/src/regex/regex-automata/src/dfa/automaton.rs
Line | Count | Source |
1 | | #[cfg(feature = "alloc")] |
2 | | use crate::util::search::PatternSet; |
3 | | use crate::{ |
4 | | dfa::search, |
5 | | util::{ |
6 | | empty, |
7 | | prefilter::Prefilter, |
8 | | primitives::{PatternID, StateID}, |
9 | | search::{Anchored, HalfMatch, Input, MatchError}, |
10 | | start, |
11 | | }, |
12 | | }; |
13 | | |
14 | | /// A trait describing the interface of a deterministic finite automaton (DFA). |
15 | | /// |
16 | | /// The complexity of this trait probably means that it's unlikely for others |
17 | | /// to implement it. The primary purpose of the trait is to provide for a way |
18 | | /// of abstracting over different types of DFAs. In this crate, that means |
19 | | /// dense DFAs and sparse DFAs. (Dense DFAs are fast but memory hungry, where |
20 | | /// as sparse DFAs are slower but come with a smaller memory footprint. But |
21 | | /// they otherwise provide exactly equivalent expressive power.) For example, a |
22 | | /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) is generic over this trait. |
23 | | /// |
24 | | /// Normally, a DFA's execution model is very simple. You might have a single |
25 | | /// start state, zero or more final or "match" states and a function that |
26 | | /// transitions from one state to the next given the next byte of input. |
27 | | /// Unfortunately, the interface described by this trait is significantly |
28 | | /// more complicated than this. The complexity has a number of different |
29 | | /// reasons, mostly motivated by performance, functionality or space savings: |
30 | | /// |
31 | | /// * A DFA can search for multiple patterns simultaneously. This |
32 | | /// means extra information is returned when a match occurs. Namely, |
33 | | /// a match is not just an offset, but an offset plus a pattern ID. |
34 | | /// [`Automaton::pattern_len`] returns the number of patterns compiled into |
35 | | /// the DFA, [`Automaton::match_len`] returns the total number of patterns |
36 | | /// that match in a particular state and [`Automaton::match_pattern`] permits |
37 | | /// iterating over the patterns that match in a particular state. |
38 | | /// * A DFA can have multiple start states, and the choice of which start |
39 | | /// state to use depends on the content of the string being searched and |
40 | | /// position of the search, as well as whether the search is an anchored |
41 | | /// search for a specific pattern in the DFA. Moreover, computing the start |
42 | | /// state also depends on whether you're doing a forward or a reverse search. |
43 | | /// [`Automaton::start_state_forward`] and [`Automaton::start_state_reverse`] |
44 | | /// are used to compute the start state for forward and reverse searches, |
45 | | /// respectively. |
46 | | /// * All matches are delayed by one byte to support things like `$` and `\b` |
47 | | /// at the end of a pattern. Therefore, every use of a DFA is required to use |
48 | | /// [`Automaton::next_eoi_state`] |
49 | | /// at the end of the search to compute the final transition. |
50 | | /// * For optimization reasons, some states are treated specially. Every |
51 | | /// state is either special or not, which can be determined via the |
52 | | /// [`Automaton::is_special_state`] method. If it's special, then the state |
53 | | /// must be at least one of a few possible types of states. (Note that some |
54 | | /// types can overlap, for example, a match state can also be an accel state. |
55 | | /// But some types can't. If a state is a dead state, then it can never be any |
56 | | /// other type of state.) Those types are: |
57 | | /// * A dead state. A dead state means the DFA will never enter a match |
58 | | /// state. This can be queried via the [`Automaton::is_dead_state`] method. |
59 | | /// * A quit state. A quit state occurs if the DFA had to stop the search |
60 | | /// prematurely for some reason. This can be queried via the |
61 | | /// [`Automaton::is_quit_state`] method. |
62 | | /// * A match state. A match state occurs when a match is found. When a DFA |
63 | | /// enters a match state, the search may stop immediately (when looking |
64 | | /// for the earliest match), or it may continue to find the leftmost-first |
65 | | /// match. This can be queried via the [`Automaton::is_match_state`] |
66 | | /// method. |
67 | | /// * A start state. A start state is where a search begins. For every |
68 | | /// search, there is exactly one start state that is used, however, a |
69 | | /// DFA may contain many start states. When the search is in a start |
70 | | /// state, it may use a prefilter to quickly skip to candidate matches |
71 | | /// without executing the DFA on every byte. This can be queried via the |
72 | | /// [`Automaton::is_start_state`] method. |
73 | | /// * An accel state. An accel state is a state that is accelerated. |
74 | | /// That is, it is a state where _most_ of its transitions loop back to |
75 | | /// itself and only a small number of transitions lead to other states. |
76 | | /// This kind of state is said to be accelerated because a search routine |
77 | | /// can quickly look for the bytes leading out of the state instead of |
78 | | /// continuing to execute the DFA on each byte. This can be queried via the |
79 | | /// [`Automaton::is_accel_state`] method. And the bytes that lead out of |
80 | | /// the state can be queried via the [`Automaton::accelerator`] method. |
81 | | /// |
82 | | /// There are a number of provided methods on this trait that implement |
83 | | /// efficient searching (for forwards and backwards) with a DFA using |
84 | | /// all of the above features of this trait. In particular, given the |
85 | | /// complexity of all these features, implementing a search routine in |
86 | | /// this trait can be a little subtle. With that said, it is possible to |
87 | | /// somewhat simplify the search routine. For example, handling accelerated |
88 | | /// states is strictly optional, since it is always correct to assume that |
89 | | /// `Automaton::is_accel_state` returns false. However, one complex part of |
90 | | /// writing a search routine using this trait is handling the 1-byte delay of a |
91 | | /// match. That is not optional. |
92 | | /// |
93 | | /// # Safety |
94 | | /// |
95 | | /// This trait is not safe to implement so that code may rely on the |
96 | | /// correctness of implementations of this trait to avoid undefined behavior. |
97 | | /// The primary correctness guarantees are: |
98 | | /// |
99 | | /// * `Automaton::start_state` always returns a valid state ID or an error or |
100 | | /// panics. |
101 | | /// * `Automaton::next_state`, when given a valid state ID, always returns |
102 | | /// a valid state ID for all values of `anchored` and `byte`, or otherwise |
103 | | /// panics. |
104 | | /// |
105 | | /// In general, the rest of the methods on `Automaton` need to uphold their |
106 | | /// contracts as well. For example, `Automaton::is_dead` should only returns |
107 | | /// true if the given state ID is actually a dead state. |
108 | | pub unsafe trait Automaton { |
109 | | /// Transitions from the current state to the next state, given the next |
110 | | /// byte of input. |
111 | | /// |
112 | | /// Implementations must guarantee that the returned ID is always a valid |
113 | | /// ID when `current` refers to a valid ID. Moreover, the transition |
114 | | /// function must be defined for all possible values of `input`. |
115 | | /// |
116 | | /// # Panics |
117 | | /// |
118 | | /// If the given ID does not refer to a valid state, then this routine |
119 | | /// may panic but it also may not panic and instead return an invalid ID. |
120 | | /// However, if the caller provides an invalid ID then this must never |
121 | | /// sacrifice memory safety. |
122 | | /// |
123 | | /// # Example |
124 | | /// |
125 | | /// This shows a simplistic example for walking a DFA for a given haystack |
126 | | /// by using the `next_state` method. |
127 | | /// |
128 | | /// ``` |
129 | | /// use regex_automata::{dfa::{Automaton, dense}, Input}; |
130 | | /// |
131 | | /// let dfa = dense::DFA::new(r"[a-z]+r")?; |
132 | | /// let haystack = "bar".as_bytes(); |
133 | | /// |
134 | | /// // The start state is determined by inspecting the position and the |
135 | | /// // initial bytes of the haystack. |
136 | | /// let mut state = dfa.start_state_forward(&Input::new(haystack))?; |
137 | | /// // Walk all the bytes in the haystack. |
138 | | /// for &b in haystack { |
139 | | /// state = dfa.next_state(state, b); |
140 | | /// } |
141 | | /// // Matches are always delayed by 1 byte, so we must explicitly walk the |
142 | | /// // special "EOI" transition at the end of the search. |
143 | | /// state = dfa.next_eoi_state(state); |
144 | | /// assert!(dfa.is_match_state(state)); |
145 | | /// |
146 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
147 | | /// ``` |
148 | | fn next_state(&self, current: StateID, input: u8) -> StateID; |
149 | | |
150 | | /// Transitions from the current state to the next state, given the next |
151 | | /// byte of input. |
152 | | /// |
153 | | /// Unlike [`Automaton::next_state`], implementations may implement this |
154 | | /// more efficiently by assuming that the `current` state ID is valid. |
155 | | /// Typically, this manifests by eliding bounds checks. |
156 | | /// |
157 | | /// # Safety |
158 | | /// |
159 | | /// Callers of this method must guarantee that `current` refers to a valid |
160 | | /// state ID. If `current` is not a valid state ID for this automaton, then |
161 | | /// calling this routine may result in undefined behavior. |
162 | | /// |
163 | | /// If `current` is valid, then implementations must guarantee that the ID |
164 | | /// returned is valid for all possible values of `input`. |
165 | | unsafe fn next_state_unchecked( |
166 | | &self, |
167 | | current: StateID, |
168 | | input: u8, |
169 | | ) -> StateID; |
170 | | |
171 | | /// Transitions from the current state to the next state for the special |
172 | | /// EOI symbol. |
173 | | /// |
174 | | /// Implementations must guarantee that the returned ID is always a valid |
175 | | /// ID when `current` refers to a valid ID. |
176 | | /// |
177 | | /// This routine must be called at the end of every search in a correct |
178 | | /// implementation of search. Namely, DFAs in this crate delay matches |
179 | | /// by one byte in order to support look-around operators. Thus, after |
180 | | /// reaching the end of a haystack, a search implementation must follow one |
181 | | /// last EOI transition. |
182 | | /// |
183 | | /// It is best to think of EOI as an additional symbol in the alphabet of |
184 | | /// a DFA that is distinct from every other symbol. That is, the alphabet |
185 | | /// of DFAs in this crate has a logical size of 257 instead of 256, where |
186 | | /// 256 corresponds to every possible inhabitant of `u8`. (In practice, the |
187 | | /// physical alphabet size may be smaller because of alphabet compression |
188 | | /// via equivalence classes, but EOI is always represented somehow in the |
189 | | /// alphabet.) |
190 | | /// |
191 | | /// # Panics |
192 | | /// |
193 | | /// If the given ID does not refer to a valid state, then this routine |
194 | | /// may panic but it also may not panic and instead return an invalid ID. |
195 | | /// However, if the caller provides an invalid ID then this must never |
196 | | /// sacrifice memory safety. |
197 | | /// |
198 | | /// # Example |
199 | | /// |
200 | | /// This shows a simplistic example for walking a DFA for a given haystack, |
201 | | /// and then finishing the search with the final EOI transition. |
202 | | /// |
203 | | /// ``` |
204 | | /// use regex_automata::{dfa::{Automaton, dense}, Input}; |
205 | | /// |
206 | | /// let dfa = dense::DFA::new(r"[a-z]+r")?; |
207 | | /// let haystack = "bar".as_bytes(); |
208 | | /// |
209 | | /// // The start state is determined by inspecting the position and the |
210 | | /// // initial bytes of the haystack. |
211 | | /// // |
212 | | /// // The unwrap is OK because we aren't requesting a start state for a |
213 | | /// // specific pattern. |
214 | | /// let mut state = dfa.start_state_forward(&Input::new(haystack))?; |
215 | | /// // Walk all the bytes in the haystack. |
216 | | /// for &b in haystack { |
217 | | /// state = dfa.next_state(state, b); |
218 | | /// } |
219 | | /// // Matches are always delayed by 1 byte, so we must explicitly walk |
220 | | /// // the special "EOI" transition at the end of the search. Without this |
221 | | /// // final transition, the assert below will fail since the DFA will not |
222 | | /// // have entered a match state yet! |
223 | | /// state = dfa.next_eoi_state(state); |
224 | | /// assert!(dfa.is_match_state(state)); |
225 | | /// |
226 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
227 | | /// ``` |
228 | | fn next_eoi_state(&self, current: StateID) -> StateID; |
229 | | |
230 | | /// Return the ID of the start state for this DFA for the given starting |
231 | | /// configuration. |
232 | | /// |
233 | | /// Unlike typical DFA implementations, the start state for DFAs in this |
234 | | /// crate is dependent on a few different factors: |
235 | | /// |
236 | | /// * The [`Anchored`] mode of the search. Unanchored, anchored and |
237 | | /// anchored searches for a specific [`PatternID`] all use different start |
238 | | /// states. |
239 | | /// * Whether a "look-behind" byte exists. For example, the `^` anchor |
240 | | /// matches if and only if there is no look-behind byte. |
241 | | /// * The specific value of that look-behind byte. For example, a `(?m:^)` |
242 | | /// assertion only matches when there is either no look-behind byte, or |
243 | | /// when the look-behind byte is a line terminator. |
244 | | /// |
245 | | /// The [starting configuration](start::Config) provides the above |
246 | | /// information. |
247 | | /// |
248 | | /// This routine can be used for either forward or reverse searches. |
249 | | /// Although, as a convenience, if you have an [`Input`], then it may |
250 | | /// be more succinct to use [`Automaton::start_state_forward`] or |
251 | | /// [`Automaton::start_state_reverse`]. Note, for example, that the |
252 | | /// convenience routines return a [`MatchError`] on failure where as this |
253 | | /// routine returns a [`StartError`]. |
254 | | /// |
255 | | /// # Errors |
256 | | /// |
257 | | /// This may return a [`StartError`] if the search needs to give up when |
258 | | /// determining the start state (for example, if it sees a "quit" byte). |
259 | | /// This can also return an error if the given configuration contains an |
260 | | /// unsupported [`Anchored`] configuration. |
261 | | fn start_state( |
262 | | &self, |
263 | | config: &start::Config, |
264 | | ) -> Result<StateID, StartError>; |
265 | | |
266 | | /// Return the ID of the start state for this DFA when executing a forward |
267 | | /// search. |
268 | | /// |
269 | | /// This is a convenience routine for calling [`Automaton::start_state`] |
270 | | /// that converts the given [`Input`] to a [start |
271 | | /// configuration](start::Config). Additionally, if an error occurs, it is |
272 | | /// converted from a [`StartError`] to a [`MatchError`] using the offset |
273 | | /// information in the given [`Input`]. |
274 | | /// |
275 | | /// # Errors |
276 | | /// |
277 | | /// This may return a [`MatchError`] if the search needs to give up |
278 | | /// when determining the start state (for example, if it sees a "quit" |
279 | | /// byte). This can also return an error if the given `Input` contains an |
280 | | /// unsupported [`Anchored`] configuration. |
281 | 140k | fn start_state_forward( |
282 | 140k | &self, |
283 | 140k | input: &Input<'_>, |
284 | 140k | ) -> Result<StateID, MatchError> { |
285 | 140k | let config = start::Config::from_input_forward(input); |
286 | 140k | self.start_state(&config).map_err(|err| match err { |
287 | 899 | StartError::Quit { byte } => { |
288 | 899 | let offset = input |
289 | 899 | .start() |
290 | 899 | .checked_sub(1) |
291 | 899 | .expect("no quit in start without look-behind"); |
292 | 899 | MatchError::quit(byte, offset) |
293 | | } |
294 | 101 | StartError::UnsupportedAnchored { mode } => { |
295 | 101 | MatchError::unsupported_anchored(mode) |
296 | | } |
297 | 1.00k | }) <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state_forward::{closure#0}Line | Count | Source | 286 | 603 | self.start_state(&config).map_err(|err| match err { | 287 | 603 | StartError::Quit { byte } => { | 288 | 603 | let offset = input | 289 | 603 | .start() | 290 | 603 | .checked_sub(1) | 291 | 603 | .expect("no quit in start without look-behind"); | 292 | 603 | MatchError::quit(byte, offset) | 293 | | } | 294 | 0 | StartError::UnsupportedAnchored { mode } => { | 295 | 0 | MatchError::unsupported_anchored(mode) | 296 | | } | 297 | 603 | }) |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state_forward::{closure#0}Line | Count | Source | 286 | 232 | self.start_state(&config).map_err(|err| match err { | 287 | 208 | StartError::Quit { byte } => { | 288 | 208 | let offset = input | 289 | 208 | .start() | 290 | 208 | .checked_sub(1) | 291 | 208 | .expect("no quit in start without look-behind"); | 292 | 208 | MatchError::quit(byte, offset) | 293 | | } | 294 | 24 | StartError::UnsupportedAnchored { mode } => { | 295 | 24 | MatchError::unsupported_anchored(mode) | 296 | | } | 297 | 232 | }) |
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::start_state_forward::{closure#0}Line | Count | Source | 286 | 165 | self.start_state(&config).map_err(|err| match err { | 287 | 88 | StartError::Quit { byte } => { | 288 | 88 | let offset = input | 289 | 88 | .start() | 290 | 88 | .checked_sub(1) | 291 | 88 | .expect("no quit in start without look-behind"); | 292 | 88 | MatchError::quit(byte, offset) | 293 | | } | 294 | 77 | StartError::UnsupportedAnchored { mode } => { | 295 | 77 | MatchError::unsupported_anchored(mode) | 296 | | } | 297 | 165 | }) |
|
298 | 140k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state_forward Line | Count | Source | 281 | 109k | fn start_state_forward( | 282 | 109k | &self, | 283 | 109k | input: &Input<'_>, | 284 | 109k | ) -> Result<StateID, MatchError> { | 285 | 109k | let config = start::Config::from_input_forward(input); | 286 | 109k | self.start_state(&config).map_err(|err| match err { | 287 | | StartError::Quit { byte } => { | 288 | | let offset = input | 289 | | .start() | 290 | | .checked_sub(1) | 291 | | .expect("no quit in start without look-behind"); | 292 | | MatchError::quit(byte, offset) | 293 | | } | 294 | | StartError::UnsupportedAnchored { mode } => { | 295 | | MatchError::unsupported_anchored(mode) | 296 | | } | 297 | | }) | 298 | 109k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state_forward Line | Count | Source | 281 | 13.2k | fn start_state_forward( | 282 | 13.2k | &self, | 283 | 13.2k | input: &Input<'_>, | 284 | 13.2k | ) -> Result<StateID, MatchError> { | 285 | 13.2k | let config = start::Config::from_input_forward(input); | 286 | 13.2k | self.start_state(&config).map_err(|err| match err { | 287 | | StartError::Quit { byte } => { | 288 | | let offset = input | 289 | | .start() | 290 | | .checked_sub(1) | 291 | | .expect("no quit in start without look-behind"); | 292 | | MatchError::quit(byte, offset) | 293 | | } | 294 | | StartError::UnsupportedAnchored { mode } => { | 295 | | MatchError::unsupported_anchored(mode) | 296 | | } | 297 | | }) | 298 | 13.2k | } |
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::start_state_forward Line | Count | Source | 281 | 18.7k | fn start_state_forward( | 282 | 18.7k | &self, | 283 | 18.7k | input: &Input<'_>, | 284 | 18.7k | ) -> Result<StateID, MatchError> { | 285 | 18.7k | let config = start::Config::from_input_forward(input); | 286 | 18.7k | self.start_state(&config).map_err(|err| match err { | 287 | | StartError::Quit { byte } => { | 288 | | let offset = input | 289 | | .start() | 290 | | .checked_sub(1) | 291 | | .expect("no quit in start without look-behind"); | 292 | | MatchError::quit(byte, offset) | 293 | | } | 294 | | StartError::UnsupportedAnchored { mode } => { | 295 | | MatchError::unsupported_anchored(mode) | 296 | | } | 297 | | }) | 298 | 18.7k | } |
|
299 | | |
300 | | /// Return the ID of the start state for this DFA when executing a reverse |
301 | | /// search. |
302 | | /// |
303 | | /// This is a convenience routine for calling [`Automaton::start_state`] |
304 | | /// that converts the given [`Input`] to a [start |
305 | | /// configuration](start::Config). Additionally, if an error occurs, it is |
306 | | /// converted from a [`StartError`] to a [`MatchError`] using the offset |
307 | | /// information in the given [`Input`]. |
308 | | /// |
309 | | /// # Errors |
310 | | /// |
311 | | /// This may return a [`MatchError`] if the search needs to give up |
312 | | /// when determining the start state (for example, if it sees a "quit" |
313 | | /// byte). This can also return an error if the given `Input` contains an |
314 | | /// unsupported [`Anchored`] configuration. |
315 | 308k | fn start_state_reverse( |
316 | 308k | &self, |
317 | 308k | input: &Input<'_>, |
318 | 308k | ) -> Result<StateID, MatchError> { |
319 | 308k | let config = start::Config::from_input_reverse(input); |
320 | 308k | self.start_state(&config).map_err(|err| match err { |
321 | 718 | StartError::Quit { byte } => { |
322 | 718 | let offset = input.end(); |
323 | 718 | MatchError::quit(byte, offset) |
324 | | } |
325 | 0 | StartError::UnsupportedAnchored { mode } => { |
326 | 0 | MatchError::unsupported_anchored(mode) |
327 | | } |
328 | 718 | }) |
329 | 308k | } |
330 | | |
331 | | /// If this DFA has a universal starting state for the given anchor mode |
332 | | /// and the DFA supports universal starting states, then this returns that |
333 | | /// state's identifier. |
334 | | /// |
335 | | /// A DFA is said to have a universal starting state when the starting |
336 | | /// state is invariant with respect to the haystack. Usually, the starting |
337 | | /// state is chosen depending on the bytes immediately surrounding the |
338 | | /// starting position of a search. However, the starting state only differs |
339 | | /// when one or more of the patterns in the DFA have look-around assertions |
340 | | /// in its prefix. |
341 | | /// |
342 | | /// Stated differently, if none of the patterns in a DFA have look-around |
343 | | /// assertions in their prefix, then the DFA has a universal starting state |
344 | | /// and _may_ be returned by this method. |
345 | | /// |
346 | | /// It is always correct for implementations to return `None`, and indeed, |
347 | | /// this is what the default implementation does. When this returns `None`, |
348 | | /// callers must use either `start_state_forward` or `start_state_reverse` |
349 | | /// to get the starting state. |
350 | | /// |
351 | | /// # Use case |
352 | | /// |
353 | | /// There are a few reasons why one might want to use this: |
354 | | /// |
355 | | /// * If you know your regex patterns have no look-around assertions in |
356 | | /// their prefix, then calling this routine is likely cheaper and perhaps |
357 | | /// more semantically meaningful. |
358 | | /// * When implementing prefilter support in a DFA regex implementation, |
359 | | /// it is necessary to re-compute the start state after a candidate |
360 | | /// is returned from the prefilter. However, this is only needed when |
361 | | /// there isn't a universal start state. When one exists, one can avoid |
362 | | /// re-computing the start state. |
363 | | /// |
364 | | /// # Example |
365 | | /// |
366 | | /// ``` |
367 | | /// use regex_automata::{ |
368 | | /// dfa::{Automaton, dense::DFA}, |
369 | | /// Anchored, |
370 | | /// }; |
371 | | /// |
372 | | /// // There are no look-around assertions in the prefixes of any of the |
373 | | /// // patterns, so we get a universal start state. |
374 | | /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+$", "[A-Z]+"])?; |
375 | | /// assert!(dfa.universal_start_state(Anchored::No).is_some()); |
376 | | /// assert!(dfa.universal_start_state(Anchored::Yes).is_some()); |
377 | | /// |
378 | | /// // One of the patterns has a look-around assertion in its prefix, |
379 | | /// // so this means there is no longer a universal start state. |
380 | | /// let dfa = DFA::new_many(&["[0-9]+", "^[a-z]+$", "[A-Z]+"])?; |
381 | | /// assert!(!dfa.universal_start_state(Anchored::No).is_some()); |
382 | | /// assert!(!dfa.universal_start_state(Anchored::Yes).is_some()); |
383 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
384 | | /// ``` |
385 | | #[inline] |
386 | | fn universal_start_state(&self, _mode: Anchored) -> Option<StateID> { |
387 | | None |
388 | | } |
389 | | |
390 | | /// Returns true if and only if the given identifier corresponds to a |
391 | | /// "special" state. A special state is one or more of the following: |
392 | | /// a dead state, a quit state, a match state, a start state or an |
393 | | /// accelerated state. |
394 | | /// |
395 | | /// A correct implementation _may_ always return false for states that |
396 | | /// are either start states or accelerated states, since that information |
397 | | /// is only intended to be used for optimization purposes. Correct |
398 | | /// implementations must return true if the state is a dead, quit or match |
399 | | /// state. This is because search routines using this trait must be able |
400 | | /// to rely on `is_special_state` as an indicator that a state may need |
401 | | /// special treatment. (For example, when a search routine sees a dead |
402 | | /// state, it must terminate.) |
403 | | /// |
404 | | /// This routine permits search implementations to use a single branch to |
405 | | /// check whether a state needs special attention before executing the next |
406 | | /// transition. The example below shows how to do this. |
407 | | /// |
408 | | /// # Example |
409 | | /// |
410 | | /// This example shows how `is_special_state` can be used to implement a |
411 | | /// correct search routine with minimal branching. In particular, this |
412 | | /// search routine implements "leftmost" matching, which means that it |
413 | | /// doesn't immediately stop once a match is found. Instead, it continues |
414 | | /// until it reaches a dead state. |
415 | | /// |
416 | | /// ``` |
417 | | /// use regex_automata::{ |
418 | | /// dfa::{Automaton, dense}, |
419 | | /// HalfMatch, MatchError, Input, |
420 | | /// }; |
421 | | /// |
422 | | /// fn find<A: Automaton>( |
423 | | /// dfa: &A, |
424 | | /// haystack: &[u8], |
425 | | /// ) -> Result<Option<HalfMatch>, MatchError> { |
426 | | /// // The start state is determined by inspecting the position and the |
427 | | /// // initial bytes of the haystack. Note that start states can never |
428 | | /// // be match states (since DFAs in this crate delay matches by 1 |
429 | | /// // byte), so we don't need to check if the start state is a match. |
430 | | /// let mut state = dfa.start_state_forward(&Input::new(haystack))?; |
431 | | /// let mut last_match = None; |
432 | | /// // Walk all the bytes in the haystack. We can quit early if we see |
433 | | /// // a dead or a quit state. The former means the automaton will |
434 | | /// // never transition to any other state. The latter means that the |
435 | | /// // automaton entered a condition in which its search failed. |
436 | | /// for (i, &b) in haystack.iter().enumerate() { |
437 | | /// state = dfa.next_state(state, b); |
438 | | /// if dfa.is_special_state(state) { |
439 | | /// if dfa.is_match_state(state) { |
440 | | /// last_match = Some(HalfMatch::new( |
441 | | /// dfa.match_pattern(state, 0), |
442 | | /// i, |
443 | | /// )); |
444 | | /// } else if dfa.is_dead_state(state) { |
445 | | /// return Ok(last_match); |
446 | | /// } else if dfa.is_quit_state(state) { |
447 | | /// // It is possible to enter into a quit state after |
448 | | /// // observing a match has occurred. In that case, we |
449 | | /// // should return the match instead of an error. |
450 | | /// if last_match.is_some() { |
451 | | /// return Ok(last_match); |
452 | | /// } |
453 | | /// return Err(MatchError::quit(b, i)); |
454 | | /// } |
455 | | /// // Implementors may also want to check for start or accel |
456 | | /// // states and handle them differently for performance |
457 | | /// // reasons. But it is not necessary for correctness. |
458 | | /// } |
459 | | /// } |
460 | | /// // Matches are always delayed by 1 byte, so we must explicitly walk |
461 | | /// // the special "EOI" transition at the end of the search. |
462 | | /// state = dfa.next_eoi_state(state); |
463 | | /// if dfa.is_match_state(state) { |
464 | | /// last_match = Some(HalfMatch::new( |
465 | | /// dfa.match_pattern(state, 0), |
466 | | /// haystack.len(), |
467 | | /// )); |
468 | | /// } |
469 | | /// Ok(last_match) |
470 | | /// } |
471 | | /// |
472 | | /// // We use a greedy '+' operator to show how the search doesn't just |
473 | | /// // stop once a match is detected. It continues extending the match. |
474 | | /// // Using '[a-z]+?' would also work as expected and stop the search |
475 | | /// // early. Greediness is built into the automaton. |
476 | | /// let dfa = dense::DFA::new(r"[a-z]+")?; |
477 | | /// let haystack = "123 foobar 4567".as_bytes(); |
478 | | /// let mat = find(&dfa, haystack)?.unwrap(); |
479 | | /// assert_eq!(mat.pattern().as_usize(), 0); |
480 | | /// assert_eq!(mat.offset(), 10); |
481 | | /// |
482 | | /// // Here's another example that tests our handling of the special EOI |
483 | | /// // transition. This will fail to find a match if we don't call |
484 | | /// // 'next_eoi_state' at the end of the search since the match isn't |
485 | | /// // found until the final byte in the haystack. |
486 | | /// let dfa = dense::DFA::new(r"[0-9]{4}")?; |
487 | | /// let haystack = "123 foobar 4567".as_bytes(); |
488 | | /// let mat = find(&dfa, haystack)?.unwrap(); |
489 | | /// assert_eq!(mat.pattern().as_usize(), 0); |
490 | | /// assert_eq!(mat.offset(), 15); |
491 | | /// |
492 | | /// // And note that our search implementation above automatically works |
493 | | /// // with multi-DFAs. Namely, `dfa.match_pattern(match_state, 0)` selects |
494 | | /// // the appropriate pattern ID for us. |
495 | | /// let dfa = dense::DFA::new_many(&[r"[a-z]+", r"[0-9]+"])?; |
496 | | /// let haystack = "123 foobar 4567".as_bytes(); |
497 | | /// let mat = find(&dfa, haystack)?.unwrap(); |
498 | | /// assert_eq!(mat.pattern().as_usize(), 1); |
499 | | /// assert_eq!(mat.offset(), 3); |
500 | | /// let mat = find(&dfa, &haystack[3..])?.unwrap(); |
501 | | /// assert_eq!(mat.pattern().as_usize(), 0); |
502 | | /// assert_eq!(mat.offset(), 7); |
503 | | /// let mat = find(&dfa, &haystack[10..])?.unwrap(); |
504 | | /// assert_eq!(mat.pattern().as_usize(), 1); |
505 | | /// assert_eq!(mat.offset(), 5); |
506 | | /// |
507 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
508 | | /// ``` |
509 | | fn is_special_state(&self, id: StateID) -> bool; |
510 | | |
511 | | /// Returns true if and only if the given identifier corresponds to a dead |
512 | | /// state. When a DFA enters a dead state, it is impossible to leave. That |
513 | | /// is, every transition on a dead state by definition leads back to the |
514 | | /// same dead state. |
515 | | /// |
516 | | /// In practice, the dead state always corresponds to the identifier `0`. |
517 | | /// Moreover, in practice, there is only one dead state. |
518 | | /// |
519 | | /// The existence of a dead state is not strictly required in the classical |
520 | | /// model of finite state machines, where one generally only cares about |
521 | | /// the question of whether an input sequence matches or not. Dead states |
522 | | /// are not needed to answer that question, since one can immediately quit |
523 | | /// as soon as one enters a final or "match" state. However, we don't just |
524 | | /// care about matches but also care about the location of matches, and |
525 | | /// more specifically, care about semantics like "greedy" matching. |
526 | | /// |
527 | | /// For example, given the pattern `a+` and the input `aaaz`, the dead |
528 | | /// state won't be entered until the state machine reaches `z` in the |
529 | | /// input, at which point, the search routine can quit. But without the |
530 | | /// dead state, the search routine wouldn't know when to quit. In a |
531 | | /// classical representation, the search routine would stop after seeing |
532 | | /// the first `a` (which is when the search would enter a match state). But |
533 | | /// this wouldn't implement "greedy" matching where `a+` matches as many |
534 | | /// `a`'s as possible. |
535 | | /// |
536 | | /// # Example |
537 | | /// |
538 | | /// See the example for [`Automaton::is_special_state`] for how to use this |
539 | | /// method correctly. |
540 | | fn is_dead_state(&self, id: StateID) -> bool; |
541 | | |
542 | | /// Returns true if and only if the given identifier corresponds to a quit |
543 | | /// state. A quit state is like a dead state (it has no transitions other |
544 | | /// than to itself), except it indicates that the DFA failed to complete |
545 | | /// the search. When this occurs, callers can neither accept or reject that |
546 | | /// a match occurred. |
547 | | /// |
548 | | /// In practice, the quit state always corresponds to the state immediately |
549 | | /// following the dead state. (Which is not usually represented by `1`, |
550 | | /// since state identifiers are pre-multiplied by the state machine's |
551 | | /// alphabet stride, and the alphabet stride varies between DFAs.) |
552 | | /// |
553 | | /// The typical way in which a quit state can occur is when heuristic |
554 | | /// support for Unicode word boundaries is enabled via the |
555 | | /// [`dense::Config::unicode_word_boundary`](crate::dfa::dense::Config::unicode_word_boundary) |
556 | | /// option. But other options, like the lower level |
557 | | /// [`dense::Config::quit`](crate::dfa::dense::Config::quit) |
558 | | /// configuration, can also result in a quit state being entered. The |
559 | | /// purpose of the quit state is to provide a way to execute a fast DFA |
560 | | /// in common cases while delegating to slower routines when the DFA quits. |
561 | | /// |
562 | | /// The default search implementations provided by this crate will return a |
563 | | /// [`MatchError::quit`] error when a quit state is entered. |
564 | | /// |
565 | | /// # Example |
566 | | /// |
567 | | /// See the example for [`Automaton::is_special_state`] for how to use this |
568 | | /// method correctly. |
569 | | fn is_quit_state(&self, id: StateID) -> bool; |
570 | | |
571 | | /// Returns true if and only if the given identifier corresponds to a |
572 | | /// match state. A match state is also referred to as a "final" state and |
573 | | /// indicates that a match has been found. |
574 | | /// |
575 | | /// If all you care about is whether a particular pattern matches in the |
576 | | /// input sequence, then a search routine can quit early as soon as the |
577 | | /// machine enters a match state. However, if you're looking for the |
578 | | /// standard "leftmost-first" match location, then search _must_ continue |
579 | | /// until either the end of the input or until the machine enters a dead |
580 | | /// state. (Since either condition implies that no other useful work can |
581 | | /// be done.) Namely, when looking for the location of a match, then |
582 | | /// search implementations should record the most recent location in |
583 | | /// which a match state was entered, but otherwise continue executing the |
584 | | /// search as normal. (The search may even leave the match state.) Once |
585 | | /// the termination condition is reached, the most recently recorded match |
586 | | /// location should be returned. |
587 | | /// |
588 | | /// Finally, one additional power given to match states in this crate |
589 | | /// is that they are always associated with a specific pattern in order |
590 | | /// to support multi-DFAs. See [`Automaton::match_pattern`] for more |
591 | | /// details and an example for how to query the pattern associated with a |
592 | | /// particular match state. |
593 | | /// |
594 | | /// # Example |
595 | | /// |
596 | | /// See the example for [`Automaton::is_special_state`] for how to use this |
597 | | /// method correctly. |
598 | | fn is_match_state(&self, id: StateID) -> bool; |
599 | | |
600 | | /// Returns true only if the given identifier corresponds to a start |
601 | | /// state |
602 | | /// |
603 | | /// A start state is a state in which a DFA begins a search. |
604 | | /// All searches begin in a start state. Moreover, since all matches are |
605 | | /// delayed by one byte, a start state can never be a match state. |
606 | | /// |
607 | | /// The main role of a start state is, as mentioned, to be a starting |
608 | | /// point for a DFA. This starting point is determined via one of |
609 | | /// [`Automaton::start_state_forward`] or |
610 | | /// [`Automaton::start_state_reverse`], depending on whether one is doing |
611 | | /// a forward or a reverse search, respectively. |
612 | | /// |
613 | | /// A secondary use of start states is for prefix acceleration. Namely, |
614 | | /// while executing a search, if one detects that you're in a start state, |
615 | | /// then it may be faster to look for the next match of a prefix of the |
616 | | /// pattern, if one exists. If a prefix exists and since all matches must |
617 | | /// begin with that prefix, then skipping ahead to occurrences of that |
618 | | /// prefix may be much faster than executing the DFA. |
619 | | /// |
620 | | /// As mentioned in the documentation for |
621 | | /// [`is_special_state`](Automaton::is_special_state) implementations |
622 | | /// _may_ always return false, even if the given identifier is a start |
623 | | /// state. This is because knowing whether a state is a start state or not |
624 | | /// is not necessary for correctness and is only treated as a potential |
625 | | /// performance optimization. (For example, the implementations of this |
626 | | /// trait in this crate will only return true when the given identifier |
627 | | /// corresponds to a start state and when [specialization of start |
628 | | /// states](crate::dfa::dense::Config::specialize_start_states) was enabled |
629 | | /// during DFA construction. If start state specialization is disabled |
630 | | /// (which is the default), then this method will always return false.) |
631 | | /// |
632 | | /// # Example |
633 | | /// |
634 | | /// This example shows how to implement your own search routine that does |
635 | | /// a prefix search whenever the search enters a start state. |
636 | | /// |
637 | | /// Note that you do not need to implement your own search routine |
638 | | /// to make use of prefilters like this. The search routines |
639 | | /// provided by this crate already implement prefilter support via |
640 | | /// the [`Prefilter`](crate::util::prefilter::Prefilter) trait. |
641 | | /// A prefilter can be added to your search configuration with |
642 | | /// [`dense::Config::prefilter`](crate::dfa::dense::Config::prefilter) for |
643 | | /// dense and sparse DFAs in this crate. |
644 | | /// |
645 | | /// This example is meant to show how you might deal with prefilters in a |
646 | | /// simplified case if you are implementing your own search routine. |
647 | | /// |
648 | | /// ``` |
649 | | /// use regex_automata::{ |
650 | | /// dfa::{Automaton, dense}, |
651 | | /// HalfMatch, MatchError, Input, |
652 | | /// }; |
653 | | /// |
654 | | /// fn find_byte(slice: &[u8], at: usize, byte: u8) -> Option<usize> { |
655 | | /// // Would be faster to use the memchr crate, but this is still |
656 | | /// // faster than running through the DFA. |
657 | | /// slice[at..].iter().position(|&b| b == byte).map(|i| at + i) |
658 | | /// } |
659 | | /// |
660 | | /// fn find<A: Automaton>( |
661 | | /// dfa: &A, |
662 | | /// haystack: &[u8], |
663 | | /// prefix_byte: Option<u8>, |
664 | | /// ) -> Result<Option<HalfMatch>, MatchError> { |
665 | | /// // See the Automaton::is_special_state example for similar code |
666 | | /// // with more comments. |
667 | | /// |
668 | | /// let mut state = dfa.start_state_forward(&Input::new(haystack))?; |
669 | | /// let mut last_match = None; |
670 | | /// let mut pos = 0; |
671 | | /// while pos < haystack.len() { |
672 | | /// let b = haystack[pos]; |
673 | | /// state = dfa.next_state(state, b); |
674 | | /// pos += 1; |
675 | | /// if dfa.is_special_state(state) { |
676 | | /// if dfa.is_match_state(state) { |
677 | | /// last_match = Some(HalfMatch::new( |
678 | | /// dfa.match_pattern(state, 0), |
679 | | /// pos - 1, |
680 | | /// )); |
681 | | /// } else if dfa.is_dead_state(state) { |
682 | | /// return Ok(last_match); |
683 | | /// } else if dfa.is_quit_state(state) { |
684 | | /// // It is possible to enter into a quit state after |
685 | | /// // observing a match has occurred. In that case, we |
686 | | /// // should return the match instead of an error. |
687 | | /// if last_match.is_some() { |
688 | | /// return Ok(last_match); |
689 | | /// } |
690 | | /// return Err(MatchError::quit(b, pos - 1)); |
691 | | /// } else if dfa.is_start_state(state) { |
692 | | /// // If we're in a start state and know all matches begin |
693 | | /// // with a particular byte, then we can quickly skip to |
694 | | /// // candidate matches without running the DFA through |
695 | | /// // every byte inbetween. |
696 | | /// if let Some(prefix_byte) = prefix_byte { |
697 | | /// pos = match find_byte(haystack, pos, prefix_byte) { |
698 | | /// Some(pos) => pos, |
699 | | /// None => break, |
700 | | /// }; |
701 | | /// } |
702 | | /// } |
703 | | /// } |
704 | | /// } |
705 | | /// // Matches are always delayed by 1 byte, so we must explicitly walk |
706 | | /// // the special "EOI" transition at the end of the search. |
707 | | /// state = dfa.next_eoi_state(state); |
708 | | /// if dfa.is_match_state(state) { |
709 | | /// last_match = Some(HalfMatch::new( |
710 | | /// dfa.match_pattern(state, 0), |
711 | | /// haystack.len(), |
712 | | /// )); |
713 | | /// } |
714 | | /// Ok(last_match) |
715 | | /// } |
716 | | /// |
717 | | /// // In this example, it's obvious that all occurrences of our pattern |
718 | | /// // begin with 'Z', so we pass in 'Z'. Note also that we need to |
719 | | /// // enable start state specialization, or else it won't be possible to |
720 | | /// // detect start states during a search. ('is_start_state' would always |
721 | | /// // return false.) |
722 | | /// let dfa = dense::DFA::builder() |
723 | | /// .configure(dense::DFA::config().specialize_start_states(true)) |
724 | | /// .build(r"Z[a-z]+")?; |
725 | | /// let haystack = "123 foobar Zbaz quux".as_bytes(); |
726 | | /// let mat = find(&dfa, haystack, Some(b'Z'))?.unwrap(); |
727 | | /// assert_eq!(mat.pattern().as_usize(), 0); |
728 | | /// assert_eq!(mat.offset(), 15); |
729 | | /// |
730 | | /// // But note that we don't need to pass in a prefix byte. If we don't, |
731 | | /// // then the search routine does no acceleration. |
732 | | /// let mat = find(&dfa, haystack, None)?.unwrap(); |
733 | | /// assert_eq!(mat.pattern().as_usize(), 0); |
734 | | /// assert_eq!(mat.offset(), 15); |
735 | | /// |
736 | | /// // However, if we pass an incorrect byte, then the prefix search will |
737 | | /// // result in incorrect results. |
738 | | /// assert_eq!(find(&dfa, haystack, Some(b'X'))?, None); |
739 | | /// |
740 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
741 | | /// ``` |
742 | | fn is_start_state(&self, id: StateID) -> bool; |
743 | | |
744 | | /// Returns true if and only if the given identifier corresponds to an |
745 | | /// accelerated state. |
746 | | /// |
747 | | /// An accelerated state is a special optimization |
748 | | /// trick implemented by this crate. Namely, if |
749 | | /// [`dense::Config::accelerate`](crate::dfa::dense::Config::accelerate) is |
750 | | /// enabled (and it is by default), then DFAs generated by this crate will |
751 | | /// tag states meeting certain characteristics as accelerated. States meet |
752 | | /// this criteria whenever most of their transitions are self-transitions. |
753 | | /// That is, transitions that loop back to the same state. When a small |
754 | | /// number of transitions aren't self-transitions, then it follows that |
755 | | /// there are only a small number of bytes that can cause the DFA to leave |
756 | | /// that state. Thus, there is an opportunity to look for those bytes |
757 | | /// using more optimized routines rather than continuing to run through |
758 | | /// the DFA. This trick is similar to the prefilter idea described in |
759 | | /// the documentation of [`Automaton::is_start_state`] with two main |
760 | | /// differences: |
761 | | /// |
762 | | /// 1. It is more limited since acceleration only applies to single bytes. |
763 | | /// This means states are rarely accelerated when Unicode mode is enabled |
764 | | /// (which is enabled by default). |
765 | | /// 2. It can occur anywhere in the DFA, which increases optimization |
766 | | /// opportunities. |
767 | | /// |
768 | | /// Like the prefilter idea, the main downside (and a possible reason to |
769 | | /// disable it) is that it can lead to worse performance in some cases. |
770 | | /// Namely, if a state is accelerated for very common bytes, then the |
771 | | /// overhead of checking for acceleration and using the more optimized |
772 | | /// routines to look for those bytes can cause overall performance to be |
773 | | /// worse than if acceleration wasn't enabled at all. |
774 | | /// |
775 | | /// A simple example of a regex that has an accelerated state is |
776 | | /// `(?-u)[^a]+a`. Namely, the `[^a]+` sub-expression gets compiled down |
777 | | /// into a single state where all transitions except for `a` loop back to |
778 | | /// itself, and where `a` is the only transition (other than the special |
779 | | /// EOI transition) that goes to some other state. Thus, this state can |
780 | | /// be accelerated and implemented more efficiently by calling an |
781 | | /// optimized routine like `memchr` with `a` as the needle. Notice that |
782 | | /// the `(?-u)` to disable Unicode is necessary here, as without it, |
783 | | /// `[^a]` will match any UTF-8 encoding of any Unicode scalar value other |
784 | | /// than `a`. This more complicated expression compiles down to many DFA |
785 | | /// states and the simple acceleration optimization is no longer available. |
786 | | /// |
787 | | /// Typically, this routine is used to guard calls to |
788 | | /// [`Automaton::accelerator`], which returns the accelerated bytes for |
789 | | /// the specified state. |
790 | | fn is_accel_state(&self, id: StateID) -> bool; |
791 | | |
792 | | /// Returns the total number of patterns compiled into this DFA. |
793 | | /// |
794 | | /// In the case of a DFA that contains no patterns, this must return `0`. |
795 | | /// |
796 | | /// # Example |
797 | | /// |
798 | | /// This example shows the pattern length for a DFA that never matches: |
799 | | /// |
800 | | /// ``` |
801 | | /// use regex_automata::dfa::{Automaton, dense::DFA}; |
802 | | /// |
803 | | /// let dfa: DFA<Vec<u32>> = DFA::never_match()?; |
804 | | /// assert_eq!(dfa.pattern_len(), 0); |
805 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
806 | | /// ``` |
807 | | /// |
808 | | /// And another example for a DFA that matches at every position: |
809 | | /// |
810 | | /// ``` |
811 | | /// use regex_automata::dfa::{Automaton, dense::DFA}; |
812 | | /// |
813 | | /// let dfa: DFA<Vec<u32>> = DFA::always_match()?; |
814 | | /// assert_eq!(dfa.pattern_len(), 1); |
815 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
816 | | /// ``` |
817 | | /// |
818 | | /// And finally, a DFA that was constructed from multiple patterns: |
819 | | /// |
820 | | /// ``` |
821 | | /// use regex_automata::dfa::{Automaton, dense::DFA}; |
822 | | /// |
823 | | /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?; |
824 | | /// assert_eq!(dfa.pattern_len(), 3); |
825 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
826 | | /// ``` |
827 | | fn pattern_len(&self) -> usize; |
828 | | |
829 | | /// Returns the total number of patterns that match in this state. |
830 | | /// |
831 | | /// If the given state is not a match state, then implementations may |
832 | | /// panic. |
833 | | /// |
834 | | /// If the DFA was compiled with one pattern, then this must necessarily |
835 | | /// always return `1` for all match states. |
836 | | /// |
837 | | /// Implementations must guarantee that [`Automaton::match_pattern`] can be |
838 | | /// called with indices up to (but not including) the length returned by |
839 | | /// this routine without panicking. |
840 | | /// |
841 | | /// # Panics |
842 | | /// |
843 | | /// Implementations are permitted to panic if the provided state ID does |
844 | | /// not correspond to a match state. |
845 | | /// |
846 | | /// # Example |
847 | | /// |
848 | | /// This example shows a simple instance of implementing overlapping |
849 | | /// matches. In particular, it shows not only how to determine how many |
850 | | /// patterns have matched in a particular state, but also how to access |
851 | | /// which specific patterns have matched. |
852 | | /// |
853 | | /// Notice that we must use |
854 | | /// [`MatchKind::All`](crate::MatchKind::All) |
855 | | /// when building the DFA. If we used |
856 | | /// [`MatchKind::LeftmostFirst`](crate::MatchKind::LeftmostFirst) |
857 | | /// instead, then the DFA would not be constructed in a way that |
858 | | /// supports overlapping matches. (It would only report a single pattern |
859 | | /// that matches at any particular point in time.) |
860 | | /// |
861 | | /// Another thing to take note of is the patterns used and the order in |
862 | | /// which the pattern IDs are reported. In the example below, pattern `3` |
863 | | /// is yielded first. Why? Because it corresponds to the match that |
864 | | /// appears first. Namely, the `@` symbol is part of `\S+` but not part |
865 | | /// of any of the other patterns. Since the `\S+` pattern has a match that |
866 | | /// starts to the left of any other pattern, its ID is returned before any |
867 | | /// other. |
868 | | /// |
869 | | /// ``` |
870 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
871 | | /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchKind}; |
872 | | /// |
873 | | /// let dfa = dense::Builder::new() |
874 | | /// .configure(dense::Config::new().match_kind(MatchKind::All)) |
875 | | /// .build_many(&[ |
876 | | /// r"[[:word:]]+", r"[a-z]+", r"[A-Z]+", r"[[:^space:]]+", |
877 | | /// ])?; |
878 | | /// let haystack = "@bar".as_bytes(); |
879 | | /// |
880 | | /// // The start state is determined by inspecting the position and the |
881 | | /// // initial bytes of the haystack. |
882 | | /// let mut state = dfa.start_state_forward(&Input::new(haystack))?; |
883 | | /// // Walk all the bytes in the haystack. |
884 | | /// for &b in haystack { |
885 | | /// state = dfa.next_state(state, b); |
886 | | /// } |
887 | | /// state = dfa.next_eoi_state(state); |
888 | | /// |
889 | | /// assert!(dfa.is_match_state(state)); |
890 | | /// assert_eq!(dfa.match_len(state), 3); |
891 | | /// // The following calls are guaranteed to not panic since `match_len` |
892 | | /// // returned `3` above. |
893 | | /// assert_eq!(dfa.match_pattern(state, 0).as_usize(), 3); |
894 | | /// assert_eq!(dfa.match_pattern(state, 1).as_usize(), 0); |
895 | | /// assert_eq!(dfa.match_pattern(state, 2).as_usize(), 1); |
896 | | /// |
897 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
898 | | /// ``` |
899 | | fn match_len(&self, id: StateID) -> usize; |
900 | | |
901 | | /// Returns the pattern ID corresponding to the given match index in the |
902 | | /// given state. |
903 | | /// |
904 | | /// See [`Automaton::match_len`] for an example of how to use this |
905 | | /// method correctly. Note that if you know your DFA is compiled with a |
906 | | /// single pattern, then this routine is never necessary since it will |
907 | | /// always return a pattern ID of `0` for an index of `0` when `id` |
908 | | /// corresponds to a match state. |
909 | | /// |
910 | | /// Typically, this routine is used when implementing an overlapping |
911 | | /// search, as the example for `Automaton::match_len` does. |
912 | | /// |
913 | | /// # Panics |
914 | | /// |
915 | | /// If the state ID is not a match state or if the match index is out |
916 | | /// of bounds for the given state, then this routine may either panic |
917 | | /// or produce an incorrect result. If the state ID is correct and the |
918 | | /// match index is correct, then this routine must always produce a valid |
919 | | /// `PatternID`. |
920 | | fn match_pattern(&self, id: StateID, index: usize) -> PatternID; |
921 | | |
922 | | /// Returns true if and only if this automaton can match the empty string. |
923 | | /// When it returns false, all possible matches are guaranteed to have a |
924 | | /// non-zero length. |
925 | | /// |
926 | | /// This is useful as cheap way to know whether code needs to handle the |
927 | | /// case of a zero length match. This is particularly important when UTF-8 |
928 | | /// modes are enabled, as when UTF-8 mode is enabled, empty matches that |
929 | | /// split a codepoint must never be reported. This extra handling can |
930 | | /// sometimes be costly, and since regexes matching an empty string are |
931 | | /// somewhat rare, it can be beneficial to treat such regexes specially. |
932 | | /// |
933 | | /// # Example |
934 | | /// |
935 | | /// This example shows a few different DFAs and whether they match the |
936 | | /// empty string or not. Notice the empty string isn't merely a matter |
937 | | /// of a string of length literally `0`, but rather, whether a match can |
938 | | /// occur between specific pairs of bytes. |
939 | | /// |
940 | | /// ``` |
941 | | /// use regex_automata::{dfa::{dense::DFA, Automaton}, util::syntax}; |
942 | | /// |
943 | | /// // The empty regex matches the empty string. |
944 | | /// let dfa = DFA::new("")?; |
945 | | /// assert!(dfa.has_empty(), "empty matches empty"); |
946 | | /// // The '+' repetition operator requires at least one match, and so |
947 | | /// // does not match the empty string. |
948 | | /// let dfa = DFA::new("a+")?; |
949 | | /// assert!(!dfa.has_empty(), "+ does not match empty"); |
950 | | /// // But the '*' repetition operator does. |
951 | | /// let dfa = DFA::new("a*")?; |
952 | | /// assert!(dfa.has_empty(), "* does match empty"); |
953 | | /// // And wrapping '+' in an operator that can match an empty string also |
954 | | /// // causes it to match the empty string too. |
955 | | /// let dfa = DFA::new("(a+)*")?; |
956 | | /// assert!(dfa.has_empty(), "+ inside of * matches empty"); |
957 | | /// |
958 | | /// // If a regex is just made of a look-around assertion, even if the |
959 | | /// // assertion requires some kind of non-empty string around it (such as |
960 | | /// // \b), then it is still treated as if it matches the empty string. |
961 | | /// // Namely, if a match occurs of just a look-around assertion, then the |
962 | | /// // match returned is empty. |
963 | | /// let dfa = DFA::builder() |
964 | | /// .configure(DFA::config().unicode_word_boundary(true)) |
965 | | /// .syntax(syntax::Config::new().utf8(false)) |
966 | | /// .build(r"^$\A\z\b\B(?-u:\b\B)")?; |
967 | | /// assert!(dfa.has_empty(), "assertions match empty"); |
968 | | /// // Even when an assertion is wrapped in a '+', it still matches the |
969 | | /// // empty string. |
970 | | /// let dfa = DFA::new(r"^+")?; |
971 | | /// assert!(dfa.has_empty(), "+ of an assertion matches empty"); |
972 | | /// |
973 | | /// // An alternation with even one branch that can match the empty string |
974 | | /// // is also said to match the empty string overall. |
975 | | /// let dfa = DFA::new("foo|(bar)?|quux")?; |
976 | | /// assert!(dfa.has_empty(), "alternations can match empty"); |
977 | | /// |
978 | | /// // An NFA that matches nothing does not match the empty string. |
979 | | /// let dfa = DFA::new("[a&&b]")?; |
980 | | /// assert!(!dfa.has_empty(), "never matching means not matching empty"); |
981 | | /// // But if it's wrapped in something that doesn't require a match at |
982 | | /// // all, then it can match the empty string! |
983 | | /// let dfa = DFA::new("[a&&b]*")?; |
984 | | /// assert!(dfa.has_empty(), "* on never-match still matches empty"); |
985 | | /// // Since a '+' requires a match, using it on something that can never |
986 | | /// // match will itself produce a regex that can never match anything, |
987 | | /// // and thus does not match the empty string. |
988 | | /// let dfa = DFA::new("[a&&b]+")?; |
989 | | /// assert!(!dfa.has_empty(), "+ on never-match still matches nothing"); |
990 | | /// |
991 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
992 | | /// ``` |
993 | | fn has_empty(&self) -> bool; |
994 | | |
995 | | /// Whether UTF-8 mode is enabled for this DFA or not. |
996 | | /// |
997 | | /// When UTF-8 mode is enabled, all matches reported by a DFA are |
998 | | /// guaranteed to correspond to spans of valid UTF-8. This includes |
999 | | /// zero-width matches. For example, the DFA must guarantee that the empty |
1000 | | /// regex will not match at the positions between code units in the UTF-8 |
1001 | | /// encoding of a single codepoint. |
1002 | | /// |
1003 | | /// See [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) for |
1004 | | /// more information. |
1005 | | /// |
1006 | | /// # Example |
1007 | | /// |
1008 | | /// This example shows how UTF-8 mode can impact the match spans that may |
1009 | | /// be reported in certain cases. |
1010 | | /// |
1011 | | /// ``` |
1012 | | /// use regex_automata::{ |
1013 | | /// dfa::{dense::DFA, Automaton}, |
1014 | | /// nfa::thompson, |
1015 | | /// HalfMatch, Input, |
1016 | | /// }; |
1017 | | /// |
1018 | | /// // UTF-8 mode is enabled by default. |
1019 | | /// let re = DFA::new("")?; |
1020 | | /// assert!(re.is_utf8()); |
1021 | | /// let mut input = Input::new("☃"); |
1022 | | /// let got = re.try_search_fwd(&input)?; |
1023 | | /// assert_eq!(Some(HalfMatch::must(0, 0)), got); |
1024 | | /// |
1025 | | /// // Even though an empty regex matches at 1..1, our next match is |
1026 | | /// // 3..3 because 1..1 and 2..2 split the snowman codepoint (which is |
1027 | | /// // three bytes long). |
1028 | | /// input.set_start(1); |
1029 | | /// let got = re.try_search_fwd(&input)?; |
1030 | | /// assert_eq!(Some(HalfMatch::must(0, 3)), got); |
1031 | | /// |
1032 | | /// // But if we disable UTF-8, then we'll get matches at 1..1 and 2..2: |
1033 | | /// let re = DFA::builder() |
1034 | | /// .thompson(thompson::Config::new().utf8(false)) |
1035 | | /// .build("")?; |
1036 | | /// assert!(!re.is_utf8()); |
1037 | | /// let got = re.try_search_fwd(&input)?; |
1038 | | /// assert_eq!(Some(HalfMatch::must(0, 1)), got); |
1039 | | /// |
1040 | | /// input.set_start(2); |
1041 | | /// let got = re.try_search_fwd(&input)?; |
1042 | | /// assert_eq!(Some(HalfMatch::must(0, 2)), got); |
1043 | | /// |
1044 | | /// input.set_start(3); |
1045 | | /// let got = re.try_search_fwd(&input)?; |
1046 | | /// assert_eq!(Some(HalfMatch::must(0, 3)), got); |
1047 | | /// |
1048 | | /// input.set_start(4); |
1049 | | /// let got = re.try_search_fwd(&input)?; |
1050 | | /// assert_eq!(None, got); |
1051 | | /// |
1052 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1053 | | /// ``` |
1054 | | fn is_utf8(&self) -> bool; |
1055 | | |
1056 | | /// Returns true if and only if this DFA is limited to returning matches |
1057 | | /// whose start position is `0`. |
1058 | | /// |
1059 | | /// Note that if you're using DFAs provided by |
1060 | | /// this crate, then this is _orthogonal_ to |
1061 | | /// [`Config::start_kind`](crate::dfa::dense::Config::start_kind). |
1062 | | /// |
1063 | | /// This is useful in some cases because if a DFA is limited to producing |
1064 | | /// matches that start at offset `0`, then a reverse search is never |
1065 | | /// required for finding the start of a match. |
1066 | | /// |
1067 | | /// # Example |
1068 | | /// |
1069 | | /// ``` |
1070 | | /// use regex_automata::dfa::{dense::DFA, Automaton}; |
1071 | | /// |
1072 | | /// // The empty regex matches anywhere |
1073 | | /// let dfa = DFA::new("")?; |
1074 | | /// assert!(!dfa.is_always_start_anchored(), "empty matches anywhere"); |
1075 | | /// // 'a' matches anywhere. |
1076 | | /// let dfa = DFA::new("a")?; |
1077 | | /// assert!(!dfa.is_always_start_anchored(), "'a' matches anywhere"); |
1078 | | /// // '^' only matches at offset 0! |
1079 | | /// let dfa = DFA::new("^a")?; |
1080 | | /// assert!(dfa.is_always_start_anchored(), "'^a' matches only at 0"); |
1081 | | /// // But '(?m:^)' matches at 0 but at other offsets too. |
1082 | | /// let dfa = DFA::new("(?m:^)a")?; |
1083 | | /// assert!(!dfa.is_always_start_anchored(), "'(?m:^)a' matches anywhere"); |
1084 | | /// |
1085 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1086 | | /// ``` |
1087 | | fn is_always_start_anchored(&self) -> bool; |
1088 | | |
1089 | | /// Return a slice of bytes to accelerate for the given state, if possible. |
1090 | | /// |
1091 | | /// If the given state has no accelerator, then an empty slice must be |
1092 | | /// returned. If `Automaton::is_accel_state` returns true for the given ID, |
1093 | | /// then this routine _must_ return a non-empty slice. But note that it is |
1094 | | /// not required for an implementation of this trait to ever return `true` |
1095 | | /// for `is_accel_state`, even if the state _could_ be accelerated. That |
1096 | | /// is, acceleration is an optional optimization. But the return values of |
1097 | | /// `is_accel_state` and `accelerator` must be in sync. |
1098 | | /// |
1099 | | /// If the given ID is not a valid state ID for this automaton, then |
1100 | | /// implementations may panic or produce incorrect results. |
1101 | | /// |
1102 | | /// See [`Automaton::is_accel_state`] for more details on state |
1103 | | /// acceleration. |
1104 | | /// |
1105 | | /// By default, this method will always return an empty slice. |
1106 | | /// |
1107 | | /// # Example |
1108 | | /// |
1109 | | /// This example shows a contrived case in which we build a regex that we |
1110 | | /// know is accelerated and extract the accelerator from a state. |
1111 | | /// |
1112 | | /// ``` |
1113 | | /// use regex_automata::{ |
1114 | | /// dfa::{Automaton, dense}, |
1115 | | /// util::{primitives::StateID, syntax}, |
1116 | | /// }; |
1117 | | /// |
1118 | | /// let dfa = dense::Builder::new() |
1119 | | /// // We disable Unicode everywhere and permit the regex to match |
1120 | | /// // invalid UTF-8. e.g., [^abc] matches \xFF, which is not valid |
1121 | | /// // UTF-8. If we left Unicode enabled, [^abc] would match any UTF-8 |
1122 | | /// // encoding of any Unicode scalar value except for 'a', 'b' or 'c'. |
1123 | | /// // That translates to a much more complicated DFA, and also |
1124 | | /// // inhibits the 'accelerator' optimization that we are trying to |
1125 | | /// // demonstrate in this example. |
1126 | | /// .syntax(syntax::Config::new().unicode(false).utf8(false)) |
1127 | | /// .build("[^abc]+a")?; |
1128 | | /// |
1129 | | /// // Here we just pluck out the state that we know is accelerated. |
1130 | | /// // While the stride calculations are something that can be relied |
1131 | | /// // on by callers, the specific position of the accelerated state is |
1132 | | /// // implementation defined. |
1133 | | /// // |
1134 | | /// // N.B. We get '3' by inspecting the state machine using 'regex-cli'. |
1135 | | /// // e.g., try `regex-cli debug dense dfa -p '[^abc]+a' -BbUC`. |
1136 | | /// let id = StateID::new(3 * dfa.stride()).unwrap(); |
1137 | | /// let accelerator = dfa.accelerator(id); |
1138 | | /// // The `[^abc]+` sub-expression permits [a, b, c] to be accelerated. |
1139 | | /// assert_eq!(accelerator, &[b'a', b'b', b'c']); |
1140 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1141 | | /// ``` |
1142 | | #[inline] |
1143 | | fn accelerator(&self, _id: StateID) -> &[u8] { |
1144 | | &[] |
1145 | | } |
1146 | | |
1147 | | /// Returns the prefilter associated with a DFA, if one exists. |
1148 | | /// |
1149 | | /// The default implementation of this trait always returns `None`. And |
1150 | | /// indeed, it is always correct to return `None`. |
1151 | | /// |
1152 | | /// For DFAs in this crate, a prefilter can be attached to a DFA via |
1153 | | /// [`dense::Config::prefilter`](crate::dfa::dense::Config::prefilter). |
1154 | | /// |
1155 | | /// Do note that prefilters are not serialized by DFAs in this crate. |
1156 | | /// So if you deserialize a DFA that had a prefilter attached to it |
1157 | | /// at serialization time, then it will not have a prefilter after |
1158 | | /// deserialization. |
1159 | | #[inline] |
1160 | | fn get_prefilter(&self) -> Option<&Prefilter> { |
1161 | | None |
1162 | | } |
1163 | | |
1164 | | /// Executes a forward search and returns the end position of the leftmost |
1165 | | /// match that is found. If no match exists, then `None` is returned. |
1166 | | /// |
1167 | | /// In particular, this method continues searching even after it enters |
1168 | | /// a match state. The search only terminates once it has reached the |
1169 | | /// end of the input or when it has entered a dead or quit state. Upon |
1170 | | /// termination, the position of the last byte seen while still in a match |
1171 | | /// state is returned. |
1172 | | /// |
1173 | | /// # Errors |
1174 | | /// |
1175 | | /// This routine errors if the search could not complete. This can occur |
1176 | | /// in a number of circumstances: |
1177 | | /// |
1178 | | /// * The configuration of the DFA may permit it to "quit" the search. |
1179 | | /// For example, setting quit bytes or enabling heuristic support for |
1180 | | /// Unicode word boundaries. The default configuration does not enable any |
1181 | | /// option that could result in the DFA quitting. |
1182 | | /// * When the provided `Input` configuration is not supported. For |
1183 | | /// example, by providing an unsupported anchor mode. |
1184 | | /// |
1185 | | /// When a search returns an error, callers cannot know whether a match |
1186 | | /// exists or not. |
1187 | | /// |
1188 | | /// # Notes for implementors |
1189 | | /// |
1190 | | /// Implementors of this trait are not required to implement any particular |
1191 | | /// match semantics (such as leftmost-first), which are instead manifest in |
1192 | | /// the DFA's transitions. But this search routine should behave as a |
1193 | | /// general "leftmost" search. |
1194 | | /// |
1195 | | /// In particular, this method must continue searching even after it enters |
1196 | | /// a match state. The search should only terminate once it has reached |
1197 | | /// the end of the input or when it has entered a dead or quit state. Upon |
1198 | | /// termination, the position of the last byte seen while still in a match |
1199 | | /// state is returned. |
1200 | | /// |
1201 | | /// Since this trait provides an implementation for this method by default, |
1202 | | /// it's unlikely that one will need to implement this. |
1203 | | /// |
1204 | | /// # Example |
1205 | | /// |
1206 | | /// This example shows how to use this method with a |
1207 | | /// [`dense::DFA`](crate::dfa::dense::DFA). |
1208 | | /// |
1209 | | /// ``` |
1210 | | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
1211 | | /// |
1212 | | /// let dfa = dense::DFA::new("foo[0-9]+")?; |
1213 | | /// let expected = Some(HalfMatch::must(0, 8)); |
1214 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(b"foo12345"))?); |
1215 | | /// |
1216 | | /// // Even though a match is found after reading the first byte (`a`), |
1217 | | /// // the leftmost first match semantics demand that we find the earliest |
1218 | | /// // match that prefers earlier parts of the pattern over latter parts. |
1219 | | /// let dfa = dense::DFA::new("abc|a")?; |
1220 | | /// let expected = Some(HalfMatch::must(0, 3)); |
1221 | | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(b"abc"))?); |
1222 | | /// |
1223 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1224 | | /// ``` |
1225 | | /// |
1226 | | /// # Example: specific pattern search |
1227 | | /// |
1228 | | /// This example shows how to build a multi-DFA that permits searching for |
1229 | | /// specific patterns. |
1230 | | /// |
1231 | | /// ``` |
1232 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1233 | | /// use regex_automata::{ |
1234 | | /// dfa::{Automaton, dense}, |
1235 | | /// Anchored, HalfMatch, PatternID, Input, |
1236 | | /// }; |
1237 | | /// |
1238 | | /// let dfa = dense::Builder::new() |
1239 | | /// .configure(dense::Config::new().starts_for_each_pattern(true)) |
1240 | | /// .build_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?; |
1241 | | /// let haystack = "foo123".as_bytes(); |
1242 | | /// |
1243 | | /// // Since we are using the default leftmost-first match and both |
1244 | | /// // patterns match at the same starting position, only the first pattern |
1245 | | /// // will be returned in this case when doing a search for any of the |
1246 | | /// // patterns. |
1247 | | /// let expected = Some(HalfMatch::must(0, 6)); |
1248 | | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
1249 | | /// assert_eq!(expected, got); |
1250 | | /// |
1251 | | /// // But if we want to check whether some other pattern matches, then we |
1252 | | /// // can provide its pattern ID. |
1253 | | /// let input = Input::new(haystack) |
1254 | | /// .anchored(Anchored::Pattern(PatternID::must(1))); |
1255 | | /// let expected = Some(HalfMatch::must(1, 6)); |
1256 | | /// let got = dfa.try_search_fwd(&input)?; |
1257 | | /// assert_eq!(expected, got); |
1258 | | /// |
1259 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1260 | | /// ``` |
1261 | | /// |
1262 | | /// # Example: specifying the bounds of a search |
1263 | | /// |
1264 | | /// This example shows how providing the bounds of a search can produce |
1265 | | /// different results than simply sub-slicing the haystack. |
1266 | | /// |
1267 | | /// ``` |
1268 | | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
1269 | | /// |
1270 | | /// // N.B. We disable Unicode here so that we use a simple ASCII word |
1271 | | /// // boundary. Alternatively, we could enable heuristic support for |
1272 | | /// // Unicode word boundaries. |
1273 | | /// let dfa = dense::DFA::new(r"(?-u)\b[0-9]{3}\b")?; |
1274 | | /// let haystack = "foo123bar".as_bytes(); |
1275 | | /// |
1276 | | /// // Since we sub-slice the haystack, the search doesn't know about the |
1277 | | /// // larger context and assumes that `123` is surrounded by word |
1278 | | /// // boundaries. And of course, the match position is reported relative |
1279 | | /// // to the sub-slice as well, which means we get `3` instead of `6`. |
1280 | | /// let input = Input::new(&haystack[3..6]); |
1281 | | /// let expected = Some(HalfMatch::must(0, 3)); |
1282 | | /// let got = dfa.try_search_fwd(&input)?; |
1283 | | /// assert_eq!(expected, got); |
1284 | | /// |
1285 | | /// // But if we provide the bounds of the search within the context of the |
1286 | | /// // entire haystack, then the search can take the surrounding context |
1287 | | /// // into account. (And if we did find a match, it would be reported |
1288 | | /// // as a valid offset into `haystack` instead of its sub-slice.) |
1289 | | /// let input = Input::new(haystack).range(3..6); |
1290 | | /// let expected = None; |
1291 | | /// let got = dfa.try_search_fwd(&input)?; |
1292 | | /// assert_eq!(expected, got); |
1293 | | /// |
1294 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1295 | | /// ``` |
1296 | | #[inline] |
1297 | 62.7k | fn try_search_fwd( |
1298 | 62.7k | &self, |
1299 | 62.7k | input: &Input<'_>, |
1300 | 62.7k | ) -> Result<Option<HalfMatch>, MatchError> { |
1301 | 62.7k | let utf8empty = self.has_empty() && self.is_utf8(); |
1302 | 62.7k | let hm = match search::find_fwd(&self, input)? { |
1303 | 23.2k | None => return Ok(None), |
1304 | 8.62k | Some(hm) if !utf8empty => return Ok(Some(hm)), |
1305 | 6.99k | Some(hm) => hm, |
1306 | | }; |
1307 | | // We get to this point when we know our DFA can match the empty string |
1308 | | // AND when UTF-8 mode is enabled. In this case, we skip any matches |
1309 | | // whose offset splits a codepoint. Such a match is necessarily a |
1310 | | // zero-width match, because UTF-8 mode requires the underlying NFA |
1311 | | // to be built such that all non-empty matches span valid UTF-8. |
1312 | | // Therefore, any match that ends in the middle of a codepoint cannot |
1313 | | // be part of a span of valid UTF-8 and thus must be an empty match. |
1314 | | // In such cases, we skip it, so as not to report matches that split a |
1315 | | // codepoint. |
1316 | | // |
1317 | | // Note that this is not a checked assumption. Callers *can* provide an |
1318 | | // NFA with UTF-8 mode enabled but produces non-empty matches that span |
1319 | | // invalid UTF-8. But doing so is documented to result in unspecified |
1320 | | // behavior. |
1321 | 42.3k | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { |
1322 | 42.3k | let got = search::find_fwd(&self, input)?; |
1323 | 42.0k | Ok(got.map(|hm| (hm, hm.offset()))) <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}::{closure#0}Line | Count | Source | 1323 | 13.5k | Ok(got.map(|hm| (hm, hm.offset()))) |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}::{closure#0}Line | Count | Source | 1323 | 11.0k | Ok(got.map(|hm| (hm, hm.offset()))) |
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}::{closure#0}Line | Count | Source | 1323 | 16.8k | Ok(got.map(|hm| (hm, hm.offset()))) |
|
1324 | 42.3k | }) <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}Line | Count | Source | 1321 | 13.6k | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { | 1322 | 13.6k | let got = search::find_fwd(&self, input)?; | 1323 | 13.6k | Ok(got.map(|hm| (hm, hm.offset()))) | 1324 | 13.6k | }) |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}Line | Count | Source | 1321 | 11.4k | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { | 1322 | 11.4k | let got = search::find_fwd(&self, input)?; | 1323 | 11.1k | Ok(got.map(|hm| (hm, hm.offset()))) | 1324 | 11.4k | }) |
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}Line | Count | Source | 1321 | 17.2k | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { | 1322 | 17.2k | let got = search::find_fwd(&self, input)?; | 1323 | 17.1k | Ok(got.map(|hm| (hm, hm.offset()))) | 1324 | 17.2k | }) |
|
1325 | 62.7k | } <regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::try_search_fwd Line | Count | Source | 1297 | 59.4k | fn try_search_fwd( | 1298 | 59.4k | &self, | 1299 | 59.4k | input: &Input<'_>, | 1300 | 59.4k | ) -> Result<Option<HalfMatch>, MatchError> { | 1301 | 59.4k | let utf8empty = self.has_empty() && self.is_utf8(); | 1302 | 59.4k | let hm = match search::find_fwd(&self, input)? { | 1303 | 21.1k | None => return Ok(None), | 1304 | 8.59k | Some(hm) if !utf8empty => return Ok(Some(hm)), | 1305 | 5.95k | Some(hm) => hm, | 1306 | | }; | 1307 | | // We get to this point when we know our DFA can match the empty string | 1308 | | // AND when UTF-8 mode is enabled. In this case, we skip any matches | 1309 | | // whose offset splits a codepoint. Such a match is necessarily a | 1310 | | // zero-width match, because UTF-8 mode requires the underlying NFA | 1311 | | // to be built such that all non-empty matches span valid UTF-8. | 1312 | | // Therefore, any match that ends in the middle of a codepoint cannot | 1313 | | // be part of a span of valid UTF-8 and thus must be an empty match. | 1314 | | // In such cases, we skip it, so as not to report matches that split a | 1315 | | // codepoint. | 1316 | | // | 1317 | | // Note that this is not a checked assumption. Callers *can* provide an | 1318 | | // NFA with UTF-8 mode enabled but produces non-empty matches that span | 1319 | | // invalid UTF-8. But doing so is documented to result in unspecified | 1320 | | // behavior. | 1321 | 5.95k | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { | 1322 | | let got = search::find_fwd(&self, input)?; | 1323 | | Ok(got.map(|hm| (hm, hm.offset()))) | 1324 | | }) | 1325 | 59.4k | } |
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd Line | Count | Source | 1297 | 1.82k | fn try_search_fwd( | 1298 | 1.82k | &self, | 1299 | 1.82k | input: &Input<'_>, | 1300 | 1.82k | ) -> Result<Option<HalfMatch>, MatchError> { | 1301 | 1.82k | let utf8empty = self.has_empty() && self.is_utf8(); | 1302 | 1.82k | let hm = match search::find_fwd(&self, input)? { | 1303 | 1.29k | None => return Ok(None), | 1304 | 19 | Some(hm) if !utf8empty => return Ok(Some(hm)), | 1305 | 457 | Some(hm) => hm, | 1306 | | }; | 1307 | | // We get to this point when we know our DFA can match the empty string | 1308 | | // AND when UTF-8 mode is enabled. In this case, we skip any matches | 1309 | | // whose offset splits a codepoint. Such a match is necessarily a | 1310 | | // zero-width match, because UTF-8 mode requires the underlying NFA | 1311 | | // to be built such that all non-empty matches span valid UTF-8. | 1312 | | // Therefore, any match that ends in the middle of a codepoint cannot | 1313 | | // be part of a span of valid UTF-8 and thus must be an empty match. | 1314 | | // In such cases, we skip it, so as not to report matches that split a | 1315 | | // codepoint. | 1316 | | // | 1317 | | // Note that this is not a checked assumption. Callers *can* provide an | 1318 | | // NFA with UTF-8 mode enabled but produces non-empty matches that span | 1319 | | // invalid UTF-8. But doing so is documented to result in unspecified | 1320 | | // behavior. | 1321 | 457 | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { | 1322 | | let got = search::find_fwd(&self, input)?; | 1323 | | Ok(got.map(|hm| (hm, hm.offset()))) | 1324 | | }) | 1325 | 1.82k | } |
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd Line | Count | Source | 1297 | 1.44k | fn try_search_fwd( | 1298 | 1.44k | &self, | 1299 | 1.44k | input: &Input<'_>, | 1300 | 1.44k | ) -> Result<Option<HalfMatch>, MatchError> { | 1301 | 1.44k | let utf8empty = self.has_empty() && self.is_utf8(); | 1302 | 1.44k | let hm = match search::find_fwd(&self, input)? { | 1303 | 750 | None => return Ok(None), | 1304 | 12 | Some(hm) if !utf8empty => return Ok(Some(hm)), | 1305 | 587 | Some(hm) => hm, | 1306 | | }; | 1307 | | // We get to this point when we know our DFA can match the empty string | 1308 | | // AND when UTF-8 mode is enabled. In this case, we skip any matches | 1309 | | // whose offset splits a codepoint. Such a match is necessarily a | 1310 | | // zero-width match, because UTF-8 mode requires the underlying NFA | 1311 | | // to be built such that all non-empty matches span valid UTF-8. | 1312 | | // Therefore, any match that ends in the middle of a codepoint cannot | 1313 | | // be part of a span of valid UTF-8 and thus must be an empty match. | 1314 | | // In such cases, we skip it, so as not to report matches that split a | 1315 | | // codepoint. | 1316 | | // | 1317 | | // Note that this is not a checked assumption. Callers *can* provide an | 1318 | | // NFA with UTF-8 mode enabled but produces non-empty matches that span | 1319 | | // invalid UTF-8. But doing so is documented to result in unspecified | 1320 | | // behavior. | 1321 | 587 | empty::skip_splits_fwd(input, hm, hm.offset(), |input| { | 1322 | | let got = search::find_fwd(&self, input)?; | 1323 | | Ok(got.map(|hm| (hm, hm.offset()))) | 1324 | | }) | 1325 | 1.44k | } |
|
1326 | | |
1327 | | /// Executes a reverse search and returns the start of the position of the |
1328 | | /// leftmost match that is found. If no match exists, then `None` is |
1329 | | /// returned. |
1330 | | /// |
1331 | | /// # Errors |
1332 | | /// |
1333 | | /// This routine errors if the search could not complete. This can occur |
1334 | | /// in a number of circumstances: |
1335 | | /// |
1336 | | /// * The configuration of the DFA may permit it to "quit" the search. |
1337 | | /// For example, setting quit bytes or enabling heuristic support for |
1338 | | /// Unicode word boundaries. The default configuration does not enable any |
1339 | | /// option that could result in the DFA quitting. |
1340 | | /// * When the provided `Input` configuration is not supported. For |
1341 | | /// example, by providing an unsupported anchor mode. |
1342 | | /// |
1343 | | /// When a search returns an error, callers cannot know whether a match |
1344 | | /// exists or not. |
1345 | | /// |
1346 | | /// # Example |
1347 | | /// |
1348 | | /// This example shows how to use this method with a |
1349 | | /// [`dense::DFA`](crate::dfa::dense::DFA). In particular, this |
1350 | | /// routine is principally useful when used in conjunction with the |
1351 | | /// [`nfa::thompson::Config::reverse`](crate::nfa::thompson::Config::reverse) |
1352 | | /// configuration. In general, it's unlikely to be correct to use |
1353 | | /// both `try_search_fwd` and `try_search_rev` with the same DFA since |
1354 | | /// any particular DFA will only support searching in one direction with |
1355 | | /// respect to the pattern. |
1356 | | /// |
1357 | | /// ``` |
1358 | | /// use regex_automata::{ |
1359 | | /// nfa::thompson, |
1360 | | /// dfa::{Automaton, dense}, |
1361 | | /// HalfMatch, Input, |
1362 | | /// }; |
1363 | | /// |
1364 | | /// let dfa = dense::Builder::new() |
1365 | | /// .thompson(thompson::Config::new().reverse(true)) |
1366 | | /// .build("foo[0-9]+")?; |
1367 | | /// let expected = Some(HalfMatch::must(0, 0)); |
1368 | | /// assert_eq!(expected, dfa.try_search_rev(&Input::new(b"foo12345"))?); |
1369 | | /// |
1370 | | /// // Even though a match is found after reading the last byte (`c`), |
1371 | | /// // the leftmost first match semantics demand that we find the earliest |
1372 | | /// // match that prefers earlier parts of the pattern over latter parts. |
1373 | | /// let dfa = dense::Builder::new() |
1374 | | /// .thompson(thompson::Config::new().reverse(true)) |
1375 | | /// .build("abc|c")?; |
1376 | | /// let expected = Some(HalfMatch::must(0, 0)); |
1377 | | /// assert_eq!(expected, dfa.try_search_rev(&Input::new(b"abc"))?); |
1378 | | /// |
1379 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1380 | | /// ``` |
1381 | | /// |
1382 | | /// # Example: UTF-8 mode |
1383 | | /// |
1384 | | /// This examples demonstrates that UTF-8 mode applies to reverse |
1385 | | /// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all |
1386 | | /// matches reported must correspond to valid UTF-8 spans. This includes |
1387 | | /// prohibiting zero-width matches that split a codepoint. |
1388 | | /// |
1389 | | /// UTF-8 mode is enabled by default. Notice below how the only zero-width |
1390 | | /// matches reported are those at UTF-8 boundaries: |
1391 | | /// |
1392 | | /// ``` |
1393 | | /// use regex_automata::{ |
1394 | | /// dfa::{dense::DFA, Automaton}, |
1395 | | /// nfa::thompson, |
1396 | | /// HalfMatch, Input, MatchKind, |
1397 | | /// }; |
1398 | | /// |
1399 | | /// let dfa = DFA::builder() |
1400 | | /// .thompson(thompson::Config::new().reverse(true)) |
1401 | | /// .build(r"")?; |
1402 | | /// |
1403 | | /// // Run the reverse DFA to collect all matches. |
1404 | | /// let mut input = Input::new("☃"); |
1405 | | /// let mut matches = vec![]; |
1406 | | /// loop { |
1407 | | /// match dfa.try_search_rev(&input)? { |
1408 | | /// None => break, |
1409 | | /// Some(hm) => { |
1410 | | /// matches.push(hm); |
1411 | | /// if hm.offset() == 0 || input.end() == 0 { |
1412 | | /// break; |
1413 | | /// } else if hm.offset() < input.end() { |
1414 | | /// input.set_end(hm.offset()); |
1415 | | /// } else { |
1416 | | /// // This is only necessary to handle zero-width |
1417 | | /// // matches, which of course occur in this example. |
1418 | | /// // Without this, the search would never advance |
1419 | | /// // backwards beyond the initial match. |
1420 | | /// input.set_end(input.end() - 1); |
1421 | | /// } |
1422 | | /// } |
1423 | | /// } |
1424 | | /// } |
1425 | | /// |
1426 | | /// // No matches split a codepoint. |
1427 | | /// let expected = vec![ |
1428 | | /// HalfMatch::must(0, 3), |
1429 | | /// HalfMatch::must(0, 0), |
1430 | | /// ]; |
1431 | | /// assert_eq!(expected, matches); |
1432 | | /// |
1433 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1434 | | /// ``` |
1435 | | /// |
1436 | | /// Now let's look at the same example, but with UTF-8 mode on the |
1437 | | /// original NFA disabled (which results in disabling UTF-8 mode on the |
1438 | | /// DFA): |
1439 | | /// |
1440 | | /// ``` |
1441 | | /// use regex_automata::{ |
1442 | | /// dfa::{dense::DFA, Automaton}, |
1443 | | /// nfa::thompson, |
1444 | | /// HalfMatch, Input, MatchKind, |
1445 | | /// }; |
1446 | | /// |
1447 | | /// let dfa = DFA::builder() |
1448 | | /// .thompson(thompson::Config::new().reverse(true).utf8(false)) |
1449 | | /// .build(r"")?; |
1450 | | /// |
1451 | | /// // Run the reverse DFA to collect all matches. |
1452 | | /// let mut input = Input::new("☃"); |
1453 | | /// let mut matches = vec![]; |
1454 | | /// loop { |
1455 | | /// match dfa.try_search_rev(&input)? { |
1456 | | /// None => break, |
1457 | | /// Some(hm) => { |
1458 | | /// matches.push(hm); |
1459 | | /// if hm.offset() == 0 || input.end() == 0 { |
1460 | | /// break; |
1461 | | /// } else if hm.offset() < input.end() { |
1462 | | /// input.set_end(hm.offset()); |
1463 | | /// } else { |
1464 | | /// // This is only necessary to handle zero-width |
1465 | | /// // matches, which of course occur in this example. |
1466 | | /// // Without this, the search would never advance |
1467 | | /// // backwards beyond the initial match. |
1468 | | /// input.set_end(input.end() - 1); |
1469 | | /// } |
1470 | | /// } |
1471 | | /// } |
1472 | | /// } |
1473 | | /// |
1474 | | /// // No matches split a codepoint. |
1475 | | /// let expected = vec![ |
1476 | | /// HalfMatch::must(0, 3), |
1477 | | /// HalfMatch::must(0, 2), |
1478 | | /// HalfMatch::must(0, 1), |
1479 | | /// HalfMatch::must(0, 0), |
1480 | | /// ]; |
1481 | | /// assert_eq!(expected, matches); |
1482 | | /// |
1483 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1484 | | /// ``` |
1485 | | #[inline] |
1486 | 4.94k | fn try_search_rev( |
1487 | 4.94k | &self, |
1488 | 4.94k | input: &Input<'_>, |
1489 | 4.94k | ) -> Result<Option<HalfMatch>, MatchError> { |
1490 | 4.94k | let utf8empty = self.has_empty() && self.is_utf8(); |
1491 | 4.94k | let hm = match search::find_rev(self, input)? { |
1492 | 814 | None => return Ok(None), |
1493 | 2.70k | Some(hm) if !utf8empty => return Ok(Some(hm)), |
1494 | 760 | Some(hm) => hm, |
1495 | | }; |
1496 | 760 | empty::skip_splits_rev(input, hm, hm.offset(), |input| { |
1497 | 0 | let got = search::find_rev(self, input)?; |
1498 | 0 | Ok(got.map(|hm| (hm, hm.offset()))) |
1499 | 0 | }) |
1500 | 4.94k | } |
1501 | | |
1502 | | /// Executes an overlapping forward search. Matches, if one exists, can be |
1503 | | /// obtained via the [`OverlappingState::get_match`] method. |
1504 | | /// |
1505 | | /// This routine is principally only useful when searching for multiple |
1506 | | /// patterns on inputs where multiple patterns may match the same regions |
1507 | | /// of text. In particular, callers must preserve the automaton's search |
1508 | | /// state from prior calls so that the implementation knows where the last |
1509 | | /// match occurred. |
1510 | | /// |
1511 | | /// When using this routine to implement an iterator of overlapping |
1512 | | /// matches, the `start` of the search should always be set to the end |
1513 | | /// of the last match. If more patterns match at the previous location, |
1514 | | /// then they will be immediately returned. (This is tracked by the given |
1515 | | /// overlapping state.) Otherwise, the search continues at the starting |
1516 | | /// position given. |
1517 | | /// |
1518 | | /// If for some reason you want the search to forget about its previous |
1519 | | /// state and restart the search at a particular position, then setting the |
1520 | | /// state to [`OverlappingState::start`] will accomplish that. |
1521 | | /// |
1522 | | /// # Errors |
1523 | | /// |
1524 | | /// This routine errors if the search could not complete. This can occur |
1525 | | /// in a number of circumstances: |
1526 | | /// |
1527 | | /// * The configuration of the DFA may permit it to "quit" the search. |
1528 | | /// For example, setting quit bytes or enabling heuristic support for |
1529 | | /// Unicode word boundaries. The default configuration does not enable any |
1530 | | /// option that could result in the DFA quitting. |
1531 | | /// * When the provided `Input` configuration is not supported. For |
1532 | | /// example, by providing an unsupported anchor mode. |
1533 | | /// |
1534 | | /// When a search returns an error, callers cannot know whether a match |
1535 | | /// exists or not. |
1536 | | /// |
1537 | | /// # Example |
1538 | | /// |
1539 | | /// This example shows how to run a basic overlapping search with a |
1540 | | /// [`dense::DFA`](crate::dfa::dense::DFA). Notice that we build the |
1541 | | /// automaton with a `MatchKind::All` configuration. Overlapping searches |
1542 | | /// are unlikely to work as one would expect when using the default |
1543 | | /// `MatchKind::LeftmostFirst` match semantics, since leftmost-first |
1544 | | /// matching is fundamentally incompatible with overlapping searches. |
1545 | | /// Namely, overlapping searches need to report matches as they are seen, |
1546 | | /// where as leftmost-first searches will continue searching even after a |
1547 | | /// match has been observed in order to find the conventional end position |
1548 | | /// of the match. More concretely, leftmost-first searches use dead states |
1549 | | /// to terminate a search after a specific match can no longer be extended. |
1550 | | /// Overlapping searches instead do the opposite by continuing the search |
1551 | | /// to find totally new matches (potentially of other patterns). |
1552 | | /// |
1553 | | /// ``` |
1554 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1555 | | /// use regex_automata::{ |
1556 | | /// dfa::{Automaton, OverlappingState, dense}, |
1557 | | /// HalfMatch, Input, MatchKind, |
1558 | | /// }; |
1559 | | /// |
1560 | | /// let dfa = dense::Builder::new() |
1561 | | /// .configure(dense::Config::new().match_kind(MatchKind::All)) |
1562 | | /// .build_many(&[r"[[:word:]]+$", r"[[:^space:]]+$"])?; |
1563 | | /// let haystack = "@foo"; |
1564 | | /// let mut state = OverlappingState::start(); |
1565 | | /// |
1566 | | /// let expected = Some(HalfMatch::must(1, 4)); |
1567 | | /// dfa.try_search_overlapping_fwd(&Input::new(haystack), &mut state)?; |
1568 | | /// assert_eq!(expected, state.get_match()); |
1569 | | /// |
1570 | | /// // The first pattern also matches at the same position, so re-running |
1571 | | /// // the search will yield another match. Notice also that the first |
1572 | | /// // pattern is returned after the second. This is because the second |
1573 | | /// // pattern begins its match before the first, is therefore an earlier |
1574 | | /// // match and is thus reported first. |
1575 | | /// let expected = Some(HalfMatch::must(0, 4)); |
1576 | | /// dfa.try_search_overlapping_fwd(&Input::new(haystack), &mut state)?; |
1577 | | /// assert_eq!(expected, state.get_match()); |
1578 | | /// |
1579 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1580 | | /// ``` |
1581 | | #[inline] |
1582 | 0 | fn try_search_overlapping_fwd( |
1583 | 0 | &self, |
1584 | 0 | input: &Input<'_>, |
1585 | 0 | state: &mut OverlappingState, |
1586 | 0 | ) -> Result<(), MatchError> { |
1587 | 0 | let utf8empty = self.has_empty() && self.is_utf8(); |
1588 | 0 | search::find_overlapping_fwd(self, input, state)?; |
1589 | 0 | match state.get_match() { |
1590 | 0 | None => Ok(()), |
1591 | 0 | Some(_) if !utf8empty => Ok(()), |
1592 | 0 | Some(_) => skip_empty_utf8_splits_overlapping( |
1593 | 0 | input, |
1594 | 0 | state, |
1595 | 0 | |input, state| { |
1596 | 0 | search::find_overlapping_fwd(self, input, state) |
1597 | 0 | }, |
1598 | | ), |
1599 | | } |
1600 | 0 | } |
1601 | | |
1602 | | /// Executes a reverse overlapping forward search. Matches, if one exists, |
1603 | | /// can be obtained via the [`OverlappingState::get_match`] method. |
1604 | | /// |
1605 | | /// When using this routine to implement an iterator of overlapping |
1606 | | /// matches, the `start` of the search should remain invariant throughout |
1607 | | /// iteration. The `OverlappingState` given to the search will keep track |
1608 | | /// of the current position of the search. (This is because multiple |
1609 | | /// matches may be reported at the same position, so only the search |
1610 | | /// implementation itself knows when to advance the position.) |
1611 | | /// |
1612 | | /// If for some reason you want the search to forget about its previous |
1613 | | /// state and restart the search at a particular position, then setting the |
1614 | | /// state to [`OverlappingState::start`] will accomplish that. |
1615 | | /// |
1616 | | /// # Errors |
1617 | | /// |
1618 | | /// This routine errors if the search could not complete. This can occur |
1619 | | /// in a number of circumstances: |
1620 | | /// |
1621 | | /// * The configuration of the DFA may permit it to "quit" the search. |
1622 | | /// For example, setting quit bytes or enabling heuristic support for |
1623 | | /// Unicode word boundaries. The default configuration does not enable any |
1624 | | /// option that could result in the DFA quitting. |
1625 | | /// * When the provided `Input` configuration is not supported. For |
1626 | | /// example, by providing an unsupported anchor mode. |
1627 | | /// |
1628 | | /// When a search returns an error, callers cannot know whether a match |
1629 | | /// exists or not. |
1630 | | /// |
1631 | | /// # Example: UTF-8 mode |
1632 | | /// |
1633 | | /// This examples demonstrates that UTF-8 mode applies to reverse |
1634 | | /// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all |
1635 | | /// matches reported must correspond to valid UTF-8 spans. This includes |
1636 | | /// prohibiting zero-width matches that split a codepoint. |
1637 | | /// |
1638 | | /// UTF-8 mode is enabled by default. Notice below how the only zero-width |
1639 | | /// matches reported are those at UTF-8 boundaries: |
1640 | | /// |
1641 | | /// ``` |
1642 | | /// use regex_automata::{ |
1643 | | /// dfa::{dense::DFA, Automaton, OverlappingState}, |
1644 | | /// nfa::thompson, |
1645 | | /// HalfMatch, Input, MatchKind, |
1646 | | /// }; |
1647 | | /// |
1648 | | /// let dfa = DFA::builder() |
1649 | | /// .configure(DFA::config().match_kind(MatchKind::All)) |
1650 | | /// .thompson(thompson::Config::new().reverse(true)) |
1651 | | /// .build_many(&[r"", r"☃"])?; |
1652 | | /// |
1653 | | /// // Run the reverse DFA to collect all matches. |
1654 | | /// let input = Input::new("☃"); |
1655 | | /// let mut state = OverlappingState::start(); |
1656 | | /// let mut matches = vec![]; |
1657 | | /// loop { |
1658 | | /// dfa.try_search_overlapping_rev(&input, &mut state)?; |
1659 | | /// match state.get_match() { |
1660 | | /// None => break, |
1661 | | /// Some(hm) => matches.push(hm), |
1662 | | /// } |
1663 | | /// } |
1664 | | /// |
1665 | | /// // No matches split a codepoint. |
1666 | | /// let expected = vec![ |
1667 | | /// HalfMatch::must(0, 3), |
1668 | | /// HalfMatch::must(1, 0), |
1669 | | /// HalfMatch::must(0, 0), |
1670 | | /// ]; |
1671 | | /// assert_eq!(expected, matches); |
1672 | | /// |
1673 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1674 | | /// ``` |
1675 | | /// |
1676 | | /// Now let's look at the same example, but with UTF-8 mode on the |
1677 | | /// original NFA disabled (which results in disabling UTF-8 mode on the |
1678 | | /// DFA): |
1679 | | /// |
1680 | | /// ``` |
1681 | | /// use regex_automata::{ |
1682 | | /// dfa::{dense::DFA, Automaton, OverlappingState}, |
1683 | | /// nfa::thompson, |
1684 | | /// HalfMatch, Input, MatchKind, |
1685 | | /// }; |
1686 | | /// |
1687 | | /// let dfa = DFA::builder() |
1688 | | /// .configure(DFA::config().match_kind(MatchKind::All)) |
1689 | | /// .thompson(thompson::Config::new().reverse(true).utf8(false)) |
1690 | | /// .build_many(&[r"", r"☃"])?; |
1691 | | /// |
1692 | | /// // Run the reverse DFA to collect all matches. |
1693 | | /// let input = Input::new("☃"); |
1694 | | /// let mut state = OverlappingState::start(); |
1695 | | /// let mut matches = vec![]; |
1696 | | /// loop { |
1697 | | /// dfa.try_search_overlapping_rev(&input, &mut state)?; |
1698 | | /// match state.get_match() { |
1699 | | /// None => break, |
1700 | | /// Some(hm) => matches.push(hm), |
1701 | | /// } |
1702 | | /// } |
1703 | | /// |
1704 | | /// // Now *all* positions match, even within a codepoint, |
1705 | | /// // because we lifted the requirement that matches |
1706 | | /// // correspond to valid UTF-8 spans. |
1707 | | /// let expected = vec![ |
1708 | | /// HalfMatch::must(0, 3), |
1709 | | /// HalfMatch::must(0, 2), |
1710 | | /// HalfMatch::must(0, 1), |
1711 | | /// HalfMatch::must(1, 0), |
1712 | | /// HalfMatch::must(0, 0), |
1713 | | /// ]; |
1714 | | /// assert_eq!(expected, matches); |
1715 | | /// |
1716 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1717 | | /// ``` |
1718 | | #[inline] |
1719 | | fn try_search_overlapping_rev( |
1720 | | &self, |
1721 | | input: &Input<'_>, |
1722 | | state: &mut OverlappingState, |
1723 | | ) -> Result<(), MatchError> { |
1724 | | let utf8empty = self.has_empty() && self.is_utf8(); |
1725 | | search::find_overlapping_rev(self, input, state)?; |
1726 | | match state.get_match() { |
1727 | | None => Ok(()), |
1728 | | Some(_) if !utf8empty => Ok(()), |
1729 | | Some(_) => skip_empty_utf8_splits_overlapping( |
1730 | | input, |
1731 | | state, |
1732 | | |input, state| { |
1733 | | search::find_overlapping_rev(self, input, state) |
1734 | | }, |
1735 | | ), |
1736 | | } |
1737 | | } |
1738 | | |
1739 | | /// Writes the set of patterns that match anywhere in the given search |
1740 | | /// configuration to `patset`. If multiple patterns match at the same |
1741 | | /// position and the underlying DFA supports overlapping matches, then all |
1742 | | /// matching patterns are written to the given set. |
1743 | | /// |
1744 | | /// Unless all of the patterns in this DFA are anchored, then generally |
1745 | | /// speaking, this will visit every byte in the haystack. |
1746 | | /// |
1747 | | /// This search routine *does not* clear the pattern set. This gives some |
1748 | | /// flexibility to the caller (e.g., running multiple searches with the |
1749 | | /// same pattern set), but does make the API bug-prone if you're reusing |
1750 | | /// the same pattern set for multiple searches but intended them to be |
1751 | | /// independent. |
1752 | | /// |
1753 | | /// If a pattern ID matched but the given `PatternSet` does not have |
1754 | | /// sufficient capacity to store it, then it is not inserted and silently |
1755 | | /// dropped. |
1756 | | /// |
1757 | | /// # Errors |
1758 | | /// |
1759 | | /// This routine errors if the search could not complete. This can occur |
1760 | | /// in a number of circumstances: |
1761 | | /// |
1762 | | /// * The configuration of the DFA may permit it to "quit" the search. |
1763 | | /// For example, setting quit bytes or enabling heuristic support for |
1764 | | /// Unicode word boundaries. The default configuration does not enable any |
1765 | | /// option that could result in the DFA quitting. |
1766 | | /// * When the provided `Input` configuration is not supported. For |
1767 | | /// example, by providing an unsupported anchor mode. |
1768 | | /// |
1769 | | /// When a search returns an error, callers cannot know whether a match |
1770 | | /// exists or not. |
1771 | | /// |
1772 | | /// # Example |
1773 | | /// |
1774 | | /// This example shows how to find all matching patterns in a haystack, |
1775 | | /// even when some patterns match at the same position as other patterns. |
1776 | | /// |
1777 | | /// ``` |
1778 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1779 | | /// use regex_automata::{ |
1780 | | /// dfa::{Automaton, dense::DFA}, |
1781 | | /// Input, MatchKind, PatternSet, |
1782 | | /// }; |
1783 | | /// |
1784 | | /// let patterns = &[ |
1785 | | /// r"[[:word:]]+", |
1786 | | /// r"[0-9]+", |
1787 | | /// r"[[:alpha:]]+", |
1788 | | /// r"foo", |
1789 | | /// r"bar", |
1790 | | /// r"barfoo", |
1791 | | /// r"foobar", |
1792 | | /// ]; |
1793 | | /// let dfa = DFA::builder() |
1794 | | /// .configure(DFA::config().match_kind(MatchKind::All)) |
1795 | | /// .build_many(patterns)?; |
1796 | | /// |
1797 | | /// let input = Input::new("foobar"); |
1798 | | /// let mut patset = PatternSet::new(dfa.pattern_len()); |
1799 | | /// dfa.try_which_overlapping_matches(&input, &mut patset)?; |
1800 | | /// let expected = vec![0, 2, 3, 4, 6]; |
1801 | | /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect(); |
1802 | | /// assert_eq!(expected, got); |
1803 | | /// |
1804 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1805 | | /// ``` |
1806 | | #[cfg(feature = "alloc")] |
1807 | | #[inline] |
1808 | 0 | fn try_which_overlapping_matches( |
1809 | 0 | &self, |
1810 | 0 | input: &Input<'_>, |
1811 | 0 | patset: &mut PatternSet, |
1812 | 0 | ) -> Result<(), MatchError> { |
1813 | 0 | let mut state = OverlappingState::start(); |
1814 | 0 | while let Some(m) = { |
1815 | 0 | self.try_search_overlapping_fwd(input, &mut state)?; |
1816 | 0 | state.get_match() |
1817 | | } { |
1818 | 0 | let _ = patset.insert(m.pattern()); |
1819 | | // There's nothing left to find, so we can stop. Or the caller |
1820 | | // asked us to. |
1821 | 0 | if patset.is_full() || input.get_earliest() { |
1822 | 0 | break; |
1823 | 0 | } |
1824 | | } |
1825 | 0 | Ok(()) |
1826 | 0 | } |
1827 | | } |
1828 | | |
1829 | | unsafe impl<'a, A: Automaton + ?Sized> Automaton for &'a A { |
1830 | | #[inline] |
1831 | 0 | fn next_state(&self, current: StateID, input: u8) -> StateID { |
1832 | 0 | (**self).next_state(current, input) |
1833 | 0 | } Unexecuted instantiation: <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_state Unexecuted instantiation: <®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_state Unexecuted instantiation: <®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::next_state |
1834 | | |
1835 | | #[inline] |
1836 | 3.06M | unsafe fn next_state_unchecked( |
1837 | 3.06M | &self, |
1838 | 3.06M | current: StateID, |
1839 | 3.06M | input: u8, |
1840 | 3.06M | ) -> StateID { |
1841 | 3.06M | (**self).next_state_unchecked(current, input) |
1842 | 3.06M | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked Line | Count | Source | 1836 | 2.48M | unsafe fn next_state_unchecked( | 1837 | 2.48M | &self, | 1838 | 2.48M | current: StateID, | 1839 | 2.48M | input: u8, | 1840 | 2.48M | ) -> StateID { | 1841 | 2.48M | (**self).next_state_unchecked(current, input) | 1842 | 2.48M | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked Line | Count | Source | 1836 | 518k | unsafe fn next_state_unchecked( | 1837 | 518k | &self, | 1838 | 518k | current: StateID, | 1839 | 518k | input: u8, | 1840 | 518k | ) -> StateID { | 1841 | 518k | (**self).next_state_unchecked(current, input) | 1842 | 518k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked Line | Count | Source | 1836 | 61.3k | unsafe fn next_state_unchecked( | 1837 | 61.3k | &self, | 1838 | 61.3k | current: StateID, | 1839 | 61.3k | input: u8, | 1840 | 61.3k | ) -> StateID { | 1841 | 61.3k | (**self).next_state_unchecked(current, input) | 1842 | 61.3k | } |
|
1843 | | |
1844 | | #[inline] |
1845 | 42.5k | fn next_eoi_state(&self, current: StateID) -> StateID { |
1846 | 42.5k | (**self).next_eoi_state(current) |
1847 | 42.5k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_eoi_state Line | Count | Source | 1845 | 22.2k | fn next_eoi_state(&self, current: StateID) -> StateID { | 1846 | 22.2k | (**self).next_eoi_state(current) | 1847 | 22.2k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_eoi_state Line | Count | Source | 1845 | 12.1k | fn next_eoi_state(&self, current: StateID) -> StateID { | 1846 | 12.1k | (**self).next_eoi_state(current) | 1847 | 12.1k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::next_eoi_state Line | Count | Source | 1845 | 8.05k | fn next_eoi_state(&self, current: StateID) -> StateID { | 1846 | 8.05k | (**self).next_eoi_state(current) | 1847 | 8.05k | } |
|
1848 | | |
1849 | | #[inline] |
1850 | | fn start_state( |
1851 | | &self, |
1852 | | config: &start::Config, |
1853 | | ) -> Result<StateID, StartError> { |
1854 | | (**self).start_state(config) |
1855 | | } |
1856 | | |
1857 | | #[inline] |
1858 | 133k | fn start_state_forward( |
1859 | 133k | &self, |
1860 | 133k | input: &Input<'_>, |
1861 | 133k | ) -> Result<StateID, MatchError> { |
1862 | 133k | (**self).start_state_forward(input) |
1863 | 133k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state_forward Line | Count | Source | 1858 | 101k | fn start_state_forward( | 1859 | 101k | &self, | 1860 | 101k | input: &Input<'_>, | 1861 | 101k | ) -> Result<StateID, MatchError> { | 1862 | 101k | (**self).start_state_forward(input) | 1863 | 101k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state_forward Line | Count | Source | 1858 | 13.2k | fn start_state_forward( | 1859 | 13.2k | &self, | 1860 | 13.2k | input: &Input<'_>, | 1861 | 13.2k | ) -> Result<StateID, MatchError> { | 1862 | 13.2k | (**self).start_state_forward(input) | 1863 | 13.2k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::start_state_forward Line | Count | Source | 1858 | 18.7k | fn start_state_forward( | 1859 | 18.7k | &self, | 1860 | 18.7k | input: &Input<'_>, | 1861 | 18.7k | ) -> Result<StateID, MatchError> { | 1862 | 18.7k | (**self).start_state_forward(input) | 1863 | 18.7k | } |
|
1864 | | |
1865 | | #[inline] |
1866 | | fn start_state_reverse( |
1867 | | &self, |
1868 | | input: &Input<'_>, |
1869 | | ) -> Result<StateID, MatchError> { |
1870 | | (**self).start_state_reverse(input) |
1871 | | } |
1872 | | |
1873 | | #[inline] |
1874 | 105k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { |
1875 | 105k | (**self).universal_start_state(mode) |
1876 | 105k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::universal_start_state Line | Count | Source | 1874 | 73.1k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { | 1875 | 73.1k | (**self).universal_start_state(mode) | 1876 | 73.1k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::universal_start_state Line | Count | Source | 1874 | 13.2k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { | 1875 | 13.2k | (**self).universal_start_state(mode) | 1876 | 13.2k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::universal_start_state Line | Count | Source | 1874 | 18.7k | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { | 1875 | 18.7k | (**self).universal_start_state(mode) | 1876 | 18.7k | } |
|
1877 | | |
1878 | | #[inline] |
1879 | 4.02M | fn is_special_state(&self, id: StateID) -> bool { |
1880 | 4.02M | (**self).is_special_state(id) |
1881 | 4.02M | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_special_state Line | Count | Source | 1879 | 2.88M | fn is_special_state(&self, id: StateID) -> bool { | 1880 | 2.88M | (**self).is_special_state(id) | 1881 | 2.88M | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_special_state Line | Count | Source | 1879 | 1.02M | fn is_special_state(&self, id: StateID) -> bool { | 1880 | 1.02M | (**self).is_special_state(id) | 1881 | 1.02M | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_special_state Line | Count | Source | 1879 | 121k | fn is_special_state(&self, id: StateID) -> bool { | 1880 | 121k | (**self).is_special_state(id) | 1881 | 121k | } |
|
1882 | | |
1883 | | #[inline] |
1884 | 42.8k | fn is_dead_state(&self, id: StateID) -> bool { |
1885 | 42.8k | (**self).is_dead_state(id) |
1886 | 42.8k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_dead_state Line | Count | Source | 1884 | 31.5k | fn is_dead_state(&self, id: StateID) -> bool { | 1885 | 31.5k | (**self).is_dead_state(id) | 1886 | 31.5k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_dead_state Line | Count | Source | 1884 | 838 | fn is_dead_state(&self, id: StateID) -> bool { | 1885 | 838 | (**self).is_dead_state(id) | 1886 | 838 | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_dead_state Line | Count | Source | 1884 | 10.4k | fn is_dead_state(&self, id: StateID) -> bool { | 1885 | 10.4k | (**self).is_dead_state(id) | 1886 | 10.4k | } |
|
1887 | | |
1888 | | #[inline] |
1889 | 0 | fn is_quit_state(&self, id: StateID) -> bool { |
1890 | 0 | (**self).is_quit_state(id) |
1891 | 0 | } Unexecuted instantiation: <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_quit_state Unexecuted instantiation: <®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_quit_state Unexecuted instantiation: <®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_quit_state |
1892 | | |
1893 | | #[inline] |
1894 | 672k | fn is_match_state(&self, id: StateID) -> bool { |
1895 | 672k | (**self).is_match_state(id) |
1896 | 672k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_match_state Line | Count | Source | 1894 | 201k | fn is_match_state(&self, id: StateID) -> bool { | 1895 | 201k | (**self).is_match_state(id) | 1896 | 201k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_match_state Line | Count | Source | 1894 | 409k | fn is_match_state(&self, id: StateID) -> bool { | 1895 | 409k | (**self).is_match_state(id) | 1896 | 409k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_match_state Line | Count | Source | 1894 | 61.3k | fn is_match_state(&self, id: StateID) -> bool { | 1895 | 61.3k | (**self).is_match_state(id) | 1896 | 61.3k | } |
|
1897 | | |
1898 | | #[inline] |
1899 | 946k | fn is_start_state(&self, id: StateID) -> bool { |
1900 | 946k | (**self).is_start_state(id) |
1901 | 946k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_start_state Line | Count | Source | 1899 | 385k | fn is_start_state(&self, id: StateID) -> bool { | 1900 | 385k | (**self).is_start_state(id) | 1901 | 385k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_start_state Line | Count | Source | 1899 | 501k | fn is_start_state(&self, id: StateID) -> bool { | 1900 | 501k | (**self).is_start_state(id) | 1901 | 501k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_start_state Line | Count | Source | 1899 | 60.0k | fn is_start_state(&self, id: StateID) -> bool { | 1900 | 60.0k | (**self).is_start_state(id) | 1901 | 60.0k | } |
|
1902 | | |
1903 | | #[inline] |
1904 | 734k | fn is_accel_state(&self, id: StateID) -> bool { |
1905 | 734k | (**self).is_accel_state(id) |
1906 | 734k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_accel_state Line | Count | Source | 1904 | 172k | fn is_accel_state(&self, id: StateID) -> bool { | 1905 | 172k | (**self).is_accel_state(id) | 1906 | 172k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_accel_state Line | Count | Source | 1904 | 501k | fn is_accel_state(&self, id: StateID) -> bool { | 1905 | 501k | (**self).is_accel_state(id) | 1906 | 501k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_accel_state Line | Count | Source | 1904 | 60.0k | fn is_accel_state(&self, id: StateID) -> bool { | 1905 | 60.0k | (**self).is_accel_state(id) | 1906 | 60.0k | } |
|
1907 | | |
1908 | | #[inline] |
1909 | | fn pattern_len(&self) -> usize { |
1910 | | (**self).pattern_len() |
1911 | | } |
1912 | | |
1913 | | #[inline] |
1914 | | fn match_len(&self, id: StateID) -> usize { |
1915 | | (**self).match_len(id) |
1916 | | } |
1917 | | |
1918 | | #[inline] |
1919 | 502k | fn match_pattern(&self, id: StateID, index: usize) -> PatternID { |
1920 | 502k | (**self).match_pattern(id, index) |
1921 | 502k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::match_pattern Line | Count | Source | 1919 | 105k | fn match_pattern(&self, id: StateID, index: usize) -> PatternID { | 1920 | 105k | (**self).match_pattern(id, index) | 1921 | 105k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::match_pattern Line | Count | Source | 1919 | 379k | fn match_pattern(&self, id: StateID, index: usize) -> PatternID { | 1920 | 379k | (**self).match_pattern(id, index) | 1921 | 379k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::match_pattern Line | Count | Source | 1919 | 17.4k | fn match_pattern(&self, id: StateID, index: usize) -> PatternID { | 1920 | 17.4k | (**self).match_pattern(id, index) | 1921 | 17.4k | } |
|
1922 | | |
1923 | | #[inline] |
1924 | | fn has_empty(&self) -> bool { |
1925 | | (**self).has_empty() |
1926 | | } |
1927 | | |
1928 | | #[inline] |
1929 | | fn is_utf8(&self) -> bool { |
1930 | | (**self).is_utf8() |
1931 | | } |
1932 | | |
1933 | | #[inline] |
1934 | | fn is_always_start_anchored(&self) -> bool { |
1935 | | (**self).is_always_start_anchored() |
1936 | | } |
1937 | | |
1938 | | #[inline] |
1939 | 205k | fn accelerator(&self, id: StateID) -> &[u8] { |
1940 | 205k | (**self).accelerator(id) |
1941 | 205k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::accelerator Line | Count | Source | 1939 | 59.3k | fn accelerator(&self, id: StateID) -> &[u8] { | 1940 | 59.3k | (**self).accelerator(id) | 1941 | 59.3k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::accelerator Line | Count | Source | 1939 | 114k | fn accelerator(&self, id: StateID) -> &[u8] { | 1940 | 114k | (**self).accelerator(id) | 1941 | 114k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::accelerator Line | Count | Source | 1939 | 31.6k | fn accelerator(&self, id: StateID) -> &[u8] { | 1940 | 31.6k | (**self).accelerator(id) | 1941 | 31.6k | } |
|
1942 | | |
1943 | | #[inline] |
1944 | 104k | fn get_prefilter(&self) -> Option<&Prefilter> { |
1945 | 104k | (**self).get_prefilter() |
1946 | 104k | } <®ex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::get_prefilter Line | Count | Source | 1944 | 72.9k | fn get_prefilter(&self) -> Option<&Prefilter> { | 1945 | 72.9k | (**self).get_prefilter() | 1946 | 72.9k | } |
<®ex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::get_prefilter Line | Count | Source | 1944 | 13.2k | fn get_prefilter(&self) -> Option<&Prefilter> { | 1945 | 13.2k | (**self).get_prefilter() | 1946 | 13.2k | } |
<®ex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::get_prefilter Line | Count | Source | 1944 | 18.7k | fn get_prefilter(&self) -> Option<&Prefilter> { | 1945 | 18.7k | (**self).get_prefilter() | 1946 | 18.7k | } |
|
1947 | | |
1948 | | #[inline] |
1949 | | fn try_search_fwd( |
1950 | | &self, |
1951 | | input: &Input<'_>, |
1952 | | ) -> Result<Option<HalfMatch>, MatchError> { |
1953 | | (**self).try_search_fwd(input) |
1954 | | } |
1955 | | |
1956 | | #[inline] |
1957 | | fn try_search_rev( |
1958 | | &self, |
1959 | | input: &Input<'_>, |
1960 | | ) -> Result<Option<HalfMatch>, MatchError> { |
1961 | | (**self).try_search_rev(input) |
1962 | | } |
1963 | | |
1964 | | #[inline] |
1965 | | fn try_search_overlapping_fwd( |
1966 | | &self, |
1967 | | input: &Input<'_>, |
1968 | | state: &mut OverlappingState, |
1969 | | ) -> Result<(), MatchError> { |
1970 | | (**self).try_search_overlapping_fwd(input, state) |
1971 | | } |
1972 | | |
1973 | | #[inline] |
1974 | | fn try_search_overlapping_rev( |
1975 | | &self, |
1976 | | input: &Input<'_>, |
1977 | | state: &mut OverlappingState, |
1978 | | ) -> Result<(), MatchError> { |
1979 | | (**self).try_search_overlapping_rev(input, state) |
1980 | | } |
1981 | | |
1982 | | #[cfg(feature = "alloc")] |
1983 | | #[inline] |
1984 | | fn try_which_overlapping_matches( |
1985 | | &self, |
1986 | | input: &Input<'_>, |
1987 | | patset: &mut PatternSet, |
1988 | | ) -> Result<(), MatchError> { |
1989 | | (**self).try_which_overlapping_matches(input, patset) |
1990 | | } |
1991 | | } |
1992 | | |
1993 | | /// Represents the current state of an overlapping search. |
1994 | | /// |
1995 | | /// This is used for overlapping searches since they need to know something |
1996 | | /// about the previous search. For example, when multiple patterns match at the |
1997 | | /// same position, this state tracks the last reported pattern so that the next |
1998 | | /// search knows whether to report another matching pattern or continue with |
1999 | | /// the search at the next position. Additionally, it also tracks which state |
2000 | | /// the last search call terminated in. |
2001 | | /// |
2002 | | /// This type provides little introspection capabilities. The only thing a |
2003 | | /// caller can do is construct it and pass it around to permit search routines |
2004 | | /// to use it to track state, and also ask whether a match has been found. |
2005 | | /// |
2006 | | /// Callers should always provide a fresh state constructed via |
2007 | | /// [`OverlappingState::start`] when starting a new search. Reusing state from |
2008 | | /// a previous search may result in incorrect results. |
2009 | | #[derive(Clone, Debug, Eq, PartialEq)] |
2010 | | pub struct OverlappingState { |
2011 | | /// The match reported by the most recent overlapping search to use this |
2012 | | /// state. |
2013 | | /// |
2014 | | /// If a search does not find any matches, then it is expected to clear |
2015 | | /// this value. |
2016 | | pub(crate) mat: Option<HalfMatch>, |
2017 | | /// The state ID of the state at which the search was in when the call |
2018 | | /// terminated. When this is a match state, `last_match` must be set to a |
2019 | | /// non-None value. |
2020 | | /// |
2021 | | /// A `None` value indicates the start state of the corresponding |
2022 | | /// automaton. We cannot use the actual ID, since any one automaton may |
2023 | | /// have many start states, and which one is in use depends on several |
2024 | | /// search-time factors. |
2025 | | pub(crate) id: Option<StateID>, |
2026 | | /// The position of the search. |
2027 | | /// |
2028 | | /// When `id` is None (i.e., we are starting a search), this is set to |
2029 | | /// the beginning of the search as given by the caller regardless of its |
2030 | | /// current value. Subsequent calls to an overlapping search pick up at |
2031 | | /// this offset. |
2032 | | pub(crate) at: usize, |
2033 | | /// The index into the matching patterns of the next match to report if the |
2034 | | /// current state is a match state. Note that this may be 1 greater than |
2035 | | /// the total number of matches to report for the current match state. (In |
2036 | | /// which case, no more matches should be reported at the current position |
2037 | | /// and the search should advance to the next position.) |
2038 | | pub(crate) next_match_index: Option<usize>, |
2039 | | /// This is set to true when a reverse overlapping search has entered its |
2040 | | /// EOI transitions. |
2041 | | /// |
2042 | | /// This isn't used in a forward search because it knows to stop once the |
2043 | | /// position exceeds the end of the search range. In a reverse search, |
2044 | | /// since we use unsigned offsets, we don't "know" once we've gone past |
2045 | | /// `0`. So the only way to detect it is with this extra flag. The reverse |
2046 | | /// overlapping search knows to terminate specifically after it has |
2047 | | /// reported all matches after following the EOI transition. |
2048 | | pub(crate) rev_eoi: bool, |
2049 | | } |
2050 | | |
2051 | | impl OverlappingState { |
2052 | | /// Create a new overlapping state that begins at the start state of any |
2053 | | /// automaton. |
2054 | 0 | pub fn start() -> OverlappingState { |
2055 | 0 | OverlappingState { |
2056 | 0 | mat: None, |
2057 | 0 | id: None, |
2058 | 0 | at: 0, |
2059 | 0 | next_match_index: None, |
2060 | 0 | rev_eoi: false, |
2061 | 0 | } |
2062 | 0 | } |
2063 | | |
2064 | | /// Return the match result of the most recent search to execute with this |
2065 | | /// state. |
2066 | | /// |
2067 | | /// A searches will clear this result automatically, such that if no |
2068 | | /// match is found, this will correctly report `None`. |
2069 | 0 | pub fn get_match(&self) -> Option<HalfMatch> { |
2070 | 0 | self.mat |
2071 | 0 | } |
2072 | | } |
2073 | | |
2074 | | /// An error that can occur when computing the start state for a search. |
2075 | | /// |
2076 | | /// Computing a start state can fail for a few reasons, either based on |
2077 | | /// incorrect configuration or even based on whether the look-behind byte |
2078 | | /// triggers a quit state. Typically one does not need to handle this error |
2079 | | /// if you're using [`Automaton::start_state_forward`] (or its reverse |
2080 | | /// counterpart), as that routine automatically converts `StartError` to a |
2081 | | /// [`MatchError`] for you. |
2082 | | /// |
2083 | | /// This error may be returned by the [`Automaton::start_state`] routine. |
2084 | | /// |
2085 | | /// This error implements the `std::error::Error` trait when the `std` feature |
2086 | | /// is enabled. |
2087 | | /// |
2088 | | /// This error is marked as non-exhaustive. New variants may be added in a |
2089 | | /// semver compatible release. |
2090 | | #[non_exhaustive] |
2091 | | #[derive(Clone, Debug)] |
2092 | | pub enum StartError { |
2093 | | /// An error that occurs when a starting configuration's look-behind byte |
2094 | | /// is in this DFA's quit set. |
2095 | | Quit { |
2096 | | /// The quit byte that was found. |
2097 | | byte: u8, |
2098 | | }, |
2099 | | /// An error that occurs when the caller requests an anchored mode that |
2100 | | /// isn't supported by the DFA. |
2101 | | UnsupportedAnchored { |
2102 | | /// The anchored mode given that is unsupported. |
2103 | | mode: Anchored, |
2104 | | }, |
2105 | | } |
2106 | | |
2107 | | impl StartError { |
2108 | 1.61k | pub(crate) fn quit(byte: u8) -> StartError { |
2109 | 1.61k | StartError::Quit { byte } |
2110 | 1.61k | } |
2111 | | |
2112 | 101 | pub(crate) fn unsupported_anchored(mode: Anchored) -> StartError { |
2113 | 101 | StartError::UnsupportedAnchored { mode } |
2114 | 101 | } |
2115 | | } |
2116 | | |
2117 | | #[cfg(feature = "std")] |
2118 | | impl std::error::Error for StartError {} |
2119 | | |
2120 | | impl core::fmt::Display for StartError { |
2121 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
2122 | 0 | match *self { |
2123 | 0 | StartError::Quit { byte } => write!( |
2124 | 0 | f, |
2125 | 0 | "error computing start state because the look-behind byte \ |
2126 | 0 | {:?} triggered a quit state", |
2127 | 0 | crate::util::escape::DebugByte(byte), |
2128 | | ), |
2129 | | StartError::UnsupportedAnchored { mode: Anchored::Yes } => { |
2130 | 0 | write!( |
2131 | 0 | f, |
2132 | 0 | "error computing start state because \ |
2133 | 0 | anchored searches are not supported or enabled" |
2134 | | ) |
2135 | | } |
2136 | | StartError::UnsupportedAnchored { mode: Anchored::No } => { |
2137 | 0 | write!( |
2138 | 0 | f, |
2139 | 0 | "error computing start state because \ |
2140 | 0 | unanchored searches are not supported or enabled" |
2141 | | ) |
2142 | | } |
2143 | | StartError::UnsupportedAnchored { |
2144 | 0 | mode: Anchored::Pattern(pid), |
2145 | | } => { |
2146 | 0 | write!( |
2147 | 0 | f, |
2148 | 0 | "error computing start state because \ |
2149 | 0 | anchored searches for a specific pattern ({}) \ |
2150 | 0 | are not supported or enabled", |
2151 | 0 | pid.as_usize(), |
2152 | | ) |
2153 | | } |
2154 | | } |
2155 | 0 | } |
2156 | | } |
2157 | | |
2158 | | /// Runs the given overlapping `search` function (forwards or backwards) until |
2159 | | /// a match is found whose offset does not split a codepoint. |
2160 | | /// |
2161 | | /// This is *not* always correct to call. It should only be called when the DFA |
2162 | | /// has UTF-8 mode enabled *and* it can produce zero-width matches. Calling |
2163 | | /// this when both of those things aren't true might result in legitimate |
2164 | | /// matches getting skipped. |
2165 | | #[cold] |
2166 | | #[inline(never)] |
2167 | 0 | fn skip_empty_utf8_splits_overlapping<F>( |
2168 | 0 | input: &Input<'_>, |
2169 | 0 | state: &mut OverlappingState, |
2170 | 0 | mut search: F, |
2171 | 0 | ) -> Result<(), MatchError> |
2172 | 0 | where |
2173 | 0 | F: FnMut(&Input<'_>, &mut OverlappingState) -> Result<(), MatchError>, |
2174 | | { |
2175 | | // Note that this routine works for forwards and reverse searches |
2176 | | // even though there's no code here to handle those cases. That's |
2177 | | // because overlapping searches drive themselves to completion via |
2178 | | // `OverlappingState`. So all we have to do is push it until no matches are |
2179 | | // found. |
2180 | | |
2181 | 0 | let mut hm = match state.get_match() { |
2182 | 0 | None => return Ok(()), |
2183 | 0 | Some(hm) => hm, |
2184 | | }; |
2185 | 0 | if input.get_anchored().is_anchored() { |
2186 | 0 | if !input.is_char_boundary(hm.offset()) { |
2187 | 0 | state.mat = None; |
2188 | 0 | } |
2189 | 0 | return Ok(()); |
2190 | 0 | } |
2191 | 0 | while !input.is_char_boundary(hm.offset()) { |
2192 | 0 | search(input, state)?; |
2193 | 0 | hm = match state.get_match() { |
2194 | 0 | None => return Ok(()), |
2195 | 0 | Some(hm) => hm, |
2196 | | }; |
2197 | | } |
2198 | 0 | Ok(()) |
2199 | 0 | } |
2200 | | |
2201 | | /// Write a prefix "state" indicator for fmt::Debug impls. |
2202 | | /// |
2203 | | /// Specifically, this tries to succinctly distinguish the different types of |
2204 | | /// states: dead states, quit states, accelerated states, start states and |
2205 | | /// match states. It even accounts for the possible overlapping of different |
2206 | | /// state types. |
2207 | 0 | pub(crate) fn fmt_state_indicator<A: Automaton>( |
2208 | 0 | f: &mut core::fmt::Formatter<'_>, |
2209 | 0 | dfa: A, |
2210 | 0 | id: StateID, |
2211 | 0 | ) -> core::fmt::Result { |
2212 | 0 | if dfa.is_dead_state(id) { |
2213 | 0 | write!(f, "D")?; |
2214 | 0 | if dfa.is_start_state(id) { |
2215 | 0 | write!(f, ">")?; |
2216 | | } else { |
2217 | 0 | write!(f, " ")?; |
2218 | | } |
2219 | 0 | } else if dfa.is_quit_state(id) { |
2220 | 0 | write!(f, "Q ")?; |
2221 | 0 | } else if dfa.is_start_state(id) { |
2222 | 0 | if dfa.is_accel_state(id) { |
2223 | 0 | write!(f, "A>")?; |
2224 | | } else { |
2225 | 0 | write!(f, " >")?; |
2226 | | } |
2227 | 0 | } else if dfa.is_match_state(id) { |
2228 | 0 | if dfa.is_accel_state(id) { |
2229 | 0 | write!(f, "A*")?; |
2230 | | } else { |
2231 | 0 | write!(f, " *")?; |
2232 | | } |
2233 | 0 | } else if dfa.is_accel_state(id) { |
2234 | 0 | write!(f, "A ")?; |
2235 | | } else { |
2236 | 0 | write!(f, " ")?; |
2237 | | } |
2238 | 0 | Ok(()) |
2239 | 0 | } |
2240 | | |
2241 | | #[cfg(all(test, feature = "syntax", feature = "dfa-build"))] |
2242 | | mod tests { |
2243 | | // A basic test ensuring that our Automaton trait is object safe. (This is |
2244 | | // the main reason why we don't define the search routines as generic over |
2245 | | // Into<Input>.) |
2246 | | #[test] |
2247 | | fn object_safe() { |
2248 | | use crate::{ |
2249 | | dfa::{dense, Automaton}, |
2250 | | HalfMatch, Input, |
2251 | | }; |
2252 | | |
2253 | | let dfa = dense::DFA::new("abc").unwrap(); |
2254 | | let dfa: &dyn Automaton = &dfa; |
2255 | | assert_eq!( |
2256 | | Ok(Some(HalfMatch::must(0, 6))), |
2257 | | dfa.try_search_fwd(&Input::new(b"xyzabcxyz")), |
2258 | | ); |
2259 | | } |
2260 | | } |