Coverage Report

Created: 2025-11-16 06:23

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/regex/regex-automata/src/dfa/automaton.rs
Line
Count
Source
1
#[cfg(feature = "alloc")]
2
use crate::util::search::PatternSet;
3
use crate::{
4
    dfa::search,
5
    util::{
6
        empty,
7
        prefilter::Prefilter,
8
        primitives::{PatternID, StateID},
9
        search::{Anchored, HalfMatch, Input, MatchError},
10
        start,
11
    },
12
};
13
14
/// A trait describing the interface of a deterministic finite automaton (DFA).
15
///
16
/// The complexity of this trait probably means that it's unlikely for others
17
/// to implement it. The primary purpose of the trait is to provide for a way
18
/// of abstracting over different types of DFAs. In this crate, that means
19
/// dense DFAs and sparse DFAs. (Dense DFAs are fast but memory hungry, where
20
/// as sparse DFAs are slower but come with a smaller memory footprint. But
21
/// they otherwise provide exactly equivalent expressive power.) For example, a
22
/// [`dfa::regex::Regex`](crate::dfa::regex::Regex) is generic over this trait.
23
///
24
/// Normally, a DFA's execution model is very simple. You might have a single
25
/// start state, zero or more final or "match" states and a function that
26
/// transitions from one state to the next given the next byte of input.
27
/// Unfortunately, the interface described by this trait is significantly
28
/// more complicated than this. The complexity has a number of different
29
/// reasons, mostly motivated by performance, functionality or space savings:
30
///
31
/// * A DFA can search for multiple patterns simultaneously. This
32
/// means extra information is returned when a match occurs. Namely,
33
/// a match is not just an offset, but an offset plus a pattern ID.
34
/// [`Automaton::pattern_len`] returns the number of patterns compiled into
35
/// the DFA, [`Automaton::match_len`] returns the total number of patterns
36
/// that match in a particular state and [`Automaton::match_pattern`] permits
37
/// iterating over the patterns that match in a particular state.
38
/// * A DFA can have multiple start states, and the choice of which start
39
/// state to use depends on the content of the string being searched and
40
/// position of the search, as well as whether the search is an anchored
41
/// search for a specific pattern in the DFA. Moreover, computing the start
42
/// state also depends on whether you're doing a forward or a reverse search.
43
/// [`Automaton::start_state_forward`] and [`Automaton::start_state_reverse`]
44
/// are used to compute the start state for forward and reverse searches,
45
/// respectively.
46
/// * All matches are delayed by one byte to support things like `$` and `\b`
47
/// at the end of a pattern. Therefore, every use of a DFA is required to use
48
/// [`Automaton::next_eoi_state`]
49
/// at the end of the search to compute the final transition.
50
/// * For optimization reasons, some states are treated specially. Every
51
/// state is either special or not, which can be determined via the
52
/// [`Automaton::is_special_state`] method. If it's special, then the state
53
/// must be at least one of a few possible types of states. (Note that some
54
/// types can overlap, for example, a match state can also be an accel state.
55
/// But some types can't. If a state is a dead state, then it can never be any
56
/// other type of state.) Those types are:
57
///     * A dead state. A dead state means the DFA will never enter a match
58
///     state. This can be queried via the [`Automaton::is_dead_state`] method.
59
///     * A quit state. A quit state occurs if the DFA had to stop the search
60
///     prematurely for some reason. This can be queried via the
61
///     [`Automaton::is_quit_state`] method.
62
///     * A match state. A match state occurs when a match is found. When a DFA
63
///     enters a match state, the search may stop immediately (when looking
64
///     for the earliest match), or it may continue to find the leftmost-first
65
///     match. This can be queried via the [`Automaton::is_match_state`]
66
///     method.
67
///     * A start state. A start state is where a search begins. For every
68
///     search, there is exactly one start state that is used, however, a
69
///     DFA may contain many start states. When the search is in a start
70
///     state, it may use a prefilter to quickly skip to candidate matches
71
///     without executing the DFA on every byte. This can be queried via the
72
///     [`Automaton::is_start_state`] method.
73
///     * An accel state. An accel state is a state that is accelerated.
74
///     That is, it is a state where _most_ of its transitions loop back to
75
///     itself and only a small number of transitions lead to other states.
76
///     This kind of state is said to be accelerated because a search routine
77
///     can quickly look for the bytes leading out of the state instead of
78
///     continuing to execute the DFA on each byte. This can be queried via the
79
///     [`Automaton::is_accel_state`] method. And the bytes that lead out of
80
///     the state can be queried via the [`Automaton::accelerator`] method.
81
///
82
/// There are a number of provided methods on this trait that implement
83
/// efficient searching (for forwards and backwards) with a DFA using
84
/// all of the above features of this trait. In particular, given the
85
/// complexity of all these features, implementing a search routine in
86
/// this trait can be a little subtle. With that said, it is possible to
87
/// somewhat simplify the search routine. For example, handling accelerated
88
/// states is strictly optional, since it is always correct to assume that
89
/// `Automaton::is_accel_state` returns false. However, one complex part of
90
/// writing a search routine using this trait is handling the 1-byte delay of a
91
/// match. That is not optional.
92
///
93
/// # Safety
94
///
95
/// This trait is not safe to implement so that code may rely on the
96
/// correctness of implementations of this trait to avoid undefined behavior.
97
/// The primary correctness guarantees are:
98
///
99
/// * `Automaton::start_state` always returns a valid state ID or an error or
100
/// panics.
101
/// * `Automaton::next_state`, when given a valid state ID, always returns
102
/// a valid state ID for all values of `anchored` and `byte`, or otherwise
103
/// panics.
104
///
105
/// In general, the rest of the methods on `Automaton` need to uphold their
106
/// contracts as well. For example, `Automaton::is_dead` should only returns
107
/// true if the given state ID is actually a dead state.
108
pub unsafe trait Automaton {
109
    /// Transitions from the current state to the next state, given the next
110
    /// byte of input.
111
    ///
112
    /// Implementations must guarantee that the returned ID is always a valid
113
    /// ID when `current` refers to a valid ID. Moreover, the transition
114
    /// function must be defined for all possible values of `input`.
115
    ///
116
    /// # Panics
117
    ///
118
    /// If the given ID does not refer to a valid state, then this routine
119
    /// may panic but it also may not panic and instead return an invalid ID.
120
    /// However, if the caller provides an invalid ID then this must never
121
    /// sacrifice memory safety.
122
    ///
123
    /// # Example
124
    ///
125
    /// This shows a simplistic example for walking a DFA for a given haystack
126
    /// by using the `next_state` method.
127
    ///
128
    /// ```
129
    /// use regex_automata::{dfa::{Automaton, dense}, Input};
130
    ///
131
    /// let dfa = dense::DFA::new(r"[a-z]+r")?;
132
    /// let haystack = "bar".as_bytes();
133
    ///
134
    /// // The start state is determined by inspecting the position and the
135
    /// // initial bytes of the haystack.
136
    /// let mut state = dfa.start_state_forward(&Input::new(haystack))?;
137
    /// // Walk all the bytes in the haystack.
138
    /// for &b in haystack {
139
    ///     state = dfa.next_state(state, b);
140
    /// }
141
    /// // Matches are always delayed by 1 byte, so we must explicitly walk the
142
    /// // special "EOI" transition at the end of the search.
143
    /// state = dfa.next_eoi_state(state);
144
    /// assert!(dfa.is_match_state(state));
145
    ///
146
    /// # Ok::<(), Box<dyn std::error::Error>>(())
147
    /// ```
148
    fn next_state(&self, current: StateID, input: u8) -> StateID;
149
150
    /// Transitions from the current state to the next state, given the next
151
    /// byte of input.
152
    ///
153
    /// Unlike [`Automaton::next_state`], implementations may implement this
154
    /// more efficiently by assuming that the `current` state ID is valid.
155
    /// Typically, this manifests by eliding bounds checks.
156
    ///
157
    /// # Safety
158
    ///
159
    /// Callers of this method must guarantee that `current` refers to a valid
160
    /// state ID. If `current` is not a valid state ID for this automaton, then
161
    /// calling this routine may result in undefined behavior.
162
    ///
163
    /// If `current` is valid, then implementations must guarantee that the ID
164
    /// returned is valid for all possible values of `input`.
165
    unsafe fn next_state_unchecked(
166
        &self,
167
        current: StateID,
168
        input: u8,
169
    ) -> StateID;
170
171
    /// Transitions from the current state to the next state for the special
172
    /// EOI symbol.
173
    ///
174
    /// Implementations must guarantee that the returned ID is always a valid
175
    /// ID when `current` refers to a valid ID.
176
    ///
177
    /// This routine must be called at the end of every search in a correct
178
    /// implementation of search. Namely, DFAs in this crate delay matches
179
    /// by one byte in order to support look-around operators. Thus, after
180
    /// reaching the end of a haystack, a search implementation must follow one
181
    /// last EOI transition.
182
    ///
183
    /// It is best to think of EOI as an additional symbol in the alphabet of
184
    /// a DFA that is distinct from every other symbol. That is, the alphabet
185
    /// of DFAs in this crate has a logical size of 257 instead of 256, where
186
    /// 256 corresponds to every possible inhabitant of `u8`. (In practice, the
187
    /// physical alphabet size may be smaller because of alphabet compression
188
    /// via equivalence classes, but EOI is always represented somehow in the
189
    /// alphabet.)
190
    ///
191
    /// # Panics
192
    ///
193
    /// If the given ID does not refer to a valid state, then this routine
194
    /// may panic but it also may not panic and instead return an invalid ID.
195
    /// However, if the caller provides an invalid ID then this must never
196
    /// sacrifice memory safety.
197
    ///
198
    /// # Example
199
    ///
200
    /// This shows a simplistic example for walking a DFA for a given haystack,
201
    /// and then finishing the search with the final EOI transition.
202
    ///
203
    /// ```
204
    /// use regex_automata::{dfa::{Automaton, dense}, Input};
205
    ///
206
    /// let dfa = dense::DFA::new(r"[a-z]+r")?;
207
    /// let haystack = "bar".as_bytes();
208
    ///
209
    /// // The start state is determined by inspecting the position and the
210
    /// // initial bytes of the haystack.
211
    /// //
212
    /// // The unwrap is OK because we aren't requesting a start state for a
213
    /// // specific pattern.
214
    /// let mut state = dfa.start_state_forward(&Input::new(haystack))?;
215
    /// // Walk all the bytes in the haystack.
216
    /// for &b in haystack {
217
    ///     state = dfa.next_state(state, b);
218
    /// }
219
    /// // Matches are always delayed by 1 byte, so we must explicitly walk
220
    /// // the special "EOI" transition at the end of the search. Without this
221
    /// // final transition, the assert below will fail since the DFA will not
222
    /// // have entered a match state yet!
223
    /// state = dfa.next_eoi_state(state);
224
    /// assert!(dfa.is_match_state(state));
225
    ///
226
    /// # Ok::<(), Box<dyn std::error::Error>>(())
227
    /// ```
228
    fn next_eoi_state(&self, current: StateID) -> StateID;
229
230
    /// Return the ID of the start state for this DFA for the given starting
231
    /// configuration.
232
    ///
233
    /// Unlike typical DFA implementations, the start state for DFAs in this
234
    /// crate is dependent on a few different factors:
235
    ///
236
    /// * The [`Anchored`] mode of the search. Unanchored, anchored and
237
    /// anchored searches for a specific [`PatternID`] all use different start
238
    /// states.
239
    /// * Whether a "look-behind" byte exists. For example, the `^` anchor
240
    /// matches if and only if there is no look-behind byte.
241
    /// * The specific value of that look-behind byte. For example, a `(?m:^)`
242
    /// assertion only matches when there is either no look-behind byte, or
243
    /// when the look-behind byte is a line terminator.
244
    ///
245
    /// The [starting configuration](start::Config) provides the above
246
    /// information.
247
    ///
248
    /// This routine can be used for either forward or reverse searches.
249
    /// Although, as a convenience, if you have an [`Input`], then it may
250
    /// be more succinct to use [`Automaton::start_state_forward`] or
251
    /// [`Automaton::start_state_reverse`]. Note, for example, that the
252
    /// convenience routines return a [`MatchError`] on failure where as this
253
    /// routine returns a [`StartError`].
254
    ///
255
    /// # Errors
256
    ///
257
    /// This may return a [`StartError`] if the search needs to give up when
258
    /// determining the start state (for example, if it sees a "quit" byte).
259
    /// This can also return an error if the given configuration contains an
260
    /// unsupported [`Anchored`] configuration.
261
    fn start_state(
262
        &self,
263
        config: &start::Config,
264
    ) -> Result<StateID, StartError>;
265
266
    /// Return the ID of the start state for this DFA when executing a forward
267
    /// search.
268
    ///
269
    /// This is a convenience routine for calling [`Automaton::start_state`]
270
    /// that converts the given [`Input`] to a [start
271
    /// configuration](start::Config). Additionally, if an error occurs, it is
272
    /// converted from a [`StartError`] to a [`MatchError`] using the offset
273
    /// information in the given [`Input`].
274
    ///
275
    /// # Errors
276
    ///
277
    /// This may return a [`MatchError`] if the search needs to give up
278
    /// when determining the start state (for example, if it sees a "quit"
279
    /// byte). This can also return an error if the given `Input` contains an
280
    /// unsupported [`Anchored`] configuration.
281
140k
    fn start_state_forward(
282
140k
        &self,
283
140k
        input: &Input<'_>,
284
140k
    ) -> Result<StateID, MatchError> {
285
140k
        let config = start::Config::from_input_forward(input);
286
140k
        self.start_state(&config).map_err(|err| match err {
287
899
            StartError::Quit { byte } => {
288
899
                let offset = input
289
899
                    .start()
290
899
                    .checked_sub(1)
291
899
                    .expect("no quit in start without look-behind");
292
899
                MatchError::quit(byte, offset)
293
            }
294
101
            StartError::UnsupportedAnchored { mode } => {
295
101
                MatchError::unsupported_anchored(mode)
296
            }
297
1.00k
        })
<regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state_forward::{closure#0}
Line
Count
Source
286
603
        self.start_state(&config).map_err(|err| match err {
287
603
            StartError::Quit { byte } => {
288
603
                let offset = input
289
603
                    .start()
290
603
                    .checked_sub(1)
291
603
                    .expect("no quit in start without look-behind");
292
603
                MatchError::quit(byte, offset)
293
            }
294
0
            StartError::UnsupportedAnchored { mode } => {
295
0
                MatchError::unsupported_anchored(mode)
296
            }
297
603
        })
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state_forward::{closure#0}
Line
Count
Source
286
232
        self.start_state(&config).map_err(|err| match err {
287
208
            StartError::Quit { byte } => {
288
208
                let offset = input
289
208
                    .start()
290
208
                    .checked_sub(1)
291
208
                    .expect("no quit in start without look-behind");
292
208
                MatchError::quit(byte, offset)
293
            }
294
24
            StartError::UnsupportedAnchored { mode } => {
295
24
                MatchError::unsupported_anchored(mode)
296
            }
297
232
        })
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::start_state_forward::{closure#0}
Line
Count
Source
286
165
        self.start_state(&config).map_err(|err| match err {
287
88
            StartError::Quit { byte } => {
288
88
                let offset = input
289
88
                    .start()
290
88
                    .checked_sub(1)
291
88
                    .expect("no quit in start without look-behind");
292
88
                MatchError::quit(byte, offset)
293
            }
294
77
            StartError::UnsupportedAnchored { mode } => {
295
77
                MatchError::unsupported_anchored(mode)
296
            }
297
165
        })
298
140k
    }
<regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state_forward
Line
Count
Source
281
109k
    fn start_state_forward(
282
109k
        &self,
283
109k
        input: &Input<'_>,
284
109k
    ) -> Result<StateID, MatchError> {
285
109k
        let config = start::Config::from_input_forward(input);
286
109k
        self.start_state(&config).map_err(|err| match err {
287
            StartError::Quit { byte } => {
288
                let offset = input
289
                    .start()
290
                    .checked_sub(1)
291
                    .expect("no quit in start without look-behind");
292
                MatchError::quit(byte, offset)
293
            }
294
            StartError::UnsupportedAnchored { mode } => {
295
                MatchError::unsupported_anchored(mode)
296
            }
297
        })
298
109k
    }
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state_forward
Line
Count
Source
281
13.2k
    fn start_state_forward(
282
13.2k
        &self,
283
13.2k
        input: &Input<'_>,
284
13.2k
    ) -> Result<StateID, MatchError> {
285
13.2k
        let config = start::Config::from_input_forward(input);
286
13.2k
        self.start_state(&config).map_err(|err| match err {
287
            StartError::Quit { byte } => {
288
                let offset = input
289
                    .start()
290
                    .checked_sub(1)
291
                    .expect("no quit in start without look-behind");
292
                MatchError::quit(byte, offset)
293
            }
294
            StartError::UnsupportedAnchored { mode } => {
295
                MatchError::unsupported_anchored(mode)
296
            }
297
        })
298
13.2k
    }
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::start_state_forward
Line
Count
Source
281
18.7k
    fn start_state_forward(
282
18.7k
        &self,
283
18.7k
        input: &Input<'_>,
284
18.7k
    ) -> Result<StateID, MatchError> {
285
18.7k
        let config = start::Config::from_input_forward(input);
286
18.7k
        self.start_state(&config).map_err(|err| match err {
287
            StartError::Quit { byte } => {
288
                let offset = input
289
                    .start()
290
                    .checked_sub(1)
291
                    .expect("no quit in start without look-behind");
292
                MatchError::quit(byte, offset)
293
            }
294
            StartError::UnsupportedAnchored { mode } => {
295
                MatchError::unsupported_anchored(mode)
296
            }
297
        })
298
18.7k
    }
299
300
    /// Return the ID of the start state for this DFA when executing a reverse
301
    /// search.
302
    ///
303
    /// This is a convenience routine for calling [`Automaton::start_state`]
304
    /// that converts the given [`Input`] to a [start
305
    /// configuration](start::Config). Additionally, if an error occurs, it is
306
    /// converted from a [`StartError`] to a [`MatchError`] using the offset
307
    /// information in the given [`Input`].
308
    ///
309
    /// # Errors
310
    ///
311
    /// This may return a [`MatchError`] if the search needs to give up
312
    /// when determining the start state (for example, if it sees a "quit"
313
    /// byte). This can also return an error if the given `Input` contains an
314
    /// unsupported [`Anchored`] configuration.
315
308k
    fn start_state_reverse(
316
308k
        &self,
317
308k
        input: &Input<'_>,
318
308k
    ) -> Result<StateID, MatchError> {
319
308k
        let config = start::Config::from_input_reverse(input);
320
308k
        self.start_state(&config).map_err(|err| match err {
321
718
            StartError::Quit { byte } => {
322
718
                let offset = input.end();
323
718
                MatchError::quit(byte, offset)
324
            }
325
0
            StartError::UnsupportedAnchored { mode } => {
326
0
                MatchError::unsupported_anchored(mode)
327
            }
328
718
        })
329
308k
    }
330
331
    /// If this DFA has a universal starting state for the given anchor mode
332
    /// and the DFA supports universal starting states, then this returns that
333
    /// state's identifier.
334
    ///
335
    /// A DFA is said to have a universal starting state when the starting
336
    /// state is invariant with respect to the haystack. Usually, the starting
337
    /// state is chosen depending on the bytes immediately surrounding the
338
    /// starting position of a search. However, the starting state only differs
339
    /// when one or more of the patterns in the DFA have look-around assertions
340
    /// in its prefix.
341
    ///
342
    /// Stated differently, if none of the patterns in a DFA have look-around
343
    /// assertions in their prefix, then the DFA has a universal starting state
344
    /// and _may_ be returned by this method.
345
    ///
346
    /// It is always correct for implementations to return `None`, and indeed,
347
    /// this is what the default implementation does. When this returns `None`,
348
    /// callers must use either `start_state_forward` or `start_state_reverse`
349
    /// to get the starting state.
350
    ///
351
    /// # Use case
352
    ///
353
    /// There are a few reasons why one might want to use this:
354
    ///
355
    /// * If you know your regex patterns have no look-around assertions in
356
    /// their prefix, then calling this routine is likely cheaper and perhaps
357
    /// more semantically meaningful.
358
    /// * When implementing prefilter support in a DFA regex implementation,
359
    /// it is necessary to re-compute the start state after a candidate
360
    /// is returned from the prefilter. However, this is only needed when
361
    /// there isn't a universal start state. When one exists, one can avoid
362
    /// re-computing the start state.
363
    ///
364
    /// # Example
365
    ///
366
    /// ```
367
    /// use regex_automata::{
368
    ///     dfa::{Automaton, dense::DFA},
369
    ///     Anchored,
370
    /// };
371
    ///
372
    /// // There are no look-around assertions in the prefixes of any of the
373
    /// // patterns, so we get a universal start state.
374
    /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+$", "[A-Z]+"])?;
375
    /// assert!(dfa.universal_start_state(Anchored::No).is_some());
376
    /// assert!(dfa.universal_start_state(Anchored::Yes).is_some());
377
    ///
378
    /// // One of the patterns has a look-around assertion in its prefix,
379
    /// // so this means there is no longer a universal start state.
380
    /// let dfa = DFA::new_many(&["[0-9]+", "^[a-z]+$", "[A-Z]+"])?;
381
    /// assert!(!dfa.universal_start_state(Anchored::No).is_some());
382
    /// assert!(!dfa.universal_start_state(Anchored::Yes).is_some());
383
    /// # Ok::<(), Box<dyn std::error::Error>>(())
384
    /// ```
385
    #[inline]
386
    fn universal_start_state(&self, _mode: Anchored) -> Option<StateID> {
387
        None
388
    }
389
390
    /// Returns true if and only if the given identifier corresponds to a
391
    /// "special" state. A special state is one or more of the following:
392
    /// a dead state, a quit state, a match state, a start state or an
393
    /// accelerated state.
394
    ///
395
    /// A correct implementation _may_ always return false for states that
396
    /// are either start states or accelerated states, since that information
397
    /// is only intended to be used for optimization purposes. Correct
398
    /// implementations must return true if the state is a dead, quit or match
399
    /// state. This is because search routines using this trait must be able
400
    /// to rely on `is_special_state` as an indicator that a state may need
401
    /// special treatment. (For example, when a search routine sees a dead
402
    /// state, it must terminate.)
403
    ///
404
    /// This routine permits search implementations to use a single branch to
405
    /// check whether a state needs special attention before executing the next
406
    /// transition. The example below shows how to do this.
407
    ///
408
    /// # Example
409
    ///
410
    /// This example shows how `is_special_state` can be used to implement a
411
    /// correct search routine with minimal branching. In particular, this
412
    /// search routine implements "leftmost" matching, which means that it
413
    /// doesn't immediately stop once a match is found. Instead, it continues
414
    /// until it reaches a dead state.
415
    ///
416
    /// ```
417
    /// use regex_automata::{
418
    ///     dfa::{Automaton, dense},
419
    ///     HalfMatch, MatchError, Input,
420
    /// };
421
    ///
422
    /// fn find<A: Automaton>(
423
    ///     dfa: &A,
424
    ///     haystack: &[u8],
425
    /// ) -> Result<Option<HalfMatch>, MatchError> {
426
    ///     // The start state is determined by inspecting the position and the
427
    ///     // initial bytes of the haystack. Note that start states can never
428
    ///     // be match states (since DFAs in this crate delay matches by 1
429
    ///     // byte), so we don't need to check if the start state is a match.
430
    ///     let mut state = dfa.start_state_forward(&Input::new(haystack))?;
431
    ///     let mut last_match = None;
432
    ///     // Walk all the bytes in the haystack. We can quit early if we see
433
    ///     // a dead or a quit state. The former means the automaton will
434
    ///     // never transition to any other state. The latter means that the
435
    ///     // automaton entered a condition in which its search failed.
436
    ///     for (i, &b) in haystack.iter().enumerate() {
437
    ///         state = dfa.next_state(state, b);
438
    ///         if dfa.is_special_state(state) {
439
    ///             if dfa.is_match_state(state) {
440
    ///                 last_match = Some(HalfMatch::new(
441
    ///                     dfa.match_pattern(state, 0),
442
    ///                     i,
443
    ///                 ));
444
    ///             } else if dfa.is_dead_state(state) {
445
    ///                 return Ok(last_match);
446
    ///             } else if dfa.is_quit_state(state) {
447
    ///                 // It is possible to enter into a quit state after
448
    ///                 // observing a match has occurred. In that case, we
449
    ///                 // should return the match instead of an error.
450
    ///                 if last_match.is_some() {
451
    ///                     return Ok(last_match);
452
    ///                 }
453
    ///                 return Err(MatchError::quit(b, i));
454
    ///             }
455
    ///             // Implementors may also want to check for start or accel
456
    ///             // states and handle them differently for performance
457
    ///             // reasons. But it is not necessary for correctness.
458
    ///         }
459
    ///     }
460
    ///     // Matches are always delayed by 1 byte, so we must explicitly walk
461
    ///     // the special "EOI" transition at the end of the search.
462
    ///     state = dfa.next_eoi_state(state);
463
    ///     if dfa.is_match_state(state) {
464
    ///         last_match = Some(HalfMatch::new(
465
    ///             dfa.match_pattern(state, 0),
466
    ///             haystack.len(),
467
    ///         ));
468
    ///     }
469
    ///     Ok(last_match)
470
    /// }
471
    ///
472
    /// // We use a greedy '+' operator to show how the search doesn't just
473
    /// // stop once a match is detected. It continues extending the match.
474
    /// // Using '[a-z]+?' would also work as expected and stop the search
475
    /// // early. Greediness is built into the automaton.
476
    /// let dfa = dense::DFA::new(r"[a-z]+")?;
477
    /// let haystack = "123 foobar 4567".as_bytes();
478
    /// let mat = find(&dfa, haystack)?.unwrap();
479
    /// assert_eq!(mat.pattern().as_usize(), 0);
480
    /// assert_eq!(mat.offset(), 10);
481
    ///
482
    /// // Here's another example that tests our handling of the special EOI
483
    /// // transition. This will fail to find a match if we don't call
484
    /// // 'next_eoi_state' at the end of the search since the match isn't
485
    /// // found until the final byte in the haystack.
486
    /// let dfa = dense::DFA::new(r"[0-9]{4}")?;
487
    /// let haystack = "123 foobar 4567".as_bytes();
488
    /// let mat = find(&dfa, haystack)?.unwrap();
489
    /// assert_eq!(mat.pattern().as_usize(), 0);
490
    /// assert_eq!(mat.offset(), 15);
491
    ///
492
    /// // And note that our search implementation above automatically works
493
    /// // with multi-DFAs. Namely, `dfa.match_pattern(match_state, 0)` selects
494
    /// // the appropriate pattern ID for us.
495
    /// let dfa = dense::DFA::new_many(&[r"[a-z]+", r"[0-9]+"])?;
496
    /// let haystack = "123 foobar 4567".as_bytes();
497
    /// let mat = find(&dfa, haystack)?.unwrap();
498
    /// assert_eq!(mat.pattern().as_usize(), 1);
499
    /// assert_eq!(mat.offset(), 3);
500
    /// let mat = find(&dfa, &haystack[3..])?.unwrap();
501
    /// assert_eq!(mat.pattern().as_usize(), 0);
502
    /// assert_eq!(mat.offset(), 7);
503
    /// let mat = find(&dfa, &haystack[10..])?.unwrap();
504
    /// assert_eq!(mat.pattern().as_usize(), 1);
505
    /// assert_eq!(mat.offset(), 5);
506
    ///
507
    /// # Ok::<(), Box<dyn std::error::Error>>(())
508
    /// ```
509
    fn is_special_state(&self, id: StateID) -> bool;
510
511
    /// Returns true if and only if the given identifier corresponds to a dead
512
    /// state. When a DFA enters a dead state, it is impossible to leave. That
513
    /// is, every transition on a dead state by definition leads back to the
514
    /// same dead state.
515
    ///
516
    /// In practice, the dead state always corresponds to the identifier `0`.
517
    /// Moreover, in practice, there is only one dead state.
518
    ///
519
    /// The existence of a dead state is not strictly required in the classical
520
    /// model of finite state machines, where one generally only cares about
521
    /// the question of whether an input sequence matches or not. Dead states
522
    /// are not needed to answer that question, since one can immediately quit
523
    /// as soon as one enters a final or "match" state. However, we don't just
524
    /// care about matches but also care about the location of matches, and
525
    /// more specifically, care about semantics like "greedy" matching.
526
    ///
527
    /// For example, given the pattern `a+` and the input `aaaz`, the dead
528
    /// state won't be entered until the state machine reaches `z` in the
529
    /// input, at which point, the search routine can quit. But without the
530
    /// dead state, the search routine wouldn't know when to quit. In a
531
    /// classical representation, the search routine would stop after seeing
532
    /// the first `a` (which is when the search would enter a match state). But
533
    /// this wouldn't implement "greedy" matching where `a+` matches as many
534
    /// `a`'s as possible.
535
    ///
536
    /// # Example
537
    ///
538
    /// See the example for [`Automaton::is_special_state`] for how to use this
539
    /// method correctly.
540
    fn is_dead_state(&self, id: StateID) -> bool;
541
542
    /// Returns true if and only if the given identifier corresponds to a quit
543
    /// state. A quit state is like a dead state (it has no transitions other
544
    /// than to itself), except it indicates that the DFA failed to complete
545
    /// the search. When this occurs, callers can neither accept or reject that
546
    /// a match occurred.
547
    ///
548
    /// In practice, the quit state always corresponds to the state immediately
549
    /// following the dead state. (Which is not usually represented by `1`,
550
    /// since state identifiers are pre-multiplied by the state machine's
551
    /// alphabet stride, and the alphabet stride varies between DFAs.)
552
    ///
553
    /// The typical way in which a quit state can occur is when heuristic
554
    /// support for Unicode word boundaries is enabled via the
555
    /// [`dense::Config::unicode_word_boundary`](crate::dfa::dense::Config::unicode_word_boundary)
556
    /// option. But other options, like the lower level
557
    /// [`dense::Config::quit`](crate::dfa::dense::Config::quit)
558
    /// configuration, can also result in a quit state being entered. The
559
    /// purpose of the quit state is to provide a way to execute a fast DFA
560
    /// in common cases while delegating to slower routines when the DFA quits.
561
    ///
562
    /// The default search implementations provided by this crate will return a
563
    /// [`MatchError::quit`] error when a quit state is entered.
564
    ///
565
    /// # Example
566
    ///
567
    /// See the example for [`Automaton::is_special_state`] for how to use this
568
    /// method correctly.
569
    fn is_quit_state(&self, id: StateID) -> bool;
570
571
    /// Returns true if and only if the given identifier corresponds to a
572
    /// match state. A match state is also referred to as a "final" state and
573
    /// indicates that a match has been found.
574
    ///
575
    /// If all you care about is whether a particular pattern matches in the
576
    /// input sequence, then a search routine can quit early as soon as the
577
    /// machine enters a match state. However, if you're looking for the
578
    /// standard "leftmost-first" match location, then search _must_ continue
579
    /// until either the end of the input or until the machine enters a dead
580
    /// state. (Since either condition implies that no other useful work can
581
    /// be done.) Namely, when looking for the location of a match, then
582
    /// search implementations should record the most recent location in
583
    /// which a match state was entered, but otherwise continue executing the
584
    /// search as normal. (The search may even leave the match state.) Once
585
    /// the termination condition is reached, the most recently recorded match
586
    /// location should be returned.
587
    ///
588
    /// Finally, one additional power given to match states in this crate
589
    /// is that they are always associated with a specific pattern in order
590
    /// to support multi-DFAs. See [`Automaton::match_pattern`] for more
591
    /// details and an example for how to query the pattern associated with a
592
    /// particular match state.
593
    ///
594
    /// # Example
595
    ///
596
    /// See the example for [`Automaton::is_special_state`] for how to use this
597
    /// method correctly.
598
    fn is_match_state(&self, id: StateID) -> bool;
599
600
    /// Returns true only if the given identifier corresponds to a start
601
    /// state
602
    ///
603
    /// A start state is a state in which a DFA begins a search.
604
    /// All searches begin in a start state. Moreover, since all matches are
605
    /// delayed by one byte, a start state can never be a match state.
606
    ///
607
    /// The main role of a start state is, as mentioned, to be a starting
608
    /// point for a DFA. This starting point is determined via one of
609
    /// [`Automaton::start_state_forward`] or
610
    /// [`Automaton::start_state_reverse`], depending on whether one is doing
611
    /// a forward or a reverse search, respectively.
612
    ///
613
    /// A secondary use of start states is for prefix acceleration. Namely,
614
    /// while executing a search, if one detects that you're in a start state,
615
    /// then it may be faster to look for the next match of a prefix of the
616
    /// pattern, if one exists. If a prefix exists and since all matches must
617
    /// begin with that prefix, then skipping ahead to occurrences of that
618
    /// prefix may be much faster than executing the DFA.
619
    ///
620
    /// As mentioned in the documentation for
621
    /// [`is_special_state`](Automaton::is_special_state) implementations
622
    /// _may_ always return false, even if the given identifier is a start
623
    /// state. This is because knowing whether a state is a start state or not
624
    /// is not necessary for correctness and is only treated as a potential
625
    /// performance optimization. (For example, the implementations of this
626
    /// trait in this crate will only return true when the given identifier
627
    /// corresponds to a start state and when [specialization of start
628
    /// states](crate::dfa::dense::Config::specialize_start_states) was enabled
629
    /// during DFA construction. If start state specialization is disabled
630
    /// (which is the default), then this method will always return false.)
631
    ///
632
    /// # Example
633
    ///
634
    /// This example shows how to implement your own search routine that does
635
    /// a prefix search whenever the search enters a start state.
636
    ///
637
    /// Note that you do not need to implement your own search routine
638
    /// to make use of prefilters like this. The search routines
639
    /// provided by this crate already implement prefilter support via
640
    /// the [`Prefilter`](crate::util::prefilter::Prefilter) trait.
641
    /// A prefilter can be added to your search configuration with
642
    /// [`dense::Config::prefilter`](crate::dfa::dense::Config::prefilter) for
643
    /// dense and sparse DFAs in this crate.
644
    ///
645
    /// This example is meant to show how you might deal with prefilters in a
646
    /// simplified case if you are implementing your own search routine.
647
    ///
648
    /// ```
649
    /// use regex_automata::{
650
    ///     dfa::{Automaton, dense},
651
    ///     HalfMatch, MatchError, Input,
652
    /// };
653
    ///
654
    /// fn find_byte(slice: &[u8], at: usize, byte: u8) -> Option<usize> {
655
    ///     // Would be faster to use the memchr crate, but this is still
656
    ///     // faster than running through the DFA.
657
    ///     slice[at..].iter().position(|&b| b == byte).map(|i| at + i)
658
    /// }
659
    ///
660
    /// fn find<A: Automaton>(
661
    ///     dfa: &A,
662
    ///     haystack: &[u8],
663
    ///     prefix_byte: Option<u8>,
664
    /// ) -> Result<Option<HalfMatch>, MatchError> {
665
    ///     // See the Automaton::is_special_state example for similar code
666
    ///     // with more comments.
667
    ///
668
    ///     let mut state = dfa.start_state_forward(&Input::new(haystack))?;
669
    ///     let mut last_match = None;
670
    ///     let mut pos = 0;
671
    ///     while pos < haystack.len() {
672
    ///         let b = haystack[pos];
673
    ///         state = dfa.next_state(state, b);
674
    ///         pos += 1;
675
    ///         if dfa.is_special_state(state) {
676
    ///             if dfa.is_match_state(state) {
677
    ///                 last_match = Some(HalfMatch::new(
678
    ///                     dfa.match_pattern(state, 0),
679
    ///                     pos - 1,
680
    ///                 ));
681
    ///             } else if dfa.is_dead_state(state) {
682
    ///                 return Ok(last_match);
683
    ///             } else if dfa.is_quit_state(state) {
684
    ///                 // It is possible to enter into a quit state after
685
    ///                 // observing a match has occurred. In that case, we
686
    ///                 // should return the match instead of an error.
687
    ///                 if last_match.is_some() {
688
    ///                     return Ok(last_match);
689
    ///                 }
690
    ///                 return Err(MatchError::quit(b, pos - 1));
691
    ///             } else if dfa.is_start_state(state) {
692
    ///                 // If we're in a start state and know all matches begin
693
    ///                 // with a particular byte, then we can quickly skip to
694
    ///                 // candidate matches without running the DFA through
695
    ///                 // every byte inbetween.
696
    ///                 if let Some(prefix_byte) = prefix_byte {
697
    ///                     pos = match find_byte(haystack, pos, prefix_byte) {
698
    ///                         Some(pos) => pos,
699
    ///                         None => break,
700
    ///                     };
701
    ///                 }
702
    ///             }
703
    ///         }
704
    ///     }
705
    ///     // Matches are always delayed by 1 byte, so we must explicitly walk
706
    ///     // the special "EOI" transition at the end of the search.
707
    ///     state = dfa.next_eoi_state(state);
708
    ///     if dfa.is_match_state(state) {
709
    ///         last_match = Some(HalfMatch::new(
710
    ///             dfa.match_pattern(state, 0),
711
    ///             haystack.len(),
712
    ///         ));
713
    ///     }
714
    ///     Ok(last_match)
715
    /// }
716
    ///
717
    /// // In this example, it's obvious that all occurrences of our pattern
718
    /// // begin with 'Z', so we pass in 'Z'. Note also that we need to
719
    /// // enable start state specialization, or else it won't be possible to
720
    /// // detect start states during a search. ('is_start_state' would always
721
    /// // return false.)
722
    /// let dfa = dense::DFA::builder()
723
    ///     .configure(dense::DFA::config().specialize_start_states(true))
724
    ///     .build(r"Z[a-z]+")?;
725
    /// let haystack = "123 foobar Zbaz quux".as_bytes();
726
    /// let mat = find(&dfa, haystack, Some(b'Z'))?.unwrap();
727
    /// assert_eq!(mat.pattern().as_usize(), 0);
728
    /// assert_eq!(mat.offset(), 15);
729
    ///
730
    /// // But note that we don't need to pass in a prefix byte. If we don't,
731
    /// // then the search routine does no acceleration.
732
    /// let mat = find(&dfa, haystack, None)?.unwrap();
733
    /// assert_eq!(mat.pattern().as_usize(), 0);
734
    /// assert_eq!(mat.offset(), 15);
735
    ///
736
    /// // However, if we pass an incorrect byte, then the prefix search will
737
    /// // result in incorrect results.
738
    /// assert_eq!(find(&dfa, haystack, Some(b'X'))?, None);
739
    ///
740
    /// # Ok::<(), Box<dyn std::error::Error>>(())
741
    /// ```
742
    fn is_start_state(&self, id: StateID) -> bool;
743
744
    /// Returns true if and only if the given identifier corresponds to an
745
    /// accelerated state.
746
    ///
747
    /// An accelerated state is a special optimization
748
    /// trick implemented by this crate. Namely, if
749
    /// [`dense::Config::accelerate`](crate::dfa::dense::Config::accelerate) is
750
    /// enabled (and it is by default), then DFAs generated by this crate will
751
    /// tag states meeting certain characteristics as accelerated. States meet
752
    /// this criteria whenever most of their transitions are self-transitions.
753
    /// That is, transitions that loop back to the same state. When a small
754
    /// number of transitions aren't self-transitions, then it follows that
755
    /// there are only a small number of bytes that can cause the DFA to leave
756
    /// that state. Thus, there is an opportunity to look for those bytes
757
    /// using more optimized routines rather than continuing to run through
758
    /// the DFA. This trick is similar to the prefilter idea described in
759
    /// the documentation of [`Automaton::is_start_state`] with two main
760
    /// differences:
761
    ///
762
    /// 1. It is more limited since acceleration only applies to single bytes.
763
    /// This means states are rarely accelerated when Unicode mode is enabled
764
    /// (which is enabled by default).
765
    /// 2. It can occur anywhere in the DFA, which increases optimization
766
    /// opportunities.
767
    ///
768
    /// Like the prefilter idea, the main downside (and a possible reason to
769
    /// disable it) is that it can lead to worse performance in some cases.
770
    /// Namely, if a state is accelerated for very common bytes, then the
771
    /// overhead of checking for acceleration and using the more optimized
772
    /// routines to look for those bytes can cause overall performance to be
773
    /// worse than if acceleration wasn't enabled at all.
774
    ///
775
    /// A simple example of a regex that has an accelerated state is
776
    /// `(?-u)[^a]+a`. Namely, the `[^a]+` sub-expression gets compiled down
777
    /// into a single state where all transitions except for `a` loop back to
778
    /// itself, and where `a` is the only transition (other than the special
779
    /// EOI transition) that goes to some other state. Thus, this state can
780
    /// be accelerated and implemented more efficiently by calling an
781
    /// optimized routine like `memchr` with `a` as the needle. Notice that
782
    /// the `(?-u)` to disable Unicode is necessary here, as without it,
783
    /// `[^a]` will match any UTF-8 encoding of any Unicode scalar value other
784
    /// than `a`. This more complicated expression compiles down to many DFA
785
    /// states and the simple acceleration optimization is no longer available.
786
    ///
787
    /// Typically, this routine is used to guard calls to
788
    /// [`Automaton::accelerator`], which returns the accelerated bytes for
789
    /// the specified state.
790
    fn is_accel_state(&self, id: StateID) -> bool;
791
792
    /// Returns the total number of patterns compiled into this DFA.
793
    ///
794
    /// In the case of a DFA that contains no patterns, this must return `0`.
795
    ///
796
    /// # Example
797
    ///
798
    /// This example shows the pattern length for a DFA that never matches:
799
    ///
800
    /// ```
801
    /// use regex_automata::dfa::{Automaton, dense::DFA};
802
    ///
803
    /// let dfa: DFA<Vec<u32>> = DFA::never_match()?;
804
    /// assert_eq!(dfa.pattern_len(), 0);
805
    /// # Ok::<(), Box<dyn std::error::Error>>(())
806
    /// ```
807
    ///
808
    /// And another example for a DFA that matches at every position:
809
    ///
810
    /// ```
811
    /// use regex_automata::dfa::{Automaton, dense::DFA};
812
    ///
813
    /// let dfa: DFA<Vec<u32>> = DFA::always_match()?;
814
    /// assert_eq!(dfa.pattern_len(), 1);
815
    /// # Ok::<(), Box<dyn std::error::Error>>(())
816
    /// ```
817
    ///
818
    /// And finally, a DFA that was constructed from multiple patterns:
819
    ///
820
    /// ```
821
    /// use regex_automata::dfa::{Automaton, dense::DFA};
822
    ///
823
    /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
824
    /// assert_eq!(dfa.pattern_len(), 3);
825
    /// # Ok::<(), Box<dyn std::error::Error>>(())
826
    /// ```
827
    fn pattern_len(&self) -> usize;
828
829
    /// Returns the total number of patterns that match in this state.
830
    ///
831
    /// If the given state is not a match state, then implementations may
832
    /// panic.
833
    ///
834
    /// If the DFA was compiled with one pattern, then this must necessarily
835
    /// always return `1` for all match states.
836
    ///
837
    /// Implementations must guarantee that [`Automaton::match_pattern`] can be
838
    /// called with indices up to (but not including) the length returned by
839
    /// this routine without panicking.
840
    ///
841
    /// # Panics
842
    ///
843
    /// Implementations are permitted to panic if the provided state ID does
844
    /// not correspond to a match state.
845
    ///
846
    /// # Example
847
    ///
848
    /// This example shows a simple instance of implementing overlapping
849
    /// matches. In particular, it shows not only how to determine how many
850
    /// patterns have matched in a particular state, but also how to access
851
    /// which specific patterns have matched.
852
    ///
853
    /// Notice that we must use
854
    /// [`MatchKind::All`](crate::MatchKind::All)
855
    /// when building the DFA. If we used
856
    /// [`MatchKind::LeftmostFirst`](crate::MatchKind::LeftmostFirst)
857
    /// instead, then the DFA would not be constructed in a way that
858
    /// supports overlapping matches. (It would only report a single pattern
859
    /// that matches at any particular point in time.)
860
    ///
861
    /// Another thing to take note of is the patterns used and the order in
862
    /// which the pattern IDs are reported. In the example below, pattern `3`
863
    /// is yielded first. Why? Because it corresponds to the match that
864
    /// appears first. Namely, the `@` symbol is part of `\S+` but not part
865
    /// of any of the other patterns. Since the `\S+` pattern has a match that
866
    /// starts to the left of any other pattern, its ID is returned before any
867
    /// other.
868
    ///
869
    /// ```
870
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
871
    /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchKind};
872
    ///
873
    /// let dfa = dense::Builder::new()
874
    ///     .configure(dense::Config::new().match_kind(MatchKind::All))
875
    ///     .build_many(&[
876
    ///         r"[[:word:]]+", r"[a-z]+", r"[A-Z]+", r"[[:^space:]]+",
877
    ///     ])?;
878
    /// let haystack = "@bar".as_bytes();
879
    ///
880
    /// // The start state is determined by inspecting the position and the
881
    /// // initial bytes of the haystack.
882
    /// let mut state = dfa.start_state_forward(&Input::new(haystack))?;
883
    /// // Walk all the bytes in the haystack.
884
    /// for &b in haystack {
885
    ///     state = dfa.next_state(state, b);
886
    /// }
887
    /// state = dfa.next_eoi_state(state);
888
    ///
889
    /// assert!(dfa.is_match_state(state));
890
    /// assert_eq!(dfa.match_len(state), 3);
891
    /// // The following calls are guaranteed to not panic since `match_len`
892
    /// // returned `3` above.
893
    /// assert_eq!(dfa.match_pattern(state, 0).as_usize(), 3);
894
    /// assert_eq!(dfa.match_pattern(state, 1).as_usize(), 0);
895
    /// assert_eq!(dfa.match_pattern(state, 2).as_usize(), 1);
896
    ///
897
    /// # Ok::<(), Box<dyn std::error::Error>>(())
898
    /// ```
899
    fn match_len(&self, id: StateID) -> usize;
900
901
    /// Returns the pattern ID corresponding to the given match index in the
902
    /// given state.
903
    ///
904
    /// See [`Automaton::match_len`] for an example of how to use this
905
    /// method correctly. Note that if you know your DFA is compiled with a
906
    /// single pattern, then this routine is never necessary since it will
907
    /// always return a pattern ID of `0` for an index of `0` when `id`
908
    /// corresponds to a match state.
909
    ///
910
    /// Typically, this routine is used when implementing an overlapping
911
    /// search, as the example for `Automaton::match_len` does.
912
    ///
913
    /// # Panics
914
    ///
915
    /// If the state ID is not a match state or if the match index is out
916
    /// of bounds for the given state, then this routine may either panic
917
    /// or produce an incorrect result. If the state ID is correct and the
918
    /// match index is correct, then this routine must always produce a valid
919
    /// `PatternID`.
920
    fn match_pattern(&self, id: StateID, index: usize) -> PatternID;
921
922
    /// Returns true if and only if this automaton can match the empty string.
923
    /// When it returns false, all possible matches are guaranteed to have a
924
    /// non-zero length.
925
    ///
926
    /// This is useful as cheap way to know whether code needs to handle the
927
    /// case of a zero length match. This is particularly important when UTF-8
928
    /// modes are enabled, as when UTF-8 mode is enabled, empty matches that
929
    /// split a codepoint must never be reported. This extra handling can
930
    /// sometimes be costly, and since regexes matching an empty string are
931
    /// somewhat rare, it can be beneficial to treat such regexes specially.
932
    ///
933
    /// # Example
934
    ///
935
    /// This example shows a few different DFAs and whether they match the
936
    /// empty string or not. Notice the empty string isn't merely a matter
937
    /// of a string of length literally `0`, but rather, whether a match can
938
    /// occur between specific pairs of bytes.
939
    ///
940
    /// ```
941
    /// use regex_automata::{dfa::{dense::DFA, Automaton}, util::syntax};
942
    ///
943
    /// // The empty regex matches the empty string.
944
    /// let dfa = DFA::new("")?;
945
    /// assert!(dfa.has_empty(), "empty matches empty");
946
    /// // The '+' repetition operator requires at least one match, and so
947
    /// // does not match the empty string.
948
    /// let dfa = DFA::new("a+")?;
949
    /// assert!(!dfa.has_empty(), "+ does not match empty");
950
    /// // But the '*' repetition operator does.
951
    /// let dfa = DFA::new("a*")?;
952
    /// assert!(dfa.has_empty(), "* does match empty");
953
    /// // And wrapping '+' in an operator that can match an empty string also
954
    /// // causes it to match the empty string too.
955
    /// let dfa = DFA::new("(a+)*")?;
956
    /// assert!(dfa.has_empty(), "+ inside of * matches empty");
957
    ///
958
    /// // If a regex is just made of a look-around assertion, even if the
959
    /// // assertion requires some kind of non-empty string around it (such as
960
    /// // \b), then it is still treated as if it matches the empty string.
961
    /// // Namely, if a match occurs of just a look-around assertion, then the
962
    /// // match returned is empty.
963
    /// let dfa = DFA::builder()
964
    ///     .configure(DFA::config().unicode_word_boundary(true))
965
    ///     .syntax(syntax::Config::new().utf8(false))
966
    ///     .build(r"^$\A\z\b\B(?-u:\b\B)")?;
967
    /// assert!(dfa.has_empty(), "assertions match empty");
968
    /// // Even when an assertion is wrapped in a '+', it still matches the
969
    /// // empty string.
970
    /// let dfa = DFA::new(r"^+")?;
971
    /// assert!(dfa.has_empty(), "+ of an assertion matches empty");
972
    ///
973
    /// // An alternation with even one branch that can match the empty string
974
    /// // is also said to match the empty string overall.
975
    /// let dfa = DFA::new("foo|(bar)?|quux")?;
976
    /// assert!(dfa.has_empty(), "alternations can match empty");
977
    ///
978
    /// // An NFA that matches nothing does not match the empty string.
979
    /// let dfa = DFA::new("[a&&b]")?;
980
    /// assert!(!dfa.has_empty(), "never matching means not matching empty");
981
    /// // But if it's wrapped in something that doesn't require a match at
982
    /// // all, then it can match the empty string!
983
    /// let dfa = DFA::new("[a&&b]*")?;
984
    /// assert!(dfa.has_empty(), "* on never-match still matches empty");
985
    /// // Since a '+' requires a match, using it on something that can never
986
    /// // match will itself produce a regex that can never match anything,
987
    /// // and thus does not match the empty string.
988
    /// let dfa = DFA::new("[a&&b]+")?;
989
    /// assert!(!dfa.has_empty(), "+ on never-match still matches nothing");
990
    ///
991
    /// # Ok::<(), Box<dyn std::error::Error>>(())
992
    /// ```
993
    fn has_empty(&self) -> bool;
994
995
    /// Whether UTF-8 mode is enabled for this DFA or not.
996
    ///
997
    /// When UTF-8 mode is enabled, all matches reported by a DFA are
998
    /// guaranteed to correspond to spans of valid UTF-8. This includes
999
    /// zero-width matches. For example, the DFA must guarantee that the empty
1000
    /// regex will not match at the positions between code units in the UTF-8
1001
    /// encoding of a single codepoint.
1002
    ///
1003
    /// See [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) for
1004
    /// more information.
1005
    ///
1006
    /// # Example
1007
    ///
1008
    /// This example shows how UTF-8 mode can impact the match spans that may
1009
    /// be reported in certain cases.
1010
    ///
1011
    /// ```
1012
    /// use regex_automata::{
1013
    ///     dfa::{dense::DFA, Automaton},
1014
    ///     nfa::thompson,
1015
    ///     HalfMatch, Input,
1016
    /// };
1017
    ///
1018
    /// // UTF-8 mode is enabled by default.
1019
    /// let re = DFA::new("")?;
1020
    /// assert!(re.is_utf8());
1021
    /// let mut input = Input::new("☃");
1022
    /// let got = re.try_search_fwd(&input)?;
1023
    /// assert_eq!(Some(HalfMatch::must(0, 0)), got);
1024
    ///
1025
    /// // Even though an empty regex matches at 1..1, our next match is
1026
    /// // 3..3 because 1..1 and 2..2 split the snowman codepoint (which is
1027
    /// // three bytes long).
1028
    /// input.set_start(1);
1029
    /// let got = re.try_search_fwd(&input)?;
1030
    /// assert_eq!(Some(HalfMatch::must(0, 3)), got);
1031
    ///
1032
    /// // But if we disable UTF-8, then we'll get matches at 1..1 and 2..2:
1033
    /// let re = DFA::builder()
1034
    ///     .thompson(thompson::Config::new().utf8(false))
1035
    ///     .build("")?;
1036
    /// assert!(!re.is_utf8());
1037
    /// let got = re.try_search_fwd(&input)?;
1038
    /// assert_eq!(Some(HalfMatch::must(0, 1)), got);
1039
    ///
1040
    /// input.set_start(2);
1041
    /// let got = re.try_search_fwd(&input)?;
1042
    /// assert_eq!(Some(HalfMatch::must(0, 2)), got);
1043
    ///
1044
    /// input.set_start(3);
1045
    /// let got = re.try_search_fwd(&input)?;
1046
    /// assert_eq!(Some(HalfMatch::must(0, 3)), got);
1047
    ///
1048
    /// input.set_start(4);
1049
    /// let got = re.try_search_fwd(&input)?;
1050
    /// assert_eq!(None, got);
1051
    ///
1052
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1053
    /// ```
1054
    fn is_utf8(&self) -> bool;
1055
1056
    /// Returns true if and only if this DFA is limited to returning matches
1057
    /// whose start position is `0`.
1058
    ///
1059
    /// Note that if you're using DFAs provided by
1060
    /// this crate, then this is _orthogonal_ to
1061
    /// [`Config::start_kind`](crate::dfa::dense::Config::start_kind).
1062
    ///
1063
    /// This is useful in some cases because if a DFA is limited to producing
1064
    /// matches that start at offset `0`, then a reverse search is never
1065
    /// required for finding the start of a match.
1066
    ///
1067
    /// # Example
1068
    ///
1069
    /// ```
1070
    /// use regex_automata::dfa::{dense::DFA, Automaton};
1071
    ///
1072
    /// // The empty regex matches anywhere
1073
    /// let dfa = DFA::new("")?;
1074
    /// assert!(!dfa.is_always_start_anchored(), "empty matches anywhere");
1075
    /// // 'a' matches anywhere.
1076
    /// let dfa = DFA::new("a")?;
1077
    /// assert!(!dfa.is_always_start_anchored(), "'a' matches anywhere");
1078
    /// // '^' only matches at offset 0!
1079
    /// let dfa = DFA::new("^a")?;
1080
    /// assert!(dfa.is_always_start_anchored(), "'^a' matches only at 0");
1081
    /// // But '(?m:^)' matches at 0 but at other offsets too.
1082
    /// let dfa = DFA::new("(?m:^)a")?;
1083
    /// assert!(!dfa.is_always_start_anchored(), "'(?m:^)a' matches anywhere");
1084
    ///
1085
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1086
    /// ```
1087
    fn is_always_start_anchored(&self) -> bool;
1088
1089
    /// Return a slice of bytes to accelerate for the given state, if possible.
1090
    ///
1091
    /// If the given state has no accelerator, then an empty slice must be
1092
    /// returned. If `Automaton::is_accel_state` returns true for the given ID,
1093
    /// then this routine _must_ return a non-empty slice. But note that it is
1094
    /// not required for an implementation of this trait to ever return `true`
1095
    /// for `is_accel_state`, even if the state _could_ be accelerated. That
1096
    /// is, acceleration is an optional optimization. But the return values of
1097
    /// `is_accel_state` and `accelerator` must be in sync.
1098
    ///
1099
    /// If the given ID is not a valid state ID for this automaton, then
1100
    /// implementations may panic or produce incorrect results.
1101
    ///
1102
    /// See [`Automaton::is_accel_state`] for more details on state
1103
    /// acceleration.
1104
    ///
1105
    /// By default, this method will always return an empty slice.
1106
    ///
1107
    /// # Example
1108
    ///
1109
    /// This example shows a contrived case in which we build a regex that we
1110
    /// know is accelerated and extract the accelerator from a state.
1111
    ///
1112
    /// ```
1113
    /// use regex_automata::{
1114
    ///     dfa::{Automaton, dense},
1115
    ///     util::{primitives::StateID, syntax},
1116
    /// };
1117
    ///
1118
    /// let dfa = dense::Builder::new()
1119
    ///     // We disable Unicode everywhere and permit the regex to match
1120
    ///     // invalid UTF-8. e.g., [^abc] matches \xFF, which is not valid
1121
    ///     // UTF-8. If we left Unicode enabled, [^abc] would match any UTF-8
1122
    ///     // encoding of any Unicode scalar value except for 'a', 'b' or 'c'.
1123
    ///     // That translates to a much more complicated DFA, and also
1124
    ///     // inhibits the 'accelerator' optimization that we are trying to
1125
    ///     // demonstrate in this example.
1126
    ///     .syntax(syntax::Config::new().unicode(false).utf8(false))
1127
    ///     .build("[^abc]+a")?;
1128
    ///
1129
    /// // Here we just pluck out the state that we know is accelerated.
1130
    /// // While the stride calculations are something that can be relied
1131
    /// // on by callers, the specific position of the accelerated state is
1132
    /// // implementation defined.
1133
    /// //
1134
    /// // N.B. We get '3' by inspecting the state machine using 'regex-cli'.
1135
    /// // e.g., try `regex-cli debug dense dfa -p '[^abc]+a' -BbUC`.
1136
    /// let id = StateID::new(3 * dfa.stride()).unwrap();
1137
    /// let accelerator = dfa.accelerator(id);
1138
    /// // The `[^abc]+` sub-expression permits [a, b, c] to be accelerated.
1139
    /// assert_eq!(accelerator, &[b'a', b'b', b'c']);
1140
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1141
    /// ```
1142
    #[inline]
1143
    fn accelerator(&self, _id: StateID) -> &[u8] {
1144
        &[]
1145
    }
1146
1147
    /// Returns the prefilter associated with a DFA, if one exists.
1148
    ///
1149
    /// The default implementation of this trait always returns `None`. And
1150
    /// indeed, it is always correct to return `None`.
1151
    ///
1152
    /// For DFAs in this crate, a prefilter can be attached to a DFA via
1153
    /// [`dense::Config::prefilter`](crate::dfa::dense::Config::prefilter).
1154
    ///
1155
    /// Do note that prefilters are not serialized by DFAs in this crate.
1156
    /// So if you deserialize a DFA that had a prefilter attached to it
1157
    /// at serialization time, then it will not have a prefilter after
1158
    /// deserialization.
1159
    #[inline]
1160
    fn get_prefilter(&self) -> Option<&Prefilter> {
1161
        None
1162
    }
1163
1164
    /// Executes a forward search and returns the end position of the leftmost
1165
    /// match that is found. If no match exists, then `None` is returned.
1166
    ///
1167
    /// In particular, this method continues searching even after it enters
1168
    /// a match state. The search only terminates once it has reached the
1169
    /// end of the input or when it has entered a dead or quit state. Upon
1170
    /// termination, the position of the last byte seen while still in a match
1171
    /// state is returned.
1172
    ///
1173
    /// # Errors
1174
    ///
1175
    /// This routine errors if the search could not complete. This can occur
1176
    /// in a number of circumstances:
1177
    ///
1178
    /// * The configuration of the DFA may permit it to "quit" the search.
1179
    /// For example, setting quit bytes or enabling heuristic support for
1180
    /// Unicode word boundaries. The default configuration does not enable any
1181
    /// option that could result in the DFA quitting.
1182
    /// * When the provided `Input` configuration is not supported. For
1183
    /// example, by providing an unsupported anchor mode.
1184
    ///
1185
    /// When a search returns an error, callers cannot know whether a match
1186
    /// exists or not.
1187
    ///
1188
    /// # Notes for implementors
1189
    ///
1190
    /// Implementors of this trait are not required to implement any particular
1191
    /// match semantics (such as leftmost-first), which are instead manifest in
1192
    /// the DFA's transitions. But this search routine should behave as a
1193
    /// general "leftmost" search.
1194
    ///
1195
    /// In particular, this method must continue searching even after it enters
1196
    /// a match state. The search should only terminate once it has reached
1197
    /// the end of the input or when it has entered a dead or quit state. Upon
1198
    /// termination, the position of the last byte seen while still in a match
1199
    /// state is returned.
1200
    ///
1201
    /// Since this trait provides an implementation for this method by default,
1202
    /// it's unlikely that one will need to implement this.
1203
    ///
1204
    /// # Example
1205
    ///
1206
    /// This example shows how to use this method with a
1207
    /// [`dense::DFA`](crate::dfa::dense::DFA).
1208
    ///
1209
    /// ```
1210
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1211
    ///
1212
    /// let dfa = dense::DFA::new("foo[0-9]+")?;
1213
    /// let expected = Some(HalfMatch::must(0, 8));
1214
    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(b"foo12345"))?);
1215
    ///
1216
    /// // Even though a match is found after reading the first byte (`a`),
1217
    /// // the leftmost first match semantics demand that we find the earliest
1218
    /// // match that prefers earlier parts of the pattern over latter parts.
1219
    /// let dfa = dense::DFA::new("abc|a")?;
1220
    /// let expected = Some(HalfMatch::must(0, 3));
1221
    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(b"abc"))?);
1222
    ///
1223
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1224
    /// ```
1225
    ///
1226
    /// # Example: specific pattern search
1227
    ///
1228
    /// This example shows how to build a multi-DFA that permits searching for
1229
    /// specific patterns.
1230
    ///
1231
    /// ```
1232
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1233
    /// use regex_automata::{
1234
    ///     dfa::{Automaton, dense},
1235
    ///     Anchored, HalfMatch, PatternID, Input,
1236
    /// };
1237
    ///
1238
    /// let dfa = dense::Builder::new()
1239
    ///     .configure(dense::Config::new().starts_for_each_pattern(true))
1240
    ///     .build_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1241
    /// let haystack = "foo123".as_bytes();
1242
    ///
1243
    /// // Since we are using the default leftmost-first match and both
1244
    /// // patterns match at the same starting position, only the first pattern
1245
    /// // will be returned in this case when doing a search for any of the
1246
    /// // patterns.
1247
    /// let expected = Some(HalfMatch::must(0, 6));
1248
    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1249
    /// assert_eq!(expected, got);
1250
    ///
1251
    /// // But if we want to check whether some other pattern matches, then we
1252
    /// // can provide its pattern ID.
1253
    /// let input = Input::new(haystack)
1254
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1255
    /// let expected = Some(HalfMatch::must(1, 6));
1256
    /// let got = dfa.try_search_fwd(&input)?;
1257
    /// assert_eq!(expected, got);
1258
    ///
1259
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1260
    /// ```
1261
    ///
1262
    /// # Example: specifying the bounds of a search
1263
    ///
1264
    /// This example shows how providing the bounds of a search can produce
1265
    /// different results than simply sub-slicing the haystack.
1266
    ///
1267
    /// ```
1268
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1269
    ///
1270
    /// // N.B. We disable Unicode here so that we use a simple ASCII word
1271
    /// // boundary. Alternatively, we could enable heuristic support for
1272
    /// // Unicode word boundaries.
1273
    /// let dfa = dense::DFA::new(r"(?-u)\b[0-9]{3}\b")?;
1274
    /// let haystack = "foo123bar".as_bytes();
1275
    ///
1276
    /// // Since we sub-slice the haystack, the search doesn't know about the
1277
    /// // larger context and assumes that `123` is surrounded by word
1278
    /// // boundaries. And of course, the match position is reported relative
1279
    /// // to the sub-slice as well, which means we get `3` instead of `6`.
1280
    /// let input = Input::new(&haystack[3..6]);
1281
    /// let expected = Some(HalfMatch::must(0, 3));
1282
    /// let got = dfa.try_search_fwd(&input)?;
1283
    /// assert_eq!(expected, got);
1284
    ///
1285
    /// // But if we provide the bounds of the search within the context of the
1286
    /// // entire haystack, then the search can take the surrounding context
1287
    /// // into account. (And if we did find a match, it would be reported
1288
    /// // as a valid offset into `haystack` instead of its sub-slice.)
1289
    /// let input = Input::new(haystack).range(3..6);
1290
    /// let expected = None;
1291
    /// let got = dfa.try_search_fwd(&input)?;
1292
    /// assert_eq!(expected, got);
1293
    ///
1294
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1295
    /// ```
1296
    #[inline]
1297
62.7k
    fn try_search_fwd(
1298
62.7k
        &self,
1299
62.7k
        input: &Input<'_>,
1300
62.7k
    ) -> Result<Option<HalfMatch>, MatchError> {
1301
62.7k
        let utf8empty = self.has_empty() && self.is_utf8();
1302
62.7k
        let hm = match search::find_fwd(&self, input)? {
1303
23.2k
            None => return Ok(None),
1304
8.62k
            Some(hm) if !utf8empty => return Ok(Some(hm)),
1305
6.99k
            Some(hm) => hm,
1306
        };
1307
        // We get to this point when we know our DFA can match the empty string
1308
        // AND when UTF-8 mode is enabled. In this case, we skip any matches
1309
        // whose offset splits a codepoint. Such a match is necessarily a
1310
        // zero-width match, because UTF-8 mode requires the underlying NFA
1311
        // to be built such that all non-empty matches span valid UTF-8.
1312
        // Therefore, any match that ends in the middle of a codepoint cannot
1313
        // be part of a span of valid UTF-8 and thus must be an empty match.
1314
        // In such cases, we skip it, so as not to report matches that split a
1315
        // codepoint.
1316
        //
1317
        // Note that this is not a checked assumption. Callers *can* provide an
1318
        // NFA with UTF-8 mode enabled but produces non-empty matches that span
1319
        // invalid UTF-8. But doing so is documented to result in unspecified
1320
        // behavior.
1321
42.3k
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
42.3k
            let got = search::find_fwd(&self, input)?;
1323
42.0k
            Ok(got.map(|hm| (hm, hm.offset())))
<regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}::{closure#0}
Line
Count
Source
1323
13.5k
            Ok(got.map(|hm| (hm, hm.offset())))
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}::{closure#0}
Line
Count
Source
1323
11.0k
            Ok(got.map(|hm| (hm, hm.offset())))
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}::{closure#0}
Line
Count
Source
1323
16.8k
            Ok(got.map(|hm| (hm, hm.offset())))
1324
42.3k
        })
<regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}
Line
Count
Source
1321
13.6k
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
13.6k
            let got = search::find_fwd(&self, input)?;
1323
13.6k
            Ok(got.map(|hm| (hm, hm.offset())))
1324
13.6k
        })
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}
Line
Count
Source
1321
11.4k
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
11.4k
            let got = search::find_fwd(&self, input)?;
1323
11.1k
            Ok(got.map(|hm| (hm, hm.offset())))
1324
11.4k
        })
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd::{closure#0}
Line
Count
Source
1321
17.2k
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
17.2k
            let got = search::find_fwd(&self, input)?;
1323
17.1k
            Ok(got.map(|hm| (hm, hm.offset())))
1324
17.2k
        })
1325
62.7k
    }
<regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::try_search_fwd
Line
Count
Source
1297
59.4k
    fn try_search_fwd(
1298
59.4k
        &self,
1299
59.4k
        input: &Input<'_>,
1300
59.4k
    ) -> Result<Option<HalfMatch>, MatchError> {
1301
59.4k
        let utf8empty = self.has_empty() && self.is_utf8();
1302
59.4k
        let hm = match search::find_fwd(&self, input)? {
1303
21.1k
            None => return Ok(None),
1304
8.59k
            Some(hm) if !utf8empty => return Ok(Some(hm)),
1305
5.95k
            Some(hm) => hm,
1306
        };
1307
        // We get to this point when we know our DFA can match the empty string
1308
        // AND when UTF-8 mode is enabled. In this case, we skip any matches
1309
        // whose offset splits a codepoint. Such a match is necessarily a
1310
        // zero-width match, because UTF-8 mode requires the underlying NFA
1311
        // to be built such that all non-empty matches span valid UTF-8.
1312
        // Therefore, any match that ends in the middle of a codepoint cannot
1313
        // be part of a span of valid UTF-8 and thus must be an empty match.
1314
        // In such cases, we skip it, so as not to report matches that split a
1315
        // codepoint.
1316
        //
1317
        // Note that this is not a checked assumption. Callers *can* provide an
1318
        // NFA with UTF-8 mode enabled but produces non-empty matches that span
1319
        // invalid UTF-8. But doing so is documented to result in unspecified
1320
        // behavior.
1321
5.95k
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
            let got = search::find_fwd(&self, input)?;
1323
            Ok(got.map(|hm| (hm, hm.offset())))
1324
        })
1325
59.4k
    }
<regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd
Line
Count
Source
1297
1.82k
    fn try_search_fwd(
1298
1.82k
        &self,
1299
1.82k
        input: &Input<'_>,
1300
1.82k
    ) -> Result<Option<HalfMatch>, MatchError> {
1301
1.82k
        let utf8empty = self.has_empty() && self.is_utf8();
1302
1.82k
        let hm = match search::find_fwd(&self, input)? {
1303
1.29k
            None => return Ok(None),
1304
19
            Some(hm) if !utf8empty => return Ok(Some(hm)),
1305
457
            Some(hm) => hm,
1306
        };
1307
        // We get to this point when we know our DFA can match the empty string
1308
        // AND when UTF-8 mode is enabled. In this case, we skip any matches
1309
        // whose offset splits a codepoint. Such a match is necessarily a
1310
        // zero-width match, because UTF-8 mode requires the underlying NFA
1311
        // to be built such that all non-empty matches span valid UTF-8.
1312
        // Therefore, any match that ends in the middle of a codepoint cannot
1313
        // be part of a span of valid UTF-8 and thus must be an empty match.
1314
        // In such cases, we skip it, so as not to report matches that split a
1315
        // codepoint.
1316
        //
1317
        // Note that this is not a checked assumption. Callers *can* provide an
1318
        // NFA with UTF-8 mode enabled but produces non-empty matches that span
1319
        // invalid UTF-8. But doing so is documented to result in unspecified
1320
        // behavior.
1321
457
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
            let got = search::find_fwd(&self, input)?;
1323
            Ok(got.map(|hm| (hm, hm.offset())))
1324
        })
1325
1.82k
    }
<regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::try_search_fwd
Line
Count
Source
1297
1.44k
    fn try_search_fwd(
1298
1.44k
        &self,
1299
1.44k
        input: &Input<'_>,
1300
1.44k
    ) -> Result<Option<HalfMatch>, MatchError> {
1301
1.44k
        let utf8empty = self.has_empty() && self.is_utf8();
1302
1.44k
        let hm = match search::find_fwd(&self, input)? {
1303
750
            None => return Ok(None),
1304
12
            Some(hm) if !utf8empty => return Ok(Some(hm)),
1305
587
            Some(hm) => hm,
1306
        };
1307
        // We get to this point when we know our DFA can match the empty string
1308
        // AND when UTF-8 mode is enabled. In this case, we skip any matches
1309
        // whose offset splits a codepoint. Such a match is necessarily a
1310
        // zero-width match, because UTF-8 mode requires the underlying NFA
1311
        // to be built such that all non-empty matches span valid UTF-8.
1312
        // Therefore, any match that ends in the middle of a codepoint cannot
1313
        // be part of a span of valid UTF-8 and thus must be an empty match.
1314
        // In such cases, we skip it, so as not to report matches that split a
1315
        // codepoint.
1316
        //
1317
        // Note that this is not a checked assumption. Callers *can* provide an
1318
        // NFA with UTF-8 mode enabled but produces non-empty matches that span
1319
        // invalid UTF-8. But doing so is documented to result in unspecified
1320
        // behavior.
1321
587
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
1322
            let got = search::find_fwd(&self, input)?;
1323
            Ok(got.map(|hm| (hm, hm.offset())))
1324
        })
1325
1.44k
    }
1326
1327
    /// Executes a reverse search and returns the start of the position of the
1328
    /// leftmost match that is found. If no match exists, then `None` is
1329
    /// returned.
1330
    ///
1331
    /// # Errors
1332
    ///
1333
    /// This routine errors if the search could not complete. This can occur
1334
    /// in a number of circumstances:
1335
    ///
1336
    /// * The configuration of the DFA may permit it to "quit" the search.
1337
    /// For example, setting quit bytes or enabling heuristic support for
1338
    /// Unicode word boundaries. The default configuration does not enable any
1339
    /// option that could result in the DFA quitting.
1340
    /// * When the provided `Input` configuration is not supported. For
1341
    /// example, by providing an unsupported anchor mode.
1342
    ///
1343
    /// When a search returns an error, callers cannot know whether a match
1344
    /// exists or not.
1345
    ///
1346
    /// # Example
1347
    ///
1348
    /// This example shows how to use this method with a
1349
    /// [`dense::DFA`](crate::dfa::dense::DFA). In particular, this
1350
    /// routine is principally useful when used in conjunction with the
1351
    /// [`nfa::thompson::Config::reverse`](crate::nfa::thompson::Config::reverse)
1352
    /// configuration. In general, it's unlikely to be correct to use
1353
    /// both `try_search_fwd` and `try_search_rev` with the same DFA since
1354
    /// any particular DFA will only support searching in one direction with
1355
    /// respect to the pattern.
1356
    ///
1357
    /// ```
1358
    /// use regex_automata::{
1359
    ///     nfa::thompson,
1360
    ///     dfa::{Automaton, dense},
1361
    ///     HalfMatch, Input,
1362
    /// };
1363
    ///
1364
    /// let dfa = dense::Builder::new()
1365
    ///     .thompson(thompson::Config::new().reverse(true))
1366
    ///     .build("foo[0-9]+")?;
1367
    /// let expected = Some(HalfMatch::must(0, 0));
1368
    /// assert_eq!(expected, dfa.try_search_rev(&Input::new(b"foo12345"))?);
1369
    ///
1370
    /// // Even though a match is found after reading the last byte (`c`),
1371
    /// // the leftmost first match semantics demand that we find the earliest
1372
    /// // match that prefers earlier parts of the pattern over latter parts.
1373
    /// let dfa = dense::Builder::new()
1374
    ///     .thompson(thompson::Config::new().reverse(true))
1375
    ///     .build("abc|c")?;
1376
    /// let expected = Some(HalfMatch::must(0, 0));
1377
    /// assert_eq!(expected, dfa.try_search_rev(&Input::new(b"abc"))?);
1378
    ///
1379
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1380
    /// ```
1381
    ///
1382
    /// # Example: UTF-8 mode
1383
    ///
1384
    /// This examples demonstrates that UTF-8 mode applies to reverse
1385
    /// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all
1386
    /// matches reported must correspond to valid UTF-8 spans. This includes
1387
    /// prohibiting zero-width matches that split a codepoint.
1388
    ///
1389
    /// UTF-8 mode is enabled by default. Notice below how the only zero-width
1390
    /// matches reported are those at UTF-8 boundaries:
1391
    ///
1392
    /// ```
1393
    /// use regex_automata::{
1394
    ///     dfa::{dense::DFA, Automaton},
1395
    ///     nfa::thompson,
1396
    ///     HalfMatch, Input, MatchKind,
1397
    /// };
1398
    ///
1399
    /// let dfa = DFA::builder()
1400
    ///     .thompson(thompson::Config::new().reverse(true))
1401
    ///     .build(r"")?;
1402
    ///
1403
    /// // Run the reverse DFA to collect all matches.
1404
    /// let mut input = Input::new("☃");
1405
    /// let mut matches = vec![];
1406
    /// loop {
1407
    ///     match dfa.try_search_rev(&input)? {
1408
    ///         None => break,
1409
    ///         Some(hm) => {
1410
    ///             matches.push(hm);
1411
    ///             if hm.offset() == 0 || input.end() == 0 {
1412
    ///                 break;
1413
    ///             } else if hm.offset() < input.end() {
1414
    ///                 input.set_end(hm.offset());
1415
    ///             } else {
1416
    ///                 // This is only necessary to handle zero-width
1417
    ///                 // matches, which of course occur in this example.
1418
    ///                 // Without this, the search would never advance
1419
    ///                 // backwards beyond the initial match.
1420
    ///                 input.set_end(input.end() - 1);
1421
    ///             }
1422
    ///         }
1423
    ///     }
1424
    /// }
1425
    ///
1426
    /// // No matches split a codepoint.
1427
    /// let expected = vec![
1428
    ///     HalfMatch::must(0, 3),
1429
    ///     HalfMatch::must(0, 0),
1430
    /// ];
1431
    /// assert_eq!(expected, matches);
1432
    ///
1433
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1434
    /// ```
1435
    ///
1436
    /// Now let's look at the same example, but with UTF-8 mode on the
1437
    /// original NFA disabled (which results in disabling UTF-8 mode on the
1438
    /// DFA):
1439
    ///
1440
    /// ```
1441
    /// use regex_automata::{
1442
    ///     dfa::{dense::DFA, Automaton},
1443
    ///     nfa::thompson,
1444
    ///     HalfMatch, Input, MatchKind,
1445
    /// };
1446
    ///
1447
    /// let dfa = DFA::builder()
1448
    ///     .thompson(thompson::Config::new().reverse(true).utf8(false))
1449
    ///     .build(r"")?;
1450
    ///
1451
    /// // Run the reverse DFA to collect all matches.
1452
    /// let mut input = Input::new("☃");
1453
    /// let mut matches = vec![];
1454
    /// loop {
1455
    ///     match dfa.try_search_rev(&input)? {
1456
    ///         None => break,
1457
    ///         Some(hm) => {
1458
    ///             matches.push(hm);
1459
    ///             if hm.offset() == 0 || input.end() == 0 {
1460
    ///                 break;
1461
    ///             } else if hm.offset() < input.end() {
1462
    ///                 input.set_end(hm.offset());
1463
    ///             } else {
1464
    ///                 // This is only necessary to handle zero-width
1465
    ///                 // matches, which of course occur in this example.
1466
    ///                 // Without this, the search would never advance
1467
    ///                 // backwards beyond the initial match.
1468
    ///                 input.set_end(input.end() - 1);
1469
    ///             }
1470
    ///         }
1471
    ///     }
1472
    /// }
1473
    ///
1474
    /// // No matches split a codepoint.
1475
    /// let expected = vec![
1476
    ///     HalfMatch::must(0, 3),
1477
    ///     HalfMatch::must(0, 2),
1478
    ///     HalfMatch::must(0, 1),
1479
    ///     HalfMatch::must(0, 0),
1480
    /// ];
1481
    /// assert_eq!(expected, matches);
1482
    ///
1483
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1484
    /// ```
1485
    #[inline]
1486
4.94k
    fn try_search_rev(
1487
4.94k
        &self,
1488
4.94k
        input: &Input<'_>,
1489
4.94k
    ) -> Result<Option<HalfMatch>, MatchError> {
1490
4.94k
        let utf8empty = self.has_empty() && self.is_utf8();
1491
4.94k
        let hm = match search::find_rev(self, input)? {
1492
814
            None => return Ok(None),
1493
2.70k
            Some(hm) if !utf8empty => return Ok(Some(hm)),
1494
760
            Some(hm) => hm,
1495
        };
1496
760
        empty::skip_splits_rev(input, hm, hm.offset(), |input| {
1497
0
            let got = search::find_rev(self, input)?;
1498
0
            Ok(got.map(|hm| (hm, hm.offset())))
1499
0
        })
1500
4.94k
    }
1501
1502
    /// Executes an overlapping forward search. Matches, if one exists, can be
1503
    /// obtained via the [`OverlappingState::get_match`] method.
1504
    ///
1505
    /// This routine is principally only useful when searching for multiple
1506
    /// patterns on inputs where multiple patterns may match the same regions
1507
    /// of text. In particular, callers must preserve the automaton's search
1508
    /// state from prior calls so that the implementation knows where the last
1509
    /// match occurred.
1510
    ///
1511
    /// When using this routine to implement an iterator of overlapping
1512
    /// matches, the `start` of the search should always be set to the end
1513
    /// of the last match. If more patterns match at the previous location,
1514
    /// then they will be immediately returned. (This is tracked by the given
1515
    /// overlapping state.) Otherwise, the search continues at the starting
1516
    /// position given.
1517
    ///
1518
    /// If for some reason you want the search to forget about its previous
1519
    /// state and restart the search at a particular position, then setting the
1520
    /// state to [`OverlappingState::start`] will accomplish that.
1521
    ///
1522
    /// # Errors
1523
    ///
1524
    /// This routine errors if the search could not complete. This can occur
1525
    /// in a number of circumstances:
1526
    ///
1527
    /// * The configuration of the DFA may permit it to "quit" the search.
1528
    /// For example, setting quit bytes or enabling heuristic support for
1529
    /// Unicode word boundaries. The default configuration does not enable any
1530
    /// option that could result in the DFA quitting.
1531
    /// * When the provided `Input` configuration is not supported. For
1532
    /// example, by providing an unsupported anchor mode.
1533
    ///
1534
    /// When a search returns an error, callers cannot know whether a match
1535
    /// exists or not.
1536
    ///
1537
    /// # Example
1538
    ///
1539
    /// This example shows how to run a basic overlapping search with a
1540
    /// [`dense::DFA`](crate::dfa::dense::DFA). Notice that we build the
1541
    /// automaton with a `MatchKind::All` configuration. Overlapping searches
1542
    /// are unlikely to work as one would expect when using the default
1543
    /// `MatchKind::LeftmostFirst` match semantics, since leftmost-first
1544
    /// matching is fundamentally incompatible with overlapping searches.
1545
    /// Namely, overlapping searches need to report matches as they are seen,
1546
    /// where as leftmost-first searches will continue searching even after a
1547
    /// match has been observed in order to find the conventional end position
1548
    /// of the match. More concretely, leftmost-first searches use dead states
1549
    /// to terminate a search after a specific match can no longer be extended.
1550
    /// Overlapping searches instead do the opposite by continuing the search
1551
    /// to find totally new matches (potentially of other patterns).
1552
    ///
1553
    /// ```
1554
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1555
    /// use regex_automata::{
1556
    ///     dfa::{Automaton, OverlappingState, dense},
1557
    ///     HalfMatch, Input, MatchKind,
1558
    /// };
1559
    ///
1560
    /// let dfa = dense::Builder::new()
1561
    ///     .configure(dense::Config::new().match_kind(MatchKind::All))
1562
    ///     .build_many(&[r"[[:word:]]+$", r"[[:^space:]]+$"])?;
1563
    /// let haystack = "@foo";
1564
    /// let mut state = OverlappingState::start();
1565
    ///
1566
    /// let expected = Some(HalfMatch::must(1, 4));
1567
    /// dfa.try_search_overlapping_fwd(&Input::new(haystack), &mut state)?;
1568
    /// assert_eq!(expected, state.get_match());
1569
    ///
1570
    /// // The first pattern also matches at the same position, so re-running
1571
    /// // the search will yield another match. Notice also that the first
1572
    /// // pattern is returned after the second. This is because the second
1573
    /// // pattern begins its match before the first, is therefore an earlier
1574
    /// // match and is thus reported first.
1575
    /// let expected = Some(HalfMatch::must(0, 4));
1576
    /// dfa.try_search_overlapping_fwd(&Input::new(haystack), &mut state)?;
1577
    /// assert_eq!(expected, state.get_match());
1578
    ///
1579
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1580
    /// ```
1581
    #[inline]
1582
0
    fn try_search_overlapping_fwd(
1583
0
        &self,
1584
0
        input: &Input<'_>,
1585
0
        state: &mut OverlappingState,
1586
0
    ) -> Result<(), MatchError> {
1587
0
        let utf8empty = self.has_empty() && self.is_utf8();
1588
0
        search::find_overlapping_fwd(self, input, state)?;
1589
0
        match state.get_match() {
1590
0
            None => Ok(()),
1591
0
            Some(_) if !utf8empty => Ok(()),
1592
0
            Some(_) => skip_empty_utf8_splits_overlapping(
1593
0
                input,
1594
0
                state,
1595
0
                |input, state| {
1596
0
                    search::find_overlapping_fwd(self, input, state)
1597
0
                },
1598
            ),
1599
        }
1600
0
    }
1601
1602
    /// Executes a reverse overlapping forward search. Matches, if one exists,
1603
    /// can be obtained via the [`OverlappingState::get_match`] method.
1604
    ///
1605
    /// When using this routine to implement an iterator of overlapping
1606
    /// matches, the `start` of the search should remain invariant throughout
1607
    /// iteration. The `OverlappingState` given to the search will keep track
1608
    /// of the current position of the search. (This is because multiple
1609
    /// matches may be reported at the same position, so only the search
1610
    /// implementation itself knows when to advance the position.)
1611
    ///
1612
    /// If for some reason you want the search to forget about its previous
1613
    /// state and restart the search at a particular position, then setting the
1614
    /// state to [`OverlappingState::start`] will accomplish that.
1615
    ///
1616
    /// # Errors
1617
    ///
1618
    /// This routine errors if the search could not complete. This can occur
1619
    /// in a number of circumstances:
1620
    ///
1621
    /// * The configuration of the DFA may permit it to "quit" the search.
1622
    /// For example, setting quit bytes or enabling heuristic support for
1623
    /// Unicode word boundaries. The default configuration does not enable any
1624
    /// option that could result in the DFA quitting.
1625
    /// * When the provided `Input` configuration is not supported. For
1626
    /// example, by providing an unsupported anchor mode.
1627
    ///
1628
    /// When a search returns an error, callers cannot know whether a match
1629
    /// exists or not.
1630
    ///
1631
    /// # Example: UTF-8 mode
1632
    ///
1633
    /// This examples demonstrates that UTF-8 mode applies to reverse
1634
    /// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all
1635
    /// matches reported must correspond to valid UTF-8 spans. This includes
1636
    /// prohibiting zero-width matches that split a codepoint.
1637
    ///
1638
    /// UTF-8 mode is enabled by default. Notice below how the only zero-width
1639
    /// matches reported are those at UTF-8 boundaries:
1640
    ///
1641
    /// ```
1642
    /// use regex_automata::{
1643
    ///     dfa::{dense::DFA, Automaton, OverlappingState},
1644
    ///     nfa::thompson,
1645
    ///     HalfMatch, Input, MatchKind,
1646
    /// };
1647
    ///
1648
    /// let dfa = DFA::builder()
1649
    ///     .configure(DFA::config().match_kind(MatchKind::All))
1650
    ///     .thompson(thompson::Config::new().reverse(true))
1651
    ///     .build_many(&[r"", r"☃"])?;
1652
    ///
1653
    /// // Run the reverse DFA to collect all matches.
1654
    /// let input = Input::new("☃");
1655
    /// let mut state = OverlappingState::start();
1656
    /// let mut matches = vec![];
1657
    /// loop {
1658
    ///     dfa.try_search_overlapping_rev(&input, &mut state)?;
1659
    ///     match state.get_match() {
1660
    ///         None => break,
1661
    ///         Some(hm) => matches.push(hm),
1662
    ///     }
1663
    /// }
1664
    ///
1665
    /// // No matches split a codepoint.
1666
    /// let expected = vec![
1667
    ///     HalfMatch::must(0, 3),
1668
    ///     HalfMatch::must(1, 0),
1669
    ///     HalfMatch::must(0, 0),
1670
    /// ];
1671
    /// assert_eq!(expected, matches);
1672
    ///
1673
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1674
    /// ```
1675
    ///
1676
    /// Now let's look at the same example, but with UTF-8 mode on the
1677
    /// original NFA disabled (which results in disabling UTF-8 mode on the
1678
    /// DFA):
1679
    ///
1680
    /// ```
1681
    /// use regex_automata::{
1682
    ///     dfa::{dense::DFA, Automaton, OverlappingState},
1683
    ///     nfa::thompson,
1684
    ///     HalfMatch, Input, MatchKind,
1685
    /// };
1686
    ///
1687
    /// let dfa = DFA::builder()
1688
    ///     .configure(DFA::config().match_kind(MatchKind::All))
1689
    ///     .thompson(thompson::Config::new().reverse(true).utf8(false))
1690
    ///     .build_many(&[r"", r"☃"])?;
1691
    ///
1692
    /// // Run the reverse DFA to collect all matches.
1693
    /// let input = Input::new("☃");
1694
    /// let mut state = OverlappingState::start();
1695
    /// let mut matches = vec![];
1696
    /// loop {
1697
    ///     dfa.try_search_overlapping_rev(&input, &mut state)?;
1698
    ///     match state.get_match() {
1699
    ///         None => break,
1700
    ///         Some(hm) => matches.push(hm),
1701
    ///     }
1702
    /// }
1703
    ///
1704
    /// // Now *all* positions match, even within a codepoint,
1705
    /// // because we lifted the requirement that matches
1706
    /// // correspond to valid UTF-8 spans.
1707
    /// let expected = vec![
1708
    ///     HalfMatch::must(0, 3),
1709
    ///     HalfMatch::must(0, 2),
1710
    ///     HalfMatch::must(0, 1),
1711
    ///     HalfMatch::must(1, 0),
1712
    ///     HalfMatch::must(0, 0),
1713
    /// ];
1714
    /// assert_eq!(expected, matches);
1715
    ///
1716
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1717
    /// ```
1718
    #[inline]
1719
    fn try_search_overlapping_rev(
1720
        &self,
1721
        input: &Input<'_>,
1722
        state: &mut OverlappingState,
1723
    ) -> Result<(), MatchError> {
1724
        let utf8empty = self.has_empty() && self.is_utf8();
1725
        search::find_overlapping_rev(self, input, state)?;
1726
        match state.get_match() {
1727
            None => Ok(()),
1728
            Some(_) if !utf8empty => Ok(()),
1729
            Some(_) => skip_empty_utf8_splits_overlapping(
1730
                input,
1731
                state,
1732
                |input, state| {
1733
                    search::find_overlapping_rev(self, input, state)
1734
                },
1735
            ),
1736
        }
1737
    }
1738
1739
    /// Writes the set of patterns that match anywhere in the given search
1740
    /// configuration to `patset`. If multiple patterns match at the same
1741
    /// position and the underlying DFA supports overlapping matches, then all
1742
    /// matching patterns are written to the given set.
1743
    ///
1744
    /// Unless all of the patterns in this DFA are anchored, then generally
1745
    /// speaking, this will visit every byte in the haystack.
1746
    ///
1747
    /// This search routine *does not* clear the pattern set. This gives some
1748
    /// flexibility to the caller (e.g., running multiple searches with the
1749
    /// same pattern set), but does make the API bug-prone if you're reusing
1750
    /// the same pattern set for multiple searches but intended them to be
1751
    /// independent.
1752
    ///
1753
    /// If a pattern ID matched but the given `PatternSet` does not have
1754
    /// sufficient capacity to store it, then it is not inserted and silently
1755
    /// dropped.
1756
    ///
1757
    /// # Errors
1758
    ///
1759
    /// This routine errors if the search could not complete. This can occur
1760
    /// in a number of circumstances:
1761
    ///
1762
    /// * The configuration of the DFA may permit it to "quit" the search.
1763
    /// For example, setting quit bytes or enabling heuristic support for
1764
    /// Unicode word boundaries. The default configuration does not enable any
1765
    /// option that could result in the DFA quitting.
1766
    /// * When the provided `Input` configuration is not supported. For
1767
    /// example, by providing an unsupported anchor mode.
1768
    ///
1769
    /// When a search returns an error, callers cannot know whether a match
1770
    /// exists or not.
1771
    ///
1772
    /// # Example
1773
    ///
1774
    /// This example shows how to find all matching patterns in a haystack,
1775
    /// even when some patterns match at the same position as other patterns.
1776
    ///
1777
    /// ```
1778
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1779
    /// use regex_automata::{
1780
    ///     dfa::{Automaton, dense::DFA},
1781
    ///     Input, MatchKind, PatternSet,
1782
    /// };
1783
    ///
1784
    /// let patterns = &[
1785
    ///     r"[[:word:]]+",
1786
    ///     r"[0-9]+",
1787
    ///     r"[[:alpha:]]+",
1788
    ///     r"foo",
1789
    ///     r"bar",
1790
    ///     r"barfoo",
1791
    ///     r"foobar",
1792
    /// ];
1793
    /// let dfa = DFA::builder()
1794
    ///     .configure(DFA::config().match_kind(MatchKind::All))
1795
    ///     .build_many(patterns)?;
1796
    ///
1797
    /// let input = Input::new("foobar");
1798
    /// let mut patset = PatternSet::new(dfa.pattern_len());
1799
    /// dfa.try_which_overlapping_matches(&input, &mut patset)?;
1800
    /// let expected = vec![0, 2, 3, 4, 6];
1801
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1802
    /// assert_eq!(expected, got);
1803
    ///
1804
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1805
    /// ```
1806
    #[cfg(feature = "alloc")]
1807
    #[inline]
1808
0
    fn try_which_overlapping_matches(
1809
0
        &self,
1810
0
        input: &Input<'_>,
1811
0
        patset: &mut PatternSet,
1812
0
    ) -> Result<(), MatchError> {
1813
0
        let mut state = OverlappingState::start();
1814
0
        while let Some(m) = {
1815
0
            self.try_search_overlapping_fwd(input, &mut state)?;
1816
0
            state.get_match()
1817
        } {
1818
0
            let _ = patset.insert(m.pattern());
1819
            // There's nothing left to find, so we can stop. Or the caller
1820
            // asked us to.
1821
0
            if patset.is_full() || input.get_earliest() {
1822
0
                break;
1823
0
            }
1824
        }
1825
0
        Ok(())
1826
0
    }
1827
}
1828
1829
unsafe impl<'a, A: Automaton + ?Sized> Automaton for &'a A {
1830
    #[inline]
1831
0
    fn next_state(&self, current: StateID, input: u8) -> StateID {
1832
0
        (**self).next_state(current, input)
1833
0
    }
Unexecuted instantiation: <&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_state
Unexecuted instantiation: <&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_state
Unexecuted instantiation: <&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::next_state
1834
1835
    #[inline]
1836
3.06M
    unsafe fn next_state_unchecked(
1837
3.06M
        &self,
1838
3.06M
        current: StateID,
1839
3.06M
        input: u8,
1840
3.06M
    ) -> StateID {
1841
3.06M
        (**self).next_state_unchecked(current, input)
1842
3.06M
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked
Line
Count
Source
1836
2.48M
    unsafe fn next_state_unchecked(
1837
2.48M
        &self,
1838
2.48M
        current: StateID,
1839
2.48M
        input: u8,
1840
2.48M
    ) -> StateID {
1841
2.48M
        (**self).next_state_unchecked(current, input)
1842
2.48M
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked
Line
Count
Source
1836
518k
    unsafe fn next_state_unchecked(
1837
518k
        &self,
1838
518k
        current: StateID,
1839
518k
        input: u8,
1840
518k
    ) -> StateID {
1841
518k
        (**self).next_state_unchecked(current, input)
1842
518k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::next_state_unchecked
Line
Count
Source
1836
61.3k
    unsafe fn next_state_unchecked(
1837
61.3k
        &self,
1838
61.3k
        current: StateID,
1839
61.3k
        input: u8,
1840
61.3k
    ) -> StateID {
1841
61.3k
        (**self).next_state_unchecked(current, input)
1842
61.3k
    }
1843
1844
    #[inline]
1845
42.5k
    fn next_eoi_state(&self, current: StateID) -> StateID {
1846
42.5k
        (**self).next_eoi_state(current)
1847
42.5k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::next_eoi_state
Line
Count
Source
1845
22.2k
    fn next_eoi_state(&self, current: StateID) -> StateID {
1846
22.2k
        (**self).next_eoi_state(current)
1847
22.2k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::next_eoi_state
Line
Count
Source
1845
12.1k
    fn next_eoi_state(&self, current: StateID) -> StateID {
1846
12.1k
        (**self).next_eoi_state(current)
1847
12.1k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::next_eoi_state
Line
Count
Source
1845
8.05k
    fn next_eoi_state(&self, current: StateID) -> StateID {
1846
8.05k
        (**self).next_eoi_state(current)
1847
8.05k
    }
1848
1849
    #[inline]
1850
    fn start_state(
1851
        &self,
1852
        config: &start::Config,
1853
    ) -> Result<StateID, StartError> {
1854
        (**self).start_state(config)
1855
    }
1856
1857
    #[inline]
1858
133k
    fn start_state_forward(
1859
133k
        &self,
1860
133k
        input: &Input<'_>,
1861
133k
    ) -> Result<StateID, MatchError> {
1862
133k
        (**self).start_state_forward(input)
1863
133k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::start_state_forward
Line
Count
Source
1858
101k
    fn start_state_forward(
1859
101k
        &self,
1860
101k
        input: &Input<'_>,
1861
101k
    ) -> Result<StateID, MatchError> {
1862
101k
        (**self).start_state_forward(input)
1863
101k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::start_state_forward
Line
Count
Source
1858
13.2k
    fn start_state_forward(
1859
13.2k
        &self,
1860
13.2k
        input: &Input<'_>,
1861
13.2k
    ) -> Result<StateID, MatchError> {
1862
13.2k
        (**self).start_state_forward(input)
1863
13.2k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::start_state_forward
Line
Count
Source
1858
18.7k
    fn start_state_forward(
1859
18.7k
        &self,
1860
18.7k
        input: &Input<'_>,
1861
18.7k
    ) -> Result<StateID, MatchError> {
1862
18.7k
        (**self).start_state_forward(input)
1863
18.7k
    }
1864
1865
    #[inline]
1866
    fn start_state_reverse(
1867
        &self,
1868
        input: &Input<'_>,
1869
    ) -> Result<StateID, MatchError> {
1870
        (**self).start_state_reverse(input)
1871
    }
1872
1873
    #[inline]
1874
105k
    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
1875
105k
        (**self).universal_start_state(mode)
1876
105k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::universal_start_state
Line
Count
Source
1874
73.1k
    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
1875
73.1k
        (**self).universal_start_state(mode)
1876
73.1k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::universal_start_state
Line
Count
Source
1874
13.2k
    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
1875
13.2k
        (**self).universal_start_state(mode)
1876
13.2k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::universal_start_state
Line
Count
Source
1874
18.7k
    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
1875
18.7k
        (**self).universal_start_state(mode)
1876
18.7k
    }
1877
1878
    #[inline]
1879
4.02M
    fn is_special_state(&self, id: StateID) -> bool {
1880
4.02M
        (**self).is_special_state(id)
1881
4.02M
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_special_state
Line
Count
Source
1879
2.88M
    fn is_special_state(&self, id: StateID) -> bool {
1880
2.88M
        (**self).is_special_state(id)
1881
2.88M
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_special_state
Line
Count
Source
1879
1.02M
    fn is_special_state(&self, id: StateID) -> bool {
1880
1.02M
        (**self).is_special_state(id)
1881
1.02M
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_special_state
Line
Count
Source
1879
121k
    fn is_special_state(&self, id: StateID) -> bool {
1880
121k
        (**self).is_special_state(id)
1881
121k
    }
1882
1883
    #[inline]
1884
42.8k
    fn is_dead_state(&self, id: StateID) -> bool {
1885
42.8k
        (**self).is_dead_state(id)
1886
42.8k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_dead_state
Line
Count
Source
1884
31.5k
    fn is_dead_state(&self, id: StateID) -> bool {
1885
31.5k
        (**self).is_dead_state(id)
1886
31.5k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_dead_state
Line
Count
Source
1884
838
    fn is_dead_state(&self, id: StateID) -> bool {
1885
838
        (**self).is_dead_state(id)
1886
838
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_dead_state
Line
Count
Source
1884
10.4k
    fn is_dead_state(&self, id: StateID) -> bool {
1885
10.4k
        (**self).is_dead_state(id)
1886
10.4k
    }
1887
1888
    #[inline]
1889
0
    fn is_quit_state(&self, id: StateID) -> bool {
1890
0
        (**self).is_quit_state(id)
1891
0
    }
Unexecuted instantiation: <&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_quit_state
Unexecuted instantiation: <&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_quit_state
Unexecuted instantiation: <&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_quit_state
1892
1893
    #[inline]
1894
672k
    fn is_match_state(&self, id: StateID) -> bool {
1895
672k
        (**self).is_match_state(id)
1896
672k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_match_state
Line
Count
Source
1894
201k
    fn is_match_state(&self, id: StateID) -> bool {
1895
201k
        (**self).is_match_state(id)
1896
201k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_match_state
Line
Count
Source
1894
409k
    fn is_match_state(&self, id: StateID) -> bool {
1895
409k
        (**self).is_match_state(id)
1896
409k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_match_state
Line
Count
Source
1894
61.3k
    fn is_match_state(&self, id: StateID) -> bool {
1895
61.3k
        (**self).is_match_state(id)
1896
61.3k
    }
1897
1898
    #[inline]
1899
946k
    fn is_start_state(&self, id: StateID) -> bool {
1900
946k
        (**self).is_start_state(id)
1901
946k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_start_state
Line
Count
Source
1899
385k
    fn is_start_state(&self, id: StateID) -> bool {
1900
385k
        (**self).is_start_state(id)
1901
385k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_start_state
Line
Count
Source
1899
501k
    fn is_start_state(&self, id: StateID) -> bool {
1900
501k
        (**self).is_start_state(id)
1901
501k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_start_state
Line
Count
Source
1899
60.0k
    fn is_start_state(&self, id: StateID) -> bool {
1900
60.0k
        (**self).is_start_state(id)
1901
60.0k
    }
1902
1903
    #[inline]
1904
734k
    fn is_accel_state(&self, id: StateID) -> bool {
1905
734k
        (**self).is_accel_state(id)
1906
734k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::is_accel_state
Line
Count
Source
1904
172k
    fn is_accel_state(&self, id: StateID) -> bool {
1905
172k
        (**self).is_accel_state(id)
1906
172k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::is_accel_state
Line
Count
Source
1904
501k
    fn is_accel_state(&self, id: StateID) -> bool {
1905
501k
        (**self).is_accel_state(id)
1906
501k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::is_accel_state
Line
Count
Source
1904
60.0k
    fn is_accel_state(&self, id: StateID) -> bool {
1905
60.0k
        (**self).is_accel_state(id)
1906
60.0k
    }
1907
1908
    #[inline]
1909
    fn pattern_len(&self) -> usize {
1910
        (**self).pattern_len()
1911
    }
1912
1913
    #[inline]
1914
    fn match_len(&self, id: StateID) -> usize {
1915
        (**self).match_len(id)
1916
    }
1917
1918
    #[inline]
1919
502k
    fn match_pattern(&self, id: StateID, index: usize) -> PatternID {
1920
502k
        (**self).match_pattern(id, index)
1921
502k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::match_pattern
Line
Count
Source
1919
105k
    fn match_pattern(&self, id: StateID, index: usize) -> PatternID {
1920
105k
        (**self).match_pattern(id, index)
1921
105k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::match_pattern
Line
Count
Source
1919
379k
    fn match_pattern(&self, id: StateID, index: usize) -> PatternID {
1920
379k
        (**self).match_pattern(id, index)
1921
379k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::match_pattern
Line
Count
Source
1919
17.4k
    fn match_pattern(&self, id: StateID, index: usize) -> PatternID {
1920
17.4k
        (**self).match_pattern(id, index)
1921
17.4k
    }
1922
1923
    #[inline]
1924
    fn has_empty(&self) -> bool {
1925
        (**self).has_empty()
1926
    }
1927
1928
    #[inline]
1929
    fn is_utf8(&self) -> bool {
1930
        (**self).is_utf8()
1931
    }
1932
1933
    #[inline]
1934
    fn is_always_start_anchored(&self) -> bool {
1935
        (**self).is_always_start_anchored()
1936
    }
1937
1938
    #[inline]
1939
205k
    fn accelerator(&self, id: StateID) -> &[u8] {
1940
205k
        (**self).accelerator(id)
1941
205k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::accelerator
Line
Count
Source
1939
59.3k
    fn accelerator(&self, id: StateID) -> &[u8] {
1940
59.3k
        (**self).accelerator(id)
1941
59.3k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::accelerator
Line
Count
Source
1939
114k
    fn accelerator(&self, id: StateID) -> &[u8] {
1940
114k
        (**self).accelerator(id)
1941
114k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::accelerator
Line
Count
Source
1939
31.6k
    fn accelerator(&self, id: StateID) -> &[u8] {
1940
31.6k
        (**self).accelerator(id)
1941
31.6k
    }
1942
1943
    #[inline]
1944
104k
    fn get_prefilter(&self) -> Option<&Prefilter> {
1945
104k
        (**self).get_prefilter()
1946
104k
    }
<&regex_automata::dfa::dense::DFA<alloc::vec::Vec<u32>> as regex_automata::dfa::automaton::Automaton>::get_prefilter
Line
Count
Source
1944
72.9k
    fn get_prefilter(&self) -> Option<&Prefilter> {
1945
72.9k
        (**self).get_prefilter()
1946
72.9k
    }
<&regex_automata::dfa::dense::DFA<&[u32]> as regex_automata::dfa::automaton::Automaton>::get_prefilter
Line
Count
Source
1944
13.2k
    fn get_prefilter(&self) -> Option<&Prefilter> {
1945
13.2k
        (**self).get_prefilter()
1946
13.2k
    }
<&regex_automata::dfa::sparse::DFA<&[u8]> as regex_automata::dfa::automaton::Automaton>::get_prefilter
Line
Count
Source
1944
18.7k
    fn get_prefilter(&self) -> Option<&Prefilter> {
1945
18.7k
        (**self).get_prefilter()
1946
18.7k
    }
1947
1948
    #[inline]
1949
    fn try_search_fwd(
1950
        &self,
1951
        input: &Input<'_>,
1952
    ) -> Result<Option<HalfMatch>, MatchError> {
1953
        (**self).try_search_fwd(input)
1954
    }
1955
1956
    #[inline]
1957
    fn try_search_rev(
1958
        &self,
1959
        input: &Input<'_>,
1960
    ) -> Result<Option<HalfMatch>, MatchError> {
1961
        (**self).try_search_rev(input)
1962
    }
1963
1964
    #[inline]
1965
    fn try_search_overlapping_fwd(
1966
        &self,
1967
        input: &Input<'_>,
1968
        state: &mut OverlappingState,
1969
    ) -> Result<(), MatchError> {
1970
        (**self).try_search_overlapping_fwd(input, state)
1971
    }
1972
1973
    #[inline]
1974
    fn try_search_overlapping_rev(
1975
        &self,
1976
        input: &Input<'_>,
1977
        state: &mut OverlappingState,
1978
    ) -> Result<(), MatchError> {
1979
        (**self).try_search_overlapping_rev(input, state)
1980
    }
1981
1982
    #[cfg(feature = "alloc")]
1983
    #[inline]
1984
    fn try_which_overlapping_matches(
1985
        &self,
1986
        input: &Input<'_>,
1987
        patset: &mut PatternSet,
1988
    ) -> Result<(), MatchError> {
1989
        (**self).try_which_overlapping_matches(input, patset)
1990
    }
1991
}
1992
1993
/// Represents the current state of an overlapping search.
1994
///
1995
/// This is used for overlapping searches since they need to know something
1996
/// about the previous search. For example, when multiple patterns match at the
1997
/// same position, this state tracks the last reported pattern so that the next
1998
/// search knows whether to report another matching pattern or continue with
1999
/// the search at the next position. Additionally, it also tracks which state
2000
/// the last search call terminated in.
2001
///
2002
/// This type provides little introspection capabilities. The only thing a
2003
/// caller can do is construct it and pass it around to permit search routines
2004
/// to use it to track state, and also ask whether a match has been found.
2005
///
2006
/// Callers should always provide a fresh state constructed via
2007
/// [`OverlappingState::start`] when starting a new search. Reusing state from
2008
/// a previous search may result in incorrect results.
2009
#[derive(Clone, Debug, Eq, PartialEq)]
2010
pub struct OverlappingState {
2011
    /// The match reported by the most recent overlapping search to use this
2012
    /// state.
2013
    ///
2014
    /// If a search does not find any matches, then it is expected to clear
2015
    /// this value.
2016
    pub(crate) mat: Option<HalfMatch>,
2017
    /// The state ID of the state at which the search was in when the call
2018
    /// terminated. When this is a match state, `last_match` must be set to a
2019
    /// non-None value.
2020
    ///
2021
    /// A `None` value indicates the start state of the corresponding
2022
    /// automaton. We cannot use the actual ID, since any one automaton may
2023
    /// have many start states, and which one is in use depends on several
2024
    /// search-time factors.
2025
    pub(crate) id: Option<StateID>,
2026
    /// The position of the search.
2027
    ///
2028
    /// When `id` is None (i.e., we are starting a search), this is set to
2029
    /// the beginning of the search as given by the caller regardless of its
2030
    /// current value. Subsequent calls to an overlapping search pick up at
2031
    /// this offset.
2032
    pub(crate) at: usize,
2033
    /// The index into the matching patterns of the next match to report if the
2034
    /// current state is a match state. Note that this may be 1 greater than
2035
    /// the total number of matches to report for the current match state. (In
2036
    /// which case, no more matches should be reported at the current position
2037
    /// and the search should advance to the next position.)
2038
    pub(crate) next_match_index: Option<usize>,
2039
    /// This is set to true when a reverse overlapping search has entered its
2040
    /// EOI transitions.
2041
    ///
2042
    /// This isn't used in a forward search because it knows to stop once the
2043
    /// position exceeds the end of the search range. In a reverse search,
2044
    /// since we use unsigned offsets, we don't "know" once we've gone past
2045
    /// `0`. So the only way to detect it is with this extra flag. The reverse
2046
    /// overlapping search knows to terminate specifically after it has
2047
    /// reported all matches after following the EOI transition.
2048
    pub(crate) rev_eoi: bool,
2049
}
2050
2051
impl OverlappingState {
2052
    /// Create a new overlapping state that begins at the start state of any
2053
    /// automaton.
2054
0
    pub fn start() -> OverlappingState {
2055
0
        OverlappingState {
2056
0
            mat: None,
2057
0
            id: None,
2058
0
            at: 0,
2059
0
            next_match_index: None,
2060
0
            rev_eoi: false,
2061
0
        }
2062
0
    }
2063
2064
    /// Return the match result of the most recent search to execute with this
2065
    /// state.
2066
    ///
2067
    /// A searches will clear this result automatically, such that if no
2068
    /// match is found, this will correctly report `None`.
2069
0
    pub fn get_match(&self) -> Option<HalfMatch> {
2070
0
        self.mat
2071
0
    }
2072
}
2073
2074
/// An error that can occur when computing the start state for a search.
2075
///
2076
/// Computing a start state can fail for a few reasons, either based on
2077
/// incorrect configuration or even based on whether the look-behind byte
2078
/// triggers a quit state. Typically one does not need to handle this error
2079
/// if you're using [`Automaton::start_state_forward`] (or its reverse
2080
/// counterpart), as that routine automatically converts `StartError` to a
2081
/// [`MatchError`] for you.
2082
///
2083
/// This error may be returned by the [`Automaton::start_state`] routine.
2084
///
2085
/// This error implements the `std::error::Error` trait when the `std` feature
2086
/// is enabled.
2087
///
2088
/// This error is marked as non-exhaustive. New variants may be added in a
2089
/// semver compatible release.
2090
#[non_exhaustive]
2091
#[derive(Clone, Debug)]
2092
pub enum StartError {
2093
    /// An error that occurs when a starting configuration's look-behind byte
2094
    /// is in this DFA's quit set.
2095
    Quit {
2096
        /// The quit byte that was found.
2097
        byte: u8,
2098
    },
2099
    /// An error that occurs when the caller requests an anchored mode that
2100
    /// isn't supported by the DFA.
2101
    UnsupportedAnchored {
2102
        /// The anchored mode given that is unsupported.
2103
        mode: Anchored,
2104
    },
2105
}
2106
2107
impl StartError {
2108
1.61k
    pub(crate) fn quit(byte: u8) -> StartError {
2109
1.61k
        StartError::Quit { byte }
2110
1.61k
    }
2111
2112
101
    pub(crate) fn unsupported_anchored(mode: Anchored) -> StartError {
2113
101
        StartError::UnsupportedAnchored { mode }
2114
101
    }
2115
}
2116
2117
#[cfg(feature = "std")]
2118
impl std::error::Error for StartError {}
2119
2120
impl core::fmt::Display for StartError {
2121
0
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
2122
0
        match *self {
2123
0
            StartError::Quit { byte } => write!(
2124
0
                f,
2125
0
                "error computing start state because the look-behind byte \
2126
0
                 {:?} triggered a quit state",
2127
0
                crate::util::escape::DebugByte(byte),
2128
            ),
2129
            StartError::UnsupportedAnchored { mode: Anchored::Yes } => {
2130
0
                write!(
2131
0
                    f,
2132
0
                    "error computing start state because \
2133
0
                     anchored searches are not supported or enabled"
2134
                )
2135
            }
2136
            StartError::UnsupportedAnchored { mode: Anchored::No } => {
2137
0
                write!(
2138
0
                    f,
2139
0
                    "error computing start state because \
2140
0
                     unanchored searches are not supported or enabled"
2141
                )
2142
            }
2143
            StartError::UnsupportedAnchored {
2144
0
                mode: Anchored::Pattern(pid),
2145
            } => {
2146
0
                write!(
2147
0
                    f,
2148
0
                    "error computing start state because \
2149
0
                     anchored searches for a specific pattern ({}) \
2150
0
                     are not supported or enabled",
2151
0
                    pid.as_usize(),
2152
                )
2153
            }
2154
        }
2155
0
    }
2156
}
2157
2158
/// Runs the given overlapping `search` function (forwards or backwards) until
2159
/// a match is found whose offset does not split a codepoint.
2160
///
2161
/// This is *not* always correct to call. It should only be called when the DFA
2162
/// has UTF-8 mode enabled *and* it can produce zero-width matches. Calling
2163
/// this when both of those things aren't true might result in legitimate
2164
/// matches getting skipped.
2165
#[cold]
2166
#[inline(never)]
2167
0
fn skip_empty_utf8_splits_overlapping<F>(
2168
0
    input: &Input<'_>,
2169
0
    state: &mut OverlappingState,
2170
0
    mut search: F,
2171
0
) -> Result<(), MatchError>
2172
0
where
2173
0
    F: FnMut(&Input<'_>, &mut OverlappingState) -> Result<(), MatchError>,
2174
{
2175
    // Note that this routine works for forwards and reverse searches
2176
    // even though there's no code here to handle those cases. That's
2177
    // because overlapping searches drive themselves to completion via
2178
    // `OverlappingState`. So all we have to do is push it until no matches are
2179
    // found.
2180
2181
0
    let mut hm = match state.get_match() {
2182
0
        None => return Ok(()),
2183
0
        Some(hm) => hm,
2184
    };
2185
0
    if input.get_anchored().is_anchored() {
2186
0
        if !input.is_char_boundary(hm.offset()) {
2187
0
            state.mat = None;
2188
0
        }
2189
0
        return Ok(());
2190
0
    }
2191
0
    while !input.is_char_boundary(hm.offset()) {
2192
0
        search(input, state)?;
2193
0
        hm = match state.get_match() {
2194
0
            None => return Ok(()),
2195
0
            Some(hm) => hm,
2196
        };
2197
    }
2198
0
    Ok(())
2199
0
}
2200
2201
/// Write a prefix "state" indicator for fmt::Debug impls.
2202
///
2203
/// Specifically, this tries to succinctly distinguish the different types of
2204
/// states: dead states, quit states, accelerated states, start states and
2205
/// match states. It even accounts for the possible overlapping of different
2206
/// state types.
2207
0
pub(crate) fn fmt_state_indicator<A: Automaton>(
2208
0
    f: &mut core::fmt::Formatter<'_>,
2209
0
    dfa: A,
2210
0
    id: StateID,
2211
0
) -> core::fmt::Result {
2212
0
    if dfa.is_dead_state(id) {
2213
0
        write!(f, "D")?;
2214
0
        if dfa.is_start_state(id) {
2215
0
            write!(f, ">")?;
2216
        } else {
2217
0
            write!(f, " ")?;
2218
        }
2219
0
    } else if dfa.is_quit_state(id) {
2220
0
        write!(f, "Q ")?;
2221
0
    } else if dfa.is_start_state(id) {
2222
0
        if dfa.is_accel_state(id) {
2223
0
            write!(f, "A>")?;
2224
        } else {
2225
0
            write!(f, " >")?;
2226
        }
2227
0
    } else if dfa.is_match_state(id) {
2228
0
        if dfa.is_accel_state(id) {
2229
0
            write!(f, "A*")?;
2230
        } else {
2231
0
            write!(f, " *")?;
2232
        }
2233
0
    } else if dfa.is_accel_state(id) {
2234
0
        write!(f, "A ")?;
2235
    } else {
2236
0
        write!(f, "  ")?;
2237
    }
2238
0
    Ok(())
2239
0
}
2240
2241
#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
2242
mod tests {
2243
    // A basic test ensuring that our Automaton trait is object safe. (This is
2244
    // the main reason why we don't define the search routines as generic over
2245
    // Into<Input>.)
2246
    #[test]
2247
    fn object_safe() {
2248
        use crate::{
2249
            dfa::{dense, Automaton},
2250
            HalfMatch, Input,
2251
        };
2252
2253
        let dfa = dense::DFA::new("abc").unwrap();
2254
        let dfa: &dyn Automaton = &dfa;
2255
        assert_eq!(
2256
            Ok(Some(HalfMatch::must(0, 6))),
2257
            dfa.try_search_fwd(&Input::new(b"xyzabcxyz")),
2258
        );
2259
    }
2260
}