | // so we mark it explicitly to call it out. |
4431 | 532 | let pattern_ids = core::slice::from_raw_parts( |
4432 | 532 | pattern_ids_bytes.as_ptr().cast::<u32>(), |
4433 | 532 | idlen, |
4434 | | ); |
4435 | | |
4436 | 532 | let ms = MatchStates { slices, pattern_ids, pattern_len }; |
4437 | 532 | Ok((ms, slice.as_ptr().as_usize() - slice_start)) |
4438 | 544 | } |
4439 | | } |
4440 | | |
4441 | | #[cfg(feature = "dfa-build")] |
4442 | | impl MatchStates<Vec<u32>> { |
4443 | 160k | fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> { |
4444 | 160k | assert!(pattern_len <= PatternID::LIMIT); |
4445 | 160k | MatchStates { slices: vec![], pattern_ids: vec![], pattern_len } |
4446 | 160k | } |
4447 | | |
4448 | 82.7k | fn new( |
4449 | 82.7k | matches: &BTreeMap<StateID, Vec<PatternID>>, |
4450 | 82.7k | pattern_len: usize, |
4451 | 82.7k | ) -> Result<MatchStates<Vec<u32>>, BuildError> { |
4452 | 82.7k | let mut m = MatchStates::empty(pattern_len); |
4453 | 127k | for (_, pids) in matches.iter() { |
4454 | 127k | let start = PatternID::new(m.pattern_ids.len()) |
4455 | 127k | .map_err(|_| BuildError::too_many_match_pattern_ids())?; |
4456 | 127k | m.slices.push(start.as_u32()); |
4457 | | // This is always correct since the number of patterns in a single |
4458 | | // match state can never exceed maximum number of allowable |
4459 | | // patterns. Why? Because a pattern can only appear once in a |
4460 | | // particular match state, by construction. (And since our pattern |
4461 | | // ID limit is one less than u32::MAX, we're guaranteed that the |
4462 | | // length fits in a u32.) |
4463 | 127k | m.slices.push(u32::try_from(pids.len()).unwrap()); |
4464 | 254k | for &pid in pids { |
4465 | 127k | m.pattern_ids.push(pid.as_u32()); |
4466 | 127k | } |
4467 | | } |
4468 | 82.7k | m.pattern_len = pattern_len; |
4469 | 82.7k | Ok(m) |
4470 | 82.7k | } |
4471 | | |
4472 | 82.7k | fn new_with_map( |
4473 | 82.7k | &self, |
4474 | 82.7k | matches: &BTreeMap<StateID, Vec<PatternID>>, |
4475 | 82.7k | ) -> Result<MatchStates<Vec<u32>>, BuildError> { |
4476 | 82.7k | MatchStates::new(matches, self.pattern_len) |
4477 | 82.7k | } |
4478 | | } |
4479 | | |
4480 | | impl<T: AsRef<[u32]>> MatchStates<T> { |
4481 | | /// Writes a serialized form of these match states to the buffer given. If |
4482 | | /// the buffer is too small, then an error is returned. To determine how |
4483 | | /// big the buffer must be, use `write_to_len`. |
4484 | | fn write_to<E: Endian>( |
4485 | | &self, |
4486 | | mut dst: &mut [u8], |
4487 | | ) -> Result<usize, SerializeError> { |
4488 | | let nwrite = self.write_to_len(); |
4489 | | if dst.len() < nwrite { |
4490 | | return Err(SerializeError::buffer_too_small("match states")); |
4491 | | } |
4492 | | dst = &mut dst[..nwrite]; |
4493 | | |
4494 | | // write state ID length |
4495 | | // Unwrap is OK since number of states is guaranteed to fit in a u32. |
4496 | | E::write_u32(u32::try_from(self.len()).unwrap(), dst); |
4497 | | dst = &mut dst[size_of::<u32>()..]; |
4498 | | |
4499 | | // write slice offset pairs |
4500 | | for &pid in self.slices() { |
4501 | | let n = wire::write_pattern_id::<E>(pid, &mut dst); |
4502 | | dst = &mut dst[n..]; |
4503 | | } |
4504 | | |
4505 | | // write unique pattern ID length |
4506 | | // Unwrap is OK since number of patterns is guaranteed to fit in a u32. |
4507 | | E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst); |
4508 | | dst = &mut dst[size_of::<u32>()..]; |
4509 | | |
4510 | | // write pattern ID length |
4511 | | // Unwrap is OK since we check at construction (and deserialization) |
4512 | | // that the number of patterns is representable as a u32. |
4513 | | E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst); |
4514 | | dst = &mut dst[size_of::<u32>()..]; |
4515 | | |
4516 | | // write pattern IDs |
4517 | | for &pid in self.pattern_ids() { |
4518 | | let n = wire::write_pattern_id::<E>(pid, &mut dst); |
4519 | | dst = &mut dst[n..]; |
4520 | | } |
4521 | | |
4522 | | Ok(nwrite) |
4523 | | } |
4524 | | |
4525 | | /// Returns the number of bytes the serialized form of these match states |
4526 | | /// will use. |
4527 | | fn write_to_len(&self) -> usize { |
4528 | | size_of::<u32>() // match state length |
4529 | | + (self.slices().len() * PatternID::SIZE) |
4530 | | + size_of::<u32>() // unique pattern ID length |
4531 | | + size_of::<u32>() // pattern ID length |
4532 | | + (self.pattern_ids().len() * PatternID::SIZE) |
4533 | | } |
4534 | | |
4535 | | /// Validates that the match state info is itself internally consistent and |
4536 | | /// consistent with the recorded match state region in the given DFA. |
4537 | 368 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
4538 | 368 | if self.len() != dfa.special.match_len(dfa.stride()) { |
4539 | 11 | return Err(DeserializeError::generic( |
4540 | 11 | "match state length mismatch", |
4541 | 11 | )); |
4542 | 357 | } |
4543 | 357 | for si in 0..self.len() { |
4544 | 77 | let start = self.slices()[si * 2].as_usize(); |
4545 | 77 | let len = self.slices()[si * 2 + 1].as_usize(); |
4546 | 77 | if start >= self.pattern_ids().len() { |
4547 | 0 | return Err(DeserializeError::generic( |
4548 | 0 | "invalid pattern ID start offset", |
4549 | 0 | )); |
4550 | 77 | } |
4551 | 77 | if start + len > self.pattern_ids().len() { |
4552 | 2 | return Err(DeserializeError::generic( |
4553 | 2 | "invalid pattern ID length", |
4554 | 2 | )); |
4555 | 75 | } |
4556 | 787 | for mi in 0..len { |
4557 | 787 | let pid = self.pattern_id(si, mi); |
4558 | 787 | if pid.as_usize() >= self.pattern_len { |
4559 | 0 | return Err(DeserializeError::generic( |
4560 | 0 | "invalid pattern ID", |
4561 | 0 | )); |
4562 | 787 | } |
4563 | | } |
4564 | | } |
4565 | 355 | Ok(()) |
4566 | 368 | } |
4567 | | |
4568 | | /// Converts these match states back into their map form. This is useful |
4569 | | /// when shuffling states, as the normal MatchStates representation is not |
4570 | | /// amenable to easy state swapping. But with this map, to swap id1 and |
4571 | | /// id2, all you need to do is: |
4572 | | /// |
4573 | | /// if let Some(pids) = map.remove(&id1) { |
4574 | | /// map.insert(id2, pids); |
4575 | | /// } |
4576 | | /// |
4577 | | /// Once shuffling is done, use MatchStates::new to convert back. |
4578 | | #[cfg(feature = "dfa-build")] |
4579 | 6.59k | fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> { |
4580 | 6.59k | let mut map = BTreeMap::new(); |
4581 | 19.4k | for i in 0..self.len() { |
4582 | 19.4k | let mut pids = vec![]; |
4583 | 19.4k | for j in 0..self.pattern_len(i) { |
4584 | 19.4k | pids.push(self.pattern_id(i, j)); |
4585 | 19.4k | } |
4586 | 19.4k | map.insert(self.match_state_id(dfa, i), pids); |
4587 | | } |
4588 | 6.59k | map |
4589 | 6.59k | } |
4590 | | |
4591 | | /// Converts these match states to a borrowed value. |
4592 | | fn as_ref(&self) -> MatchStates<&'_ [u32]> { |
4593 | | MatchStates { |
4594 | | slices: self.slices.as_ref(), |
4595 | | pattern_ids: self.pattern_ids.as_ref(), |
4596 | | pattern_len: self.pattern_len, |
4597 | | } |
4598 | | } |
4599 | | |
4600 | | /// Converts these match states to an owned value. |
4601 | | #[cfg(feature = "alloc")] |
4602 | | fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> { |
4603 | | MatchStates { |
4604 | | slices: self.slices.as_ref().to_vec(), |
4605 | | pattern_ids: self.pattern_ids.as_ref().to_vec(), |
4606 | | pattern_len: self.pattern_len, |
4607 | | } |
4608 | | } |
4609 | | |
4610 | | /// Returns the match state ID given the match state index. (Where the |
4611 | | /// first match state corresponds to index 0.) |
4612 | | /// |
4613 | | /// This panics if there is no match state at the given index. |
4614 | 19.4k | fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID { |
4615 | 19.4k | assert!(dfa.special.matches(), "no match states to index"); |
4616 | | // This is one of the places where we rely on the fact that match |
4617 | | // states are contiguous in the transition table. Namely, that the |
4618 | | // first match state ID always corresponds to dfa.special.min_start. |
4619 | | // From there, since we know the stride, we can compute the ID of any |
4620 | | // match state given its index. |
4621 | 19.4k | let stride2 = u32::try_from(dfa.stride2()).unwrap(); |
4622 | 19.4k | let offset = index.checked_shl(stride2).unwrap(); |
4623 | 19.4k | let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap(); |
4624 | 19.4k | let sid = StateID::new(id).unwrap(); |
4625 | 19.4k | assert!(dfa.is_match_state(sid)); |
4626 | 19.4k | sid |
4627 | 19.4k | } |
4628 | | |
4629 | | /// Returns the pattern ID at the given match index for the given match |
4630 | | /// state. |
4631 | | /// |
4632 | | /// The match state index is the state index minus the state index of the |
4633 | | /// first match state in the DFA. |
4634 | | /// |
4635 | | /// The match index is the index of the pattern ID for the given state. |
4636 | | /// The index must be less than `self.pattern_len(state_index)`. |
4637 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4638 | 162k | fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID { |
4639 | 162k | self.pattern_id_slice(state_index)[match_index] |
4640 | 162k | } <regex_automata::dfa::dense::MatchStates<alloc::vec::Vec<u32>>>::pattern_id Line | Count | Source | 4638 | 19.4k | fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID { | 4639 | 19.4k | self.pattern_id_slice(state_index)[match_index] | 4640 | 19.4k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_id Line | Count | Source | 4638 | 787 | fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID { | 4639 | 787 | self.pattern_id_slice(state_index)[match_index] | 4640 | 787 | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_id Line | Count | Source | 4638 | 141k | fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID { | 4639 | 141k | self.pattern_id_slice(state_index)[match_index] | 4640 | 141k | } |
|
4641 | | |
4642 | | /// Returns the number of patterns in the given match state. |
4643 | | /// |
4644 | | /// The match state index is the state index minus the state index of the |
4645 | | /// first match state in the DFA. |
4646 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4647 | 181k | fn pattern_len(&self, state_index: usize) -> usize { |
4648 | 181k | self.slices()[state_index * 2 + 1].as_usize() |
4649 | 181k | } <regex_automata::dfa::dense::MatchStates<alloc::vec::Vec<u32>>>::pattern_len Line | Count | Source | 4647 | 38.9k | fn pattern_len(&self, state_index: usize) -> usize { | 4648 | 38.9k | self.slices()[state_index * 2 + 1].as_usize() | 4649 | 38.9k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_len Line | Count | Source | 4647 | 862 | fn pattern_len(&self, state_index: usize) -> usize { | 4648 | 862 | self.slices()[state_index * 2 + 1].as_usize() | 4649 | 862 | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_len Line | Count | Source | 4647 | 141k | fn pattern_len(&self, state_index: usize) -> usize { | 4648 | 141k | self.slices()[state_index * 2 + 1].as_usize() | 4649 | 141k | } |
|
4650 | | |
4651 | | /// Returns all of the pattern IDs for the given match state index. |
4652 | | /// |
4653 | | /// The match state index is the state index minus the state index of the |
4654 | | /// first match state in the DFA. |
4655 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4656 | 162k | fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] { |
4657 | 162k | let start = self.slices()[state_index * 2].as_usize(); |
4658 | 162k | let len = self.pattern_len(state_index); |
4659 | 162k | &self.pattern_ids()[start..start + len] |
4660 | 162k | } <regex_automata::dfa::dense::MatchStates<alloc::vec::Vec<u32>>>::pattern_id_slice Line | Count | Source | 4656 | 19.4k | fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] { | 4657 | 19.4k | let start = self.slices()[state_index * 2].as_usize(); | 4658 | 19.4k | let len = self.pattern_len(state_index); | 4659 | 19.4k | &self.pattern_ids()[start..start + len] | 4660 | 19.4k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_id_slice Line | Count | Source | 4656 | 787 | fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] { | 4657 | 787 | let start = self.slices()[state_index * 2].as_usize(); | 4658 | 787 | let len = self.pattern_len(state_index); | 4659 | 787 | &self.pattern_ids()[start..start + len] | 4660 | 787 | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_id_slice Line | Count | Source | 4656 | 141k | fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] { | 4657 | 141k | let start = self.slices()[state_index * 2].as_usize(); | 4658 | 141k | let len = self.pattern_len(state_index); | 4659 | 141k | &self.pattern_ids()[start..start + len] | 4660 | 141k | } |
|
4661 | | |
4662 | | /// Returns the pattern ID offset slice of u32 as a slice of PatternID. |
4663 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4664 | 1.16M | fn slices(&self) -> &[PatternID] { |
4665 | 1.16M | wire::u32s_to_pattern_ids(self.slices.as_ref()) |
4666 | 1.16M | } <regex_automata::dfa::dense::MatchStates<alloc::vec::Vec<u32>>>::slices Line | Count | Source | 4664 | 877k | fn slices(&self) -> &[PatternID] { | 4665 | 877k | wire::u32s_to_pattern_ids(self.slices.as_ref()) | 4666 | 877k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::slices Line | Count | Source | 4664 | 3.25k | fn slices(&self) -> &[PatternID] { | 4665 | 3.25k | wire::u32s_to_pattern_ids(self.slices.as_ref()) | 4666 | 3.25k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::slices Line | Count | Source | 4664 | 283k | fn slices(&self) -> &[PatternID] { | 4665 | 283k | wire::u32s_to_pattern_ids(self.slices.as_ref()) | 4666 | 283k | } |
|
4667 | | |
4668 | | /// Returns the total number of match states. |
4669 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4670 | 7.32k | fn len(&self) -> usize { |
4671 | 7.32k | assert_eq!(0, self.slices().len() % 2); |
4672 | 7.32k | self.slices().len() / 2 |
4673 | 7.32k | } <regex_automata::dfa::dense::MatchStates<alloc::vec::Vec<u32>>>::len Line | Count | Source | 4670 | 6.59k | fn len(&self) -> usize { | 4671 | 6.59k | assert_eq!(0, self.slices().len() % 2); | 4672 | 6.59k | self.slices().len() / 2 | 4673 | 6.59k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::len Line | Count | Source | 4670 | 725 | fn len(&self) -> usize { | 4671 | 725 | assert_eq!(0, self.slices().len() % 2); | 4672 | 725 | self.slices().len() / 2 | 4673 | 725 | } |
|
4674 | | |
4675 | | /// Returns the pattern ID slice of u32 as a slice of PatternID. |
4676 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
4677 | 968k | fn pattern_ids(&self) -> &[PatternID] { |
4678 | 968k | wire::u32s_to_pattern_ids(self.pattern_ids.as_ref()) |
4679 | 968k | } <regex_automata::dfa::dense::MatchStates<alloc::vec::Vec<u32>>>::pattern_ids Line | Count | Source | 4677 | 825k | fn pattern_ids(&self) -> &[PatternID] { | 4678 | 825k | wire::u32s_to_pattern_ids(self.pattern_ids.as_ref()) | 4679 | 825k | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_ids Line | Count | Source | 4677 | 941 | fn pattern_ids(&self) -> &[PatternID] { | 4678 | 941 | wire::u32s_to_pattern_ids(self.pattern_ids.as_ref()) | 4679 | 941 | } |
<regex_automata::dfa::dense::MatchStates<&[u32]>>::pattern_ids Line | Count | Source | 4677 | 141k | fn pattern_ids(&self) -> &[PatternID] { | 4678 | 141k | wire::u32s_to_pattern_ids(self.pattern_ids.as_ref()) | 4679 | 141k | } |
|
4680 | | |
4681 | | /// Return the memory usage, in bytes, of these match pairs. |
4682 | 806k | fn memory_usage(&self) -> usize { |
4683 | 806k | (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE |
4684 | 806k | } |
4685 | | } |
4686 | | |
4687 | | /// A common set of flags for both dense and sparse DFAs. This primarily |
4688 | | /// centralizes the serialization format of these flags at a bitset. |
4689 | | #[derive(Clone, Copy, Debug)] |
4690 | | pub(crate) struct Flags { |
4691 | | /// Whether the DFA can match the empty string. When this is false, all |
4692 | | /// matches returned by this DFA are guaranteed to have non-zero length. |
4693 | | pub(crate) has_empty: bool, |
4694 | | /// Whether the DFA should only produce matches with spans that correspond |
4695 | | /// to valid UTF-8. This also includes omitting any zero-width matches that |
4696 | | /// split the UTF-8 encoding of a codepoint. |
4697 | | pub(crate) is_utf8: bool, |
4698 | | /// Whether the DFA is always anchored or not, regardless of `Input` |
4699 | | /// configuration. This is useful for avoiding a reverse scan even when |
4700 | | /// executing unanchored searches. |
4701 | | pub(crate) is_always_start_anchored: bool, |
4702 | | } |
4703 | | |
4704 | | impl Flags { |
4705 | | /// Creates a set of flags for a DFA from an NFA. |
4706 | | /// |
4707 | | /// N.B. This constructor was defined at the time of writing because all |
4708 | | /// of the flags are derived directly from the NFA. If this changes in the |
4709 | | /// future, we might be more thoughtful about how the `Flags` value is |
4710 | | /// itself built. |
4711 | | #[cfg(feature = "dfa-build")] |
4712 | 77.6k | fn from_nfa(nfa: &thompson::NFA) -> Flags { |
4713 | 77.6k | Flags { |
4714 | 77.6k | has_empty: nfa.has_empty(), |
4715 | 77.6k | is_utf8: nfa.is_utf8(), |
4716 | 77.6k | is_always_start_anchored: nfa.is_always_start_anchored(), |
4717 | 77.6k | } |
4718 | 77.6k | } |
4719 | | |
4720 | | /// Deserializes the flags from the given slice. On success, this also |
4721 | | /// returns the number of bytes read from the slice. |
4722 | 3.38k | pub(crate) fn from_bytes( |
4723 | 3.38k | slice: &[u8], |
4724 | 3.38k | ) -> Result<(Flags, usize), DeserializeError> { |
4725 | 3.38k | let (bits, nread) = wire::try_read_u32(slice, "flag bitset")?; |
4726 | 3.38k | let flags = Flags { |
4727 | 3.38k | has_empty: bits & (1 << 0) != 0, |
4728 | 3.38k | is_utf8: bits & (1 << 1) != 0, |
4729 | 3.38k | is_always_start_anchored: bits & (1 << 2) != 0, |
4730 | 3.38k | }; |
4731 | 3.38k | Ok((flags, nread)) |
4732 | 3.38k | } |
4733 | | |
4734 | | /// Writes these flags to the given byte slice. If the buffer is too small, |
4735 | | /// then an error is returned. To determine how big the buffer must be, |
4736 | | /// use `write_to_len`. |
4737 | | pub(crate) fn write_to<E: Endian>( |
4738 | | &self, |
4739 | | dst: &mut [u8], |
4740 | | ) -> Result<usize, SerializeError> { |
4741 | 0 | fn bool_to_int(b: bool) -> u32 { |
4742 | 0 | if b { |
4743 | 0 | 1 |
4744 | | } else { |
4745 | 0 | 0 |
4746 | | } |
4747 | 0 | } |
4748 | | |
4749 | | let nwrite = self.write_to_len(); |
4750 | | if dst.len() < nwrite { |
4751 | | return Err(SerializeError::buffer_too_small("flag bitset")); |
4752 | | } |
4753 | | let bits = (bool_to_int(self.has_empty) << 0) |
4754 | | | (bool_to_int(self.is_utf8) << 1) |
4755 | | | (bool_to_int(self.is_always_start_anchored) << 2); |
4756 | | E::write_u32(bits, dst); |
4757 | | Ok(nwrite) |
4758 | | } |
4759 | | |
4760 | | /// Returns the number of bytes the serialized form of these flags |
4761 | | /// will use. |
4762 | 0 | pub(crate) fn write_to_len(&self) -> usize { |
4763 | 0 | size_of::<u32>() |
4764 | 0 | } |
4765 | | } |
4766 | | |
4767 | | /// An iterator over all states in a DFA. |
4768 | | /// |
4769 | | /// This iterator yields a tuple for each state. The first element of the |
4770 | | /// tuple corresponds to a state's identifier, and the second element |
4771 | | /// corresponds to the state itself (comprised of its transitions). |
4772 | | /// |
4773 | | /// `'a` corresponding to the lifetime of original DFA, `T` corresponds to |
4774 | | /// the type of the transition table itself. |
4775 | | pub(crate) struct StateIter<'a, T> { |
4776 | | tt: &'a TransitionTable<T>, |
4777 | | it: iter::Enumerate<slice::Chunks<'a, StateID>>, |
4778 | | } |
4779 | | |
4780 | | impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> { |
4781 | | type Item = State<'a>; |
4782 | | |
4783 | 1.01M | fn next(&mut self) -> Option<State<'a>> { |
4784 | 1.01M | self.it.next().map(|(index, _)| { |
4785 | 942k | let id = self.tt.to_state_id(index); |
4786 | 942k | self.tt.state(id) |
4787 | 942k | }) <regex_automata::dfa::dense::StateIter<alloc::vec::Vec<u32>> as core::iter::traits::iterator::Iterator>::next::{closure#0} Line | Count | Source | 4784 | 853k | self.it.next().map(|(index, _)| { | 4785 | 853k | let id = self.tt.to_state_id(index); | 4786 | 853k | self.tt.state(id) | 4787 | 853k | }) |
<regex_automata::dfa::dense::StateIter<&[u32]> as core::iter::traits::iterator::Iterator>::next::{closure#0} Line | Count | Source | 4784 | 88.6k | self.it.next().map(|(index, _)| { | 4785 | 88.6k | let id = self.tt.to_state_id(index); | 4786 | 88.6k | self.tt.state(id) | 4787 | 88.6k | }) |
|
4788 | 1.01M | } <regex_automata::dfa::dense::StateIter<alloc::vec::Vec<u32>> as core::iter::traits::iterator::Iterator>::next Line | Count | Source | 4783 | 927k | fn next(&mut self) -> Option<State<'a>> { | 4784 | 927k | self.it.next().map(|(index, _)| { | 4785 | | let id = self.tt.to_state_id(index); | 4786 | | self.tt.state(id) | 4787 | | }) | 4788 | 927k | } |
<regex_automata::dfa::dense::StateIter<&[u32]> as core::iter::traits::iterator::Iterator>::next Line | Count | Source | 4783 | 89.3k | fn next(&mut self) -> Option<State<'a>> { | 4784 | 89.3k | self.it.next().map(|(index, _)| { | 4785 | | let id = self.tt.to_state_id(index); | 4786 | | self.tt.state(id) | 4787 | | }) | 4788 | 89.3k | } |
|
4789 | | } |
4790 | | |
4791 | | /// An immutable representation of a single DFA state. |
4792 | | /// |
4793 | | /// `'a` corresponding to the lifetime of a DFA's transition table. |
4794 | | pub(crate) struct State<'a> { |
4795 | | id: StateID, |
4796 | | stride2: usize, |
4797 | | transitions: &'a [StateID], |
4798 | | } |
4799 | | |
4800 | | impl<'a> State<'a> { |
4801 | | /// Return an iterator over all transitions in this state. This yields |
4802 | | /// a number of transitions equivalent to the alphabet length of the |
4803 | | /// corresponding DFA. |
4804 | | /// |
4805 | | /// Each transition is represented by a tuple. The first element is |
4806 | | /// the input byte for that transition and the second element is the |
4807 | | /// transitions itself. |
4808 | 901k | pub(crate) fn transitions(&self) -> StateTransitionIter<'_> { |
4809 | 901k | StateTransitionIter { |
4810 | 901k | len: self.transitions.len(), |
4811 | 901k | it: self.transitions.iter().enumerate(), |
4812 | 901k | } |
4813 | 901k | } |
4814 | | |
4815 | | /// Return an iterator over a sparse representation of the transitions in |
4816 | | /// this state. Only non-dead transitions are returned. |
4817 | | /// |
4818 | | /// The "sparse" representation in this case corresponds to a sequence of |
4819 | | /// triples. The first two elements of the triple comprise an inclusive |
4820 | | /// byte range while the last element corresponds to the transition taken |
4821 | | /// for all bytes in the range. |
4822 | | /// |
4823 | | /// This is somewhat more condensed than the classical sparse |
4824 | | /// representation (where you have an element for every non-dead |
4825 | | /// transition), but in practice, checking if a byte is in a range is very |
4826 | | /// cheap and using ranges tends to conserve quite a bit more space. |
4827 | 0 | pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> { |
4828 | 0 | StateSparseTransitionIter { dense: self.transitions(), cur: None } |
4829 | 0 | } |
4830 | | |
4831 | | /// Returns the identifier for this state. |
4832 | 2.60M | pub(crate) fn id(&self) -> StateID { |
4833 | 2.60M | self.id |
4834 | 2.60M | } |
4835 | | |
4836 | | /// Analyzes this state to determine whether it can be accelerated. If so, |
4837 | | /// it returns an accelerator that contains at least one byte. |
4838 | | #[cfg(feature = "dfa-build")] |
4839 | 853k | fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> { |
4840 | | // We just try to add bytes to our accelerator. Once adding fails |
4841 | | // (because we've added too many bytes), then give up. |
4842 | 853k | let mut accel = Accel::new(); |
4843 | 2.45M | for (class, id) in self.transitions() { |
4844 | 2.45M | if id == self.id() { |
4845 | 1.40M | continue; |
4846 | 1.05M | } |
4847 | 3.09M | for unit in classes.elements(class) { |
4848 | 3.09M | if let Some(byte) = unit.as_u8() { |
4849 | 3.08M | if !accel.add(byte) { |
4850 | 765k | return None; |
4851 | 2.31M | } |
4852 | 14.2k | } |
4853 | | } |
4854 | | } |
4855 | 87.8k | if accel.is_empty() { |
4856 | 75.9k | None |
4857 | | } else { |
4858 | 11.8k | Some(accel) |
4859 | | } |
4860 | 853k | } |
4861 | | } |
4862 | | |
4863 | | impl<'a> fmt::Debug for State<'a> { |
4864 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
4865 | 0 | for (i, (start, end, sid)) in self.sparse_transitions().enumerate() { |
4866 | 0 | let id = if f.alternate() { |
4867 | 0 | sid.as_usize() |
4868 | | } else { |
4869 | 0 | sid.as_usize() >> self.stride2 |
4870 | | }; |
4871 | 0 | if i > 0 { |
4872 | 0 | write!(f, ", ")?; |
4873 | 0 | } |
4874 | 0 | if start == end { |
4875 | 0 | write!(f, "{start:?} => {id:?}")?; |
4876 | | } else { |
4877 | 0 | write!(f, "{start:?}-{end:?} => {id:?}")?; |
4878 | | } |
4879 | | } |
4880 | 0 | Ok(()) |
4881 | 0 | } |
4882 | | } |
4883 | | |
4884 | | /// An iterator over all transitions in a single DFA state. This yields |
4885 | | /// a number of transitions equivalent to the alphabet length of the |
4886 | | /// corresponding DFA. |
4887 | | /// |
4888 | | /// Each transition is represented by a tuple. The first element is the input |
4889 | | /// byte for that transition and the second element is the transition itself. |
4890 | | #[derive(Debug)] |
4891 | | pub(crate) struct StateTransitionIter<'a> { |
4892 | | len: usize, |
4893 | | it: iter::Enumerate<slice::Iter<'a, StateID>>, |
4894 | | } |
4895 | | |
4896 | | impl<'a> Iterator for StateTransitionIter<'a> { |
4897 | | type Item = (alphabet::Unit, StateID); |
4898 | | |
4899 | 2.69M | fn next(&mut self) -> Option<(alphabet::Unit, StateID)> { |
4900 | 2.69M | self.it.next().map(|(i, &id)| { |
4901 | 2.55M | let unit = if i + 1 == self.len { |
4902 | 135k | alphabet::Unit::eoi(i) |
4903 | | } else { |
4904 | 2.42M | let b = u8::try_from(i) |
4905 | 2.42M | .expect("raw byte alphabet is never exceeded"); |
4906 | 2.42M | alphabet::Unit::u8(b) |
4907 | | }; |
4908 | 2.55M | (unit, id) |
4909 | 2.55M | }) |
4910 | 2.69M | } |
4911 | | } |
4912 | | |
4913 | | /// An iterator over all non-DEAD transitions in a single DFA state using a |
4914 | | /// sparse representation. |
4915 | | /// |
4916 | | /// Each transition is represented by a triple. The first two elements of the |
4917 | | /// triple comprise an inclusive byte range while the last element corresponds |
4918 | | /// to the transition taken for all bytes in the range. |
4919 | | /// |
4920 | | /// As a convenience, this always returns `alphabet::Unit` values of the same |
4921 | | /// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte, |
4922 | | /// byte) and (EOI, EOI) values are yielded. |
4923 | | #[derive(Debug)] |
4924 | | pub(crate) struct StateSparseTransitionIter<'a> { |
4925 | | dense: StateTransitionIter<'a>, |
4926 | | cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>, |
4927 | | } |
4928 | | |
4929 | | impl<'a> Iterator for StateSparseTransitionIter<'a> { |
4930 | | type Item = (alphabet::Unit, alphabet::Unit, StateID); |
4931 | | |
4932 | 0 | fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> { |
4933 | 0 | while let Some((unit, next)) = self.dense.next() { |
4934 | 0 | let (prev_start, prev_end, prev_next) = match self.cur { |
4935 | 0 | Some(t) => t, |
4936 | | None => { |
4937 | 0 | self.cur = Some((unit, unit, next)); |
4938 | 0 | continue; |
4939 | | } |
4940 | | }; |
4941 | 0 | if prev_next == next && !unit.is_eoi() { |
4942 | 0 | self.cur = Some((prev_start, unit, prev_next)); |
4943 | 0 | } else { |
4944 | 0 | self.cur = Some((unit, unit, next)); |
4945 | 0 | if prev_next != DEAD { |
4946 | 0 | return Some((prev_start, prev_end, prev_next)); |
4947 | 0 | } |
4948 | | } |
4949 | | } |
4950 | 0 | if let Some((start, end, next)) = self.cur.take() { |
4951 | 0 | if next != DEAD { |
4952 | 0 | return Some((start, end, next)); |
4953 | 0 | } |
4954 | 0 | } |
4955 | 0 | None |
4956 | 0 | } |
4957 | | } |
4958 | | |
4959 | | /// An error that occurred during the construction of a DFA. |
4960 | | /// |
4961 | | /// This error does not provide many introspection capabilities. There are |
4962 | | /// generally only two things you can do with it: |
4963 | | /// |
4964 | | /// * Obtain a human readable message via its `std::fmt::Display` impl. |
4965 | | /// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError) |
4966 | | /// type from its `source` method via the `std::error::Error` trait. This error |
4967 | | /// only occurs when using convenience routines for building a DFA directly |
4968 | | /// from a pattern string. |
4969 | | /// |
4970 | | /// When the `std` feature is enabled, this implements the `std::error::Error` |
4971 | | /// trait. |
4972 | | #[cfg(feature = "dfa-build")] |
4973 | | #[derive(Clone, Debug)] |
4974 | | pub struct BuildError { |
4975 | | kind: BuildErrorKind, |
4976 | | } |
4977 | | |
4978 | | #[cfg(feature = "dfa-build")] |
4979 | | impl BuildError { |
4980 | | /// Returns true if and only if this error corresponds to an error with DFA |
4981 | | /// construction that occurred because of exceeding a size limit. |
4982 | | /// |
4983 | | /// While this can occur when size limits like [`Config::dfa_size_limit`] |
4984 | | /// or [`Config::determinize_size_limit`] are exceeded, this can also occur |
4985 | | /// when the number of states or patterns exceeds a hard-coded maximum. |
4986 | | /// (Where these maximums are derived based on the values representable by |
4987 | | /// [`StateID`] and [`PatternID`].) |
4988 | | /// |
4989 | | /// This predicate is useful in contexts where you want to distinguish |
4990 | | /// between errors related to something provided by an end user (for |
4991 | | /// example, an invalid regex pattern) and errors related to configured |
4992 | | /// heuristics. For example, building a DFA might be an optimization that |
4993 | | /// you want to skip if construction fails because of an exceeded size |
4994 | | /// limit, but where you want to bubble up an error if it fails for some |
4995 | | /// other reason. |
4996 | | /// |
4997 | | /// # Example |
4998 | | /// |
4999 | | /// ``` |
5000 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
5001 | | /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039 |
5002 | | /// use regex_automata::{dfa::{dense, Automaton}, Input}; |
5003 | | /// |
5004 | | /// let err = dense::Builder::new() |
5005 | | /// .configure(dense::Config::new() |
5006 | | /// .determinize_size_limit(Some(100_000)) |
5007 | | /// ) |
5008 | | /// .build(r"\w{20}") |
5009 | | /// .unwrap_err(); |
5010 | | /// // This error occurs because a size limit was exceeded. |
5011 | | /// // But things are otherwise valid. |
5012 | | /// assert!(err.is_size_limit_exceeded()); |
5013 | | /// |
5014 | | /// let err = dense::Builder::new() |
5015 | | /// .build(r"\bxyz\b") |
5016 | | /// .unwrap_err(); |
5017 | | /// // This error occurs because a Unicode word boundary |
5018 | | /// // was used without enabling heuristic support for it. |
5019 | | /// // So... not related to size limits. |
5020 | | /// assert!(!err.is_size_limit_exceeded()); |
5021 | | /// |
5022 | | /// let err = dense::Builder::new() |
5023 | | /// .build(r"(xyz") |
5024 | | /// .unwrap_err(); |
5025 | | /// // This error occurs because the pattern is invalid. |
5026 | | /// // So... not related to size limits. |
5027 | | /// assert!(!err.is_size_limit_exceeded()); |
5028 | | /// |
5029 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5030 | | /// ``` |
5031 | | #[inline] |
5032 | | pub fn is_size_limit_exceeded(&self) -> bool { |
5033 | | use self::BuildErrorKind::*; |
5034 | | |
5035 | | match self.kind { |
5036 | | NFA(_) | Unsupported(_) => false, |
5037 | | TooManyStates |
5038 | | | TooManyStartStates |
5039 | | | TooManyMatchPatternIDs |
5040 | | | DFAExceededSizeLimit { .. } |
5041 | | | DeterminizeExceededSizeLimit { .. } => true, |
5042 | | } |
5043 | | } |
5044 | | } |
5045 | | |
5046 | | /// The kind of error that occurred during the construction of a DFA. |
5047 | | /// |
5048 | | /// Note that this error is non-exhaustive. Adding new variants is not |
5049 | | /// considered a breaking change. |
5050 | | #[cfg(feature = "dfa-build")] |
5051 | | #[derive(Clone, Debug)] |
5052 | | enum BuildErrorKind { |
5053 | | /// An error that occurred while constructing an NFA as a precursor step |
5054 | | /// before a DFA is compiled. |
5055 | | NFA(thompson::BuildError), |
5056 | | /// An error that occurred because an unsupported regex feature was used. |
5057 | | /// The message string describes which unsupported feature was used. |
5058 | | /// |
5059 | | /// The primary regex feature that is unsupported by DFAs is the Unicode |
5060 | | /// word boundary look-around assertion (`\b`). This can be worked around |
5061 | | /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling |
5062 | | /// Unicode word boundaries when building a DFA. |
5063 | | Unsupported(&'static str), |
5064 | | /// An error that occurs if too many states are produced while building a |
5065 | | /// DFA. |
5066 | | TooManyStates, |
5067 | | /// An error that occurs if too many start states are needed while building |
5068 | | /// a DFA. |
5069 | | /// |
5070 | | /// This is a kind of oddball error that occurs when building a DFA with |
5071 | | /// start states enabled for each pattern and enough patterns to cause |
5072 | | /// the table of start states to overflow `usize`. |
5073 | | TooManyStartStates, |
5074 | | /// This is another oddball error that can occur if there are too many |
5075 | | /// patterns spread out across too many match states. |
5076 | | TooManyMatchPatternIDs, |
5077 | | /// An error that occurs if the DFA got too big during determinization. |
5078 | | DFAExceededSizeLimit { limit: usize }, |
5079 | | /// An error that occurs if auxiliary storage (not the DFA) used during |
5080 | | /// determinization got too big. |
5081 | | DeterminizeExceededSizeLimit { limit: usize }, |
5082 | | } |
5083 | | |
5084 | | #[cfg(feature = "dfa-build")] |
5085 | | impl BuildError { |
5086 | | /// Return the kind of this error. |
5087 | 0 | fn kind(&self) -> &BuildErrorKind { |
5088 | 0 | &self.kind |
5089 | 0 | } |
5090 | | |
5091 | 0 | pub(crate) fn nfa(err: thompson::BuildError) -> BuildError { |
5092 | 0 | BuildError { kind: BuildErrorKind::NFA(err) } |
5093 | 0 | } |
5094 | | |
5095 | 0 | pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError { |
5096 | 0 | let msg = "cannot build DFAs for regexes with Unicode word \ |
5097 | 0 | boundaries; switch to ASCII word boundaries, or \ |
5098 | 0 | heuristically enable Unicode word boundaries or use a \ |
5099 | 0 | different regex engine"; |
5100 | 0 | BuildError { kind: BuildErrorKind::Unsupported(msg) } |
5101 | 0 | } |
5102 | | |
5103 | 0 | pub(crate) fn too_many_states() -> BuildError { |
5104 | 0 | BuildError { kind: BuildErrorKind::TooManyStates } |
5105 | 0 | } |
5106 | | |
5107 | 0 | pub(crate) fn too_many_start_states() -> BuildError { |
5108 | 0 | BuildError { kind: BuildErrorKind::TooManyStartStates } |
5109 | 0 | } |
5110 | | |
5111 | 0 | pub(crate) fn too_many_match_pattern_ids() -> BuildError { |
5112 | 0 | BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs } |
5113 | 0 | } |
5114 | | |
5115 | 1.45k | pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError { |
5116 | 1.45k | BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } } |
5117 | 1.45k | } |
5118 | | |
5119 | 83 | pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError { |
5120 | 83 | BuildError { |
5121 | 83 | kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit }, |
5122 | 83 | } |
5123 | 83 | } |
5124 | | } |
5125 | | |
5126 | | #[cfg(all(feature = "std", feature = "dfa-build"))] |
5127 | | impl std::error::Error for BuildError { |
5128 | 0 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
5129 | 0 | match self.kind() { |
5130 | 0 | BuildErrorKind::NFA(ref err) => Some(err), |
5131 | 0 | _ => None, |
5132 | | } |
5133 | 0 | } |
5134 | | } |
5135 | | |
5136 | | #[cfg(feature = "dfa-build")] |
5137 | | impl core::fmt::Display for BuildError { |
5138 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
5139 | 0 | match self.kind() { |
5140 | 0 | BuildErrorKind::NFA(_) => write!(f, "error building NFA"), |
5141 | 0 | BuildErrorKind::Unsupported(ref msg) => { |
5142 | 0 | write!(f, "unsupported regex feature for DFAs: {msg}") |
5143 | | } |
5144 | 0 | BuildErrorKind::TooManyStates => write!( |
5145 | 0 | f, |
5146 | 0 | "number of DFA states exceeds limit of {}", |
5147 | | StateID::LIMIT, |
5148 | | ), |
5149 | | BuildErrorKind::TooManyStartStates => { |
5150 | 0 | let stride = Start::len(); |
5151 | | // The start table has `stride` entries for starting states for |
5152 | | // the entire DFA, and then `stride` entries for each pattern |
5153 | | // if start states for each pattern are enabled (which is the |
5154 | | // only way this error can occur). Thus, the total number of |
5155 | | // patterns that can fit in the table is `stride` less than |
5156 | | // what we can allocate. |
5157 | 0 | let max = usize::try_from(core::isize::MAX).unwrap(); |
5158 | 0 | let limit = (max - stride) / stride; |
5159 | 0 | write!( |
5160 | 0 | f, |
5161 | 0 | "compiling DFA with start states exceeds pattern \ |
5162 | 0 | pattern limit of {}", |
5163 | | limit, |
5164 | | ) |
5165 | | } |
5166 | 0 | BuildErrorKind::TooManyMatchPatternIDs => write!( |
5167 | 0 | f, |
5168 | 0 | "compiling DFA with total patterns in all match states \ |
5169 | 0 | exceeds limit of {}", |
5170 | | PatternID::LIMIT, |
5171 | | ), |
5172 | 0 | BuildErrorKind::DFAExceededSizeLimit { limit } => write!( |
5173 | 0 | f, |
5174 | 0 | "DFA exceeded size limit of {limit:?} during determinization", |
5175 | | ), |
5176 | 0 | BuildErrorKind::DeterminizeExceededSizeLimit { limit } => { |
5177 | 0 | write!(f, "determinization exceeded size limit of {limit:?}") |
5178 | | } |
5179 | | } |
5180 | 0 | } |
5181 | | } |
5182 | | |
5183 | | #[cfg(all(test, feature = "syntax", feature = "dfa-build"))] |
5184 | | mod tests { |
5185 | | use crate::{Input, MatchError}; |
5186 | | |
5187 | | use super::*; |
5188 | | |
5189 | | #[test] |
5190 | | fn errors_with_unicode_word_boundary() { |
5191 | | let pattern = r"\b"; |
5192 | | assert!(Builder::new().build(pattern).is_err()); |
5193 | | } |
5194 | | |
5195 | | #[test] |
5196 | | fn roundtrip_never_match() { |
5197 | | let dfa = DFA::never_match().unwrap(); |
5198 | | let (buf, _) = dfa.to_bytes_native_endian(); |
5199 | | let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0; |
5200 | | |
5201 | | assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345")).unwrap()); |
5202 | | } |
5203 | | |
5204 | | #[test] |
5205 | | fn roundtrip_always_match() { |
5206 | | use crate::HalfMatch; |
5207 | | |
5208 | | let dfa = DFA::always_match().unwrap(); |
5209 | | let (buf, _) = dfa.to_bytes_native_endian(); |
5210 | | let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0; |
5211 | | |
5212 | | assert_eq!( |
5213 | | Some(HalfMatch::must(0, 0)), |
5214 | | dfa.try_search_fwd(&Input::new("foo12345")).unwrap() |
5215 | | ); |
5216 | | } |
5217 | | |
5218 | | // See the analogous test in src/hybrid/dfa.rs. |
5219 | | #[test] |
5220 | | fn heuristic_unicode_reverse() { |
5221 | | let dfa = DFA::builder() |
5222 | | .configure(DFA::config().unicode_word_boundary(true)) |
5223 | | .thompson(thompson::Config::new().reverse(true)) |
5224 | | .build(r"\b[0-9]+\b") |
5225 | | .unwrap(); |
5226 | | |
5227 | | let input = Input::new("β123").range(2..); |
5228 | | let expected = MatchError::quit(0xB2, 1); |
5229 | | let got = dfa.try_search_rev(&input); |
5230 | | assert_eq!(Err(expected), got); |
5231 | | |
5232 | | let input = Input::new("123β").range(..3); |
5233 | | let expected = MatchError::quit(0xCE, 3); |
5234 | | let got = dfa.try_search_rev(&input); |
5235 | | assert_eq!(Err(expected), got); |
5236 | | } |
5237 | | } |