/src/regex/regex-lite/src/string.rs
Line | Count | Source |
1 | | use alloc::{ |
2 | | borrow::Cow, boxed::Box, string::String, string::ToString, sync::Arc, vec, |
3 | | vec::Vec, |
4 | | }; |
5 | | |
6 | | use crate::{ |
7 | | error::Error, |
8 | | hir::{self, Hir}, |
9 | | int::NonMaxUsize, |
10 | | interpolate, |
11 | | nfa::{self, NFA}, |
12 | | pikevm::{self, Cache, PikeVM}, |
13 | | pool::CachePool, |
14 | | }; |
15 | | |
16 | | /// A compiled regular expression for searching Unicode haystacks. |
17 | | /// |
18 | | /// A `Regex` can be used to search haystacks, split haystacks into substrings |
19 | | /// or replace substrings in a haystack with a different substring. All |
20 | | /// searching is done with an implicit `(?s:.)*?` at the beginning and end of |
21 | | /// an pattern. To force an expression to match the whole string (or a prefix |
22 | | /// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`). |
23 | | /// |
24 | | /// While this crate will handle Unicode strings (whether in the regular |
25 | | /// expression or in the haystack), all positions returned are **byte |
26 | | /// offsets**. Every byte offset is guaranteed to be at a Unicode code point |
27 | | /// boundary. That is, all offsets returned by the `Regex` API are guaranteed |
28 | | /// to be ranges that can slice a `&str` without panicking. |
29 | | /// |
30 | | /// The only methods that allocate new strings are the string replacement |
31 | | /// methods. All other methods (searching and splitting) return borrowed |
32 | | /// references into the haystack given. |
33 | | /// |
34 | | /// # Example |
35 | | /// |
36 | | /// Find the offsets of a US phone number: |
37 | | /// |
38 | | /// ``` |
39 | | /// use regex_lite::Regex; |
40 | | /// |
41 | | /// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap(); |
42 | | /// let m = re.find("phone: 111-222-3333").unwrap(); |
43 | | /// assert_eq!(7..19, m.range()); |
44 | | /// ``` |
45 | | /// |
46 | | /// # Example: extracting capture groups |
47 | | /// |
48 | | /// A common way to use regexes is with capture groups. That is, instead of |
49 | | /// just looking for matches of an entire regex, parentheses are used to create |
50 | | /// groups that represent part of the match. |
51 | | /// |
52 | | /// For example, consider a haystack with multiple lines, and each line has |
53 | | /// three whitespace delimited fields where the second field is expected to be |
54 | | /// a number and the third field a boolean. To make this convenient, we use |
55 | | /// the [`Captures::extract`] API to put the strings that match each group |
56 | | /// into a fixed size array: |
57 | | /// |
58 | | /// ``` |
59 | | /// use regex_lite::Regex; |
60 | | /// |
61 | | /// let hay = " |
62 | | /// rabbit 54 true |
63 | | /// groundhog 2 true |
64 | | /// does not match |
65 | | /// fox 109 false |
66 | | /// "; |
67 | | /// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$").unwrap(); |
68 | | /// let mut fields: Vec<(&str, i64, bool)> = vec![]; |
69 | | /// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) { |
70 | | /// fields.push((f1, f2.parse()?, f3.parse()?)); |
71 | | /// } |
72 | | /// assert_eq!(fields, vec![ |
73 | | /// ("rabbit", 54, true), |
74 | | /// ("groundhog", 2, true), |
75 | | /// ("fox", 109, false), |
76 | | /// ]); |
77 | | /// |
78 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
79 | | /// ``` |
80 | | pub struct Regex { |
81 | | pikevm: Arc<PikeVM>, |
82 | | pool: CachePool, |
83 | | } |
84 | | |
85 | | impl Clone for Regex { |
86 | 0 | fn clone(&self) -> Regex { |
87 | 0 | let pikevm = Arc::clone(&self.pikevm); |
88 | 0 | let pool = { |
89 | 0 | let pikevm = Arc::clone(&self.pikevm); |
90 | 0 | let create = Box::new(move || Cache::new(&pikevm)); |
91 | 0 | CachePool::new(create) |
92 | | }; |
93 | 0 | Regex { pikevm, pool } |
94 | 0 | } |
95 | | } |
96 | | |
97 | | impl core::fmt::Display for Regex { |
98 | | /// Shows the original regular expression. |
99 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
100 | 0 | write!(f, "{}", self.as_str()) |
101 | 0 | } |
102 | | } |
103 | | |
104 | | impl core::fmt::Debug for Regex { |
105 | | /// Shows the original regular expression. |
106 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
107 | 0 | f.debug_tuple("Regex").field(&self.as_str()).finish() |
108 | 0 | } |
109 | | } |
110 | | |
111 | | impl core::str::FromStr for Regex { |
112 | | type Err = Error; |
113 | | |
114 | | /// Attempts to parse a string into a regular expression |
115 | 0 | fn from_str(s: &str) -> Result<Regex, Error> { |
116 | 0 | Regex::new(s) |
117 | 0 | } |
118 | | } |
119 | | |
120 | | impl TryFrom<&str> for Regex { |
121 | | type Error = Error; |
122 | | |
123 | | /// Attempts to parse a string into a regular expression |
124 | 0 | fn try_from(s: &str) -> Result<Regex, Error> { |
125 | 0 | Regex::new(s) |
126 | 0 | } |
127 | | } |
128 | | |
129 | | impl TryFrom<String> for Regex { |
130 | | type Error = Error; |
131 | | |
132 | | /// Attempts to parse a string into a regular expression |
133 | 0 | fn try_from(s: String) -> Result<Regex, Error> { |
134 | 0 | Regex::new(&s) |
135 | 0 | } |
136 | | } |
137 | | |
138 | | /// Core regular expression methods. |
139 | | impl Regex { |
140 | | /// Compiles a regular expression. Once compiled, it can be used repeatedly |
141 | | /// to search, split or replace substrings in a haystack. |
142 | | /// |
143 | | /// Note that regex compilation tends to be a somewhat expensive process, |
144 | | /// and unlike higher level environments, compilation is not automatically |
145 | | /// cached for you. One should endeavor to compile a regex once and then |
146 | | /// reuse it. For example, it's a bad idea to compile the same regex |
147 | | /// repeatedly in a loop. |
148 | | /// |
149 | | /// # Errors |
150 | | /// |
151 | | /// If an invalid pattern is given, then an error is returned. |
152 | | /// An error is also returned if the pattern is valid, but would |
153 | | /// produce a regex that is bigger than the configured size limit via |
154 | | /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by |
155 | | /// default.) |
156 | | /// |
157 | | /// # Example |
158 | | /// |
159 | | /// ``` |
160 | | /// use regex_lite::Regex; |
161 | | /// |
162 | | /// // An Invalid pattern because of an unclosed parenthesis |
163 | | /// assert!(Regex::new(r"foo(bar").is_err()); |
164 | | /// // An invalid pattern because the regex would be too big |
165 | | /// // because Unicode tends to inflate things. |
166 | | /// assert!(Regex::new(r"\w{1000000}").is_err()); |
167 | | /// ``` |
168 | 0 | pub fn new(pattern: &str) -> Result<Regex, Error> { |
169 | 0 | RegexBuilder::new(pattern).build() |
170 | 0 | } |
171 | | |
172 | | /// Returns true if and only if there is a match for the regex anywhere |
173 | | /// in the haystack given. |
174 | | /// |
175 | | /// It is recommended to use this method if all you need to do is test |
176 | | /// whether a match exists, since the underlying matching engine may be |
177 | | /// able to do less work. |
178 | | /// |
179 | | /// # Example |
180 | | /// |
181 | | /// Test if some haystack contains at least one word with exactly 13 |
182 | | /// word characters: |
183 | | /// |
184 | | /// ``` |
185 | | /// use regex_lite::Regex; |
186 | | /// |
187 | | /// let re = Regex::new(r"\b\w{13}\b").unwrap(); |
188 | | /// let hay = "I categorically deny having triskaidekaphobia."; |
189 | | /// assert!(re.is_match(hay)); |
190 | | /// ``` |
191 | | #[inline] |
192 | 5.49k | pub fn is_match(&self, haystack: &str) -> bool { |
193 | 5.49k | self.is_match_at(haystack, 0) |
194 | 5.49k | } |
195 | | |
196 | | /// This routine searches for the first match of this regex in the |
197 | | /// haystack given, and if found, returns a [`Match`]. The `Match` |
198 | | /// provides access to both the byte offsets of the match and the actual |
199 | | /// substring that matched. |
200 | | /// |
201 | | /// Note that this should only be used if you want to find the entire |
202 | | /// match. If instead you just want to test the existence of a match, |
203 | | /// it's potentially faster to use `Regex::is_match(hay)` instead of |
204 | | /// `Regex::find(hay).is_some()`. |
205 | | /// |
206 | | /// # Example |
207 | | /// |
208 | | /// Find the first word with exactly 13 word characters: |
209 | | /// |
210 | | /// ``` |
211 | | /// use regex_lite::Regex; |
212 | | /// |
213 | | /// let re = Regex::new(r"\b\w{13}\b").unwrap(); |
214 | | /// let hay = "I categorically deny having triskaidekaphobia."; |
215 | | /// let mat = re.find(hay).unwrap(); |
216 | | /// assert_eq!(2..15, mat.range()); |
217 | | /// assert_eq!("categorically", mat.as_str()); |
218 | | /// ``` |
219 | | #[inline] |
220 | | pub fn find<'h>(&self, haystack: &'h str) -> Option<Match<'h>> { |
221 | | self.find_at(haystack, 0) |
222 | | } |
223 | | |
224 | | /// Returns an iterator that yields successive non-overlapping matches in |
225 | | /// the given haystack. The iterator yields values of type [`Match`]. |
226 | | /// |
227 | | /// # Time complexity |
228 | | /// |
229 | | /// Note that since `find_iter` runs potentially many searches on the |
230 | | /// haystack and since each search has worst case `O(m * n)` time |
231 | | /// complexity, the overall worst case time complexity for iteration is |
232 | | /// `O(m * n^2)`. |
233 | | /// |
234 | | /// # Example |
235 | | /// |
236 | | /// Find every word with exactly 13 word characters: |
237 | | /// |
238 | | /// ``` |
239 | | /// use regex_lite::Regex; |
240 | | /// |
241 | | /// let re = Regex::new(r"\b\w{13}\b").unwrap(); |
242 | | /// let hay = "Retroactively relinquishing remunerations is reprehensible."; |
243 | | /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_str()).collect(); |
244 | | /// assert_eq!(matches, vec![ |
245 | | /// "Retroactively", |
246 | | /// "relinquishing", |
247 | | /// "remunerations", |
248 | | /// "reprehensible", |
249 | | /// ]); |
250 | | /// ``` |
251 | | #[inline] |
252 | | pub fn find_iter<'r, 'h>(&'r self, haystack: &'h str) -> Matches<'r, 'h> { |
253 | | Matches { |
254 | | haystack, |
255 | | it: self.pikevm.find_iter(self.pool.get(), haystack.as_bytes()), |
256 | | } |
257 | | } |
258 | | |
259 | | /// This routine searches for the first match of this regex in the haystack |
260 | | /// given, and if found, returns not only the overall match but also the |
261 | | /// matches of each capture group in the regex. If no match is found, then |
262 | | /// `None` is returned. |
263 | | /// |
264 | | /// Capture group `0` always corresponds to an implicit unnamed group that |
265 | | /// includes the entire match. If a match is found, this group is always |
266 | | /// present. Subsequent groups may be named and are numbered, starting |
267 | | /// at 1, by the order in which the opening parenthesis appears in the |
268 | | /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`, |
269 | | /// `b` and `c` correspond to capture group indices `1`, `2` and `3`, |
270 | | /// respectively. |
271 | | /// |
272 | | /// You should only use `captures` if you need access to the capture group |
273 | | /// matches. Otherwise, [`Regex::find`] is generally faster for discovering |
274 | | /// just the overall match. |
275 | | /// |
276 | | /// # Example |
277 | | /// |
278 | | /// Say you have some haystack with movie names and their release years, |
279 | | /// like "'Citizen Kane' (1941)". It'd be nice if we could search for |
280 | | /// substrings looking like that, while also extracting the movie name and |
281 | | /// its release year separately. The example below shows how to do that. |
282 | | /// |
283 | | /// ``` |
284 | | /// use regex_lite::Regex; |
285 | | /// |
286 | | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap(); |
287 | | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)."; |
288 | | /// let caps = re.captures(hay).unwrap(); |
289 | | /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)"); |
290 | | /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane"); |
291 | | /// assert_eq!(caps.get(2).unwrap().as_str(), "1941"); |
292 | | /// // You can also access the groups by index using the Index notation. |
293 | | /// // Note that this will panic on an invalid index. In this case, these |
294 | | /// // accesses are always correct because the overall regex will only |
295 | | /// // match when these capture groups match. |
296 | | /// assert_eq!(&caps[0], "'Citizen Kane' (1941)"); |
297 | | /// assert_eq!(&caps[1], "Citizen Kane"); |
298 | | /// assert_eq!(&caps[2], "1941"); |
299 | | /// ``` |
300 | | /// |
301 | | /// Note that the full match is at capture group `0`. Each subsequent |
302 | | /// capture group is indexed by the order of its opening `(`. |
303 | | /// |
304 | | /// We can make this example a bit clearer by using *named* capture groups: |
305 | | /// |
306 | | /// ``` |
307 | | /// use regex_lite::Regex; |
308 | | /// |
309 | | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)").unwrap(); |
310 | | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)."; |
311 | | /// let caps = re.captures(hay).unwrap(); |
312 | | /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)"); |
313 | | /// assert_eq!(caps.name("title").unwrap().as_str(), "Citizen Kane"); |
314 | | /// assert_eq!(caps.name("year").unwrap().as_str(), "1941"); |
315 | | /// // You can also access the groups by name using the Index notation. |
316 | | /// // Note that this will panic on an invalid group name. In this case, |
317 | | /// // these accesses are always correct because the overall regex will |
318 | | /// // only match when these capture groups match. |
319 | | /// assert_eq!(&caps[0], "'Citizen Kane' (1941)"); |
320 | | /// assert_eq!(&caps["title"], "Citizen Kane"); |
321 | | /// assert_eq!(&caps["year"], "1941"); |
322 | | /// ``` |
323 | | /// |
324 | | /// Here we name the capture groups, which we can access with the `name` |
325 | | /// method or the `Index` notation with a `&str`. Note that the named |
326 | | /// capture groups are still accessible with `get` or the `Index` notation |
327 | | /// with a `usize`. |
328 | | /// |
329 | | /// The `0`th capture group is always unnamed, so it must always be |
330 | | /// accessed with `get(0)` or `[0]`. |
331 | | /// |
332 | | /// Finally, one other way to get the matched substrings is with the |
333 | | /// [`Captures::extract`] API: |
334 | | /// |
335 | | /// ``` |
336 | | /// use regex_lite::Regex; |
337 | | /// |
338 | | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap(); |
339 | | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)."; |
340 | | /// let (full, [title, year]) = re.captures(hay).unwrap().extract(); |
341 | | /// assert_eq!(full, "'Citizen Kane' (1941)"); |
342 | | /// assert_eq!(title, "Citizen Kane"); |
343 | | /// assert_eq!(year, "1941"); |
344 | | /// ``` |
345 | | #[inline] |
346 | | pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> { |
347 | | self.captures_at(haystack, 0) |
348 | | } |
349 | | |
350 | | /// Returns an iterator that yields successive non-overlapping matches in |
351 | | /// the given haystack. The iterator yields values of type [`Captures`]. |
352 | | /// |
353 | | /// This is the same as [`Regex::find_iter`], but instead of only providing |
354 | | /// access to the overall match, each value yield includes access to the |
355 | | /// matches of all capture groups in the regex. Reporting this extra match |
356 | | /// data is potentially costly, so callers should only use `captures_iter` |
357 | | /// over `find_iter` when they actually need access to the capture group |
358 | | /// matches. |
359 | | /// |
360 | | /// # Time complexity |
361 | | /// |
362 | | /// Note that since `captures_iter` runs potentially many searches on the |
363 | | /// haystack and since each search has worst case `O(m * n)` time |
364 | | /// complexity, the overall worst case time complexity for iteration is |
365 | | /// `O(m * n^2)`. |
366 | | /// |
367 | | /// # Example |
368 | | /// |
369 | | /// We can use this to find all movie titles and their release years in |
370 | | /// some haystack, where the movie is formatted like "'Title' (xxxx)": |
371 | | /// |
372 | | /// ``` |
373 | | /// use regex_lite::Regex; |
374 | | /// |
375 | | /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)").unwrap(); |
376 | | /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)."; |
377 | | /// let mut movies = vec![]; |
378 | | /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) { |
379 | | /// movies.push((title, year.parse::<i64>()?)); |
380 | | /// } |
381 | | /// assert_eq!(movies, vec![ |
382 | | /// ("Citizen Kane", 1941), |
383 | | /// ("The Wizard of Oz", 1939), |
384 | | /// ("M", 1931), |
385 | | /// ]); |
386 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
387 | | /// ``` |
388 | | /// |
389 | | /// Or with named groups: |
390 | | /// |
391 | | /// ``` |
392 | | /// use regex_lite::Regex; |
393 | | /// |
394 | | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)").unwrap(); |
395 | | /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)."; |
396 | | /// let mut it = re.captures_iter(hay); |
397 | | /// |
398 | | /// let caps = it.next().unwrap(); |
399 | | /// assert_eq!(&caps["title"], "Citizen Kane"); |
400 | | /// assert_eq!(&caps["year"], "1941"); |
401 | | /// |
402 | | /// let caps = it.next().unwrap(); |
403 | | /// assert_eq!(&caps["title"], "The Wizard of Oz"); |
404 | | /// assert_eq!(&caps["year"], "1939"); |
405 | | /// |
406 | | /// let caps = it.next().unwrap(); |
407 | | /// assert_eq!(&caps["title"], "M"); |
408 | | /// assert_eq!(&caps["year"], "1931"); |
409 | | /// ``` |
410 | | #[inline] |
411 | | pub fn captures_iter<'r, 'h>( |
412 | | &'r self, |
413 | | haystack: &'h str, |
414 | | ) -> CaptureMatches<'r, 'h> { |
415 | | CaptureMatches { |
416 | | haystack, |
417 | | re: self, |
418 | | it: self |
419 | | .pikevm |
420 | | .captures_iter(self.pool.get(), haystack.as_bytes()), |
421 | | } |
422 | | } |
423 | | |
424 | | /// Returns an iterator of substrings of the haystack given, delimited by a |
425 | | /// match of the regex. Namely, each element of the iterator corresponds to |
426 | | /// a part of the haystack that *isn't* matched by the regular expression. |
427 | | /// |
428 | | /// # Time complexity |
429 | | /// |
430 | | /// Since iterators over all matches requires running potentially many |
431 | | /// searches on the haystack, and since each search has worst case |
432 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
433 | | /// this routine is `O(m * n^2)`. |
434 | | /// |
435 | | /// # Example |
436 | | /// |
437 | | /// To split a string delimited by arbitrary amounts of spaces or tabs: |
438 | | /// |
439 | | /// ``` |
440 | | /// use regex_lite::Regex; |
441 | | /// |
442 | | /// let re = Regex::new(r"[ \t]+").unwrap(); |
443 | | /// let hay = "a b \t c\td e"; |
444 | | /// let fields: Vec<&str> = re.split(hay).collect(); |
445 | | /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]); |
446 | | /// ``` |
447 | | /// |
448 | | /// # Example: more cases |
449 | | /// |
450 | | /// Basic usage: |
451 | | /// |
452 | | /// ``` |
453 | | /// use regex_lite::Regex; |
454 | | /// |
455 | | /// let re = Regex::new(r" ").unwrap(); |
456 | | /// let hay = "Mary had a little lamb"; |
457 | | /// let got: Vec<&str> = re.split(hay).collect(); |
458 | | /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]); |
459 | | /// |
460 | | /// let re = Regex::new(r"X").unwrap(); |
461 | | /// let hay = ""; |
462 | | /// let got: Vec<&str> = re.split(hay).collect(); |
463 | | /// assert_eq!(got, vec![""]); |
464 | | /// |
465 | | /// let re = Regex::new(r"X").unwrap(); |
466 | | /// let hay = "lionXXtigerXleopard"; |
467 | | /// let got: Vec<&str> = re.split(hay).collect(); |
468 | | /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]); |
469 | | /// |
470 | | /// let re = Regex::new(r"::").unwrap(); |
471 | | /// let hay = "lion::tiger::leopard"; |
472 | | /// let got: Vec<&str> = re.split(hay).collect(); |
473 | | /// assert_eq!(got, vec!["lion", "tiger", "leopard"]); |
474 | | /// ``` |
475 | | /// |
476 | | /// If a haystack contains multiple contiguous matches, you will end up |
477 | | /// with empty spans yielded by the iterator: |
478 | | /// |
479 | | /// ``` |
480 | | /// use regex_lite::Regex; |
481 | | /// |
482 | | /// let re = Regex::new(r"X").unwrap(); |
483 | | /// let hay = "XXXXaXXbXc"; |
484 | | /// let got: Vec<&str> = re.split(hay).collect(); |
485 | | /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]); |
486 | | /// |
487 | | /// let re = Regex::new(r"/").unwrap(); |
488 | | /// let hay = "(///)"; |
489 | | /// let got: Vec<&str> = re.split(hay).collect(); |
490 | | /// assert_eq!(got, vec!["(", "", "", ")"]); |
491 | | /// ``` |
492 | | /// |
493 | | /// Separators at the start or end of a haystack are neighbored by empty |
494 | | /// substring. |
495 | | /// |
496 | | /// ``` |
497 | | /// use regex_lite::Regex; |
498 | | /// |
499 | | /// let re = Regex::new(r"0").unwrap(); |
500 | | /// let hay = "010"; |
501 | | /// let got: Vec<&str> = re.split(hay).collect(); |
502 | | /// assert_eq!(got, vec!["", "1", ""]); |
503 | | /// ``` |
504 | | /// |
505 | | /// When the empty string is used as a regex, it splits at every valid |
506 | | /// UTF-8 boundary by default (which includes the beginning and end of the |
507 | | /// haystack): |
508 | | /// |
509 | | /// ``` |
510 | | /// use regex_lite::Regex; |
511 | | /// |
512 | | /// let re = Regex::new(r"").unwrap(); |
513 | | /// let hay = "rust"; |
514 | | /// let got: Vec<&str> = re.split(hay).collect(); |
515 | | /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]); |
516 | | /// |
517 | | /// // Splitting by an empty string is UTF-8 aware by default! |
518 | | /// let re = Regex::new(r"").unwrap(); |
519 | | /// let hay = "☃"; |
520 | | /// let got: Vec<&str> = re.split(hay).collect(); |
521 | | /// assert_eq!(got, vec!["", "☃", ""]); |
522 | | /// ``` |
523 | | /// |
524 | | /// Contiguous separators (commonly shows up with whitespace), can lead to |
525 | | /// possibly surprising behavior. For example, this code is correct: |
526 | | /// |
527 | | /// ``` |
528 | | /// use regex_lite::Regex; |
529 | | /// |
530 | | /// let re = Regex::new(r" ").unwrap(); |
531 | | /// let hay = " a b c"; |
532 | | /// let got: Vec<&str> = re.split(hay).collect(); |
533 | | /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]); |
534 | | /// ``` |
535 | | /// |
536 | | /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want |
537 | | /// to match contiguous space characters: |
538 | | /// |
539 | | /// ``` |
540 | | /// use regex_lite::Regex; |
541 | | /// |
542 | | /// let re = Regex::new(r" +").unwrap(); |
543 | | /// let hay = " a b c"; |
544 | | /// let got: Vec<&str> = re.split(hay).collect(); |
545 | | /// // N.B. This does still include a leading empty span because ' +' |
546 | | /// // matches at the beginning of the haystack. |
547 | | /// assert_eq!(got, vec!["", "a", "b", "c"]); |
548 | | /// ``` |
549 | | #[inline] |
550 | | pub fn split<'r, 'h>(&'r self, haystack: &'h str) -> Split<'r, 'h> { |
551 | | Split { haystack, finder: self.find_iter(haystack), last: 0 } |
552 | | } |
553 | | |
554 | | /// Returns an iterator of at most `limit` substrings of the haystack |
555 | | /// given, delimited by a match of the regex. (A `limit` of `0` will return |
556 | | /// no substrings.) Namely, each element of the iterator corresponds to a |
557 | | /// part of the haystack that *isn't* matched by the regular expression. |
558 | | /// The remainder of the haystack that is not split will be the last |
559 | | /// element in the iterator. |
560 | | /// |
561 | | /// # Time complexity |
562 | | /// |
563 | | /// Since iterators over all matches requires running potentially many |
564 | | /// searches on the haystack, and since each search has worst case |
565 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
566 | | /// this routine is `O(m * n^2)`. |
567 | | /// |
568 | | /// Although note that the worst case time here has an upper bound given |
569 | | /// by the `limit` parameter. |
570 | | /// |
571 | | /// # Example |
572 | | /// |
573 | | /// Get the first two words in some haystack: |
574 | | /// |
575 | | /// ``` |
576 | | /// use regex_lite::Regex; |
577 | | /// |
578 | | /// let re = Regex::new(r"\W+").unwrap(); |
579 | | /// let hay = "Hey! How are you?"; |
580 | | /// let fields: Vec<&str> = re.splitn(hay, 3).collect(); |
581 | | /// assert_eq!(fields, vec!["Hey", "How", "are you?"]); |
582 | | /// ``` |
583 | | /// |
584 | | /// # Examples: more cases |
585 | | /// |
586 | | /// ``` |
587 | | /// use regex_lite::Regex; |
588 | | /// |
589 | | /// let re = Regex::new(r" ").unwrap(); |
590 | | /// let hay = "Mary had a little lamb"; |
591 | | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
592 | | /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]); |
593 | | /// |
594 | | /// let re = Regex::new(r"X").unwrap(); |
595 | | /// let hay = ""; |
596 | | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
597 | | /// assert_eq!(got, vec![""]); |
598 | | /// |
599 | | /// let re = Regex::new(r"X").unwrap(); |
600 | | /// let hay = "lionXXtigerXleopard"; |
601 | | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
602 | | /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]); |
603 | | /// |
604 | | /// let re = Regex::new(r"::").unwrap(); |
605 | | /// let hay = "lion::tiger::leopard"; |
606 | | /// let got: Vec<&str> = re.splitn(hay, 2).collect(); |
607 | | /// assert_eq!(got, vec!["lion", "tiger::leopard"]); |
608 | | /// |
609 | | /// let re = Regex::new(r"X").unwrap(); |
610 | | /// let hay = "abcXdef"; |
611 | | /// let got: Vec<&str> = re.splitn(hay, 1).collect(); |
612 | | /// assert_eq!(got, vec!["abcXdef"]); |
613 | | /// |
614 | | /// let re = Regex::new(r"X").unwrap(); |
615 | | /// let hay = "abcdef"; |
616 | | /// let got: Vec<&str> = re.splitn(hay, 2).collect(); |
617 | | /// assert_eq!(got, vec!["abcdef"]); |
618 | | /// |
619 | | /// let re = Regex::new(r"X").unwrap(); |
620 | | /// let hay = "abcXdef"; |
621 | | /// let got: Vec<&str> = re.splitn(hay, 0).collect(); |
622 | | /// assert!(got.is_empty()); |
623 | | /// ``` |
624 | | #[inline] |
625 | | pub fn splitn<'r, 'h>( |
626 | | &'r self, |
627 | | haystack: &'h str, |
628 | | limit: usize, |
629 | | ) -> SplitN<'r, 'h> { |
630 | | SplitN { splits: self.split(haystack), limit } |
631 | | } |
632 | | |
633 | | /// Replaces the leftmost-first match in the given haystack with the |
634 | | /// replacement provided. The replacement can be a regular string (where |
635 | | /// `$N` and `$name` are expanded to match capture groups) or a function |
636 | | /// that takes a [`Captures`] and returns the replaced string. |
637 | | /// |
638 | | /// If no match is found, then the haystack is returned unchanged. In that |
639 | | /// case, this implementation will likely return a `Cow::Borrowed` value |
640 | | /// such that no allocation is performed. |
641 | | /// |
642 | | /// # Replacement string syntax |
643 | | /// |
644 | | /// All instances of `$ref` in the replacement string are replaced with |
645 | | /// the substring corresponding to the capture group identified by `ref`. |
646 | | /// |
647 | | /// `ref` may be an integer corresponding to the index of the capture group |
648 | | /// (counted by order of opening parenthesis where `0` is the entire match) |
649 | | /// or it can be a name (consisting of letters, digits or underscores) |
650 | | /// corresponding to a named capture group. |
651 | | /// |
652 | | /// If `ref` isn't a valid capture group (whether the name doesn't exist or |
653 | | /// isn't a valid index), then it is replaced with the empty string. |
654 | | /// |
655 | | /// The longest possible name is used. For example, `$1a` looks up the |
656 | | /// capture group named `1a` and not the capture group at index `1`. To |
657 | | /// exert more precise control over the name, use braces, e.g., `${1}a`. |
658 | | /// |
659 | | /// To write a literal `$` use `$$`. |
660 | | /// |
661 | | /// # Example |
662 | | /// |
663 | | /// Note that this function is polymorphic with respect to the replacement. |
664 | | /// In typical usage, this can just be a normal string: |
665 | | /// |
666 | | /// ``` |
667 | | /// use regex_lite::Regex; |
668 | | /// |
669 | | /// let re = Regex::new(r"[^01]+").unwrap(); |
670 | | /// assert_eq!(re.replace("1078910", ""), "1010"); |
671 | | /// ``` |
672 | | /// |
673 | | /// But anything satisfying the [`Replacer`] trait will work. For example, |
674 | | /// a closure of type `|&Captures| -> String` provides direct access to the |
675 | | /// captures corresponding to a match. This allows one to access capturing |
676 | | /// group matches easily: |
677 | | /// |
678 | | /// ``` |
679 | | /// use regex_lite::{Captures, Regex}; |
680 | | /// |
681 | | /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap(); |
682 | | /// let result = re.replace("Springsteen, Bruce", |caps: &Captures| { |
683 | | /// format!("{} {}", &caps[2], &caps[1]) |
684 | | /// }); |
685 | | /// assert_eq!(result, "Bruce Springsteen"); |
686 | | /// ``` |
687 | | /// |
688 | | /// But this is a bit cumbersome to use all the time. Instead, a simple |
689 | | /// syntax is supported (as described above) that expands `$name` into the |
690 | | /// corresponding capture group. Here's the last example, but using this |
691 | | /// expansion technique with named capture groups: |
692 | | /// |
693 | | /// ``` |
694 | | /// use regex_lite::Regex; |
695 | | /// |
696 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap(); |
697 | | /// let result = re.replace("Springsteen, Bruce", "$first $last"); |
698 | | /// assert_eq!(result, "Bruce Springsteen"); |
699 | | /// ``` |
700 | | /// |
701 | | /// Note that using `$2` instead of `$first` or `$1` instead of `$last` |
702 | | /// would produce the same result. To write a literal `$` use `$$`. |
703 | | /// |
704 | | /// Sometimes the replacement string requires use of curly braces to |
705 | | /// delineate a capture group replacement when it is adjacent to some other |
706 | | /// literal text. For example, if we wanted to join two words together with |
707 | | /// an underscore: |
708 | | /// |
709 | | /// ``` |
710 | | /// use regex_lite::Regex; |
711 | | /// |
712 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)").unwrap(); |
713 | | /// let result = re.replace("deep fried", "${first}_$second"); |
714 | | /// assert_eq!(result, "deep_fried"); |
715 | | /// ``` |
716 | | /// |
717 | | /// Without the curly braces, the capture group name `first_` would be |
718 | | /// used, and since it doesn't exist, it would be replaced with the empty |
719 | | /// string. |
720 | | /// |
721 | | /// Finally, sometimes you just want to replace a literal string with no |
722 | | /// regard for capturing group expansion. This can be done by wrapping a |
723 | | /// string with [`NoExpand`]: |
724 | | /// |
725 | | /// ``` |
726 | | /// use regex_lite::{NoExpand, Regex}; |
727 | | /// |
728 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap(); |
729 | | /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last")); |
730 | | /// assert_eq!(result, "$2 $last"); |
731 | | /// ``` |
732 | | /// |
733 | | /// Using `NoExpand` may also be faster, since the replacement string won't |
734 | | /// need to be parsed for the `$` syntax. |
735 | | #[inline] |
736 | | pub fn replace<'h, R: Replacer>( |
737 | | &self, |
738 | | haystack: &'h str, |
739 | | rep: R, |
740 | | ) -> Cow<'h, str> { |
741 | | self.replacen(haystack, 1, rep) |
742 | | } |
743 | | |
744 | | /// Replaces all non-overlapping matches in the haystack with the |
745 | | /// replacement provided. This is the same as calling `replacen` with |
746 | | /// `limit` set to `0`. |
747 | | /// |
748 | | /// The documentation for [`Regex::replace`] goes into more detail about |
749 | | /// what kinds of replacement strings are supported. |
750 | | /// |
751 | | /// # Time complexity |
752 | | /// |
753 | | /// Since iterators over all matches requires running potentially many |
754 | | /// searches on the haystack, and since each search has worst case |
755 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
756 | | /// this routine is `O(m * n^2)`. |
757 | | /// |
758 | | /// # Fallibility |
759 | | /// |
760 | | /// If you need to write a replacement routine where any individual |
761 | | /// replacement might "fail," doing so with this API isn't really feasible |
762 | | /// because there's no way to stop the search process if a replacement |
763 | | /// fails. Instead, if you need this functionality, you should consider |
764 | | /// implementing your own replacement routine: |
765 | | /// |
766 | | /// ``` |
767 | | /// use regex_lite::{Captures, Regex}; |
768 | | /// |
769 | | /// fn replace_all<E>( |
770 | | /// re: &Regex, |
771 | | /// haystack: &str, |
772 | | /// replacement: impl Fn(&Captures) -> Result<String, E>, |
773 | | /// ) -> Result<String, E> { |
774 | | /// let mut new = String::with_capacity(haystack.len()); |
775 | | /// let mut last_match = 0; |
776 | | /// for caps in re.captures_iter(haystack) { |
777 | | /// let m = caps.get(0).unwrap(); |
778 | | /// new.push_str(&haystack[last_match..m.start()]); |
779 | | /// new.push_str(&replacement(&caps)?); |
780 | | /// last_match = m.end(); |
781 | | /// } |
782 | | /// new.push_str(&haystack[last_match..]); |
783 | | /// Ok(new) |
784 | | /// } |
785 | | /// |
786 | | /// // Let's replace each word with the number of bytes in that word. |
787 | | /// // But if we see a word that is "too long," we'll give up. |
788 | | /// let re = Regex::new(r"\w+").unwrap(); |
789 | | /// let replacement = |caps: &Captures| -> Result<String, &'static str> { |
790 | | /// if caps[0].len() >= 5 { |
791 | | /// return Err("word too long"); |
792 | | /// } |
793 | | /// Ok(caps[0].len().to_string()) |
794 | | /// }; |
795 | | /// assert_eq!( |
796 | | /// Ok("2 3 3 3?".to_string()), |
797 | | /// replace_all(&re, "hi how are you?", &replacement), |
798 | | /// ); |
799 | | /// assert!(replace_all(&re, "hi there", &replacement).is_err()); |
800 | | /// ``` |
801 | | /// |
802 | | /// # Example |
803 | | /// |
804 | | /// This example shows how to flip the order of whitespace delimited |
805 | | /// fields, and normalizes the whitespace that delimits the fields: |
806 | | /// |
807 | | /// ``` |
808 | | /// use regex_lite::Regex; |
809 | | /// |
810 | | /// let re = Regex::new(r"(?m)^(\S+)\s+(\S+)$").unwrap(); |
811 | | /// let hay = " |
812 | | /// Greetings 1973 |
813 | | /// Wild\t1973 |
814 | | /// BornToRun\t\t\t\t1975 |
815 | | /// Darkness 1978 |
816 | | /// TheRiver 1980 |
817 | | /// "; |
818 | | /// let new = re.replace_all(hay, "$2 $1"); |
819 | | /// assert_eq!(new, " |
820 | | /// 1973 Greetings |
821 | | /// 1973 Wild |
822 | | /// 1975 BornToRun |
823 | | /// 1978 Darkness |
824 | | /// 1980 TheRiver |
825 | | /// "); |
826 | | /// ``` |
827 | | #[inline] |
828 | | pub fn replace_all<'h, R: Replacer>( |
829 | | &self, |
830 | | haystack: &'h str, |
831 | | rep: R, |
832 | | ) -> Cow<'h, str> { |
833 | | self.replacen(haystack, 0, rep) |
834 | | } |
835 | | |
836 | | /// Replaces at most `limit` non-overlapping matches in the haystack with |
837 | | /// the replacement provided. If `limit` is `0`, then all non-overlapping |
838 | | /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is |
839 | | /// equivalent to `Regex::replacen(hay, 0, rep)`. |
840 | | /// |
841 | | /// The documentation for [`Regex::replace`] goes into more detail about |
842 | | /// what kinds of replacement strings are supported. |
843 | | /// |
844 | | /// # Time complexity |
845 | | /// |
846 | | /// Since iterators over all matches requires running potentially many |
847 | | /// searches on the haystack, and since each search has worst case |
848 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
849 | | /// this routine is `O(m * n^2)`. |
850 | | /// |
851 | | /// Although note that the worst case time here has an upper bound given |
852 | | /// by the `limit` parameter. |
853 | | /// |
854 | | /// # Fallibility |
855 | | /// |
856 | | /// See the corresponding section in the docs for [`Regex::replace_all`] |
857 | | /// for tips on how to deal with a replacement routine that can fail. |
858 | | /// |
859 | | /// # Example |
860 | | /// |
861 | | /// This example shows how to flip the order of whitespace delimited |
862 | | /// fields, and normalizes the whitespace that delimits the fields. But we |
863 | | /// only do it for the first two matches. |
864 | | /// |
865 | | /// ``` |
866 | | /// use regex_lite::Regex; |
867 | | /// |
868 | | /// let re = Regex::new(r"(?m)^(\S+)\s+(\S+)$").unwrap(); |
869 | | /// let hay = " |
870 | | /// Greetings 1973 |
871 | | /// Wild\t1973 |
872 | | /// BornToRun\t\t\t\t1975 |
873 | | /// Darkness 1978 |
874 | | /// TheRiver 1980 |
875 | | /// "; |
876 | | /// let new = re.replacen(hay, 2, "$2 $1"); |
877 | | /// assert_eq!(new, " |
878 | | /// 1973 Greetings |
879 | | /// 1973 Wild |
880 | | /// BornToRun\t\t\t\t1975 |
881 | | /// Darkness 1978 |
882 | | /// TheRiver 1980 |
883 | | /// "); |
884 | | /// ``` |
885 | | #[inline] |
886 | | pub fn replacen<'h, R: Replacer>( |
887 | | &self, |
888 | | haystack: &'h str, |
889 | | limit: usize, |
890 | | mut rep: R, |
891 | | ) -> Cow<'h, str> { |
892 | | // If we know that the replacement doesn't have any capture expansions, |
893 | | // then we can use the fast path. The fast path can make a tremendous |
894 | | // difference: |
895 | | // |
896 | | // 1) We use `find_iter` instead of `captures_iter`. Not asking for |
897 | | // captures generally makes the regex engines faster. |
898 | | // 2) We don't need to look up all of the capture groups and do |
899 | | // replacements inside the replacement string. We just push it |
900 | | // at each match and be done with it. |
901 | | if let Some(rep) = rep.no_expansion() { |
902 | | let mut it = self.find_iter(haystack).enumerate().peekable(); |
903 | | if it.peek().is_none() { |
904 | | return Cow::Borrowed(haystack); |
905 | | } |
906 | | let mut new = String::with_capacity(haystack.len()); |
907 | | let mut last_match = 0; |
908 | | for (i, m) in it { |
909 | | new.push_str(&haystack[last_match..m.start()]); |
910 | | new.push_str(&rep); |
911 | | last_match = m.end(); |
912 | | if limit > 0 && i >= limit - 1 { |
913 | | break; |
914 | | } |
915 | | } |
916 | | new.push_str(&haystack[last_match..]); |
917 | | return Cow::Owned(new); |
918 | | } |
919 | | |
920 | | // The slower path, which we use if the replacement needs access to |
921 | | // capture groups. |
922 | | let mut it = self.captures_iter(haystack).enumerate().peekable(); |
923 | | if it.peek().is_none() { |
924 | | return Cow::Borrowed(haystack); |
925 | | } |
926 | | let mut new = String::with_capacity(haystack.len()); |
927 | | let mut last_match = 0; |
928 | | for (i, cap) in it { |
929 | | // unwrap on 0 is OK because captures only reports matches |
930 | | let m = cap.get(0).unwrap(); |
931 | | new.push_str(&haystack[last_match..m.start()]); |
932 | | rep.replace_append(&cap, &mut new); |
933 | | last_match = m.end(); |
934 | | if limit > 0 && i >= limit - 1 { |
935 | | break; |
936 | | } |
937 | | } |
938 | | new.push_str(&haystack[last_match..]); |
939 | | Cow::Owned(new) |
940 | | } |
941 | | } |
942 | | |
943 | | /// A group of advanced or "lower level" search methods. Some methods permit |
944 | | /// starting the search at a position greater than `0` in the haystack. Other |
945 | | /// methods permit reusing allocations, for example, when extracting the |
946 | | /// matches for capture groups. |
947 | | impl Regex { |
948 | | /// Returns the end byte offset of the first match in the haystack given. |
949 | | /// |
950 | | /// This method may have the same performance characteristics as |
951 | | /// `is_match`. Behaviorally, it doesn't just report whether it match |
952 | | /// occurs, but also the end offset for a match. In particular, the offset |
953 | | /// returned *may be shorter* than the proper end of the leftmost-first |
954 | | /// match that you would find via [`Regex::find`]. |
955 | | /// |
956 | | /// Note that it is not guaranteed that this routine finds the shortest or |
957 | | /// "earliest" possible match. Instead, the main idea of this API is that |
958 | | /// it returns the offset at the point at which the internal regex engine |
959 | | /// has determined that a match has occurred. This may vary depending on |
960 | | /// which internal regex engine is used, and thus, the offset itself may |
961 | | /// change based on internal heuristics. |
962 | | /// |
963 | | /// # Example |
964 | | /// |
965 | | /// Typically, `a+` would match the entire first sequence of `a` in some |
966 | | /// haystack, but `shortest_match` *may* give up as soon as it sees the |
967 | | /// first `a`. |
968 | | /// |
969 | | /// ``` |
970 | | /// use regex_lite::Regex; |
971 | | /// |
972 | | /// let re = Regex::new(r"a+").unwrap(); |
973 | | /// let offset = re.shortest_match("aaaaa").unwrap(); |
974 | | /// assert_eq!(offset, 1); |
975 | | /// ``` |
976 | | #[inline] |
977 | | pub fn shortest_match(&self, haystack: &str) -> Option<usize> { |
978 | | self.shortest_match_at(haystack, 0) |
979 | | } |
980 | | |
981 | | /// Returns the same as [`Regex::shortest_match`], but starts the search at |
982 | | /// the given offset. |
983 | | /// |
984 | | /// The significance of the starting point is that it takes the surrounding |
985 | | /// context into consideration. For example, the `\A` anchor can only match |
986 | | /// when `start == 0`. |
987 | | /// |
988 | | /// If a match is found, the offset returned is relative to the beginning |
989 | | /// of the haystack, not the beginning of the search. |
990 | | /// |
991 | | /// # Panics |
992 | | /// |
993 | | /// This panics when `start >= haystack.len() + 1`. |
994 | | /// |
995 | | /// # Example |
996 | | /// |
997 | | /// This example shows the significance of `start` by demonstrating how it |
998 | | /// can be used to permit look-around assertions in a regex to take the |
999 | | /// surrounding context into account. |
1000 | | /// |
1001 | | /// ``` |
1002 | | /// use regex_lite::Regex; |
1003 | | /// |
1004 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1005 | | /// let hay = "eschew"; |
1006 | | /// // We get a match here, but it's probably not intended. |
1007 | | /// assert_eq!(re.shortest_match(&hay[2..]), Some(4)); |
1008 | | /// // No match because the assertions take the context into account. |
1009 | | /// assert_eq!(re.shortest_match_at(hay, 2), None); |
1010 | | /// ``` |
1011 | | #[inline] |
1012 | | pub fn shortest_match_at( |
1013 | | &self, |
1014 | | haystack: &str, |
1015 | | start: usize, |
1016 | | ) -> Option<usize> { |
1017 | | let mut cache = self.pool.get(); |
1018 | | let mut slots = [None, None]; |
1019 | | let matched = self.pikevm.search( |
1020 | | &mut cache, |
1021 | | haystack.as_bytes(), |
1022 | | start, |
1023 | | haystack.len(), |
1024 | | true, |
1025 | | &mut slots, |
1026 | | ); |
1027 | | if !matched { |
1028 | | return None; |
1029 | | } |
1030 | | Some(slots[1].unwrap().get()) |
1031 | | } |
1032 | | |
1033 | | /// Returns the same as [`Regex::is_match`], but starts the search at the |
1034 | | /// given offset. |
1035 | | /// |
1036 | | /// The significance of the starting point is that it takes the surrounding |
1037 | | /// context into consideration. For example, the `\A` anchor can only |
1038 | | /// match when `start == 0`. |
1039 | | /// |
1040 | | /// # Panics |
1041 | | /// |
1042 | | /// This panics when `start >= haystack.len() + 1`. |
1043 | | /// |
1044 | | /// # Example |
1045 | | /// |
1046 | | /// This example shows the significance of `start` by demonstrating how it |
1047 | | /// can be used to permit look-around assertions in a regex to take the |
1048 | | /// surrounding context into account. |
1049 | | /// |
1050 | | /// ``` |
1051 | | /// use regex_lite::Regex; |
1052 | | /// |
1053 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1054 | | /// let hay = "eschew"; |
1055 | | /// // We get a match here, but it's probably not intended. |
1056 | | /// assert!(re.is_match(&hay[2..])); |
1057 | | /// // No match because the assertions take the context into account. |
1058 | | /// assert!(!re.is_match_at(hay, 2)); |
1059 | | /// ``` |
1060 | | #[inline] |
1061 | 5.49k | pub fn is_match_at(&self, haystack: &str, start: usize) -> bool { |
1062 | 5.49k | let mut cache = self.pool.get(); |
1063 | 5.49k | self.pikevm.search( |
1064 | 5.49k | &mut cache, |
1065 | 5.49k | haystack.as_bytes(), |
1066 | 5.49k | start, |
1067 | 5.49k | haystack.len(), |
1068 | 5.49k | true, |
1069 | 5.49k | &mut [], |
1070 | 5.49k | ) |
1071 | 5.49k | } |
1072 | | |
1073 | | /// Returns the same as [`Regex::find`], but starts the search at the given |
1074 | | /// offset. |
1075 | | /// |
1076 | | /// The significance of the starting point is that it takes the surrounding |
1077 | | /// context into consideration. For example, the `\A` anchor can only |
1078 | | /// match when `start == 0`. |
1079 | | /// |
1080 | | /// # Panics |
1081 | | /// |
1082 | | /// This panics when `start >= haystack.len() + 1`. |
1083 | | /// |
1084 | | /// # Example |
1085 | | /// |
1086 | | /// This example shows the significance of `start` by demonstrating how it |
1087 | | /// can be used to permit look-around assertions in a regex to take the |
1088 | | /// surrounding context into account. |
1089 | | /// |
1090 | | /// ``` |
1091 | | /// use regex_lite::Regex; |
1092 | | /// |
1093 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1094 | | /// let hay = "eschew"; |
1095 | | /// // We get a match here, but it's probably not intended. |
1096 | | /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4)); |
1097 | | /// // No match because the assertions take the context into account. |
1098 | | /// assert_eq!(re.find_at(hay, 2), None); |
1099 | | /// ``` |
1100 | | #[inline] |
1101 | | pub fn find_at<'h>( |
1102 | | &self, |
1103 | | haystack: &'h str, |
1104 | | start: usize, |
1105 | | ) -> Option<Match<'h>> { |
1106 | | let mut cache = self.pool.get(); |
1107 | | let mut slots = [None, None]; |
1108 | | let matched = self.pikevm.search( |
1109 | | &mut cache, |
1110 | | haystack.as_bytes(), |
1111 | | start, |
1112 | | haystack.len(), |
1113 | | false, |
1114 | | &mut slots, |
1115 | | ); |
1116 | | if !matched { |
1117 | | return None; |
1118 | | } |
1119 | | let (start, end) = (slots[0].unwrap().get(), slots[1].unwrap().get()); |
1120 | | Some(Match::new(haystack, start, end)) |
1121 | | } |
1122 | | |
1123 | | /// Returns the same as [`Regex::captures`], but starts the search at the |
1124 | | /// given offset. |
1125 | | /// |
1126 | | /// The significance of the starting point is that it takes the surrounding |
1127 | | /// context into consideration. For example, the `\A` anchor can only |
1128 | | /// match when `start == 0`. |
1129 | | /// |
1130 | | /// # Panics |
1131 | | /// |
1132 | | /// This panics when `start >= haystack.len() + 1`. |
1133 | | /// |
1134 | | /// # Example |
1135 | | /// |
1136 | | /// This example shows the significance of `start` by demonstrating how it |
1137 | | /// can be used to permit look-around assertions in a regex to take the |
1138 | | /// surrounding context into account. |
1139 | | /// |
1140 | | /// ``` |
1141 | | /// use regex_lite::Regex; |
1142 | | /// |
1143 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1144 | | /// let hay = "eschew"; |
1145 | | /// // We get a match here, but it's probably not intended. |
1146 | | /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], "chew"); |
1147 | | /// // No match because the assertions take the context into account. |
1148 | | /// assert!(re.captures_at(hay, 2).is_none()); |
1149 | | /// ``` |
1150 | | #[inline] |
1151 | | pub fn captures_at<'h>( |
1152 | | &self, |
1153 | | haystack: &'h str, |
1154 | | start: usize, |
1155 | | ) -> Option<Captures<'h>> { |
1156 | | let mut caps = Captures { |
1157 | | haystack, |
1158 | | slots: self.capture_locations(), |
1159 | | pikevm: Arc::clone(&self.pikevm), |
1160 | | }; |
1161 | | let mut cache = self.pool.get(); |
1162 | | let matched = self.pikevm.search( |
1163 | | &mut cache, |
1164 | | haystack.as_bytes(), |
1165 | | start, |
1166 | | haystack.len(), |
1167 | | false, |
1168 | | &mut caps.slots.0, |
1169 | | ); |
1170 | | if !matched { |
1171 | | return None; |
1172 | | } |
1173 | | Some(caps) |
1174 | | } |
1175 | | |
1176 | | /// This is like [`Regex::captures`], but writes the byte offsets of each |
1177 | | /// capture group match into the locations given. |
1178 | | /// |
1179 | | /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`], |
1180 | | /// but does *not* store a reference to the haystack. This makes its API |
1181 | | /// a bit lower level and less convenience. But in exchange, callers |
1182 | | /// may allocate their own `CaptureLocations` and reuse it for multiple |
1183 | | /// searches. This may be helpful if allocating a `Captures` shows up in a |
1184 | | /// profile as too costly. |
1185 | | /// |
1186 | | /// To create a `CaptureLocations` value, use the |
1187 | | /// [`Regex::capture_locations`] method. |
1188 | | /// |
1189 | | /// This also returns the overall match if one was found. When a match is |
1190 | | /// found, its offsets are also always stored in `locs` at index `0`. |
1191 | | /// |
1192 | | /// # Panics |
1193 | | /// |
1194 | | /// This routine may panic if the given `CaptureLocations` was not created |
1195 | | /// by this regex. |
1196 | | /// |
1197 | | /// # Example |
1198 | | /// |
1199 | | /// ``` |
1200 | | /// use regex_lite::Regex; |
1201 | | /// |
1202 | | /// let re = Regex::new(r"^([a-z]+)=(\S*)$").unwrap(); |
1203 | | /// let mut locs = re.capture_locations(); |
1204 | | /// assert!(re.captures_read(&mut locs, "id=foo123").is_some()); |
1205 | | /// assert_eq!(Some((0, 9)), locs.get(0)); |
1206 | | /// assert_eq!(Some((0, 2)), locs.get(1)); |
1207 | | /// assert_eq!(Some((3, 9)), locs.get(2)); |
1208 | | /// ``` |
1209 | | #[inline] |
1210 | | pub fn captures_read<'h>( |
1211 | | &self, |
1212 | | locs: &mut CaptureLocations, |
1213 | | haystack: &'h str, |
1214 | | ) -> Option<Match<'h>> { |
1215 | | self.captures_read_at(locs, haystack, 0) |
1216 | | } |
1217 | | |
1218 | | /// Returns the same as [`Regex::captures_read`], but starts the search at |
1219 | | /// the given offset. |
1220 | | /// |
1221 | | /// The significance of the starting point is that it takes the surrounding |
1222 | | /// context into consideration. For example, the `\A` anchor can only |
1223 | | /// match when `start == 0`. |
1224 | | /// |
1225 | | /// # Panics |
1226 | | /// |
1227 | | /// This panics when `start >= haystack.len() + 1`. |
1228 | | /// |
1229 | | /// This routine may also panic if the given `CaptureLocations` was not |
1230 | | /// created by this regex. |
1231 | | /// |
1232 | | /// # Example |
1233 | | /// |
1234 | | /// This example shows the significance of `start` by demonstrating how it |
1235 | | /// can be used to permit look-around assertions in a regex to take the |
1236 | | /// surrounding context into account. |
1237 | | /// |
1238 | | /// ``` |
1239 | | /// use regex_lite::Regex; |
1240 | | /// |
1241 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1242 | | /// let hay = "eschew"; |
1243 | | /// let mut locs = re.capture_locations(); |
1244 | | /// // We get a match here, but it's probably not intended. |
1245 | | /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some()); |
1246 | | /// // No match because the assertions take the context into account. |
1247 | | /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none()); |
1248 | | /// ``` |
1249 | | #[inline] |
1250 | | pub fn captures_read_at<'h>( |
1251 | | &self, |
1252 | | locs: &mut CaptureLocations, |
1253 | | haystack: &'h str, |
1254 | | start: usize, |
1255 | | ) -> Option<Match<'h>> { |
1256 | | let mut cache = self.pool.get(); |
1257 | | let matched = self.pikevm.search( |
1258 | | &mut cache, |
1259 | | haystack.as_bytes(), |
1260 | | start, |
1261 | | haystack.len(), |
1262 | | false, |
1263 | | &mut locs.0, |
1264 | | ); |
1265 | | if !matched { |
1266 | | return None; |
1267 | | } |
1268 | | let (start, end) = locs.get(0).unwrap(); |
1269 | | Some(Match::new(haystack, start, end)) |
1270 | | } |
1271 | | } |
1272 | | |
1273 | | /// Auxiliary methods. |
1274 | | impl Regex { |
1275 | | /// Returns the original string of this regex. |
1276 | | /// |
1277 | | /// # Example |
1278 | | /// |
1279 | | /// ``` |
1280 | | /// use regex_lite::Regex; |
1281 | | /// |
1282 | | /// let re = Regex::new(r"foo\w+bar").unwrap(); |
1283 | | /// assert_eq!(re.as_str(), r"foo\w+bar"); |
1284 | | /// ``` |
1285 | | #[inline] |
1286 | 0 | pub fn as_str(&self) -> &str { |
1287 | 0 | &self.pikevm.nfa().pattern() |
1288 | 0 | } |
1289 | | |
1290 | | /// Returns an iterator over the capture names in this regex. |
1291 | | /// |
1292 | | /// The iterator returned yields elements of type `Option<&str>`. That is, |
1293 | | /// the iterator yields values for all capture groups, even ones that are |
1294 | | /// unnamed. The order of the groups corresponds to the order of the group's |
1295 | | /// corresponding opening parenthesis. |
1296 | | /// |
1297 | | /// The first element of the iterator always yields the group corresponding |
1298 | | /// to the overall match, and this group is always unnamed. Therefore, the |
1299 | | /// iterator always yields at least one group. |
1300 | | /// |
1301 | | /// # Example |
1302 | | /// |
1303 | | /// This shows basic usage with a mix of named and unnamed capture groups: |
1304 | | /// |
1305 | | /// ``` |
1306 | | /// use regex_lite::Regex; |
1307 | | /// |
1308 | | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap(); |
1309 | | /// let mut names = re.capture_names(); |
1310 | | /// assert_eq!(names.next(), Some(None)); |
1311 | | /// assert_eq!(names.next(), Some(Some("a"))); |
1312 | | /// assert_eq!(names.next(), Some(Some("b"))); |
1313 | | /// assert_eq!(names.next(), Some(None)); |
1314 | | /// // the '(?:.)' group is non-capturing and so doesn't appear here! |
1315 | | /// assert_eq!(names.next(), Some(Some("c"))); |
1316 | | /// assert_eq!(names.next(), None); |
1317 | | /// ``` |
1318 | | /// |
1319 | | /// The iterator always yields at least one element, even for regexes with |
1320 | | /// no capture groups and even for regexes that can never match: |
1321 | | /// |
1322 | | /// ``` |
1323 | | /// use regex_lite::Regex; |
1324 | | /// |
1325 | | /// let re = Regex::new(r"").unwrap(); |
1326 | | /// let mut names = re.capture_names(); |
1327 | | /// assert_eq!(names.next(), Some(None)); |
1328 | | /// assert_eq!(names.next(), None); |
1329 | | /// |
1330 | | /// let re = Regex::new(r"[^\s\S]").unwrap(); |
1331 | | /// let mut names = re.capture_names(); |
1332 | | /// assert_eq!(names.next(), Some(None)); |
1333 | | /// assert_eq!(names.next(), None); |
1334 | | /// ``` |
1335 | | #[inline] |
1336 | | pub fn capture_names(&self) -> CaptureNames<'_> { |
1337 | | CaptureNames(self.pikevm.nfa().capture_names()) |
1338 | | } |
1339 | | |
1340 | | /// Returns the number of captures groups in this regex. |
1341 | | /// |
1342 | | /// This includes all named and unnamed groups, including the implicit |
1343 | | /// unnamed group that is always present and corresponds to the entire |
1344 | | /// match. |
1345 | | /// |
1346 | | /// Since the implicit unnamed group is always included in this length, the |
1347 | | /// length returned is guaranteed to be greater than zero. |
1348 | | /// |
1349 | | /// # Example |
1350 | | /// |
1351 | | /// ``` |
1352 | | /// use regex_lite::Regex; |
1353 | | /// |
1354 | | /// let re = Regex::new(r"foo").unwrap(); |
1355 | | /// assert_eq!(1, re.captures_len()); |
1356 | | /// |
1357 | | /// let re = Regex::new(r"(foo)").unwrap(); |
1358 | | /// assert_eq!(2, re.captures_len()); |
1359 | | /// |
1360 | | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap(); |
1361 | | /// assert_eq!(5, re.captures_len()); |
1362 | | /// |
1363 | | /// let re = Regex::new(r"[^\s\S]").unwrap(); |
1364 | | /// assert_eq!(1, re.captures_len()); |
1365 | | /// ``` |
1366 | | #[inline] |
1367 | | pub fn captures_len(&self) -> usize { |
1368 | | self.pikevm.nfa().group_len() |
1369 | | } |
1370 | | |
1371 | | /// Returns the total number of capturing groups that appear in every |
1372 | | /// possible match. |
1373 | | /// |
1374 | | /// If the number of capture groups can vary depending on the match, then |
1375 | | /// this returns `None`. That is, a value is only returned when the number |
1376 | | /// of matching groups is invariant or "static." |
1377 | | /// |
1378 | | /// Note that like [`Regex::captures_len`], this **does** include the |
1379 | | /// implicit capturing group corresponding to the entire match. Therefore, |
1380 | | /// when a non-None value is returned, it is guaranteed to be at least `1`. |
1381 | | /// Stated differently, a return value of `Some(0)` is impossible. |
1382 | | /// |
1383 | | /// # Example |
1384 | | /// |
1385 | | /// This shows a few cases where a static number of capture groups is |
1386 | | /// available and a few cases where it is not. |
1387 | | /// |
1388 | | /// ``` |
1389 | | /// use regex_lite::Regex; |
1390 | | /// |
1391 | | /// let len = |pattern| { |
1392 | | /// Regex::new(pattern).map(|re| re.static_captures_len()) |
1393 | | /// }; |
1394 | | /// |
1395 | | /// assert_eq!(Some(1), len("a")?); |
1396 | | /// assert_eq!(Some(2), len("(a)")?); |
1397 | | /// assert_eq!(Some(2), len("(a)|(b)")?); |
1398 | | /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?); |
1399 | | /// assert_eq!(None, len("(a)|b")?); |
1400 | | /// assert_eq!(None, len("a|(b)")?); |
1401 | | /// assert_eq!(None, len("(b)*")?); |
1402 | | /// assert_eq!(Some(2), len("(b)+")?); |
1403 | | /// |
1404 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1405 | | /// ``` |
1406 | | #[inline] |
1407 | | pub fn static_captures_len(&self) -> Option<usize> { |
1408 | | self.pikevm |
1409 | | .nfa() |
1410 | | .static_explicit_captures_len() |
1411 | | .map(|len| len.saturating_add(1)) |
1412 | | } |
1413 | | |
1414 | | /// Returns a fresh allocated set of capture locations that can |
1415 | | /// be reused in multiple calls to [`Regex::captures_read`] or |
1416 | | /// [`Regex::captures_read_at`]. |
1417 | | /// |
1418 | | /// The returned locations can be used for any subsequent search for this |
1419 | | /// particular regex. There is no guarantee that it is correct to use for |
1420 | | /// other regexes, even if they have the same number of capture groups. |
1421 | | /// |
1422 | | /// # Example |
1423 | | /// |
1424 | | /// ``` |
1425 | | /// use regex_lite::Regex; |
1426 | | /// |
1427 | | /// let re = Regex::new(r"(.)(.)(\w+)").unwrap(); |
1428 | | /// let mut locs = re.capture_locations(); |
1429 | | /// assert!(re.captures_read(&mut locs, "Padron").is_some()); |
1430 | | /// assert_eq!(locs.get(0), Some((0, 6))); |
1431 | | /// assert_eq!(locs.get(1), Some((0, 1))); |
1432 | | /// assert_eq!(locs.get(2), Some((1, 2))); |
1433 | | /// assert_eq!(locs.get(3), Some((2, 6))); |
1434 | | /// ``` |
1435 | | #[inline] |
1436 | | pub fn capture_locations(&self) -> CaptureLocations { |
1437 | | // OK because NFA construction would have failed if this overflowed. |
1438 | | let len = self.pikevm.nfa().group_len().checked_mul(2).unwrap(); |
1439 | | CaptureLocations(vec![None; len]) |
1440 | | } |
1441 | | } |
1442 | | |
1443 | | /// Represents a single match of a regex in a haystack. |
1444 | | /// |
1445 | | /// A `Match` contains both the start and end byte offsets of the match and the |
1446 | | /// actual substring corresponding to the range of those byte offsets. It is |
1447 | | /// guaranteed that `start <= end`. When `start == end`, the match is empty. |
1448 | | /// |
1449 | | /// Since this `Match` can only be produced by the top-level `Regex` APIs |
1450 | | /// that only support searching UTF-8 encoded strings, the byte offsets for a |
1451 | | /// `Match` are guaranteed to fall on valid UTF-8 codepoint boundaries. That |
1452 | | /// is, slicing a `&str` with [`Match::range`] is guaranteed to never panic. |
1453 | | /// |
1454 | | /// Values with this type are created by [`Regex::find`] or |
1455 | | /// [`Regex::find_iter`]. Other APIs can create `Match` values too. For |
1456 | | /// example, [`Captures::get`]. |
1457 | | /// |
1458 | | /// The lifetime parameter `'h` refers to the lifetime of the matched of the |
1459 | | /// haystack that this match was produced from. |
1460 | | /// |
1461 | | /// # Numbering |
1462 | | /// |
1463 | | /// The byte offsets in a `Match` form a half-open interval. That is, the |
1464 | | /// start of the range is inclusive and the end of the range is exclusive. |
1465 | | /// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte |
1466 | | /// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and |
1467 | | /// `6` corresponds to `x`, which is one past the end of the match. This |
1468 | | /// corresponds to the same kind of slicing that Rust uses. |
1469 | | /// |
1470 | | /// For more on why this was chosen over other schemes (aside from being |
1471 | | /// consistent with how Rust the language works), see [this discussion] and |
1472 | | /// [Dijkstra's note on a related topic][note]. |
1473 | | /// |
1474 | | /// [this discussion]: https://github.com/rust-lang/regex/discussions/866 |
1475 | | /// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html |
1476 | | /// |
1477 | | /// # Example |
1478 | | /// |
1479 | | /// This example shows the value of each of the methods on `Match` for a |
1480 | | /// particular search. |
1481 | | /// |
1482 | | /// ``` |
1483 | | /// use regex_lite::Regex; |
1484 | | /// |
1485 | | /// let re = Regex::new(r"\d+").unwrap(); |
1486 | | /// let hay = "numbers: 1234"; |
1487 | | /// let m = re.find(hay).unwrap(); |
1488 | | /// assert_eq!(9, m.start()); |
1489 | | /// assert_eq!(13, m.end()); |
1490 | | /// assert!(!m.is_empty()); |
1491 | | /// assert_eq!(4, m.len()); |
1492 | | /// assert_eq!(9..13, m.range()); |
1493 | | /// assert_eq!("1234", m.as_str()); |
1494 | | /// ``` |
1495 | | #[derive(Copy, Clone, Eq, PartialEq)] |
1496 | | pub struct Match<'h> { |
1497 | | haystack: &'h str, |
1498 | | start: usize, |
1499 | | end: usize, |
1500 | | } |
1501 | | |
1502 | | impl<'h> Match<'h> { |
1503 | | /// Creates a new match from the given haystack and byte offsets. |
1504 | | #[inline] |
1505 | 0 | fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> { |
1506 | 0 | Match { haystack, start, end } |
1507 | 0 | } |
1508 | | |
1509 | | /// Returns the byte offset of the start of the match in the haystack. The |
1510 | | /// start of the match corresponds to the position where the match begins |
1511 | | /// and includes the first byte in the match. |
1512 | | /// |
1513 | | /// It is guaranteed that `Match::start() <= Match::end()`. |
1514 | | /// |
1515 | | /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That |
1516 | | /// is, it will never be an offset that appears between the UTF-8 code |
1517 | | /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is |
1518 | | /// always safe to slice the corresponding haystack using this offset. |
1519 | | #[inline] |
1520 | 0 | pub fn start(&self) -> usize { |
1521 | 0 | self.start |
1522 | 0 | } |
1523 | | |
1524 | | /// Returns the byte offset of the end of the match in the haystack. The |
1525 | | /// end of the match corresponds to the byte immediately following the last |
1526 | | /// byte in the match. This means that `&slice[start..end]` works as one |
1527 | | /// would expect. |
1528 | | /// |
1529 | | /// It is guaranteed that `Match::start() <= Match::end()`. |
1530 | | /// |
1531 | | /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That |
1532 | | /// is, it will never be an offset that appears between the UTF-8 code |
1533 | | /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is |
1534 | | /// always safe to slice the corresponding haystack using this offset. |
1535 | | #[inline] |
1536 | 0 | pub fn end(&self) -> usize { |
1537 | 0 | self.end |
1538 | 0 | } |
1539 | | |
1540 | | /// Returns true if and only if this match has a length of zero. |
1541 | | /// |
1542 | | /// Note that an empty match can only occur when the regex itself can |
1543 | | /// match the empty string. Here are some examples of regexes that can |
1544 | | /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`, |
1545 | | /// `(foo|\d+|quux)?`. |
1546 | | #[inline] |
1547 | | pub fn is_empty(&self) -> bool { |
1548 | | self.start == self.end |
1549 | | } |
1550 | | |
1551 | | /// Returns the length, in bytes, of this match. |
1552 | | #[inline] |
1553 | | pub fn len(&self) -> usize { |
1554 | | self.end - self.start |
1555 | | } |
1556 | | |
1557 | | /// Returns the range over the starting and ending byte offsets of the |
1558 | | /// match in the haystack. |
1559 | | /// |
1560 | | /// It is always correct to slice the original haystack searched with this |
1561 | | /// range. That is, because the offsets are guaranteed to fall on valid |
1562 | | /// UTF-8 boundaries, the range returned is always valid. |
1563 | | #[inline] |
1564 | 0 | pub fn range(&self) -> core::ops::Range<usize> { |
1565 | 0 | self.start..self.end |
1566 | 0 | } |
1567 | | |
1568 | | /// Returns the substring of the haystack that matched. |
1569 | | #[inline] |
1570 | 0 | pub fn as_str(&self) -> &'h str { |
1571 | 0 | &self.haystack[self.range()] |
1572 | 0 | } |
1573 | | } |
1574 | | |
1575 | | impl<'h> core::fmt::Debug for Match<'h> { |
1576 | 0 | fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { |
1577 | 0 | f.debug_struct("Match") |
1578 | 0 | .field("start", &self.start) |
1579 | 0 | .field("end", &self.end) |
1580 | 0 | .field("string", &self.as_str()) |
1581 | 0 | .finish() |
1582 | 0 | } |
1583 | | } |
1584 | | |
1585 | | impl<'h> From<Match<'h>> for &'h str { |
1586 | 0 | fn from(m: Match<'h>) -> &'h str { |
1587 | 0 | m.as_str() |
1588 | 0 | } |
1589 | | } |
1590 | | |
1591 | | impl<'h> From<Match<'h>> for core::ops::Range<usize> { |
1592 | 0 | fn from(m: Match<'h>) -> core::ops::Range<usize> { |
1593 | 0 | m.range() |
1594 | 0 | } |
1595 | | } |
1596 | | |
1597 | | /// Represents the capture groups for a single match. |
1598 | | /// |
1599 | | /// Capture groups refer to parts of a regex enclosed in parentheses. They can |
1600 | | /// be optionally named. The purpose of capture groups is to be able to |
1601 | | /// reference different parts of a match based on the original pattern. For |
1602 | | /// example, say you want to match the individual letters in a 5-letter word: |
1603 | | /// |
1604 | | /// ```text |
1605 | | /// (?<first>\w)(\w)(?:\w)\w(?<last>\w) |
1606 | | /// ``` |
1607 | | /// |
1608 | | /// This regex has 4 capture groups: |
1609 | | /// |
1610 | | /// * The group at index `0` corresponds to the overall match. It is always |
1611 | | /// present in every match and never has a name. |
1612 | | /// * The group at index `1` with name `first` corresponding to the first |
1613 | | /// letter. |
1614 | | /// * The group at index `2` with no name corresponding to the second letter. |
1615 | | /// * The group at index `3` with name `last` corresponding to the fifth and |
1616 | | /// last letter. |
1617 | | /// |
1618 | | /// Notice that `(?:\w)` was not listed above as a capture group despite it |
1619 | | /// being enclosed in parentheses. That's because `(?:pattern)` is a special |
1620 | | /// syntax that permits grouping but *without* capturing. The reason for not |
1621 | | /// treating it as a capture is that tracking and reporting capture groups |
1622 | | /// requires additional state that may lead to slower searches. So using as few |
1623 | | /// capture groups as possible can help performance. (Although the difference |
1624 | | /// in performance of a couple of capture groups is likely immaterial.) |
1625 | | /// |
1626 | | /// Values with this type are created by [`Regex::captures`] or |
1627 | | /// [`Regex::captures_iter`]. |
1628 | | /// |
1629 | | /// `'h` is the lifetime of the haystack that these captures were matched from. |
1630 | | /// |
1631 | | /// # Example |
1632 | | /// |
1633 | | /// ``` |
1634 | | /// use regex_lite::Regex; |
1635 | | /// |
1636 | | /// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)").unwrap(); |
1637 | | /// let caps = re.captures("toady").unwrap(); |
1638 | | /// assert_eq!("toady", &caps[0]); |
1639 | | /// assert_eq!("t", &caps["first"]); |
1640 | | /// assert_eq!("o", &caps[2]); |
1641 | | /// assert_eq!("y", &caps["last"]); |
1642 | | /// ``` |
1643 | | pub struct Captures<'h> { |
1644 | | haystack: &'h str, |
1645 | | slots: CaptureLocations, |
1646 | | // It's a little weird to put the PikeVM in our Captures, but it's the |
1647 | | // simplest thing to do and is cheap. The PikeVM gives us access to the |
1648 | | // NFA and the NFA gives us access to the capture name<->index mapping. |
1649 | | pikevm: Arc<PikeVM>, |
1650 | | } |
1651 | | |
1652 | | impl<'h> Captures<'h> { |
1653 | | /// Returns the `Match` associated with the capture group at index `i`. If |
1654 | | /// `i` does not correspond to a capture group, or if the capture group did |
1655 | | /// not participate in the match, then `None` is returned. |
1656 | | /// |
1657 | | /// When `i == 0`, this is guaranteed to return a non-`None` value. |
1658 | | /// |
1659 | | /// # Examples |
1660 | | /// |
1661 | | /// Get the substring that matched with a default of an empty string if the |
1662 | | /// group didn't participate in the match: |
1663 | | /// |
1664 | | /// ``` |
1665 | | /// use regex_lite::Regex; |
1666 | | /// |
1667 | | /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap(); |
1668 | | /// let caps = re.captures("abc123").unwrap(); |
1669 | | /// |
1670 | | /// let substr1 = caps.get(1).map_or("", |m| m.as_str()); |
1671 | | /// let substr2 = caps.get(2).map_or("", |m| m.as_str()); |
1672 | | /// assert_eq!(substr1, "123"); |
1673 | | /// assert_eq!(substr2, ""); |
1674 | | /// ``` |
1675 | | #[inline] |
1676 | 0 | pub fn get(&self, i: usize) -> Option<Match<'h>> { |
1677 | 0 | self.slots.get(i).map(|(s, e)| Match::new(self.haystack, s, e)) |
1678 | 0 | } |
1679 | | |
1680 | | /// Returns the `Match` associated with the capture group named `name`. If |
1681 | | /// `name` isn't a valid capture group or it refers to a group that didn't |
1682 | | /// match, then `None` is returned. |
1683 | | /// |
1684 | | /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime |
1685 | | /// matches the lifetime of the haystack in this `Captures` value. |
1686 | | /// Conversely, the substring returned by `caps["name"]` has a lifetime |
1687 | | /// of the `Captures` value, which is likely shorter than the lifetime of |
1688 | | /// the haystack. In some cases, it may be necessary to use this method to |
1689 | | /// access the matching substring instead of the `caps["name"]` notation. |
1690 | | /// |
1691 | | /// # Examples |
1692 | | /// |
1693 | | /// Get the substring that matched with a default of an empty string if the |
1694 | | /// group didn't participate in the match: |
1695 | | /// |
1696 | | /// ``` |
1697 | | /// use regex_lite::Regex; |
1698 | | /// |
1699 | | /// let re = Regex::new( |
1700 | | /// r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))", |
1701 | | /// ).unwrap(); |
1702 | | /// let caps = re.captures("abc123").unwrap(); |
1703 | | /// |
1704 | | /// let numbers = caps.name("numbers").map_or("", |m| m.as_str()); |
1705 | | /// let letters = caps.name("letters").map_or("", |m| m.as_str()); |
1706 | | /// assert_eq!(numbers, "123"); |
1707 | | /// assert_eq!(letters, ""); |
1708 | | /// ``` |
1709 | | #[inline] |
1710 | 0 | pub fn name(&self, name: &str) -> Option<Match<'h>> { |
1711 | 0 | let i = self.pikevm.nfa().to_index(name)?; |
1712 | 0 | self.get(i) |
1713 | 0 | } |
1714 | | |
1715 | | /// This is a convenience routine for extracting the substrings |
1716 | | /// corresponding to matching capture groups. |
1717 | | /// |
1718 | | /// This returns a tuple where the first element corresponds to the full |
1719 | | /// substring of the haystack that matched the regex. The second element is |
1720 | | /// an array of substrings, with each corresponding to the substring that |
1721 | | /// matched for a particular capture group. |
1722 | | /// |
1723 | | /// # Panics |
1724 | | /// |
1725 | | /// This panics if the number of possible matching groups in this |
1726 | | /// `Captures` value is not fixed to `N` in all circumstances. |
1727 | | /// More precisely, this routine only works when `N` is equivalent to |
1728 | | /// [`Regex::static_captures_len`]. |
1729 | | /// |
1730 | | /// Stated more plainly, if the number of matching capture groups in a |
1731 | | /// regex can vary from match to match, then this function always panics. |
1732 | | /// |
1733 | | /// For example, `(a)(b)|(c)` could produce two matching capture groups |
1734 | | /// or one matching capture group for any given match. Therefore, one |
1735 | | /// cannot use `extract` with such a pattern. |
1736 | | /// |
1737 | | /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because |
1738 | | /// the number of capture groups in every match is always equivalent, |
1739 | | /// even if the capture _indices_ in each match are not. |
1740 | | /// |
1741 | | /// # Example |
1742 | | /// |
1743 | | /// ``` |
1744 | | /// use regex_lite::Regex; |
1745 | | /// |
1746 | | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap(); |
1747 | | /// let hay = "On 2010-03-14, I became a Tennessee lamb."; |
1748 | | /// let Some((full, [year, month, day])) = |
1749 | | /// re.captures(hay).map(|caps| caps.extract()) else { return }; |
1750 | | /// assert_eq!("2010-03-14", full); |
1751 | | /// assert_eq!("2010", year); |
1752 | | /// assert_eq!("03", month); |
1753 | | /// assert_eq!("14", day); |
1754 | | /// ``` |
1755 | | /// |
1756 | | /// # Example: iteration |
1757 | | /// |
1758 | | /// This example shows how to use this method when iterating over all |
1759 | | /// `Captures` matches in a haystack. |
1760 | | /// |
1761 | | /// ``` |
1762 | | /// use regex_lite::Regex; |
1763 | | /// |
1764 | | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap(); |
1765 | | /// let hay = "1973-01-05, 1975-08-25 and 1980-10-18"; |
1766 | | /// |
1767 | | /// let mut dates: Vec<(&str, &str, &str)> = vec![]; |
1768 | | /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) { |
1769 | | /// dates.push((y, m, d)); |
1770 | | /// } |
1771 | | /// assert_eq!(dates, vec![ |
1772 | | /// ("1973", "01", "05"), |
1773 | | /// ("1975", "08", "25"), |
1774 | | /// ("1980", "10", "18"), |
1775 | | /// ]); |
1776 | | /// ``` |
1777 | | /// |
1778 | | /// # Example: parsing different formats |
1779 | | /// |
1780 | | /// This API is particularly useful when you need to extract a particular |
1781 | | /// value that might occur in a different format. Consider, for example, |
1782 | | /// an identifier that might be in double quotes or single quotes: |
1783 | | /// |
1784 | | /// ``` |
1785 | | /// use regex_lite::Regex; |
1786 | | /// |
1787 | | /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"#).unwrap(); |
1788 | | /// let hay = r#"The first is id:"foo" and the second is id:'bar'."#; |
1789 | | /// let mut ids = vec![]; |
1790 | | /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) { |
1791 | | /// ids.push(id); |
1792 | | /// } |
1793 | | /// assert_eq!(ids, vec!["foo", "bar"]); |
1794 | | /// ``` |
1795 | | pub fn extract<const N: usize>(&self) -> (&'h str, [&'h str; N]) { |
1796 | | let len = self |
1797 | | .pikevm |
1798 | | .nfa() |
1799 | | .static_explicit_captures_len() |
1800 | | .expect("number of capture groups can vary in a match"); |
1801 | | assert_eq!(N, len, "asked for {N} groups, but must ask for {len}"); |
1802 | | let mut matched = self.iter().flatten(); |
1803 | | let whole_match = matched.next().expect("a match").as_str(); |
1804 | | let group_matches = [0; N].map(|_| { |
1805 | | matched.next().expect("too few matching groups").as_str() |
1806 | | }); |
1807 | | (whole_match, group_matches) |
1808 | | } |
1809 | | |
1810 | | /// Expands all instances of `$ref` in `replacement` to the corresponding |
1811 | | /// capture group, and writes them to the `dst` buffer given. A `ref` can |
1812 | | /// be a capture group index or a name. If `ref` doesn't refer to a capture |
1813 | | /// group that participated in the match, then it is replaced with the |
1814 | | /// empty string. |
1815 | | /// |
1816 | | /// # Format |
1817 | | /// |
1818 | | /// The format of the replacement string supports two different kinds of |
1819 | | /// capture references: unbraced and braced. |
1820 | | /// |
1821 | | /// For the unbraced format, the format supported is `$ref` where `name` |
1822 | | /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always |
1823 | | /// the longest possible parse. So for example, `$1a` corresponds to the |
1824 | | /// capture group named `1a` and not the capture group at index `1`. If |
1825 | | /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index |
1826 | | /// itself and not a name. |
1827 | | /// |
1828 | | /// For the braced format, the format supported is `${ref}` where `ref` can |
1829 | | /// be any sequence of bytes except for `}`. If no closing brace occurs, |
1830 | | /// then it is not considered a capture reference. As with the unbraced |
1831 | | /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture |
1832 | | /// group index and not a name. |
1833 | | /// |
1834 | | /// The braced format is useful for exerting precise control over the name |
1835 | | /// of the capture reference. For example, `${1}a` corresponds to the |
1836 | | /// capture group reference `1` followed by the letter `a`, where as `$1a` |
1837 | | /// (as mentioned above) corresponds to the capture group reference `1a`. |
1838 | | /// The braced format is also useful for expressing capture group names |
1839 | | /// that use characters not supported by the unbraced format. For example, |
1840 | | /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`. |
1841 | | /// |
1842 | | /// If a capture group reference is found and it does not refer to a valid |
1843 | | /// capture group, then it will be replaced with the empty string. |
1844 | | /// |
1845 | | /// To write a literal `$`, use `$$`. |
1846 | | /// |
1847 | | /// # Example |
1848 | | /// |
1849 | | /// ``` |
1850 | | /// use regex_lite::Regex; |
1851 | | /// |
1852 | | /// let re = Regex::new( |
1853 | | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
1854 | | /// ).unwrap(); |
1855 | | /// let hay = "On 14-03-2010, I became a Tennessee lamb."; |
1856 | | /// let caps = re.captures(hay).unwrap(); |
1857 | | /// |
1858 | | /// let mut dst = String::new(); |
1859 | | /// caps.expand("year=$year, month=$month, day=$day", &mut dst); |
1860 | | /// assert_eq!(dst, "year=2010, month=03, day=14"); |
1861 | | /// ``` |
1862 | | #[inline] |
1863 | 0 | pub fn expand(&self, replacement: &str, dst: &mut String) { |
1864 | 0 | interpolate::string( |
1865 | 0 | replacement, |
1866 | 0 | |index, dst| { |
1867 | 0 | let m = match self.get(index) { |
1868 | 0 | None => return, |
1869 | 0 | Some(m) => m, |
1870 | | }; |
1871 | 0 | dst.push_str(&self.haystack[m.range()]); |
1872 | 0 | }, |
1873 | 0 | |name| self.pikevm.nfa().to_index(name), |
1874 | 0 | dst, |
1875 | | ); |
1876 | 0 | } |
1877 | | |
1878 | | /// Returns an iterator over all capture groups. This includes both |
1879 | | /// matching and non-matching groups. |
1880 | | /// |
1881 | | /// The iterator always yields at least one matching group: the first group |
1882 | | /// (at index `0`) with no name. Subsequent groups are returned in the order |
1883 | | /// of their opening parenthesis in the regex. |
1884 | | /// |
1885 | | /// The elements yielded have type `Option<Match<'h>>`, where a non-`None` |
1886 | | /// value is present if the capture group matches. |
1887 | | /// |
1888 | | /// # Example |
1889 | | /// |
1890 | | /// ``` |
1891 | | /// use regex_lite::Regex; |
1892 | | /// |
1893 | | /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap(); |
1894 | | /// let caps = re.captures("AZ").unwrap(); |
1895 | | /// |
1896 | | /// let mut it = caps.iter(); |
1897 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("AZ")); |
1898 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("A")); |
1899 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), None); |
1900 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("Z")); |
1901 | | /// assert_eq!(it.next(), None); |
1902 | | /// ``` |
1903 | | #[inline] |
1904 | | pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> { |
1905 | | SubCaptureMatches { |
1906 | | caps: self, |
1907 | | it: self.pikevm.nfa().capture_names().enumerate(), |
1908 | | } |
1909 | | } |
1910 | | |
1911 | | /// Returns the total number of capture groups. This includes both |
1912 | | /// matching and non-matching groups. |
1913 | | /// |
1914 | | /// The length returned is always equivalent to the number of elements |
1915 | | /// yielded by [`Captures::iter`]. Consequently, the length is always |
1916 | | /// greater than zero since every `Captures` value always includes the |
1917 | | /// match for the entire regex. |
1918 | | /// |
1919 | | /// # Example |
1920 | | /// |
1921 | | /// ``` |
1922 | | /// use regex_lite::Regex; |
1923 | | /// |
1924 | | /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap(); |
1925 | | /// let caps = re.captures("AZ").unwrap(); |
1926 | | /// assert_eq!(caps.len(), 4); |
1927 | | /// ``` |
1928 | | #[inline] |
1929 | | pub fn len(&self) -> usize { |
1930 | | self.pikevm.nfa().group_len() |
1931 | | } |
1932 | | } |
1933 | | |
1934 | | impl<'h> core::fmt::Debug for Captures<'h> { |
1935 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1936 | | /// A little helper type to provide a nice map-like debug |
1937 | | /// representation for our capturing group spans. |
1938 | | /// |
1939 | | /// regex-automata has something similar, but it includes the pattern |
1940 | | /// ID in its debug output, which is confusing. It also doesn't include |
1941 | | /// that strings that match because a regex-automata `Captures` doesn't |
1942 | | /// borrow the haystack. |
1943 | | struct CapturesDebugMap<'a> { |
1944 | | caps: &'a Captures<'a>, |
1945 | | } |
1946 | | |
1947 | | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
1948 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1949 | 0 | let mut map = f.debug_map(); |
1950 | 0 | let names = self.caps.pikevm.nfa().capture_names(); |
1951 | 0 | for (group_index, maybe_name) in names.enumerate() { |
1952 | 0 | let key = Key(group_index, maybe_name); |
1953 | 0 | match self.caps.get(group_index) { |
1954 | 0 | None => map.entry(&key, &None::<()>), |
1955 | 0 | Some(mat) => map.entry(&key, &Value(mat)), |
1956 | | }; |
1957 | | } |
1958 | 0 | map.finish() |
1959 | 0 | } |
1960 | | } |
1961 | | |
1962 | | struct Key<'a>(usize, Option<&'a str>); |
1963 | | |
1964 | | impl<'a> core::fmt::Debug for Key<'a> { |
1965 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1966 | 0 | write!(f, "{}", self.0)?; |
1967 | 0 | if let Some(name) = self.1 { |
1968 | 0 | write!(f, "/{name:?}")?; |
1969 | 0 | } |
1970 | 0 | Ok(()) |
1971 | 0 | } |
1972 | | } |
1973 | | |
1974 | | struct Value<'a>(Match<'a>); |
1975 | | |
1976 | | impl<'a> core::fmt::Debug for Value<'a> { |
1977 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1978 | 0 | write!( |
1979 | 0 | f, |
1980 | 0 | "{}..{}/{:?}", |
1981 | 0 | self.0.start(), |
1982 | 0 | self.0.end(), |
1983 | 0 | self.0.as_str() |
1984 | | ) |
1985 | 0 | } |
1986 | | } |
1987 | | |
1988 | 0 | f.debug_tuple("Captures") |
1989 | 0 | .field(&CapturesDebugMap { caps: self }) |
1990 | 0 | .finish() |
1991 | 0 | } |
1992 | | } |
1993 | | |
1994 | | /// Get a matching capture group's haystack substring by index. |
1995 | | /// |
1996 | | /// The haystack substring returned can't outlive the `Captures` object if this |
1997 | | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
1998 | | /// of `a` and can't outlive it). To work around this limitation, do that, use |
1999 | | /// [`Captures::get`] instead. |
2000 | | /// |
2001 | | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
2002 | | /// `&str` returned by this implementation is the lifetime of the `Captures` |
2003 | | /// value itself. |
2004 | | /// |
2005 | | /// # Panics |
2006 | | /// |
2007 | | /// If there is no matching group at the given index. |
2008 | | impl<'h> core::ops::Index<usize> for Captures<'h> { |
2009 | | type Output = str; |
2010 | | |
2011 | | // The lifetime is written out to make it clear that the &str returned |
2012 | | // does NOT have a lifetime equivalent to 'h. |
2013 | 0 | fn index(&self, i: usize) -> &str { |
2014 | 0 | self.get(i) |
2015 | 0 | .map(|m| m.as_str()) |
2016 | 0 | .unwrap_or_else(|| panic!("no group at index '{i}'")) |
2017 | 0 | } |
2018 | | } |
2019 | | |
2020 | | /// Get a matching capture group's haystack substring by name. |
2021 | | /// |
2022 | | /// The haystack substring returned can't outlive the `Captures` object if this |
2023 | | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
2024 | | /// of `a` and can't outlive it). To work around this limitation, do that, use |
2025 | | /// [`Captures::get`] instead. |
2026 | | /// |
2027 | | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
2028 | | /// `&str` returned by this implementation is the lifetime of the `Captures` |
2029 | | /// value itself. |
2030 | | /// |
2031 | | /// `'n` is the lifetime of the group name used to index the `Captures` value. |
2032 | | /// |
2033 | | /// # Panics |
2034 | | /// |
2035 | | /// If there is no matching group at the given name. |
2036 | | impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> { |
2037 | | type Output = str; |
2038 | | |
2039 | 0 | fn index<'a>(&'a self, name: &'n str) -> &'a str { |
2040 | 0 | self.name(name) |
2041 | 0 | .map(|m| m.as_str()) |
2042 | 0 | .unwrap_or_else(|| panic!("no group named '{name}'")) |
2043 | 0 | } |
2044 | | } |
2045 | | |
2046 | | /// A low level representation of the byte offsets of each capture group. |
2047 | | /// |
2048 | | /// You can think of this as a lower level [`Captures`], where this type does |
2049 | | /// not support named capturing groups directly and it does not borrow the |
2050 | | /// haystack that these offsets were matched on. |
2051 | | /// |
2052 | | /// Primarily, this type is useful when using the lower level `Regex` APIs such |
2053 | | /// as [`Regex::captures_read`], which permits amortizing the allocation in |
2054 | | /// which capture match offsets are stored. |
2055 | | /// |
2056 | | /// In order to build a value of this type, you'll need to call the |
2057 | | /// [`Regex::capture_locations`] method. The value returned can then be reused |
2058 | | /// in subsequent searches for that regex. Using it for other regexes may |
2059 | | /// result in a panic or otherwise incorrect results. |
2060 | | /// |
2061 | | /// # Example |
2062 | | /// |
2063 | | /// This example shows how to create and use `CaptureLocations` in a search. |
2064 | | /// |
2065 | | /// ``` |
2066 | | /// use regex_lite::Regex; |
2067 | | /// |
2068 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap(); |
2069 | | /// let mut locs = re.capture_locations(); |
2070 | | /// let m = re.captures_read(&mut locs, "Bruce Springsteen").unwrap(); |
2071 | | /// assert_eq!(0..17, m.range()); |
2072 | | /// assert_eq!(Some((0, 17)), locs.get(0)); |
2073 | | /// assert_eq!(Some((0, 5)), locs.get(1)); |
2074 | | /// assert_eq!(Some((6, 17)), locs.get(2)); |
2075 | | /// |
2076 | | /// // Asking for an invalid capture group always returns None. |
2077 | | /// assert_eq!(None, locs.get(3)); |
2078 | | /// # // literals are too big for 32-bit usize: #1041 |
2079 | | /// # #[cfg(target_pointer_width = "64")] |
2080 | | /// assert_eq!(None, locs.get(34973498648)); |
2081 | | /// # #[cfg(target_pointer_width = "64")] |
2082 | | /// assert_eq!(None, locs.get(9944060567225171988)); |
2083 | | /// ``` |
2084 | | #[derive(Clone, Debug)] |
2085 | | pub struct CaptureLocations(Vec<Option<NonMaxUsize>>); |
2086 | | |
2087 | | impl CaptureLocations { |
2088 | | /// Returns the start and end byte offsets of the capture group at index |
2089 | | /// `i`. This returns `None` if `i` is not a valid capture group or if the |
2090 | | /// capture group did not match. |
2091 | | /// |
2092 | | /// # Example |
2093 | | /// |
2094 | | /// ``` |
2095 | | /// use regex_lite::Regex; |
2096 | | /// |
2097 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap(); |
2098 | | /// let mut locs = re.capture_locations(); |
2099 | | /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap(); |
2100 | | /// assert_eq!(Some((0, 17)), locs.get(0)); |
2101 | | /// assert_eq!(Some((0, 5)), locs.get(1)); |
2102 | | /// assert_eq!(Some((6, 17)), locs.get(2)); |
2103 | | /// ``` |
2104 | | #[inline] |
2105 | 0 | pub fn get(&self, i: usize) -> Option<(usize, usize)> { |
2106 | 0 | let slot = i.checked_mul(2)?; |
2107 | 0 | let start = self.0.get(slot).copied()??.get(); |
2108 | 0 | let slot = slot.checked_add(1)?; |
2109 | 0 | let end = self.0.get(slot).copied()??.get(); |
2110 | 0 | Some((start, end)) |
2111 | 0 | } |
2112 | | |
2113 | | /// Returns the total number of capture groups (even if they didn't match). |
2114 | | /// That is, the length returned is unaffected by the result of a search. |
2115 | | /// |
2116 | | /// This is always at least `1` since every regex has at least `1` |
2117 | | /// capturing group that corresponds to the entire match. |
2118 | | /// |
2119 | | /// # Example |
2120 | | /// |
2121 | | /// ``` |
2122 | | /// use regex_lite::Regex; |
2123 | | /// |
2124 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap(); |
2125 | | /// let mut locs = re.capture_locations(); |
2126 | | /// assert_eq!(3, locs.len()); |
2127 | | /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap(); |
2128 | | /// assert_eq!(3, locs.len()); |
2129 | | /// ``` |
2130 | | /// |
2131 | | /// Notice that the length is always at least `1`, regardless of the regex: |
2132 | | /// |
2133 | | /// ``` |
2134 | | /// use regex_lite::Regex; |
2135 | | /// |
2136 | | /// let re = Regex::new(r"").unwrap(); |
2137 | | /// let locs = re.capture_locations(); |
2138 | | /// assert_eq!(1, locs.len()); |
2139 | | /// |
2140 | | /// // [a&&b] is a regex that never matches anything. |
2141 | | /// let re = Regex::new(r"[^\s\S]").unwrap(); |
2142 | | /// let locs = re.capture_locations(); |
2143 | | /// assert_eq!(1, locs.len()); |
2144 | | /// ``` |
2145 | | #[inline] |
2146 | | pub fn len(&self) -> usize { |
2147 | | // We always have twice as many slots as groups. |
2148 | | self.0.len().checked_shr(1).unwrap() |
2149 | | } |
2150 | | } |
2151 | | |
2152 | | /// An iterator over all non-overlapping matches in a haystack. |
2153 | | /// |
2154 | | /// This iterator yields [`Match`] values. The iterator stops when no more |
2155 | | /// matches can be found. |
2156 | | /// |
2157 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2158 | | /// lifetime of the haystack. |
2159 | | /// |
2160 | | /// This iterator is created by [`Regex::find_iter`]. |
2161 | | /// |
2162 | | /// # Time complexity |
2163 | | /// |
2164 | | /// Note that since an iterator runs potentially many searches on the haystack |
2165 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2166 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2167 | | #[derive(Debug)] |
2168 | | pub struct Matches<'r, 'h> { |
2169 | | haystack: &'h str, |
2170 | | it: pikevm::FindMatches<'r, 'h>, |
2171 | | } |
2172 | | |
2173 | | impl<'r, 'h> Iterator for Matches<'r, 'h> { |
2174 | | type Item = Match<'h>; |
2175 | | |
2176 | | #[inline] |
2177 | | fn next(&mut self) -> Option<Match<'h>> { |
2178 | | self.it.next().map(|(s, e)| Match::new(self.haystack, s, e)) |
2179 | | } |
2180 | | |
2181 | | #[inline] |
2182 | | fn count(self) -> usize { |
2183 | | self.it.count() |
2184 | | } |
2185 | | } |
2186 | | |
2187 | | impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {} |
2188 | | |
2189 | | /// An iterator over all non-overlapping capture matches in a haystack. |
2190 | | /// |
2191 | | /// This iterator yields [`Captures`] values. The iterator stops when no more |
2192 | | /// matches can be found. |
2193 | | /// |
2194 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2195 | | /// lifetime of the matched string. |
2196 | | /// |
2197 | | /// This iterator is created by [`Regex::captures_iter`]. |
2198 | | /// |
2199 | | /// # Time complexity |
2200 | | /// |
2201 | | /// Note that since an iterator runs potentially many searches on the haystack |
2202 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2203 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2204 | | #[derive(Debug)] |
2205 | | pub struct CaptureMatches<'r, 'h> { |
2206 | | haystack: &'h str, |
2207 | | re: &'r Regex, |
2208 | | it: pikevm::CapturesMatches<'r, 'h>, |
2209 | | } |
2210 | | |
2211 | | impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> { |
2212 | | type Item = Captures<'h>; |
2213 | | |
2214 | | #[inline] |
2215 | | fn next(&mut self) -> Option<Captures<'h>> { |
2216 | | self.it.next().map(|slots| Captures { |
2217 | | haystack: self.haystack, |
2218 | | slots: CaptureLocations(slots), |
2219 | | pikevm: Arc::clone(&self.re.pikevm), |
2220 | | }) |
2221 | | } |
2222 | | |
2223 | | #[inline] |
2224 | | fn count(self) -> usize { |
2225 | | self.it.count() |
2226 | | } |
2227 | | } |
2228 | | |
2229 | | impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {} |
2230 | | |
2231 | | /// An iterator over all substrings delimited by a regex match. |
2232 | | /// |
2233 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2234 | | /// lifetime of the byte string being split. |
2235 | | /// |
2236 | | /// This iterator is created by [`Regex::split`]. |
2237 | | /// |
2238 | | /// # Time complexity |
2239 | | /// |
2240 | | /// Note that since an iterator runs potentially many searches on the haystack |
2241 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2242 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2243 | | #[derive(Debug)] |
2244 | | pub struct Split<'r, 'h> { |
2245 | | haystack: &'h str, |
2246 | | finder: Matches<'r, 'h>, |
2247 | | last: usize, |
2248 | | } |
2249 | | |
2250 | | impl<'r, 'h> Iterator for Split<'r, 'h> { |
2251 | | type Item = &'h str; |
2252 | | |
2253 | | #[inline] |
2254 | | fn next(&mut self) -> Option<&'h str> { |
2255 | | match self.finder.next() { |
2256 | | None => { |
2257 | | let len = self.haystack.len(); |
2258 | | if self.last > len { |
2259 | | None |
2260 | | } else { |
2261 | | let range = self.last..len; |
2262 | | self.last = len + 1; // Next call will return None |
2263 | | Some(&self.haystack[range]) |
2264 | | } |
2265 | | } |
2266 | | Some(m) => { |
2267 | | let range = self.last..m.start(); |
2268 | | self.last = m.end(); |
2269 | | Some(&self.haystack[range]) |
2270 | | } |
2271 | | } |
2272 | | } |
2273 | | } |
2274 | | |
2275 | | impl<'r, 't> core::iter::FusedIterator for Split<'r, 't> {} |
2276 | | |
2277 | | /// An iterator over at most `N` substrings delimited by a regex match. |
2278 | | /// |
2279 | | /// The last substring yielded by this iterator will be whatever remains after |
2280 | | /// `N-1` splits. |
2281 | | /// |
2282 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2283 | | /// lifetime of the byte string being split. |
2284 | | /// |
2285 | | /// This iterator is created by [`Regex::splitn`]. |
2286 | | /// |
2287 | | /// # Time complexity |
2288 | | /// |
2289 | | /// Note that since an iterator runs potentially many searches on the haystack |
2290 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2291 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2292 | | /// |
2293 | | /// Although note that the worst case time here has an upper bound given |
2294 | | /// by the `limit` parameter to [`Regex::splitn`]. |
2295 | | #[derive(Debug)] |
2296 | | pub struct SplitN<'r, 'h> { |
2297 | | splits: Split<'r, 'h>, |
2298 | | limit: usize, |
2299 | | } |
2300 | | |
2301 | | impl<'r, 'h> Iterator for SplitN<'r, 'h> { |
2302 | | type Item = &'h str; |
2303 | | |
2304 | | #[inline] |
2305 | | fn next(&mut self) -> Option<&'h str> { |
2306 | | if self.limit == 0 { |
2307 | | return None; |
2308 | | } |
2309 | | |
2310 | | self.limit -= 1; |
2311 | | if self.limit > 0 { |
2312 | | return self.splits.next(); |
2313 | | } |
2314 | | |
2315 | | let len = self.splits.haystack.len(); |
2316 | | if self.splits.last > len { |
2317 | | // We've already returned all substrings. |
2318 | | None |
2319 | | } else { |
2320 | | // self.n == 0, so future calls will return None immediately |
2321 | | Some(&self.splits.haystack[self.splits.last..len]) |
2322 | | } |
2323 | | } |
2324 | | |
2325 | | #[inline] |
2326 | | fn size_hint(&self) -> (usize, Option<usize>) { |
2327 | | self.splits.size_hint() |
2328 | | } |
2329 | | } |
2330 | | |
2331 | | impl<'r, 't> core::iter::FusedIterator for SplitN<'r, 't> {} |
2332 | | |
2333 | | /// An iterator over the names of all capture groups in a regex. |
2334 | | /// |
2335 | | /// This iterator yields values of type `Option<&str>` in order of the opening |
2336 | | /// capture group parenthesis in the regex pattern. `None` is yielded for |
2337 | | /// groups with no name. The first element always corresponds to the implicit |
2338 | | /// and unnamed group for the overall match. |
2339 | | /// |
2340 | | /// `'r` is the lifetime of the compiled regular expression. |
2341 | | /// |
2342 | | /// This iterator is created by [`Regex::capture_names`]. |
2343 | | #[derive(Clone, Debug)] |
2344 | | pub struct CaptureNames<'r>(nfa::CaptureNames<'r>); |
2345 | | |
2346 | | impl<'r> Iterator for CaptureNames<'r> { |
2347 | | type Item = Option<&'r str>; |
2348 | | |
2349 | | #[inline] |
2350 | | fn next(&mut self) -> Option<Option<&'r str>> { |
2351 | | self.0.next() |
2352 | | } |
2353 | | |
2354 | | #[inline] |
2355 | | fn size_hint(&self) -> (usize, Option<usize>) { |
2356 | | self.0.size_hint() |
2357 | | } |
2358 | | |
2359 | | #[inline] |
2360 | | fn count(self) -> usize { |
2361 | | self.0.count() |
2362 | | } |
2363 | | } |
2364 | | |
2365 | | impl<'r> ExactSizeIterator for CaptureNames<'r> {} |
2366 | | |
2367 | | impl<'r> core::iter::FusedIterator for CaptureNames<'r> {} |
2368 | | |
2369 | | /// An iterator over all group matches in a [`Captures`] value. |
2370 | | /// |
2371 | | /// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the |
2372 | | /// lifetime of the haystack that the matches are for. The order of elements |
2373 | | /// yielded corresponds to the order of the opening parenthesis for the group |
2374 | | /// in the regex pattern. `None` is yielded for groups that did not participate |
2375 | | /// in the match. |
2376 | | /// |
2377 | | /// The first element always corresponds to the implicit group for the overall |
2378 | | /// match. Since this iterator is created by a [`Captures`] value, and a |
2379 | | /// `Captures` value is only created when a match occurs, it follows that the |
2380 | | /// first element yielded by this iterator is guaranteed to be non-`None`. |
2381 | | /// |
2382 | | /// The lifetime `'c` corresponds to the lifetime of the `Captures` value that |
2383 | | /// created this iterator, and the lifetime `'h` corresponds to the originally |
2384 | | /// matched haystack. |
2385 | | #[derive(Clone, Debug)] |
2386 | | pub struct SubCaptureMatches<'c, 'h> { |
2387 | | caps: &'c Captures<'h>, |
2388 | | it: core::iter::Enumerate<nfa::CaptureNames<'c>>, |
2389 | | } |
2390 | | |
2391 | | impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> { |
2392 | | type Item = Option<Match<'h>>; |
2393 | | |
2394 | | #[inline] |
2395 | | fn next(&mut self) -> Option<Option<Match<'h>>> { |
2396 | | let (group_index, _) = self.it.next()?; |
2397 | | Some(self.caps.get(group_index)) |
2398 | | } |
2399 | | |
2400 | | #[inline] |
2401 | | fn size_hint(&self) -> (usize, Option<usize>) { |
2402 | | self.it.size_hint() |
2403 | | } |
2404 | | |
2405 | | #[inline] |
2406 | | fn count(self) -> usize { |
2407 | | self.it.count() |
2408 | | } |
2409 | | } |
2410 | | |
2411 | | impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {} |
2412 | | |
2413 | | impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {} |
2414 | | |
2415 | | /// A trait for types that can be used to replace matches in a haystack. |
2416 | | /// |
2417 | | /// In general, users of this crate shouldn't need to implement this trait, |
2418 | | /// since implementations are already provided for `&str` along with other |
2419 | | /// variants of string types, as well as `FnMut(&Captures) -> String` (or any |
2420 | | /// `FnMut(&Captures) -> T` where `T: AsRef<str>`). Those cover most use cases, |
2421 | | /// but callers can implement this trait directly if necessary. |
2422 | | /// |
2423 | | /// # Example |
2424 | | /// |
2425 | | /// This example shows a basic implementation of the `Replacer` trait. This |
2426 | | /// can be done much more simply using the replacement string interpolation |
2427 | | /// support (e.g., `$first $last`), but this approach avoids needing to parse |
2428 | | /// the replacement string at all. |
2429 | | /// |
2430 | | /// ``` |
2431 | | /// use regex_lite::{Captures, Regex, Replacer}; |
2432 | | /// |
2433 | | /// struct NameSwapper; |
2434 | | /// |
2435 | | /// impl Replacer for NameSwapper { |
2436 | | /// fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2437 | | /// dst.push_str(&caps["first"]); |
2438 | | /// dst.push_str(" "); |
2439 | | /// dst.push_str(&caps["last"]); |
2440 | | /// } |
2441 | | /// } |
2442 | | /// |
2443 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap(); |
2444 | | /// let result = re.replace("Springsteen, Bruce", NameSwapper); |
2445 | | /// assert_eq!(result, "Bruce Springsteen"); |
2446 | | /// ``` |
2447 | | pub trait Replacer { |
2448 | | /// Appends possibly empty data to `dst` to replace the current match. |
2449 | | /// |
2450 | | /// The current match is represented by `caps`, which is guaranteed to |
2451 | | /// have a match at capture group `0`. |
2452 | | /// |
2453 | | /// For example, a no-op replacement would be `dst.push_str(&caps[0])`. |
2454 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String); |
2455 | | |
2456 | | /// Return a fixed unchanging replacement string. |
2457 | | /// |
2458 | | /// When doing replacements, if access to [`Captures`] is not needed (e.g., |
2459 | | /// the replacement string does not need `$` expansion), then it can be |
2460 | | /// beneficial to avoid finding sub-captures. |
2461 | | /// |
2462 | | /// In general, this is called once for every call to a replacement routine |
2463 | | /// such as [`Regex::replace_all`]. |
2464 | | fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> { |
2465 | | None |
2466 | | } |
2467 | | |
2468 | | /// Returns a type that implements `Replacer`, but that borrows and wraps |
2469 | | /// this `Replacer`. |
2470 | | /// |
2471 | | /// This is useful when you want to take a generic `Replacer` (which might |
2472 | | /// not be cloneable) and use it without consuming it, so it can be used |
2473 | | /// more than once. |
2474 | | /// |
2475 | | /// # Example |
2476 | | /// |
2477 | | /// ``` |
2478 | | /// use regex_lite::{Regex, Replacer}; |
2479 | | /// |
2480 | | /// fn replace_all_twice<R: Replacer>( |
2481 | | /// re: Regex, |
2482 | | /// src: &str, |
2483 | | /// mut rep: R, |
2484 | | /// ) -> String { |
2485 | | /// let dst = re.replace_all(src, rep.by_ref()); |
2486 | | /// let dst = re.replace_all(&dst, rep.by_ref()); |
2487 | | /// dst.into_owned() |
2488 | | /// } |
2489 | | /// ``` |
2490 | | fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> { |
2491 | | ReplacerRef(self) |
2492 | | } |
2493 | | } |
2494 | | |
2495 | | impl<'a> Replacer for &'a str { |
2496 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2497 | 0 | caps.expand(*self, dst); |
2498 | 0 | } |
2499 | | |
2500 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2501 | 0 | no_expansion(self) |
2502 | 0 | } |
2503 | | } |
2504 | | |
2505 | | impl<'a> Replacer for &'a String { |
2506 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2507 | | self.as_str().replace_append(caps, dst) |
2508 | | } |
2509 | | |
2510 | | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2511 | | no_expansion(self) |
2512 | | } |
2513 | | } |
2514 | | |
2515 | | impl Replacer for String { |
2516 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2517 | | self.as_str().replace_append(caps, dst) |
2518 | | } |
2519 | | |
2520 | | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2521 | | no_expansion(self) |
2522 | | } |
2523 | | } |
2524 | | |
2525 | | impl<'a> Replacer for Cow<'a, str> { |
2526 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2527 | | self.as_ref().replace_append(caps, dst) |
2528 | | } |
2529 | | |
2530 | | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2531 | | no_expansion(self) |
2532 | | } |
2533 | | } |
2534 | | |
2535 | | impl<'a> Replacer for &'a Cow<'a, str> { |
2536 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2537 | | self.as_ref().replace_append(caps, dst) |
2538 | | } |
2539 | | |
2540 | | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2541 | | no_expansion(self) |
2542 | | } |
2543 | | } |
2544 | | |
2545 | | impl<F, T> Replacer for F |
2546 | | where |
2547 | | F: FnMut(&Captures<'_>) -> T, |
2548 | | T: AsRef<str>, |
2549 | | { |
2550 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2551 | | dst.push_str((*self)(caps).as_ref()); |
2552 | | } |
2553 | | } |
2554 | | |
2555 | | /// A by-reference adaptor for a [`Replacer`]. |
2556 | | /// |
2557 | | /// This permits reusing the same `Replacer` value in multiple calls to a |
2558 | | /// replacement routine like [`Regex::replace_all`]. |
2559 | | /// |
2560 | | /// This type is created by [`Replacer::by_ref`]. |
2561 | | #[derive(Debug)] |
2562 | | pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R); |
2563 | | |
2564 | | impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> { |
2565 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2566 | | self.0.replace_append(caps, dst) |
2567 | | } |
2568 | | |
2569 | | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2570 | | self.0.no_expansion() |
2571 | | } |
2572 | | } |
2573 | | |
2574 | | /// A helper type for forcing literal string replacement. |
2575 | | /// |
2576 | | /// It can be used with routines like [`Regex::replace`] and |
2577 | | /// [`Regex::replace_all`] to do a literal string replacement without expanding |
2578 | | /// `$name` to their corresponding capture groups. This can be both convenient |
2579 | | /// (to avoid escaping `$`, for example) and faster (since capture groups |
2580 | | /// don't need to be found). |
2581 | | /// |
2582 | | /// `'s` is the lifetime of the literal string to use. |
2583 | | /// |
2584 | | /// # Example |
2585 | | /// |
2586 | | /// ``` |
2587 | | /// use regex_lite::{NoExpand, Regex}; |
2588 | | /// |
2589 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap(); |
2590 | | /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last")); |
2591 | | /// assert_eq!(result, "$2 $last"); |
2592 | | /// ``` |
2593 | | #[derive(Clone, Debug)] |
2594 | | pub struct NoExpand<'t>(pub &'t str); |
2595 | | |
2596 | | impl<'t> Replacer for NoExpand<'t> { |
2597 | 0 | fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) { |
2598 | 0 | dst.push_str(self.0); |
2599 | 0 | } |
2600 | | |
2601 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2602 | 0 | Some(Cow::Borrowed(self.0)) |
2603 | 0 | } |
2604 | | } |
2605 | | |
2606 | | /// Quickly checks the given replacement string for whether interpolation |
2607 | | /// should be done on it. It returns `None` if a `$` was found anywhere in the |
2608 | | /// given string, which suggests interpolation needs to be done. But if there's |
2609 | | /// no `$` anywhere, then interpolation definitely does not need to be done. In |
2610 | | /// that case, the given string is returned as a borrowed `Cow`. |
2611 | | /// |
2612 | | /// This is meant to be used to implement the `Replacer::no_expansion` method |
2613 | | /// in its various trait impls. |
2614 | 0 | fn no_expansion<T: AsRef<str>>(t: &T) -> Option<Cow<'_, str>> { |
2615 | 0 | let s = t.as_ref(); |
2616 | 0 | match s.find('$') { |
2617 | 0 | Some(_) => None, |
2618 | 0 | None => Some(Cow::Borrowed(s)), |
2619 | | } |
2620 | 0 | } Unexecuted instantiation: regex_lite::string::no_expansion::<alloc::borrow::Cow<str>> Unexecuted instantiation: regex_lite::string::no_expansion::<alloc::string::String> Unexecuted instantiation: regex_lite::string::no_expansion::<&alloc::borrow::Cow<str>> Unexecuted instantiation: regex_lite::string::no_expansion::<&alloc::string::String> Unexecuted instantiation: regex_lite::string::no_expansion::<&str> |
2621 | | |
2622 | | /// A configurable builder for a [`Regex`]. |
2623 | | /// |
2624 | | /// This builder can be used to programmatically set flags such as `i` (case |
2625 | | /// insensitive) and `x` (for verbose mode). This builder can also be used to |
2626 | | /// configure things like a size limit on the compiled regular expression. |
2627 | | #[derive(Debug)] |
2628 | | pub struct RegexBuilder { |
2629 | | pattern: String, |
2630 | | hir_config: hir::Config, |
2631 | | nfa_config: nfa::Config, |
2632 | | } |
2633 | | |
2634 | | impl RegexBuilder { |
2635 | | /// Create a new builder with a default configuration for the given |
2636 | | /// pattern. |
2637 | | /// |
2638 | | /// If the pattern is invalid or exceeds the configured size limits, then |
2639 | | /// an error will be returned when [`RegexBuilder::build`] is called. |
2640 | 7.97k | pub fn new(pattern: &str) -> RegexBuilder { |
2641 | 7.97k | RegexBuilder { |
2642 | 7.97k | pattern: pattern.to_string(), |
2643 | 7.97k | hir_config: hir::Config::default(), |
2644 | 7.97k | nfa_config: nfa::Config::default(), |
2645 | 7.97k | } |
2646 | 7.97k | } |
2647 | | |
2648 | | /// Compiles the pattern given to `RegexBuilder::new` with the |
2649 | | /// configuration set on this builder. |
2650 | | /// |
2651 | | /// If the pattern isn't a valid regex or if a configured size limit was |
2652 | | /// exceeded, then an error is returned. |
2653 | 7.97k | pub fn build(&self) -> Result<Regex, Error> { |
2654 | 7.97k | let hir = Hir::parse(self.hir_config, &self.pattern)?; |
2655 | 5.86k | let nfa = NFA::new(self.nfa_config, self.pattern.clone(), &hir)?; |
2656 | 5.49k | let pikevm = Arc::new(PikeVM::new(nfa)); |
2657 | 5.49k | let pool = { |
2658 | 5.49k | let pikevm = Arc::clone(&pikevm); |
2659 | 5.49k | let create = Box::new(move || Cache::new(&pikevm)); |
2660 | 5.49k | CachePool::new(create) |
2661 | | }; |
2662 | 5.49k | Ok(Regex { pikevm, pool }) |
2663 | 7.97k | } |
2664 | | |
2665 | | /// This configures whether to enable ASCII case insensitive matching for |
2666 | | /// the entire pattern. |
2667 | | /// |
2668 | | /// This setting can also be configured using the inline flag `i` |
2669 | | /// in the pattern. For example, `(?i:foo)` matches `foo` case |
2670 | | /// insensitively while `(?-i:foo)` matches `foo` case sensitively. |
2671 | | /// |
2672 | | /// The default for this is `false`. |
2673 | | /// |
2674 | | /// # Example |
2675 | | /// |
2676 | | /// ``` |
2677 | | /// use regex_lite::RegexBuilder; |
2678 | | /// |
2679 | | /// let re = RegexBuilder::new(r"foo(?-i:bar)quux") |
2680 | | /// .case_insensitive(true) |
2681 | | /// .build() |
2682 | | /// .unwrap(); |
2683 | | /// assert!(re.is_match("FoObarQuUx")); |
2684 | | /// // Even though case insensitive matching is enabled in the builder, |
2685 | | /// // it can be locally disabled within the pattern. In this case, |
2686 | | /// // `bar` is matched case sensitively. |
2687 | | /// assert!(!re.is_match("fooBARquux")); |
2688 | | /// ``` |
2689 | 7.97k | pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexBuilder { |
2690 | 7.97k | self.hir_config.flags.case_insensitive = yes; |
2691 | 7.97k | self |
2692 | 7.97k | } |
2693 | | |
2694 | | /// This configures multi-line mode for the entire pattern. |
2695 | | /// |
2696 | | /// Enabling multi-line mode changes the behavior of the `^` and `$` anchor |
2697 | | /// assertions. Instead of only matching at the beginning and end of a |
2698 | | /// haystack, respectively, multi-line mode causes them to match at the |
2699 | | /// beginning and end of a line *in addition* to the beginning and end of |
2700 | | /// a haystack. More precisely, `^` will match at the position immediately |
2701 | | /// following a `\n` and `$` will match at the position immediately |
2702 | | /// preceding a `\n`. |
2703 | | /// |
2704 | | /// The behavior of this option is impacted by the [`RegexBuilder::crlf`] |
2705 | | /// setting. Namely, CRLF mode changes the line terminator to be either |
2706 | | /// `\r` or `\n`, but never at the position between a `\r` and `\`n. |
2707 | | /// |
2708 | | /// This setting can also be configured using the inline flag `m` in the |
2709 | | /// pattern. |
2710 | | /// |
2711 | | /// The default for this is `false`. |
2712 | | /// |
2713 | | /// # Example |
2714 | | /// |
2715 | | /// ``` |
2716 | | /// use regex_lite::RegexBuilder; |
2717 | | /// |
2718 | | /// let re = RegexBuilder::new(r"^foo$") |
2719 | | /// .multi_line(true) |
2720 | | /// .build() |
2721 | | /// .unwrap(); |
2722 | | /// assert_eq!(Some(1..4), re.find("\nfoo\n").map(|m| m.range())); |
2723 | | /// ``` |
2724 | 7.97k | pub fn multi_line(&mut self, yes: bool) -> &mut RegexBuilder { |
2725 | 7.97k | self.hir_config.flags.multi_line = yes; |
2726 | 7.97k | self |
2727 | 7.97k | } |
2728 | | |
2729 | | /// This configures dot-matches-new-line mode for the entire pattern. |
2730 | | /// |
2731 | | /// Perhaps surprisingly, the default behavior for `.` is not to match |
2732 | | /// any character, but rather, to match any character except for the line |
2733 | | /// terminator (which is `\n` by default). When this mode is enabled, the |
2734 | | /// behavior changes such that `.` truly matches any character. |
2735 | | /// |
2736 | | /// This setting can also be configured using the inline flag `s` in the |
2737 | | /// pattern. |
2738 | | /// |
2739 | | /// The default for this is `false`. |
2740 | | /// |
2741 | | /// # Example |
2742 | | /// |
2743 | | /// ``` |
2744 | | /// use regex_lite::RegexBuilder; |
2745 | | /// |
2746 | | /// let re = RegexBuilder::new(r"foo.bar") |
2747 | | /// .dot_matches_new_line(true) |
2748 | | /// .build() |
2749 | | /// .unwrap(); |
2750 | | /// let hay = "foo\nbar"; |
2751 | | /// assert_eq!(Some("foo\nbar"), re.find(hay).map(|m| m.as_str())); |
2752 | | /// ``` |
2753 | 7.97k | pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut RegexBuilder { |
2754 | 7.97k | self.hir_config.flags.dot_matches_new_line = yes; |
2755 | 7.97k | self |
2756 | 7.97k | } |
2757 | | |
2758 | | /// This configures CRLF mode for the entire pattern. |
2759 | | /// |
2760 | | /// When CRLF mode is enabled, both `\r` ("carriage return" or CR for |
2761 | | /// short) and `\n` ("line feed" or LF for short) are treated as line |
2762 | | /// terminators. This results in the following: |
2763 | | /// |
2764 | | /// * Unless dot-matches-new-line mode is enabled, `.` will now match any |
2765 | | /// character except for `\n` and `\r`. |
2766 | | /// * When multi-line mode is enabled, `^` will match immediately |
2767 | | /// following a `\n` or a `\r`. Similarly, `$` will match immediately |
2768 | | /// preceding a `\n` or a `\r`. Neither `^` nor `$` will ever match between |
2769 | | /// `\r` and `\n`. |
2770 | | /// |
2771 | | /// This setting can also be configured using the inline flag `R` in |
2772 | | /// the pattern. |
2773 | | /// |
2774 | | /// The default for this is `false`. |
2775 | | /// |
2776 | | /// # Example |
2777 | | /// |
2778 | | /// ``` |
2779 | | /// use regex_lite::RegexBuilder; |
2780 | | /// |
2781 | | /// let re = RegexBuilder::new(r"^foo$") |
2782 | | /// .multi_line(true) |
2783 | | /// .crlf(true) |
2784 | | /// .build() |
2785 | | /// .unwrap(); |
2786 | | /// let hay = "\r\nfoo\r\n"; |
2787 | | /// // If CRLF mode weren't enabled here, then '$' wouldn't match |
2788 | | /// // immediately after 'foo', and thus no match would be found. |
2789 | | /// assert_eq!(Some("foo"), re.find(hay).map(|m| m.as_str())); |
2790 | | /// ``` |
2791 | | /// |
2792 | | /// This example demonstrates that `^` will never match at a position |
2793 | | /// between `\r` and `\n`. (`$` will similarly not match between a `\r` |
2794 | | /// and a `\n`.) |
2795 | | /// |
2796 | | /// ``` |
2797 | | /// use regex_lite::RegexBuilder; |
2798 | | /// |
2799 | | /// let re = RegexBuilder::new(r"^") |
2800 | | /// .multi_line(true) |
2801 | | /// .crlf(true) |
2802 | | /// .build() |
2803 | | /// .unwrap(); |
2804 | | /// let hay = "\r\n\r\n"; |
2805 | | /// let ranges: Vec<_> = re.find_iter(hay).map(|m| m.range()).collect(); |
2806 | | /// assert_eq!(ranges, vec![0..0, 2..2, 4..4]); |
2807 | | /// ``` |
2808 | 7.97k | pub fn crlf(&mut self, yes: bool) -> &mut RegexBuilder { |
2809 | 7.97k | self.hir_config.flags.crlf = yes; |
2810 | 7.97k | self |
2811 | 7.97k | } |
2812 | | |
2813 | | /// This configures swap-greed mode for the entire pattern. |
2814 | | /// |
2815 | | /// When swap-greed mode is enabled, patterns like `a+` will become |
2816 | | /// non-greedy and patterns like `a+?` will become greedy. In other words, |
2817 | | /// the meanings of `a+` and `a+?` are switched. |
2818 | | /// |
2819 | | /// This setting can also be configured using the inline flag `U` in the |
2820 | | /// pattern. |
2821 | | /// |
2822 | | /// The default for this is `false`. |
2823 | | /// |
2824 | | /// # Example |
2825 | | /// |
2826 | | /// ``` |
2827 | | /// use regex_lite::RegexBuilder; |
2828 | | /// |
2829 | | /// let re = RegexBuilder::new(r"a+") |
2830 | | /// .swap_greed(true) |
2831 | | /// .build() |
2832 | | /// .unwrap(); |
2833 | | /// assert_eq!(Some("a"), re.find("aaa").map(|m| m.as_str())); |
2834 | | /// ``` |
2835 | 7.97k | pub fn swap_greed(&mut self, yes: bool) -> &mut RegexBuilder { |
2836 | 7.97k | self.hir_config.flags.swap_greed = yes; |
2837 | 7.97k | self |
2838 | 7.97k | } |
2839 | | |
2840 | | /// This configures verbose mode for the entire pattern. |
2841 | | /// |
2842 | | /// When enabled, whitespace will treated as insignificant in the pattern |
2843 | | /// and `#` can be used to start a comment until the next new line. |
2844 | | /// |
2845 | | /// Normally, in most places in a pattern, whitespace is treated literally. |
2846 | | /// For example ` +` will match one or more ASCII whitespace characters. |
2847 | | /// |
2848 | | /// When verbose mode is enabled, `\#` can be used to match a literal `#` |
2849 | | /// and `\ ` can be used to match a literal ASCII whitespace character. |
2850 | | /// |
2851 | | /// Verbose mode is useful for permitting regexes to be formatted and |
2852 | | /// broken up more nicely. This may make them more easily readable. |
2853 | | /// |
2854 | | /// This setting can also be configured using the inline flag `x` in the |
2855 | | /// pattern. |
2856 | | /// |
2857 | | /// The default for this is `false`. |
2858 | | /// |
2859 | | /// # Example |
2860 | | /// |
2861 | | /// ``` |
2862 | | /// use regex_lite::RegexBuilder; |
2863 | | /// |
2864 | | /// let pat = r" |
2865 | | /// \b |
2866 | | /// (?<first>[A-Z]\w*) # always start with uppercase letter |
2867 | | /// \s+ # whitespace should separate names |
2868 | | /// (?: # middle name can be an initial! |
2869 | | /// (?:(?<initial>[A-Z])\.|(?<middle>[A-Z]\w*)) |
2870 | | /// \s+ |
2871 | | /// )? |
2872 | | /// (?<last>[A-Z]\w*) |
2873 | | /// \b |
2874 | | /// "; |
2875 | | /// let re = RegexBuilder::new(pat) |
2876 | | /// .ignore_whitespace(true) |
2877 | | /// .build() |
2878 | | /// .unwrap(); |
2879 | | /// |
2880 | | /// let caps = re.captures("Harry Potter").unwrap(); |
2881 | | /// assert_eq!("Harry", &caps["first"]); |
2882 | | /// assert_eq!("Potter", &caps["last"]); |
2883 | | /// |
2884 | | /// let caps = re.captures("Harry J. Potter").unwrap(); |
2885 | | /// assert_eq!("Harry", &caps["first"]); |
2886 | | /// // Since a middle name/initial isn't required for an overall match, |
2887 | | /// // we can't assume that 'initial' or 'middle' will be populated! |
2888 | | /// assert_eq!(Some("J"), caps.name("initial").map(|m| m.as_str())); |
2889 | | /// assert_eq!(None, caps.name("middle").map(|m| m.as_str())); |
2890 | | /// assert_eq!("Potter", &caps["last"]); |
2891 | | /// |
2892 | | /// let caps = re.captures("Harry James Potter").unwrap(); |
2893 | | /// assert_eq!("Harry", &caps["first"]); |
2894 | | /// // Since a middle name/initial isn't required for an overall match, |
2895 | | /// // we can't assume that 'initial' or 'middle' will be populated! |
2896 | | /// assert_eq!(None, caps.name("initial").map(|m| m.as_str())); |
2897 | | /// assert_eq!(Some("James"), caps.name("middle").map(|m| m.as_str())); |
2898 | | /// assert_eq!("Potter", &caps["last"]); |
2899 | | /// ``` |
2900 | 7.97k | pub fn ignore_whitespace(&mut self, yes: bool) -> &mut RegexBuilder { |
2901 | 7.97k | self.hir_config.flags.ignore_whitespace = yes; |
2902 | 7.97k | self |
2903 | 7.97k | } |
2904 | | |
2905 | | /// Sets the approximate size limit, in bytes, of the compiled regex. |
2906 | | /// |
2907 | | /// This roughly corresponds to the number of heap memory, in bytes, |
2908 | | /// occupied by a single regex. If the regex would otherwise approximately |
2909 | | /// exceed this limit, then compiling that regex will fail. |
2910 | | /// |
2911 | | /// The main utility of a method like this is to avoid compiling regexes |
2912 | | /// that use an unexpected amount of resources, such as time and memory. |
2913 | | /// Even if the memory usage of a large regex is acceptable, its search |
2914 | | /// time may not be. Namely, worst case time complexity for search is `O(m |
2915 | | /// * n)`, where `m ~ len(pattern)` and `n ~ len(haystack)`. That is, |
2916 | | /// search time depends, in part, on the size of the compiled regex. This |
2917 | | /// means that putting a limit on the size of the regex limits how much a |
2918 | | /// regex can impact search time. |
2919 | | /// |
2920 | | /// The default for this is some reasonable number that permits most |
2921 | | /// patterns to compile successfully. |
2922 | | /// |
2923 | | /// # Example |
2924 | | /// |
2925 | | /// ``` |
2926 | | /// use regex_lite::RegexBuilder; |
2927 | | /// |
2928 | | /// assert!(RegexBuilder::new(r"\w").size_limit(100).build().is_err()); |
2929 | | /// ``` |
2930 | 7.97k | pub fn size_limit(&mut self, limit: usize) -> &mut RegexBuilder { |
2931 | 7.97k | self.nfa_config.size_limit = Some(limit); |
2932 | 7.97k | self |
2933 | 7.97k | } |
2934 | | |
2935 | | /// Set the nesting limit for this parser. |
2936 | | /// |
2937 | | /// The nesting limit controls how deep the abstract syntax tree is allowed |
2938 | | /// to be. If the AST exceeds the given limit (e.g., with too many nested |
2939 | | /// groups), then an error is returned by the parser. |
2940 | | /// |
2941 | | /// The purpose of this limit is to act as a heuristic to prevent stack |
2942 | | /// overflow for consumers that do structural induction on an AST using |
2943 | | /// explicit recursion. While this crate never does this (instead using |
2944 | | /// constant stack space and moving the call stack to the heap), other |
2945 | | /// crates may. |
2946 | | /// |
2947 | | /// This limit is not checked until the entire AST is parsed. Therefore, if |
2948 | | /// callers want to put a limit on the amount of heap space used, then they |
2949 | | /// should impose a limit on the length, in bytes, of the concrete pattern |
2950 | | /// string. In particular, this is viable since this parser implementation |
2951 | | /// will limit itself to heap space proportional to the length of the |
2952 | | /// pattern string. See also the [untrusted inputs](crate#untrusted-input) |
2953 | | /// section in the top-level crate documentation for more information about |
2954 | | /// this. |
2955 | | /// |
2956 | | /// Note that a nest limit of `0` will return a nest limit error for most |
2957 | | /// patterns but not all. For example, a nest limit of `0` permits `a` but |
2958 | | /// not `ab`, since `ab` requires an explicit concatenation, which results |
2959 | | /// in a nest depth of `1`. In general, a nest limit is not something that |
2960 | | /// manifests in an obvious way in the concrete syntax, therefore, it |
2961 | | /// should not be used in a granular way. |
2962 | | /// |
2963 | | /// # Example |
2964 | | /// |
2965 | | /// ``` |
2966 | | /// use regex_lite::RegexBuilder; |
2967 | | /// |
2968 | | /// assert!(RegexBuilder::new(r"").nest_limit(0).build().is_ok()); |
2969 | | /// assert!(RegexBuilder::new(r"a").nest_limit(0).build().is_ok()); |
2970 | | /// assert!(RegexBuilder::new(r"(a)").nest_limit(0).build().is_err()); |
2971 | | /// ``` |
2972 | 0 | pub fn nest_limit(&mut self, limit: u32) -> &mut RegexBuilder { |
2973 | 0 | self.hir_config.nest_limit = limit; |
2974 | 0 | self |
2975 | 0 | } |
2976 | | } |