/rust/registry/src/index.crates.io-6f17d22bba15001f/jiff-0.2.5/src/tz/timezone.rs
Line | Count | Source (jump to first uncovered line) |
1 | | use crate::{ |
2 | | civil::DateTime, |
3 | | error::{err, Error}, |
4 | | tz::{ |
5 | | ambiguous::{AmbiguousOffset, AmbiguousTimestamp, AmbiguousZoned}, |
6 | | offset::{Dst, Offset}, |
7 | | }, |
8 | | util::{array_str::ArrayStr, sync::Arc}, |
9 | | Timestamp, Zoned, |
10 | | }; |
11 | | |
12 | | #[cfg(feature = "alloc")] |
13 | | use crate::tz::posix::PosixTimeZoneOwned; |
14 | | |
15 | | use self::repr::Repr; |
16 | | |
17 | | /// A representation of a [time zone]. |
18 | | /// |
19 | | /// A time zone is a set of rules for determining the civil time, via an offset |
20 | | /// from UTC, in a particular geographic region. In many cases, the offset |
21 | | /// in a particular time zone can vary over the course of a year through |
22 | | /// transitions into and out of [daylight saving time]. |
23 | | /// |
24 | | /// A `TimeZone` can be one of three possible representations: |
25 | | /// |
26 | | /// * An identifier from the [IANA Time Zone Database] and the rules associated |
27 | | /// with that identifier. |
28 | | /// * A fixed offset where there are never any time zone transitions. |
29 | | /// * A [POSIX TZ] string that specifies a standard offset and an optional |
30 | | /// daylight saving time offset along with a rule for when DST is in effect. |
31 | | /// The rule applies for every year. Since POSIX TZ strings cannot capture the |
32 | | /// full complexity of time zone rules, they generally should not be used. |
33 | | /// |
34 | | /// The most practical and useful representation is an IANA time zone. Namely, |
35 | | /// it enjoys broad support and its database is regularly updated to reflect |
36 | | /// real changes in time zone rules throughout the world. On Unix systems, |
37 | | /// the time zone database is typically found at `/usr/share/zoneinfo`. For |
38 | | /// more information on how Jiff interacts with The Time Zone Database, see |
39 | | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
40 | | /// |
41 | | /// In typical usage, users of Jiff shouldn't need to reference a `TimeZone` |
42 | | /// directly. Instead, there are convenience APIs on datetime types that accept |
43 | | /// IANA time zone identifiers and do automatic database lookups for you. For |
44 | | /// example, to convert a timestamp to a zone aware datetime: |
45 | | /// |
46 | | /// ``` |
47 | | /// use jiff::Timestamp; |
48 | | /// |
49 | | /// let ts = Timestamp::from_second(1_456_789_123)?; |
50 | | /// let zdt = ts.in_tz("America/New_York")?; |
51 | | /// assert_eq!(zdt.to_string(), "2016-02-29T18:38:43-05:00[America/New_York]"); |
52 | | /// |
53 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
54 | | /// ``` |
55 | | /// |
56 | | /// Or to convert a civil datetime to a zoned datetime corresponding to a |
57 | | /// precise instant in time: |
58 | | /// |
59 | | /// ``` |
60 | | /// use jiff::civil::date; |
61 | | /// |
62 | | /// let dt = date(2024, 7, 15).at(21, 27, 0, 0); |
63 | | /// let zdt = dt.in_tz("America/New_York")?; |
64 | | /// assert_eq!(zdt.to_string(), "2024-07-15T21:27:00-04:00[America/New_York]"); |
65 | | /// |
66 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
67 | | /// ``` |
68 | | /// |
69 | | /// Or even converted a zoned datetime from one time zone to another: |
70 | | /// |
71 | | /// ``` |
72 | | /// use jiff::civil::date; |
73 | | /// |
74 | | /// let dt = date(2024, 7, 15).at(21, 27, 0, 0); |
75 | | /// let zdt1 = dt.in_tz("America/New_York")?; |
76 | | /// let zdt2 = zdt1.in_tz("Israel")?; |
77 | | /// assert_eq!(zdt2.to_string(), "2024-07-16T04:27:00+03:00[Israel]"); |
78 | | /// |
79 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
80 | | /// ``` |
81 | | /// |
82 | | /// # The system time zone |
83 | | /// |
84 | | /// The system time zone can be retrieved via [`TimeZone::system`]. If it |
85 | | /// couldn't be detected or if the `tz-system` crate feature is not enabled, |
86 | | /// then [`TimeZone::UTC`] is returned. `TimeZone::system` is what's used |
87 | | /// internally for retrieving the current zoned datetime via [`Zoned::now`]. |
88 | | /// |
89 | | /// While there is no platform independent way to detect your system's |
90 | | /// "default" time zone, Jiff employs best-effort heuristics to determine it. |
91 | | /// (For example, by examining `/etc/localtime` on Unix systems.) When the |
92 | | /// heuristics fail, Jiff will emit a `WARN` level log. It can be viewed by |
93 | | /// installing a `log` compatible logger, such as [`env_logger`]. |
94 | | /// |
95 | | /// # Custom time zones |
96 | | /// |
97 | | /// At present, Jiff doesn't provide any APIs for manually constructing a |
98 | | /// custom time zone. However, [`TimeZone::tzif`] is provided for reading |
99 | | /// any valid TZif formatted data, as specified by [RFC 8536]. This provides |
100 | | /// an interoperable way of utilizing custom time zone rules. |
101 | | /// |
102 | | /// # A `TimeZone` is immutable |
103 | | /// |
104 | | /// Once a `TimeZone` is created, it is immutable. That is, its underlying |
105 | | /// time zone transition rules will never change. This is true for system time |
106 | | /// zones or even if the IANA Time Zone Database it was loaded from changes on |
107 | | /// disk. The only way such changes can be observed is by re-requesting the |
108 | | /// `TimeZone` from a `TimeZoneDatabase`. (Or, in the case of the system time |
109 | | /// zone, by calling `TimeZone::system`.) |
110 | | /// |
111 | | /// # A `TimeZone` is cheap to clone |
112 | | /// |
113 | | /// A `TimeZone` can be cheaply cloned. It uses automic reference counting |
114 | | /// internally. When `alloc` is disabled, cloning a `TimeZone` is still cheap |
115 | | /// because POSIX time zones and TZif time zones are unsupported. Therefore, |
116 | | /// cloning a time zone does a deep copy (since automic reference counting is |
117 | | /// not available), but the data being copied is small. |
118 | | /// |
119 | | /// # Time zone equality |
120 | | /// |
121 | | /// `TimeZone` provides an imperfect notion of equality. That is, when two time |
122 | | /// zones are equal, then it is guaranteed for them to have the same rules. |
123 | | /// However, two time zones may compare unequal and yet still have the same |
124 | | /// rules. |
125 | | /// |
126 | | /// The equality semantics are as follows: |
127 | | /// |
128 | | /// * Two fixed offset time zones are equal when their offsets are equal. |
129 | | /// * Two POSIX time zones are equal when their original rule strings are |
130 | | /// byte-for-byte identical. |
131 | | /// * Two IANA time zones are equal when their identifiers are equal _and_ |
132 | | /// checksums of their rules are equal. |
133 | | /// * In all other cases, time zones are unequal. |
134 | | /// |
135 | | /// Time zone equality is, for example, used in APIs like [`Zoned::since`] |
136 | | /// when asking for spans with calendar units. Namely, since days can be of |
137 | | /// different lengths in different time zones, `Zoned::since` will return an |
138 | | /// error when the two zoned datetimes are in different time zones and when |
139 | | /// the caller requests units greater than hours. |
140 | | /// |
141 | | /// # Dealing with ambiguity |
142 | | /// |
143 | | /// The principal job of a `TimeZone` is to provide two different |
144 | | /// transformations: |
145 | | /// |
146 | | /// * A conversion from a [`Timestamp`] to a civil time (also known as local, |
147 | | /// naive or plain time). This conversion is always unambiguous. That is, |
148 | | /// there is always precisely one representation of civil time for any |
149 | | /// particular instant in time for a particular time zone. |
150 | | /// * A conversion from a [`civil::DateTime`](crate::civil::DateTime) to an |
151 | | /// instant in time. This conversion is sometimes ambiguous in that a civil |
152 | | /// time might have either never appear on the clocks in a particular |
153 | | /// time zone (a gap), or in that the civil time may have been repeated on the |
154 | | /// clocks in a particular time zone (a fold). Typically, a transition to |
155 | | /// daylight saving time is a gap, while a transition out of daylight saving |
156 | | /// time is a fold. |
157 | | /// |
158 | | /// The timestamp-to-civil time conversion is done via |
159 | | /// [`TimeZone::to_datetime`], or its lower level counterpart, |
160 | | /// [`TimeZone::to_offset`]. The civil time-to-timestamp conversion is done |
161 | | /// via one of the following routines: |
162 | | /// |
163 | | /// * [`TimeZone::to_zoned`] conveniently returns a [`Zoned`] and automatically |
164 | | /// uses the |
165 | | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
166 | | /// strategy if the given civil datetime is ambiguous in the time zone. |
167 | | /// * [`TimeZone::to_ambiguous_zoned`] returns a potentially ambiguous |
168 | | /// zoned datetime, [`AmbiguousZoned`], and provides fine-grained control over |
169 | | /// how to resolve ambiguity, if it occurs. |
170 | | /// * [`TimeZone::to_timestamp`] is like `TimeZone::to_zoned`, but returns |
171 | | /// a [`Timestamp`] instead. |
172 | | /// * [`TimeZone::to_ambiguous_timestamp`] is like |
173 | | /// `TimeZone::to_ambiguous_zoned`, but returns an [`AmbiguousTimestamp`] |
174 | | /// instead. |
175 | | /// |
176 | | /// Here is an example where we explore the different disambiguation strategies |
177 | | /// for a fold in time, where in this case, the 1 o'clock hour is repeated: |
178 | | /// |
179 | | /// ``` |
180 | | /// use jiff::{civil::date, tz::TimeZone}; |
181 | | /// |
182 | | /// let tz = TimeZone::get("America/New_York")?; |
183 | | /// let dt = date(2024, 11, 3).at(1, 30, 0, 0); |
184 | | /// // It's ambiguous, so asking for an unambiguous instant presents an error! |
185 | | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
186 | | /// // Gives you the earlier time in a fold, i.e., before DST ends: |
187 | | /// assert_eq!( |
188 | | /// tz.to_ambiguous_zoned(dt).earlier()?.to_string(), |
189 | | /// "2024-11-03T01:30:00-04:00[America/New_York]", |
190 | | /// ); |
191 | | /// // Gives you the later time in a fold, i.e., after DST ends. |
192 | | /// // Notice the offset change from the previous example! |
193 | | /// assert_eq!( |
194 | | /// tz.to_ambiguous_zoned(dt).later()?.to_string(), |
195 | | /// "2024-11-03T01:30:00-05:00[America/New_York]", |
196 | | /// ); |
197 | | /// // "Just give me something reasonable" |
198 | | /// assert_eq!( |
199 | | /// tz.to_ambiguous_zoned(dt).compatible()?.to_string(), |
200 | | /// "2024-11-03T01:30:00-04:00[America/New_York]", |
201 | | /// ); |
202 | | /// |
203 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
204 | | /// ``` |
205 | | /// |
206 | | /// # Serde integration |
207 | | /// |
208 | | /// At present, a `TimeZone` does not implement Serde's `Serialize` or |
209 | | /// `Deserialize` traits directly. Nor does it implement `std::fmt::Display` |
210 | | /// or `std::str::FromStr`. The reason for this is that it's not totally |
211 | | /// clear if there is one single obvious behavior. Moreover, some `TimeZone` |
212 | | /// values do not have an obvious succinct serialized representation. (For |
213 | | /// example, when `/etc/localtime` on a Unix system is your system's time zone, |
214 | | /// and it isn't a symlink to a TZif file in `/usr/share/zoneinfo`. In which |
215 | | /// case, an IANA time zone identifier cannot easily be deduced by Jiff.) |
216 | | /// |
217 | | /// Instead, Jiff offers helpers for use with Serde's [`with` attribute] via |
218 | | /// the [`fmt::serde`](crate::fmt::serde) module: |
219 | | /// |
220 | | /// ``` |
221 | | /// use jiff::tz::TimeZone; |
222 | | /// |
223 | | /// #[derive(Debug, serde::Deserialize, serde::Serialize)] |
224 | | /// struct Record { |
225 | | /// #[serde(with = "jiff::fmt::serde::tz::optional")] |
226 | | /// tz: Option<TimeZone>, |
227 | | /// } |
228 | | /// |
229 | | /// let json = r#"{"tz":"America/Nuuk"}"#; |
230 | | /// let got: Record = serde_json::from_str(&json)?; |
231 | | /// assert_eq!(got.tz, Some(TimeZone::get("America/Nuuk")?)); |
232 | | /// assert_eq!(serde_json::to_string(&got)?, json); |
233 | | /// |
234 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
235 | | /// ``` |
236 | | /// |
237 | | /// Alternatively, you may use the |
238 | | /// [`fmt::temporal::DateTimeParser::parse_time_zone`](crate::fmt::temporal::DateTimeParser::parse_time_zone) |
239 | | /// or |
240 | | /// [`fmt::temporal::DateTimePrinter::print_time_zone`](crate::fmt::temporal::DateTimePrinter::print_time_zone) |
241 | | /// routines to parse or print `TimeZone` values without using Serde. |
242 | | /// |
243 | | /// [time zone]: https://en.wikipedia.org/wiki/Time_zone |
244 | | /// [daylight saving time]: https://en.wikipedia.org/wiki/Daylight_saving_time |
245 | | /// [IANA Time Zone Database]: https://en.wikipedia.org/wiki/Tz_database |
246 | | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
247 | | /// [`env_logger`]: https://docs.rs/env_logger |
248 | | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
249 | | /// [`with` attribute]: https://serde.rs/field-attrs.html#with |
250 | | #[derive(Clone, Eq, PartialEq)] |
251 | | pub struct TimeZone { |
252 | | repr: Repr, |
253 | | } |
254 | | |
255 | | impl TimeZone { |
256 | | /// The UTC time zone. |
257 | | /// |
258 | | /// The offset of this time is `0` and never has any transitions. |
259 | | pub const UTC: TimeZone = TimeZone { repr: Repr::utc() }; |
260 | | |
261 | | /// Returns the system configured time zone, if available. |
262 | | /// |
263 | | /// Detection of a system's default time zone is generally heuristic |
264 | | /// based and platform specific. |
265 | | /// |
266 | | /// If callers need to know whether discovery of the system time zone |
267 | | /// failed, then use [`TimeZone::try_system`]. |
268 | | /// |
269 | | /// # Fallback behavior |
270 | | /// |
271 | | /// If the system's default time zone could not be determined, or if |
272 | | /// the `tz-system` crate feature is not enabled, then this returns |
273 | | /// [`TimeZone::unknown`]. A `WARN` level log will also be emitted with |
274 | | /// a message explaining why time zone detection failed. The fallback to |
275 | | /// an unknown time zone is a practical trade-off, is what most other |
276 | | /// systems tend to do and is also recommended by [relevant standards such |
277 | | /// as freedesktop.org][freedesktop-org-localtime]. |
278 | | /// |
279 | | /// An unknown time zone _behaves_ like [`TimeZone::UTC`], but will |
280 | | /// print as `Etc/Unknown` when converting a `Zoned` to a string. |
281 | | /// |
282 | | /// If you would instead like to fall back to UTC instead |
283 | | /// of the special "unknown" time zone, then you can do |
284 | | /// `TimeZone::try_system().unwrap_or(TimeZone::UTC)`. |
285 | | /// |
286 | | /// # Platform behavior |
287 | | /// |
288 | | /// This section is a "best effort" explanation of how the time zone is |
289 | | /// detected on supported platforms. The behavior is subject to change. |
290 | | /// |
291 | | /// On all platforms, the `TZ` environment variable overrides any other |
292 | | /// heuristic, and provides a way for end users to set the time zone for |
293 | | /// specific use cases. In general, Jiff respects the [POSIX TZ] rules. |
294 | | /// Here are some examples: |
295 | | /// |
296 | | /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone |
297 | | /// Database Identifier. |
298 | | /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone |
299 | | /// by providing a file path to a TZif file directly. |
300 | | /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight |
301 | | /// saving time transition rule. |
302 | | /// |
303 | | /// Otherwise, when `TZ` isn't set, then: |
304 | | /// |
305 | | /// On Unix non-Android systems, this inspects `/etc/localtime`. If it's |
306 | | /// a symbolic link to an entry in `/usr/share/zoneinfo`, then the suffix |
307 | | /// is considered an IANA Time Zone Database identifier. Otherwise, |
308 | | /// `/etc/localtime` is read as a TZif file directly. |
309 | | /// |
310 | | /// On Android systems, this inspects the `persist.sys.timezone` property. |
311 | | /// |
312 | | /// On Windows, the system time zone is determined via |
313 | | /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an |
314 | | /// IANA Time Zone Database identifier via Unicode's |
315 | | /// [CLDR XML data]. |
316 | | /// |
317 | | /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html |
318 | | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
319 | | /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation |
320 | | /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml |
321 | | #[inline] |
322 | 0 | pub fn system() -> TimeZone { |
323 | 0 | match TimeZone::try_system() { |
324 | 0 | Ok(tz) => tz, |
325 | 0 | Err(_err) => { |
326 | 0 | warn!( |
327 | 0 | "failed to get system time zone, \ |
328 | 0 | falling back to `Etc/Unknown` \ |
329 | 0 | (which behaves like UTC): {_err}", |
330 | 0 | ); |
331 | 0 | TimeZone::unknown() |
332 | | } |
333 | | } |
334 | 0 | } |
335 | | |
336 | | /// Returns the system configured time zone, if available. |
337 | | /// |
338 | | /// If the system's default time zone could not be determined, or if the |
339 | | /// `tz-system` crate feature is not enabled, then this returns an error. |
340 | | /// |
341 | | /// Detection of a system's default time zone is generally heuristic |
342 | | /// based and platform specific. |
343 | | /// |
344 | | /// Note that callers should generally prefer using [`TimeZone::system`]. |
345 | | /// If a system time zone could not be found, then it falls |
346 | | /// back to [`TimeZone::UTC`] automatically. This is often |
347 | | /// what is recommended by [relevant standards such as |
348 | | /// freedesktop.org][freedesktop-org-localtime]. Conversely, this routine |
349 | | /// is useful if detection of a system's default time zone is critical. |
350 | | /// |
351 | | /// # Platform behavior |
352 | | /// |
353 | | /// This section is a "best effort" explanation of how the time zone is |
354 | | /// detected on supported platforms. The behavior is subject to change. |
355 | | /// |
356 | | /// On all platforms, the `TZ` environment variable overrides any other |
357 | | /// heuristic, and provides a way for end users to set the time zone for |
358 | | /// specific use cases. In general, Jiff respects the [POSIX TZ] rules. |
359 | | /// Here are some examples: |
360 | | /// |
361 | | /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone |
362 | | /// Database Identifier. |
363 | | /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone |
364 | | /// by providing a file path to a TZif file directly. |
365 | | /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight |
366 | | /// saving time transition rule. |
367 | | /// |
368 | | /// Otherwise, when `TZ` isn't set, then: |
369 | | /// |
370 | | /// On Unix systems, this inspects `/etc/localtime`. If it's a symbolic |
371 | | /// link to an entry in `/usr/share/zoneinfo`, then the suffix is |
372 | | /// considered an IANA Time Zone Database identifier. Otherwise, |
373 | | /// `/etc/localtime` is read as a TZif file directly. |
374 | | /// |
375 | | /// On Windows, the system time zone is determined via |
376 | | /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an |
377 | | /// IANA Time Zone Database identifier via Unicode's |
378 | | /// [CLDR XML data]. |
379 | | /// |
380 | | /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html |
381 | | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
382 | | /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation |
383 | | /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml |
384 | | #[inline] |
385 | 0 | pub fn try_system() -> Result<TimeZone, Error> { |
386 | 0 | #[cfg(not(feature = "tz-system"))] |
387 | 0 | { |
388 | 0 | Err(err!( |
389 | 0 | "failed to get system time zone since 'tz-system' \ |
390 | 0 | crate feature is not enabled", |
391 | 0 | )) |
392 | 0 | } |
393 | 0 | #[cfg(feature = "tz-system")] |
394 | 0 | { |
395 | 0 | crate::tz::system::get(crate::tz::db()) |
396 | 0 | } |
397 | 0 | } |
398 | | |
399 | | /// A convenience function for performing a time zone database lookup for |
400 | | /// the given time zone identifier. It uses the default global time zone |
401 | | /// database via [`tz::db()`](crate::tz::db()). |
402 | | /// |
403 | | /// # Errors |
404 | | /// |
405 | | /// This returns an error if the given time zone identifier could not be |
406 | | /// found in the default [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
407 | | /// |
408 | | /// # Example |
409 | | /// |
410 | | /// ``` |
411 | | /// use jiff::{tz::TimeZone, Timestamp}; |
412 | | /// |
413 | | /// let tz = TimeZone::get("Japan")?; |
414 | | /// assert_eq!( |
415 | | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
416 | | /// "1970-01-01T09:00:00", |
417 | | /// ); |
418 | | /// |
419 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
420 | | /// ``` |
421 | | #[inline] |
422 | 0 | pub fn get(time_zone_name: &str) -> Result<TimeZone, Error> { |
423 | 0 | crate::tz::db().get(time_zone_name) |
424 | 0 | } |
425 | | |
426 | | /// Returns a time zone with a fixed offset. |
427 | | /// |
428 | | /// A fixed offset will never have any transitions and won't follow any |
429 | | /// particular time zone rules. In general, one should avoid using fixed |
430 | | /// offset time zones unless you have a specific need for them. Otherwise, |
431 | | /// IANA time zones via [`TimeZone::get`] should be preferred, as they |
432 | | /// more accurately model the actual time zone transitions rules used in |
433 | | /// practice. |
434 | | /// |
435 | | /// # Example |
436 | | /// |
437 | | /// ``` |
438 | | /// use jiff::{tz::{self, TimeZone}, Timestamp}; |
439 | | /// |
440 | | /// let tz = TimeZone::fixed(tz::offset(10)); |
441 | | /// assert_eq!( |
442 | | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
443 | | /// "1970-01-01T10:00:00", |
444 | | /// ); |
445 | | /// |
446 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
447 | | /// ``` |
448 | | #[inline] |
449 | 0 | pub const fn fixed(offset: Offset) -> TimeZone { |
450 | 0 | // Not doing `offset == Offset::UTC` because of `const`. |
451 | 0 | if offset.seconds_ranged().get_unchecked() == 0 { |
452 | 0 | return TimeZone::UTC; |
453 | 0 | } |
454 | 0 | let repr = Repr::fixed(offset); |
455 | 0 | TimeZone { repr } |
456 | 0 | } |
457 | | |
458 | | /// Creates a time zone from a [POSIX TZ] rule string. |
459 | | /// |
460 | | /// A POSIX time zone provides a way to tersely define a single daylight |
461 | | /// saving time transition rule (or none at all) that applies for all |
462 | | /// years. |
463 | | /// |
464 | | /// Users should avoid using this kind of time zone unless there is a |
465 | | /// specific need for it. Namely, POSIX time zones cannot capture the full |
466 | | /// complexity of time zone transition rules in the real world. (See the |
467 | | /// example below.) |
468 | | /// |
469 | | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
470 | | /// |
471 | | /// # Errors |
472 | | /// |
473 | | /// This returns an error if the given POSIX time zone string is invalid. |
474 | | /// |
475 | | /// # Example |
476 | | /// |
477 | | /// This example demonstrates how a POSIX time zone may be historically |
478 | | /// inaccurate: |
479 | | /// |
480 | | /// ``` |
481 | | /// use jiff::{civil::date, tz::TimeZone}; |
482 | | /// |
483 | | /// // The tzdb entry for America/New_York. |
484 | | /// let iana = TimeZone::get("America/New_York")?; |
485 | | /// // The POSIX TZ string for New York DST that went into effect in 2007. |
486 | | /// let posix = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0")?; |
487 | | /// |
488 | | /// // New York entered DST on April 2, 2006 at 2am: |
489 | | /// let dt = date(2006, 4, 2).at(2, 0, 0, 0); |
490 | | /// // The IANA tzdb entry correctly reports it as ambiguous: |
491 | | /// assert!(iana.to_ambiguous_timestamp(dt).is_ambiguous()); |
492 | | /// // But the POSIX time zone does not: |
493 | | /// assert!(!posix.to_ambiguous_timestamp(dt).is_ambiguous()); |
494 | | /// |
495 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
496 | | /// ``` |
497 | | #[cfg(feature = "alloc")] |
498 | 0 | pub fn posix(posix_tz_string: &str) -> Result<TimeZone, Error> { |
499 | 0 | let posix_tz = PosixTimeZoneOwned::parse(posix_tz_string)?; |
500 | 0 | Ok(TimeZone::from_posix_tz(posix_tz)) |
501 | 0 | } |
502 | | |
503 | | /// Creates a time zone from a POSIX tz. Expose so that other parts of Jiff |
504 | | /// can create a `TimeZone` from a POSIX tz. (Kinda sloppy to be honest.) |
505 | | #[cfg(feature = "alloc")] |
506 | 0 | pub(crate) fn from_posix_tz(posix: PosixTimeZoneOwned) -> TimeZone { |
507 | 0 | let repr = Repr::arc_posix(Arc::new(posix)); |
508 | 0 | TimeZone { repr } |
509 | 0 | } |
510 | | |
511 | | /// Creates a time zone from TZif binary data, whose format is specified |
512 | | /// in [RFC 8536]. All versions of TZif (up through version 4) are |
513 | | /// supported. |
514 | | /// |
515 | | /// This constructor is typically not used, and instead, one should rely |
516 | | /// on time zone lookups via time zone identifiers with routines like |
517 | | /// [`TimeZone::get`]. However, this constructor does provide one way |
518 | | /// of using custom time zones with Jiff. |
519 | | /// |
520 | | /// The name given should be a IANA time zone database identifier. |
521 | | /// |
522 | | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
523 | | /// |
524 | | /// # Errors |
525 | | /// |
526 | | /// This returns an error if the given data was not recognized as valid |
527 | | /// TZif. |
528 | | #[cfg(feature = "alloc")] |
529 | 0 | pub fn tzif(name: &str, data: &[u8]) -> Result<TimeZone, Error> { |
530 | | use alloc::string::ToString; |
531 | | |
532 | 0 | let name = name.to_string(); |
533 | 0 | let tzif = crate::tz::tzif::Tzif::parse(Some(name), data)?; |
534 | 0 | let repr = Repr::arc_tzif(Arc::new(tzif)); |
535 | 0 | Ok(TimeZone { repr }) |
536 | 0 | } |
537 | | |
538 | | /// Returns a `TimeZone` that is specifially marked as "unknown." |
539 | | /// |
540 | | /// This corresponds to the Unicode CLDR identifier `Etc/Unknown`, which |
541 | | /// is guaranteed to never be a valid IANA time zone identifier (as of |
542 | | /// the `2025a` release of tzdb). |
543 | | /// |
544 | | /// This type of `TimeZone` is used in circumstances where one wants to |
545 | | /// signal that discovering a time zone failed for some reason, but that |
546 | | /// execution can reasonably continue. For example, [`TimeZone::system`] |
547 | | /// returns this type of time zone when the system time zone could not be |
548 | | /// discovered. |
549 | | /// |
550 | | /// # Example |
551 | | /// |
552 | | /// Jiff permits an "unknown" time zone to losslessly be transmitted |
553 | | /// through serialization: |
554 | | /// |
555 | | /// ``` |
556 | | /// use jiff::{civil::date, tz::TimeZone, Zoned}; |
557 | | /// |
558 | | /// let tz = TimeZone::unknown(); |
559 | | /// let zdt = date(2025, 2, 1).at(17, 0, 0, 0).to_zoned(tz)?; |
560 | | /// assert_eq!(zdt.to_string(), "2025-02-01T17:00:00Z[Etc/Unknown]"); |
561 | | /// let got: Zoned = "2025-02-01T17:00:00Z[Etc/Unknown]".parse()?; |
562 | | /// assert_eq!(got, zdt); |
563 | | /// |
564 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
565 | | /// ``` |
566 | | /// |
567 | | /// Note that not all systems support this. Some systems will reject |
568 | | /// `Etc/Unknown` because it is not a valid IANA time zone identifier and |
569 | | /// does not have an entry in the IANA time zone database. However, Jiff |
570 | | /// takes this approach because it surfaces an error condition in detecting |
571 | | /// the end user's time zone. Callers not wanting an "unknown" time zone |
572 | | /// can use `TimeZone::try_system().unwrap_or(TimeZone::UTC)` instead of |
573 | | /// `TimeZone::system`. (Where the latter falls back to the "unknown" time |
574 | | /// zone when a system configured time zone could not be found.) |
575 | 0 | pub const fn unknown() -> TimeZone { |
576 | 0 | let repr = Repr::unknown(); |
577 | 0 | TimeZone { repr } |
578 | 0 | } |
579 | | |
580 | | /// This creates an unnamed TZif-backed `TimeZone`. |
581 | | /// |
582 | | /// At present, the only way for an unnamed TZif-backed `TimeZone` to be |
583 | | /// created is when the system time zone has no identifiable name. For |
584 | | /// example, when `/etc/localtime` is hard-linked to a TZif file instead |
585 | | /// of being symlinked. In this case, there is no cheap and unambiguous |
586 | | /// way to determine the time zone name. So we just let it be unnamed. |
587 | | /// Since this is the only such case, and hopefully will only ever be the |
588 | | /// only such case, we consider such unnamed TZif-back `TimeZone` values |
589 | | /// as being the "system" time zone. |
590 | | /// |
591 | | /// When this is used to construct a `TimeZone`, the `TimeZone::name` |
592 | | /// method will be "Local". This is... pretty unfortunate. I'm not sure |
593 | | /// what else to do other than to make `TimeZone::name` return an |
594 | | /// `Option<&str>`. But... we use it in a bunch of places and it just |
595 | | /// seems bad for a time zone to not have a name. |
596 | | /// |
597 | | /// OK, because of the above, I renamed `TimeZone::name` to |
598 | | /// `TimeZone::diagnostic_name`. This should make it clearer that you can't |
599 | | /// really use the name to do anything interesting. This also makes more |
600 | | /// sense for POSIX TZ strings too. |
601 | | /// |
602 | | /// In any case, this routine stays unexported because I don't want TZif |
603 | | /// backed `TimeZone` values to proliferate. If you have a legitimate use |
604 | | /// case otherwise, please file an issue. It will require API design. |
605 | | /// |
606 | | /// # Errors |
607 | | /// |
608 | | /// This returns an error if the given TZif data is invalid. |
609 | | #[cfg(feature = "tz-system")] |
610 | | pub(crate) fn tzif_system(data: &[u8]) -> Result<TimeZone, Error> { |
611 | | let tzif = crate::tz::tzif::Tzif::parse(None, data)?; |
612 | | let repr = Repr::arc_tzif(Arc::new(tzif)); |
613 | | Ok(TimeZone { repr }) |
614 | | } |
615 | | |
616 | | #[inline] |
617 | 0 | pub(crate) fn diagnostic_name(&self) -> DiagnosticName<'_> { |
618 | 0 | DiagnosticName(self) |
619 | 0 | } |
620 | | |
621 | | /// Returns true if and only if this `TimeZone` can be succinctly |
622 | | /// serialized. |
623 | | /// |
624 | | /// Basically, this is only `false` when this `TimeZone` was created from |
625 | | /// a `/etc/localtime` for which a valid IANA time zone identifier could |
626 | | /// not be extracted. |
627 | | #[cfg(feature = "serde")] |
628 | | #[inline] |
629 | | pub(crate) fn has_succinct_serialization(&self) -> bool { |
630 | | repr::each! { |
631 | | &self.repr, |
632 | | UTC => true, |
633 | | UNKNOWN => true, |
634 | | FIXED(_offset) => true, |
635 | | STATIC_TZIF(tzif) => tzif.name().is_some(), |
636 | | ARC_TZIF(tzif) => tzif.name().is_some(), |
637 | | ARC_POSIX(_posix) => true, |
638 | | } |
639 | | } |
640 | | |
641 | | /// When this time zone was loaded from an IANA time zone database entry, |
642 | | /// then this returns the canonicalized name for that time zone. |
643 | | /// |
644 | | /// # Example |
645 | | /// |
646 | | /// ``` |
647 | | /// use jiff::tz::TimeZone; |
648 | | /// |
649 | | /// let tz = TimeZone::get("america/NEW_YORK")?; |
650 | | /// assert_eq!(tz.iana_name(), Some("America/New_York")); |
651 | | /// |
652 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
653 | | /// ``` |
654 | | #[inline] |
655 | 0 | pub fn iana_name(&self) -> Option<&str> { |
656 | 0 | repr::each! { |
657 | 0 | &self.repr, |
658 | 0 | UTC => Some("UTC"), |
659 | | // Note that while `Etc/Unknown` looks like an IANA time zone |
660 | | // identifier, it is specifically and explicitly NOT an IANA time |
661 | | // zone identifier. So we do not return it here if we have an |
662 | | // unknown time zone identifier. |
663 | 0 | UNKNOWN => None, |
664 | 0 | FIXED(_offset) => None, |
665 | 0 | STATIC_TZIF(tzif) => tzif.name(), |
666 | 0 | ARC_TZIF(tzif) => tzif.name(), |
667 | 0 | ARC_POSIX(_posix) => None, |
668 | | } |
669 | 0 | } |
670 | | |
671 | | /// Returns true if and only if this time zone is unknown. |
672 | | /// |
673 | | /// This has the special internal identifier of `Etc/Unknown`, and this |
674 | | /// is what will be used when converting a `Zoned` to a string. |
675 | | /// |
676 | | /// Note that while `Etc/Unknown` looks like an IANA time zone identifier, |
677 | | /// it is specifically and explicitly not one. It is reserved and is |
678 | | /// guaranteed to never be an IANA time zone identifier. |
679 | | /// |
680 | | /// An unknown time zone can be created via [`TimeZone::unknown`]. It is |
681 | | /// also returned by [`TimeZone::system`] when a system configured time |
682 | | /// zone could not be found. |
683 | | /// |
684 | | /// # Example |
685 | | /// |
686 | | /// ``` |
687 | | /// use jiff::tz::TimeZone; |
688 | | /// |
689 | | /// let tz = TimeZone::unknown(); |
690 | | /// assert_eq!(tz.iana_name(), None); |
691 | | /// assert!(tz.is_unknown()); |
692 | | /// ``` |
693 | | #[inline] |
694 | 0 | pub fn is_unknown(&self) -> bool { |
695 | 0 | self.repr.is_unknown() |
696 | 0 | } |
697 | | |
698 | | /// When this time zone is a POSIX time zone, return it. |
699 | | /// |
700 | | /// This doesn't attempt to convert other time zones that are representable |
701 | | /// as POSIX time zones to POSIX time zones (e.g., fixed offset time |
702 | | /// zones). Instead, this only returns something when the actual |
703 | | /// representation of the time zone is a POSIX time zone. |
704 | | #[cfg(feature = "alloc")] |
705 | | #[inline] |
706 | 0 | pub(crate) fn posix_tz(&self) -> Option<&PosixTimeZoneOwned> { |
707 | 0 | repr::each! { |
708 | 0 | &self.repr, |
709 | 0 | UTC => None, |
710 | 0 | UNKNOWN => None, |
711 | 0 | FIXED(_offset) => None, |
712 | 0 | STATIC_TZIF(_tzif) => None, |
713 | 0 | ARC_TZIF(_tzif) => None, |
714 | 0 | ARC_POSIX(posix) => Some(posix), |
715 | | } |
716 | 0 | } |
717 | | |
718 | | /// Returns the civil datetime corresponding to the given timestamp in this |
719 | | /// time zone. |
720 | | /// |
721 | | /// This operation is always unambiguous. That is, for any instant in time |
722 | | /// supported by Jiff (that is, a `Timestamp`), there is always precisely |
723 | | /// one civil datetime corresponding to that instant. |
724 | | /// |
725 | | /// Note that this is considered a lower level routine. Consider working |
726 | | /// with zoned datetimes instead, and use [`Zoned::datetime`] to get its |
727 | | /// civil time if necessary. |
728 | | /// |
729 | | /// # Example |
730 | | /// |
731 | | /// ``` |
732 | | /// use jiff::{tz::TimeZone, Timestamp}; |
733 | | /// |
734 | | /// let tz = TimeZone::get("Europe/Rome")?; |
735 | | /// assert_eq!( |
736 | | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
737 | | /// "1970-01-01T01:00:00", |
738 | | /// ); |
739 | | /// |
740 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
741 | | /// ``` |
742 | | /// |
743 | | /// As mentioned above, consider using `Zoned` instead: |
744 | | /// |
745 | | /// ``` |
746 | | /// use jiff::{tz::TimeZone, Timestamp}; |
747 | | /// |
748 | | /// let zdt = Timestamp::UNIX_EPOCH.in_tz("Europe/Rome")?; |
749 | | /// assert_eq!(zdt.datetime().to_string(), "1970-01-01T01:00:00"); |
750 | | /// |
751 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
752 | | /// ``` |
753 | | #[inline] |
754 | 0 | pub fn to_datetime(&self, timestamp: Timestamp) -> DateTime { |
755 | 0 | self.to_offset(timestamp).to_datetime(timestamp) |
756 | 0 | } |
757 | | |
758 | | /// Returns the offset corresponding to the given timestamp in this time |
759 | | /// zone. |
760 | | /// |
761 | | /// This operation is always unambiguous. That is, for any instant in time |
762 | | /// supported by Jiff (that is, a `Timestamp`), there is always precisely |
763 | | /// one offset corresponding to that instant. |
764 | | /// |
765 | | /// Given an offset, one can use APIs like [`Offset::to_datetime`] to |
766 | | /// create a civil datetime from a timestamp. |
767 | | /// |
768 | | /// This also returns whether this timestamp is considered to be in |
769 | | /// "daylight saving time," as well as the abbreviation for the time zone |
770 | | /// at this time. |
771 | | /// |
772 | | /// # Example |
773 | | /// |
774 | | /// ``` |
775 | | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
776 | | /// |
777 | | /// let tz = TimeZone::get("America/New_York")?; |
778 | | /// |
779 | | /// // A timestamp in DST in New York. |
780 | | /// let ts = Timestamp::from_second(1_720_493_204)?; |
781 | | /// let offset = tz.to_offset(ts); |
782 | | /// assert_eq!(offset, tz::offset(-4)); |
783 | | /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-07-08T22:46:44"); |
784 | | /// |
785 | | /// // A timestamp *not* in DST in New York. |
786 | | /// let ts = Timestamp::from_second(1_704_941_204)?; |
787 | | /// let offset = tz.to_offset(ts); |
788 | | /// assert_eq!(offset, tz::offset(-5)); |
789 | | /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-01-10T21:46:44"); |
790 | | /// |
791 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
792 | | /// ``` |
793 | | #[inline] |
794 | 0 | pub fn to_offset(&self, timestamp: Timestamp) -> Offset { |
795 | 0 | repr::each! { |
796 | 0 | &self.repr, |
797 | 0 | UTC => Offset::UTC, |
798 | 0 | UNKNOWN => Offset::UTC, |
799 | 0 | FIXED(offset) => offset, |
800 | 0 | STATIC_TZIF(tzif) => tzif.to_offset(timestamp), |
801 | 0 | ARC_TZIF(tzif) => tzif.to_offset(timestamp), |
802 | 0 | ARC_POSIX(posix) => posix.to_offset(timestamp), |
803 | | } |
804 | 0 | } |
805 | | |
806 | | /// Returns the offset information corresponding to the given timestamp in |
807 | | /// this time zone. This includes the offset along with daylight saving |
808 | | /// time status and a time zone abbreviation. |
809 | | /// |
810 | | /// This is like [`TimeZone::to_offset`], but returns the aforementioned |
811 | | /// extra data in addition to the offset. This data may, in some cases, be |
812 | | /// more expensive to compute. |
813 | | /// |
814 | | /// # Example |
815 | | /// |
816 | | /// ``` |
817 | | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
818 | | /// |
819 | | /// let tz = TimeZone::get("America/New_York")?; |
820 | | /// |
821 | | /// // A timestamp in DST in New York. |
822 | | /// let ts = Timestamp::from_second(1_720_493_204)?; |
823 | | /// let info = tz.to_offset_info(ts); |
824 | | /// assert_eq!(info.offset(), tz::offset(-4)); |
825 | | /// assert_eq!(info.dst(), Dst::Yes); |
826 | | /// assert_eq!(info.abbreviation(), "EDT"); |
827 | | /// assert_eq!( |
828 | | /// info.offset().to_datetime(ts).to_string(), |
829 | | /// "2024-07-08T22:46:44", |
830 | | /// ); |
831 | | /// |
832 | | /// // A timestamp *not* in DST in New York. |
833 | | /// let ts = Timestamp::from_second(1_704_941_204)?; |
834 | | /// let info = tz.to_offset_info(ts); |
835 | | /// assert_eq!(info.offset(), tz::offset(-5)); |
836 | | /// assert_eq!(info.dst(), Dst::No); |
837 | | /// assert_eq!(info.abbreviation(), "EST"); |
838 | | /// assert_eq!( |
839 | | /// info.offset().to_datetime(ts).to_string(), |
840 | | /// "2024-01-10T21:46:44", |
841 | | /// ); |
842 | | /// |
843 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
844 | | /// ``` |
845 | | #[inline] |
846 | 0 | pub fn to_offset_info<'t>( |
847 | 0 | &'t self, |
848 | 0 | timestamp: Timestamp, |
849 | 0 | ) -> TimeZoneOffsetInfo<'t> { |
850 | 0 | repr::each! { |
851 | 0 | &self.repr, |
852 | 0 | UTC => TimeZoneOffsetInfo { |
853 | 0 | offset: Offset::UTC, |
854 | 0 | dst: Dst::No, |
855 | 0 | abbreviation: TimeZoneAbbreviation::Borrowed("UTC"), |
856 | 0 | }, |
857 | 0 | UNKNOWN => TimeZoneOffsetInfo { |
858 | 0 | offset: Offset::UTC, |
859 | 0 | dst: Dst::No, |
860 | 0 | // It'd be kinda nice if this were just `ERR` to |
861 | 0 | // indicate an error, but I can't find any precedent |
862 | 0 | // for that. And CLDR says `Etc/Unknown` should behave |
863 | 0 | // like UTC, so... I guess we use UTC here. |
864 | 0 | abbreviation: TimeZoneAbbreviation::Borrowed("UTC"), |
865 | 0 | }, |
866 | | FIXED(offset) => { |
867 | 0 | let abbreviation = |
868 | 0 | TimeZoneAbbreviation::Owned(offset.to_array_str()); |
869 | 0 | TimeZoneOffsetInfo { |
870 | 0 | offset, |
871 | 0 | dst: Dst::No, |
872 | 0 | abbreviation, |
873 | 0 | } |
874 | | }, |
875 | 0 | STATIC_TZIF(tzif) => tzif.to_offset_info(timestamp), |
876 | 0 | ARC_TZIF(tzif) => tzif.to_offset_info(timestamp), |
877 | 0 | ARC_POSIX(posix) => posix.to_offset_info(timestamp), |
878 | | } |
879 | 0 | } |
880 | | |
881 | | /// If this time zone is a fixed offset, then this returns the offset. |
882 | | /// If this time zone is not a fixed offset, then an error is returned. |
883 | | /// |
884 | | /// If you just need an offset for a given timestamp, then you can use |
885 | | /// [`TimeZone::to_offset`]. Or, if you need an offset for a civil |
886 | | /// datetime, then you can use [`TimeZone::to_ambiguous_timestamp`] or |
887 | | /// [`TimeZone::to_ambiguous_zoned`], although the result may be ambiguous. |
888 | | /// |
889 | | /// Generally, this routine is useful when you need to know whether the |
890 | | /// time zone is fixed, and you want to get the offset without having to |
891 | | /// specify a timestamp. This is sometimes required for interoperating with |
892 | | /// other datetime systems that need to distinguish between time zones that |
893 | | /// are fixed and time zones that are based on rules such as those found in |
894 | | /// the IANA time zone database. |
895 | | /// |
896 | | /// # Example |
897 | | /// |
898 | | /// ``` |
899 | | /// use jiff::tz::{Offset, TimeZone}; |
900 | | /// |
901 | | /// let tz = TimeZone::get("America/New_York")?; |
902 | | /// // A named time zone is not a fixed offset |
903 | | /// // and so cannot be converted to an offset |
904 | | /// // without a timestamp or civil datetime. |
905 | | /// assert_eq!( |
906 | | /// tz.to_fixed_offset().unwrap_err().to_string(), |
907 | | /// "cannot convert non-fixed IANA time zone \ |
908 | | /// to offset without timestamp or civil datetime", |
909 | | /// ); |
910 | | /// |
911 | | /// let tz = TimeZone::UTC; |
912 | | /// // UTC is a fixed offset and so can be converted |
913 | | /// // without a timestamp. |
914 | | /// assert_eq!(tz.to_fixed_offset()?, Offset::UTC); |
915 | | /// |
916 | | /// // And of course, creating a time zone from a |
917 | | /// // fixed offset results in a fixed offset time |
918 | | /// // zone too: |
919 | | /// let tz = TimeZone::fixed(jiff::tz::offset(-10)); |
920 | | /// assert_eq!(tz.to_fixed_offset()?, jiff::tz::offset(-10)); |
921 | | /// |
922 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
923 | | /// ``` |
924 | | #[inline] |
925 | 0 | pub fn to_fixed_offset(&self) -> Result<Offset, Error> { |
926 | 0 | let mkerr = || { |
927 | 0 | err!( |
928 | 0 | "cannot convert non-fixed {kind} time zone to offset \ |
929 | 0 | without timestamp or civil datetime", |
930 | 0 | kind = self.kind_description(), |
931 | 0 | ) |
932 | 0 | }; |
933 | 0 | repr::each! { |
934 | 0 | &self.repr, |
935 | 0 | UTC => Ok(Offset::UTC), |
936 | 0 | UNKNOWN => Ok(Offset::UTC), |
937 | 0 | FIXED(offset) => Ok(offset), |
938 | 0 | STATIC_TZIF(_tzif) => Err(mkerr()), |
939 | 0 | ARC_TZIF(_tzif) => Err(mkerr()), |
940 | 0 | ARC_POSIX(_posix) => Err(mkerr()), |
941 | | } |
942 | 0 | } |
943 | | |
944 | | /// Converts a civil datetime to a [`Zoned`] in this time zone. |
945 | | /// |
946 | | /// The given civil datetime may be ambiguous in this time zone. A civil |
947 | | /// datetime is ambiguous when either of the following occurs: |
948 | | /// |
949 | | /// * When the civil datetime falls into a "gap." That is, when there is a |
950 | | /// jump forward in time where a span of time does not appear on the clocks |
951 | | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
952 | | /// into daylight saving time. |
953 | | /// * When the civil datetime falls into a "fold." That is, when there is |
954 | | /// a jump backward in time where a span of time is _repeated_ on the |
955 | | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
956 | | /// backward out of daylight saving time. |
957 | | /// |
958 | | /// This routine automatically resolves both of the above ambiguities via |
959 | | /// the |
960 | | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
961 | | /// strategy. That in, the case of a gap, the time after the gap is used. |
962 | | /// In the case of a fold, the first repetition of the clock time is used. |
963 | | /// |
964 | | /// # Example |
965 | | /// |
966 | | /// This example shows how disambiguation works: |
967 | | /// |
968 | | /// ``` |
969 | | /// use jiff::{civil::date, tz::TimeZone}; |
970 | | /// |
971 | | /// let tz = TimeZone::get("America/New_York")?; |
972 | | /// |
973 | | /// // This demonstrates disambiguation behavior for a gap. |
974 | | /// let zdt = tz.to_zoned(date(2024, 3, 10).at(2, 30, 0, 0))?; |
975 | | /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]"); |
976 | | /// // This demonstrates disambiguation behavior for a fold. |
977 | | /// // Notice the offset: the -04 corresponds to the time while |
978 | | /// // still in DST. The second repetition of the 1 o'clock hour |
979 | | /// // occurs outside of DST, in "standard" time, with the offset -5. |
980 | | /// let zdt = tz.to_zoned(date(2024, 11, 3).at(1, 30, 0, 0))?; |
981 | | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]"); |
982 | | /// |
983 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
984 | | /// ``` |
985 | | #[inline] |
986 | 0 | pub fn to_zoned(&self, dt: DateTime) -> Result<Zoned, Error> { |
987 | 0 | self.to_ambiguous_zoned(dt).compatible() |
988 | 0 | } |
989 | | |
990 | | /// Converts a civil datetime to a possibly ambiguous zoned datetime in |
991 | | /// this time zone. |
992 | | /// |
993 | | /// The given civil datetime may be ambiguous in this time zone. A civil |
994 | | /// datetime is ambiguous when either of the following occurs: |
995 | | /// |
996 | | /// * When the civil datetime falls into a "gap." That is, when there is a |
997 | | /// jump forward in time where a span of time does not appear on the clocks |
998 | | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
999 | | /// into daylight saving time. |
1000 | | /// * When the civil datetime falls into a "fold." That is, when there is |
1001 | | /// a jump backward in time where a span of time is _repeated_ on the |
1002 | | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
1003 | | /// backward out of daylight saving time. |
1004 | | /// |
1005 | | /// Unlike [`TimeZone::to_zoned`], this method does not do any automatic |
1006 | | /// disambiguation. Instead, callers are expected to use the methods on |
1007 | | /// [`AmbiguousZoned`] to resolve any ambiguity, if it occurs. |
1008 | | /// |
1009 | | /// # Example |
1010 | | /// |
1011 | | /// This example shows how to return an error when the civil datetime given |
1012 | | /// is ambiguous: |
1013 | | /// |
1014 | | /// ``` |
1015 | | /// use jiff::{civil::date, tz::TimeZone}; |
1016 | | /// |
1017 | | /// let tz = TimeZone::get("America/New_York")?; |
1018 | | /// |
1019 | | /// // This is not ambiguous: |
1020 | | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
1021 | | /// assert_eq!( |
1022 | | /// tz.to_ambiguous_zoned(dt).unambiguous()?.to_string(), |
1023 | | /// "2024-03-10T01:00:00-05:00[America/New_York]", |
1024 | | /// ); |
1025 | | /// // But this is a gap, and thus ambiguous! So an error is returned. |
1026 | | /// let dt = date(2024, 3, 10).at(2, 0, 0, 0); |
1027 | | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
1028 | | /// // And so is this, because it's a fold. |
1029 | | /// let dt = date(2024, 11, 3).at(1, 0, 0, 0); |
1030 | | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
1031 | | /// |
1032 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1033 | | /// ``` |
1034 | | #[inline] |
1035 | 0 | pub fn to_ambiguous_zoned(&self, dt: DateTime) -> AmbiguousZoned { |
1036 | 0 | self.clone().into_ambiguous_zoned(dt) |
1037 | 0 | } |
1038 | | |
1039 | | /// Converts a civil datetime to a possibly ambiguous zoned datetime in |
1040 | | /// this time zone, and does so by assuming ownership of this `TimeZone`. |
1041 | | /// |
1042 | | /// This is identical to [`TimeZone::to_ambiguous_zoned`], but it avoids |
1043 | | /// a `TimeZone::clone()` call. (Which are cheap, but not completely free.) |
1044 | | /// |
1045 | | /// # Example |
1046 | | /// |
1047 | | /// This example shows how to create a `Zoned` value from a `TimeZone` |
1048 | | /// and a `DateTime` without cloning the `TimeZone`: |
1049 | | /// |
1050 | | /// ``` |
1051 | | /// use jiff::{civil::date, tz::TimeZone}; |
1052 | | /// |
1053 | | /// let tz = TimeZone::get("America/New_York")?; |
1054 | | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
1055 | | /// assert_eq!( |
1056 | | /// tz.into_ambiguous_zoned(dt).unambiguous()?.to_string(), |
1057 | | /// "2024-03-10T01:00:00-05:00[America/New_York]", |
1058 | | /// ); |
1059 | | /// |
1060 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1061 | | /// ``` |
1062 | | #[inline] |
1063 | 0 | pub fn into_ambiguous_zoned(self, dt: DateTime) -> AmbiguousZoned { |
1064 | 0 | self.to_ambiguous_timestamp(dt).into_ambiguous_zoned(self) |
1065 | 0 | } |
1066 | | |
1067 | | /// Converts a civil datetime to a [`Timestamp`] in this time zone. |
1068 | | /// |
1069 | | /// The given civil datetime may be ambiguous in this time zone. A civil |
1070 | | /// datetime is ambiguous when either of the following occurs: |
1071 | | /// |
1072 | | /// * When the civil datetime falls into a "gap." That is, when there is a |
1073 | | /// jump forward in time where a span of time does not appear on the clocks |
1074 | | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
1075 | | /// into daylight saving time. |
1076 | | /// * When the civil datetime falls into a "fold." That is, when there is |
1077 | | /// a jump backward in time where a span of time is _repeated_ on the |
1078 | | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
1079 | | /// backward out of daylight saving time. |
1080 | | /// |
1081 | | /// This routine automatically resolves both of the above ambiguities via |
1082 | | /// the |
1083 | | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
1084 | | /// strategy. That in, the case of a gap, the time after the gap is used. |
1085 | | /// In the case of a fold, the first repetition of the clock time is used. |
1086 | | /// |
1087 | | /// This routine is identical to [`TimeZone::to_zoned`], except it returns |
1088 | | /// a `Timestamp` instead of a zoned datetime. The benefit of this |
1089 | | /// method is that it never requires cloning or consuming ownership of a |
1090 | | /// `TimeZone`, and it doesn't require construction of `Zoned` which has |
1091 | | /// a small but non-zero cost. (This is partially because a `Zoned` value |
1092 | | /// contains a `TimeZone`, but of course, a `Timestamp` does not.) |
1093 | | /// |
1094 | | /// # Example |
1095 | | /// |
1096 | | /// This example shows how disambiguation works: |
1097 | | /// |
1098 | | /// ``` |
1099 | | /// use jiff::{civil::date, tz::TimeZone}; |
1100 | | /// |
1101 | | /// let tz = TimeZone::get("America/New_York")?; |
1102 | | /// |
1103 | | /// // This demonstrates disambiguation behavior for a gap. |
1104 | | /// let ts = tz.to_timestamp(date(2024, 3, 10).at(2, 30, 0, 0))?; |
1105 | | /// assert_eq!(ts.to_string(), "2024-03-10T07:30:00Z"); |
1106 | | /// // This demonstrates disambiguation behavior for a fold. |
1107 | | /// // Notice the offset: the -04 corresponds to the time while |
1108 | | /// // still in DST. The second repetition of the 1 o'clock hour |
1109 | | /// // occurs outside of DST, in "standard" time, with the offset -5. |
1110 | | /// let ts = tz.to_timestamp(date(2024, 11, 3).at(1, 30, 0, 0))?; |
1111 | | /// assert_eq!(ts.to_string(), "2024-11-03T05:30:00Z"); |
1112 | | /// |
1113 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1114 | | /// ``` |
1115 | | #[inline] |
1116 | 0 | pub fn to_timestamp(&self, dt: DateTime) -> Result<Timestamp, Error> { |
1117 | 0 | self.to_ambiguous_timestamp(dt).compatible() |
1118 | 0 | } |
1119 | | |
1120 | | /// Converts a civil datetime to a possibly ambiguous timestamp in |
1121 | | /// this time zone. |
1122 | | /// |
1123 | | /// The given civil datetime may be ambiguous in this time zone. A civil |
1124 | | /// datetime is ambiguous when either of the following occurs: |
1125 | | /// |
1126 | | /// * When the civil datetime falls into a "gap." That is, when there is a |
1127 | | /// jump forward in time where a span of time does not appear on the clocks |
1128 | | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
1129 | | /// into daylight saving time. |
1130 | | /// * When the civil datetime falls into a "fold." That is, when there is |
1131 | | /// a jump backward in time where a span of time is _repeated_ on the |
1132 | | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
1133 | | /// backward out of daylight saving time. |
1134 | | /// |
1135 | | /// Unlike [`TimeZone::to_timestamp`], this method does not do any |
1136 | | /// automatic disambiguation. Instead, callers are expected to use the |
1137 | | /// methods on [`AmbiguousTimestamp`] to resolve any ambiguity, if it |
1138 | | /// occurs. |
1139 | | /// |
1140 | | /// This routine is identical to [`TimeZone::to_ambiguous_zoned`], except |
1141 | | /// it returns an `AmbiguousTimestamp` instead of a `AmbiguousZoned`. The |
1142 | | /// benefit of this method is that it never requires cloning or consuming |
1143 | | /// ownership of a `TimeZone`, and it doesn't require construction of |
1144 | | /// `Zoned` which has a small but non-zero cost. (This is partially because |
1145 | | /// a `Zoned` value contains a `TimeZone`, but of course, a `Timestamp` |
1146 | | /// does not.) |
1147 | | /// |
1148 | | /// # Example |
1149 | | /// |
1150 | | /// This example shows how to return an error when the civil datetime given |
1151 | | /// is ambiguous: |
1152 | | /// |
1153 | | /// ``` |
1154 | | /// use jiff::{civil::date, tz::TimeZone}; |
1155 | | /// |
1156 | | /// let tz = TimeZone::get("America/New_York")?; |
1157 | | /// |
1158 | | /// // This is not ambiguous: |
1159 | | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
1160 | | /// assert_eq!( |
1161 | | /// tz.to_ambiguous_timestamp(dt).unambiguous()?.to_string(), |
1162 | | /// "2024-03-10T06:00:00Z", |
1163 | | /// ); |
1164 | | /// // But this is a gap, and thus ambiguous! So an error is returned. |
1165 | | /// let dt = date(2024, 3, 10).at(2, 0, 0, 0); |
1166 | | /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err()); |
1167 | | /// // And so is this, because it's a fold. |
1168 | | /// let dt = date(2024, 11, 3).at(1, 0, 0, 0); |
1169 | | /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err()); |
1170 | | /// |
1171 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1172 | | /// ``` |
1173 | | #[inline] |
1174 | 0 | pub fn to_ambiguous_timestamp(&self, dt: DateTime) -> AmbiguousTimestamp { |
1175 | 0 | let ambiguous_kind = repr::each! { |
1176 | 0 | &self.repr, |
1177 | 0 | UTC => AmbiguousOffset::Unambiguous { offset: Offset::UTC }, |
1178 | 0 | UNKNOWN => AmbiguousOffset::Unambiguous { offset: Offset::UTC }, |
1179 | 0 | FIXED(offset) => AmbiguousOffset::Unambiguous { offset }, |
1180 | 0 | STATIC_TZIF(tzif) => tzif.to_ambiguous_kind(dt), |
1181 | 0 | ARC_TZIF(tzif) => tzif.to_ambiguous_kind(dt), |
1182 | 0 | ARC_POSIX(posix) => posix.to_ambiguous_kind(dt), |
1183 | | }; |
1184 | 0 | AmbiguousTimestamp::new(dt, ambiguous_kind) |
1185 | 0 | } |
1186 | | |
1187 | | /// Returns an iterator of time zone transitions preceding the given |
1188 | | /// timestamp. The iterator returned yields [`TimeZoneTransition`] |
1189 | | /// elements. |
1190 | | /// |
1191 | | /// The order of the iterator returned moves backward through time. If |
1192 | | /// there is a previous transition, then the timestamp of that transition |
1193 | | /// is guaranteed to be strictly less than the timestamp given. |
1194 | | /// |
1195 | | /// This is a low level API that you generally shouldn't need. It's |
1196 | | /// useful in cases where you need to know something about the specific |
1197 | | /// instants at which time zone transitions occur. For example, an embedded |
1198 | | /// device might need to be explicitly programmed with daylight saving |
1199 | | /// time transitions. APIs like this enable callers to explore those |
1200 | | /// transitions. |
1201 | | /// |
1202 | | /// A time zone transition refers to a specific point in time when the |
1203 | | /// offset from UTC for a particular geographical region changes. This |
1204 | | /// is usually a result of daylight saving time, but it can also occur |
1205 | | /// when a geographic region changes its permanent offset from UTC. |
1206 | | /// |
1207 | | /// The iterator returned is not guaranteed to yield any elements. For |
1208 | | /// example, this occurs with a fixed offset time zone. Logically, it |
1209 | | /// would also be possible for the iterator to be infinite, except that |
1210 | | /// eventually the timestamp would overflow Jiff's minimum timestamp |
1211 | | /// value, at which point, iteration stops. |
1212 | | /// |
1213 | | /// # Example: time since the previous transition |
1214 | | /// |
1215 | | /// This example shows how much time has passed since the previous time |
1216 | | /// zone transition: |
1217 | | /// |
1218 | | /// ``` |
1219 | | /// use jiff::{Unit, Zoned}; |
1220 | | /// |
1221 | | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?; |
1222 | | /// let trans = now.time_zone().preceding(now.timestamp()).next().unwrap(); |
1223 | | /// let prev_at = trans.timestamp().to_zoned(now.time_zone().clone()); |
1224 | | /// let span = now.since((Unit::Year, &prev_at))?; |
1225 | | /// assert_eq!(format!("{span:#}"), "1mo 27d 17h 25m"); |
1226 | | /// |
1227 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1228 | | /// ``` |
1229 | | /// |
1230 | | /// # Example: show the 5 previous time zone transitions |
1231 | | /// |
1232 | | /// This shows how to find the 5 preceding time zone transitions (from a |
1233 | | /// particular datetime) for a particular time zone: |
1234 | | /// |
1235 | | /// ``` |
1236 | | /// use jiff::{tz::offset, Zoned}; |
1237 | | /// |
1238 | | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?; |
1239 | | /// let transitions = now |
1240 | | /// .time_zone() |
1241 | | /// .preceding(now.timestamp()) |
1242 | | /// .take(5) |
1243 | | /// .map(|t| ( |
1244 | | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1245 | | /// t.offset(), |
1246 | | /// t.abbreviation().to_string(), |
1247 | | /// )) |
1248 | | /// .collect::<Vec<_>>(); |
1249 | | /// assert_eq!(transitions, vec![ |
1250 | | /// ("2024-11-03 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1251 | | /// ("2024-03-10 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1252 | | /// ("2023-11-05 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1253 | | /// ("2023-03-12 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1254 | | /// ("2022-11-06 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1255 | | /// ]); |
1256 | | /// |
1257 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1258 | | /// ``` |
1259 | | #[inline] |
1260 | 0 | pub fn preceding<'t>( |
1261 | 0 | &'t self, |
1262 | 0 | timestamp: Timestamp, |
1263 | 0 | ) -> TimeZonePrecedingTransitions<'t> { |
1264 | 0 | TimeZonePrecedingTransitions { tz: self, cur: timestamp } |
1265 | 0 | } |
1266 | | |
1267 | | /// Returns an iterator of time zone transitions following the given |
1268 | | /// timestamp. The iterator returned yields [`TimeZoneTransition`] |
1269 | | /// elements. |
1270 | | /// |
1271 | | /// The order of the iterator returned moves forward through time. If |
1272 | | /// there is a following transition, then the timestamp of that transition |
1273 | | /// is guaranteed to be strictly greater than the timestamp given. |
1274 | | /// |
1275 | | /// This is a low level API that you generally shouldn't need. It's |
1276 | | /// useful in cases where you need to know something about the specific |
1277 | | /// instants at which time zone transitions occur. For example, an embedded |
1278 | | /// device might need to be explicitly programmed with daylight saving |
1279 | | /// time transitions. APIs like this enable callers to explore those |
1280 | | /// transitions. |
1281 | | /// |
1282 | | /// A time zone transition refers to a specific point in time when the |
1283 | | /// offset from UTC for a particular geographical region changes. This |
1284 | | /// is usually a result of daylight saving time, but it can also occur |
1285 | | /// when a geographic region changes its permanent offset from UTC. |
1286 | | /// |
1287 | | /// The iterator returned is not guaranteed to yield any elements. For |
1288 | | /// example, this occurs with a fixed offset time zone. Logically, it |
1289 | | /// would also be possible for the iterator to be infinite, except that |
1290 | | /// eventually the timestamp would overflow Jiff's maximum timestamp |
1291 | | /// value, at which point, iteration stops. |
1292 | | /// |
1293 | | /// # Example: time until the next transition |
1294 | | /// |
1295 | | /// This example shows how much time is left until the next time zone |
1296 | | /// transition: |
1297 | | /// |
1298 | | /// ``` |
1299 | | /// use jiff::{Unit, Zoned}; |
1300 | | /// |
1301 | | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?; |
1302 | | /// let trans = now.time_zone().following(now.timestamp()).next().unwrap(); |
1303 | | /// let next_at = trans.timestamp().to_zoned(now.time_zone().clone()); |
1304 | | /// let span = now.until((Unit::Year, &next_at))?; |
1305 | | /// assert_eq!(format!("{span:#}"), "2mo 8d 7h 35m"); |
1306 | | /// |
1307 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1308 | | /// ``` |
1309 | | /// |
1310 | | /// # Example: show the 5 next time zone transitions |
1311 | | /// |
1312 | | /// This shows how to find the 5 following time zone transitions (from a |
1313 | | /// particular datetime) for a particular time zone: |
1314 | | /// |
1315 | | /// ``` |
1316 | | /// use jiff::{tz::offset, Zoned}; |
1317 | | /// |
1318 | | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?; |
1319 | | /// let transitions = now |
1320 | | /// .time_zone() |
1321 | | /// .following(now.timestamp()) |
1322 | | /// .take(5) |
1323 | | /// .map(|t| ( |
1324 | | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1325 | | /// t.offset(), |
1326 | | /// t.abbreviation().to_string(), |
1327 | | /// )) |
1328 | | /// .collect::<Vec<_>>(); |
1329 | | /// assert_eq!(transitions, vec![ |
1330 | | /// ("2025-03-09 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1331 | | /// ("2025-11-02 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1332 | | /// ("2026-03-08 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1333 | | /// ("2026-11-01 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1334 | | /// ("2027-03-14 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1335 | | /// ]); |
1336 | | /// |
1337 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1338 | | /// ``` |
1339 | | #[inline] |
1340 | 0 | pub fn following<'t>( |
1341 | 0 | &'t self, |
1342 | 0 | timestamp: Timestamp, |
1343 | 0 | ) -> TimeZoneFollowingTransitions<'t> { |
1344 | 0 | TimeZoneFollowingTransitions { tz: self, cur: timestamp } |
1345 | 0 | } |
1346 | | |
1347 | | /// Used by the "preceding transitions" iterator. |
1348 | | #[inline] |
1349 | 0 | fn previous_transition( |
1350 | 0 | &self, |
1351 | 0 | timestamp: Timestamp, |
1352 | 0 | ) -> Option<TimeZoneTransition> { |
1353 | 0 | repr::each! { |
1354 | 0 | &self.repr, |
1355 | 0 | UTC => None, |
1356 | 0 | UNKNOWN => None, |
1357 | 0 | FIXED(_offset) => None, |
1358 | 0 | STATIC_TZIF(tzif) => tzif.previous_transition(timestamp), |
1359 | 0 | ARC_TZIF(tzif) => tzif.previous_transition(timestamp), |
1360 | 0 | ARC_POSIX(posix) => posix.previous_transition(timestamp), |
1361 | | } |
1362 | 0 | } |
1363 | | |
1364 | | /// Used by the "following transitions" iterator. |
1365 | | #[inline] |
1366 | 0 | fn next_transition( |
1367 | 0 | &self, |
1368 | 0 | timestamp: Timestamp, |
1369 | 0 | ) -> Option<TimeZoneTransition> { |
1370 | 0 | repr::each! { |
1371 | 0 | &self.repr, |
1372 | 0 | UTC => None, |
1373 | 0 | UNKNOWN => None, |
1374 | 0 | FIXED(_offset) => None, |
1375 | 0 | STATIC_TZIF(tzif) => tzif.next_transition(timestamp), |
1376 | 0 | ARC_TZIF(tzif) => tzif.next_transition(timestamp), |
1377 | 0 | ARC_POSIX(posix) => posix.next_transition(timestamp), |
1378 | | } |
1379 | 0 | } |
1380 | | |
1381 | | /// Returns a short description about the kind of this time zone. |
1382 | | /// |
1383 | | /// This is useful in error messages. |
1384 | 0 | fn kind_description(&self) -> &str { |
1385 | 0 | repr::each! { |
1386 | 0 | &self.repr, |
1387 | 0 | UTC => "UTC", |
1388 | 0 | UNKNOWN => "Etc/Unknown", |
1389 | 0 | FIXED(_offset) => "fixed", |
1390 | 0 | STATIC_TZIF(_tzif) => "IANA", |
1391 | 0 | ARC_TZIF(_tzif) => "IANA", |
1392 | 0 | ARC_POSIX(_posix) => "POSIX", |
1393 | | } |
1394 | 0 | } |
1395 | | } |
1396 | | |
1397 | | // Exposed APIs for Jiff's time zone proc macro. |
1398 | | // |
1399 | | // These are NOT part of Jiff's public API. There are *zero* semver guarantees |
1400 | | // for them. |
1401 | | #[doc(hidden)] |
1402 | | impl TimeZone { |
1403 | 0 | pub const fn __internal_from_tzif( |
1404 | 0 | tzif: &'static crate::tz::tzif::TzifStatic, |
1405 | 0 | ) -> TimeZone { |
1406 | 0 | let repr = Repr::static_tzif(tzif); |
1407 | 0 | TimeZone { repr } |
1408 | 0 | } |
1409 | | |
1410 | | /// Returns a dumb copy of this `TimeZone`. |
1411 | | /// |
1412 | | /// # Safety |
1413 | | /// |
1414 | | /// Callers must ensure that this time zone is UTC, unknown, a fixed |
1415 | | /// offset or created with `TimeZone::__internal_from_tzif`. |
1416 | | /// |
1417 | | /// Namely, this specifically does not increment the ref count for |
1418 | | /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`. |
1419 | | /// This means that incorrect usage of this routine can lead to |
1420 | | /// use-after-free. |
1421 | | #[inline] |
1422 | 0 | pub const unsafe fn copy(&self) -> TimeZone { |
1423 | 0 | // SAFETY: Requirements are forwarded to the caller. |
1424 | 0 | unsafe { TimeZone { repr: self.repr.copy() } } |
1425 | 0 | } |
1426 | | } |
1427 | | |
1428 | | impl core::fmt::Debug for TimeZone { |
1429 | | #[inline] |
1430 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1431 | 0 | f.debug_tuple("TimeZone").field(&self.repr).finish() |
1432 | 0 | } |
1433 | | } |
1434 | | |
1435 | | /// A representation a single time zone transition. |
1436 | | /// |
1437 | | /// A time zone transition is an instant in time the marks the beginning of |
1438 | | /// a change in the offset from UTC that civil time is computed from in a |
1439 | | /// particular time zone. For example, when daylight saving time comes into |
1440 | | /// effect (or goes away). Another example is when a geographic region changes |
1441 | | /// its permanent offset from UTC. |
1442 | | /// |
1443 | | /// This is a low level type that you generally shouldn't need. It's useful in |
1444 | | /// cases where you need to know something about the specific instants at which |
1445 | | /// time zone transitions occur. For example, an embedded device might need to |
1446 | | /// be explicitly programmed with daylight saving time transitions. APIs like |
1447 | | /// this enable callers to explore those transitions. |
1448 | | /// |
1449 | | /// This type is yielded by the iterators |
1450 | | /// [`TimeZonePrecedingTransitions`] and |
1451 | | /// [`TimeZoneFollowingTransitions`]. The iterators are created by |
1452 | | /// [`TimeZone::preceding`] and [`TimeZone::following`], respectively. |
1453 | | /// |
1454 | | /// # Example |
1455 | | /// |
1456 | | /// This shows a somewhat silly example that finds all of the unique civil |
1457 | | /// (or "clock" or "local") times at which a time zone transition has occurred |
1458 | | /// in a particular time zone: |
1459 | | /// |
1460 | | /// ``` |
1461 | | /// use std::collections::BTreeSet; |
1462 | | /// use jiff::{civil, tz::TimeZone}; |
1463 | | /// |
1464 | | /// let tz = TimeZone::get("America/New_York")?; |
1465 | | /// let now = civil::date(2024, 12, 31).at(18, 25, 0, 0).to_zoned(tz.clone())?; |
1466 | | /// let mut set = BTreeSet::new(); |
1467 | | /// for trans in tz.preceding(now.timestamp()) { |
1468 | | /// let time = tz.to_datetime(trans.timestamp()).time(); |
1469 | | /// set.insert(time); |
1470 | | /// } |
1471 | | /// assert_eq!(Vec::from_iter(set), vec![ |
1472 | | /// civil::time(1, 0, 0, 0), // typical transition out of DST |
1473 | | /// civil::time(3, 0, 0, 0), // typical transition into DST |
1474 | | /// civil::time(12, 0, 0, 0), // from when IANA starts keeping track |
1475 | | /// civil::time(19, 0, 0, 0), // from World War 2 |
1476 | | /// ]); |
1477 | | /// |
1478 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1479 | | /// ``` |
1480 | | #[derive(Clone, Debug)] |
1481 | | pub struct TimeZoneTransition<'t> { |
1482 | | // We don't currently do anything smart to make iterating over |
1483 | | // transitions faster. We could if we pushed the iterator impl down into |
1484 | | // the respective modules (`posix` and `tzif`), but it's not clear such |
1485 | | // optimization is really worth it. However, this API should permit that |
1486 | | // kind of optimization in the future. |
1487 | | pub(crate) timestamp: Timestamp, |
1488 | | pub(crate) offset: Offset, |
1489 | | pub(crate) abbrev: &'t str, |
1490 | | pub(crate) dst: Dst, |
1491 | | } |
1492 | | |
1493 | | impl<'t> TimeZoneTransition<'t> { |
1494 | | /// Returns the timestamp at which this transition began. |
1495 | | /// |
1496 | | /// # Example |
1497 | | /// |
1498 | | /// ``` |
1499 | | /// use jiff::{civil, tz::TimeZone}; |
1500 | | /// |
1501 | | /// let tz = TimeZone::get("US/Eastern")?; |
1502 | | /// // Look for the first time zone transition in `US/Eastern` following |
1503 | | /// // 2023-03-09 00:00:00. |
1504 | | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1505 | | /// let next = tz.following(start).next().unwrap(); |
1506 | | /// assert_eq!( |
1507 | | /// next.timestamp().to_zoned(tz.clone()).to_string(), |
1508 | | /// "2024-03-10T03:00:00-04:00[US/Eastern]", |
1509 | | /// ); |
1510 | | /// |
1511 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1512 | | /// ``` |
1513 | | #[inline] |
1514 | 0 | pub fn timestamp(&self) -> Timestamp { |
1515 | 0 | self.timestamp |
1516 | 0 | } |
1517 | | |
1518 | | /// Returns the offset corresponding to this time zone transition. All |
1519 | | /// instants at and following this transition's timestamp (and before the |
1520 | | /// next transition's timestamp) need to apply this offset from UTC to get |
1521 | | /// the civil or "local" time in the corresponding time zone. |
1522 | | /// |
1523 | | /// # Example |
1524 | | /// |
1525 | | /// ``` |
1526 | | /// use jiff::{civil, tz::{TimeZone, offset}}; |
1527 | | /// |
1528 | | /// let tz = TimeZone::get("US/Eastern")?; |
1529 | | /// // Get the offset of the next transition after |
1530 | | /// // 2023-03-09 00:00:00. |
1531 | | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1532 | | /// let next = tz.following(start).next().unwrap(); |
1533 | | /// assert_eq!(next.offset(), offset(-4)); |
1534 | | /// // Or go backwards to find the previous transition. |
1535 | | /// let prev = tz.preceding(start).next().unwrap(); |
1536 | | /// assert_eq!(prev.offset(), offset(-5)); |
1537 | | /// |
1538 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1539 | | /// ``` |
1540 | | #[inline] |
1541 | 0 | pub fn offset(&self) -> Offset { |
1542 | 0 | self.offset |
1543 | 0 | } |
1544 | | |
1545 | | /// Returns the time zone abbreviation corresponding to this time |
1546 | | /// zone transition. All instants at and following this transition's |
1547 | | /// timestamp (and before the next transition's timestamp) may use this |
1548 | | /// abbreviation when creating a human readable string. For example, |
1549 | | /// this is the abbreviation used with the `%Z` specifier with Jiff's |
1550 | | /// [`fmt::strtime`](crate::fmt::strtime) module. |
1551 | | /// |
1552 | | /// Note that abbreviations can to be ambiguous. For example, the |
1553 | | /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`, |
1554 | | /// `America/Chicago` and `America/Havana`. |
1555 | | /// |
1556 | | /// The lifetime of the string returned is tied to this |
1557 | | /// `TimeZoneTransition`, which may be shorter than `'t` (the lifetime of |
1558 | | /// the time zone this transition was created from). |
1559 | | /// |
1560 | | /// # Example |
1561 | | /// |
1562 | | /// ``` |
1563 | | /// use jiff::{civil, tz::TimeZone}; |
1564 | | /// |
1565 | | /// let tz = TimeZone::get("US/Eastern")?; |
1566 | | /// // Get the abbreviation of the next transition after |
1567 | | /// // 2023-03-09 00:00:00. |
1568 | | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1569 | | /// let next = tz.following(start).next().unwrap(); |
1570 | | /// assert_eq!(next.abbreviation(), "EDT"); |
1571 | | /// // Or go backwards to find the previous transition. |
1572 | | /// let prev = tz.preceding(start).next().unwrap(); |
1573 | | /// assert_eq!(prev.abbreviation(), "EST"); |
1574 | | /// |
1575 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1576 | | /// ``` |
1577 | | #[inline] |
1578 | 0 | pub fn abbreviation<'a>(&'a self) -> &'a str { |
1579 | 0 | self.abbrev |
1580 | 0 | } |
1581 | | |
1582 | | /// Returns whether daylight saving time is enabled for this time zone |
1583 | | /// transition. |
1584 | | /// |
1585 | | /// Callers should generally treat this as informational only. In |
1586 | | /// particular, not all time zone transitions are related to daylight |
1587 | | /// saving time. For example, some transitions are a result of a region |
1588 | | /// permanently changing their offset from UTC. |
1589 | | /// |
1590 | | /// # Example |
1591 | | /// |
1592 | | /// ``` |
1593 | | /// use jiff::{civil, tz::{Dst, TimeZone}}; |
1594 | | /// |
1595 | | /// let tz = TimeZone::get("US/Eastern")?; |
1596 | | /// // Get the DST status of the next transition after |
1597 | | /// // 2023-03-09 00:00:00. |
1598 | | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1599 | | /// let next = tz.following(start).next().unwrap(); |
1600 | | /// assert_eq!(next.dst(), Dst::Yes); |
1601 | | /// // Or go backwards to find the previous transition. |
1602 | | /// let prev = tz.preceding(start).next().unwrap(); |
1603 | | /// assert_eq!(prev.dst(), Dst::No); |
1604 | | /// |
1605 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1606 | | /// ``` |
1607 | | #[inline] |
1608 | 0 | pub fn dst(&self) -> Dst { |
1609 | 0 | self.dst |
1610 | 0 | } |
1611 | | } |
1612 | | |
1613 | | /// An offset along with DST status and a time zone abbreviation. |
1614 | | /// |
1615 | | /// This information can be computed from a [`TimeZone`] given a [`Timestamp`] |
1616 | | /// via [`TimeZone::to_offset_info`]. |
1617 | | /// |
1618 | | /// Generally, the extra information associated with the offset is not commonly |
1619 | | /// needed. And indeed, inspecting the daylight saving time status of a |
1620 | | /// particular instant in a time zone _usually_ leads to bugs. For example, not |
1621 | | /// all time zone transitions are the result of daylight saving time. Some are |
1622 | | /// the result of permanent changes to the standard UTC offset of a region. |
1623 | | /// |
1624 | | /// This information is available via an API distinct from |
1625 | | /// [`TimeZone::to_offset`] because it is not commonly needed and because it |
1626 | | /// can sometimes be more expensive to compute. |
1627 | | /// |
1628 | | /// The main use case for daylight saving time status or time zone |
1629 | | /// abbreviations is for formatting datetimes in an end user's locale. If you |
1630 | | /// want this, consider using the [`icu`] crate via [`jiff-icu`]. |
1631 | | /// |
1632 | | /// The lifetime parameter `'t` corresponds to the lifetime of the `TimeZone` |
1633 | | /// that this info was extracted from. |
1634 | | /// |
1635 | | /// # Example |
1636 | | /// |
1637 | | /// ``` |
1638 | | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
1639 | | /// |
1640 | | /// let tz = TimeZone::get("America/New_York")?; |
1641 | | /// |
1642 | | /// // A timestamp in DST in New York. |
1643 | | /// let ts = Timestamp::from_second(1_720_493_204)?; |
1644 | | /// let info = tz.to_offset_info(ts); |
1645 | | /// assert_eq!(info.offset(), tz::offset(-4)); |
1646 | | /// assert_eq!(info.dst(), Dst::Yes); |
1647 | | /// assert_eq!(info.abbreviation(), "EDT"); |
1648 | | /// assert_eq!( |
1649 | | /// info.offset().to_datetime(ts).to_string(), |
1650 | | /// "2024-07-08T22:46:44", |
1651 | | /// ); |
1652 | | /// |
1653 | | /// // A timestamp *not* in DST in New York. |
1654 | | /// let ts = Timestamp::from_second(1_704_941_204)?; |
1655 | | /// let info = tz.to_offset_info(ts); |
1656 | | /// assert_eq!(info.offset(), tz::offset(-5)); |
1657 | | /// assert_eq!(info.dst(), Dst::No); |
1658 | | /// assert_eq!(info.abbreviation(), "EST"); |
1659 | | /// assert_eq!( |
1660 | | /// info.offset().to_datetime(ts).to_string(), |
1661 | | /// "2024-01-10T21:46:44", |
1662 | | /// ); |
1663 | | /// |
1664 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1665 | | /// ``` |
1666 | | /// |
1667 | | /// [`icu`]: https://docs.rs/icu |
1668 | | /// [`jiff-icu`]: https://docs.rs/jiff-icu |
1669 | | #[derive(Clone, Debug, Eq, Hash, PartialEq)] |
1670 | | pub struct TimeZoneOffsetInfo<'t> { |
1671 | | pub(crate) offset: Offset, |
1672 | | pub(crate) dst: Dst, |
1673 | | pub(crate) abbreviation: TimeZoneAbbreviation<'t>, |
1674 | | } |
1675 | | |
1676 | | impl<'t> TimeZoneOffsetInfo<'t> { |
1677 | | /// Returns the offset. |
1678 | | /// |
1679 | | /// The offset is duration, from UTC, that should be used to offset the |
1680 | | /// civil time in a particular location. |
1681 | | /// |
1682 | | /// # Example |
1683 | | /// |
1684 | | /// ``` |
1685 | | /// use jiff::{civil, tz::{TimeZone, offset}}; |
1686 | | /// |
1687 | | /// let tz = TimeZone::get("US/Eastern")?; |
1688 | | /// // Get the offset for 2023-03-10 00:00:00. |
1689 | | /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp(); |
1690 | | /// let info = tz.to_offset_info(start); |
1691 | | /// assert_eq!(info.offset(), offset(-5)); |
1692 | | /// // Go forward a day and notice the offset changes due to DST! |
1693 | | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
1694 | | /// let info = tz.to_offset_info(start); |
1695 | | /// assert_eq!(info.offset(), offset(-4)); |
1696 | | /// |
1697 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1698 | | /// ``` |
1699 | | #[inline] |
1700 | 0 | pub fn offset(&self) -> Offset { |
1701 | 0 | self.offset |
1702 | 0 | } |
1703 | | |
1704 | | /// Returns the time zone abbreviation corresponding to this offset info. |
1705 | | /// |
1706 | | /// Note that abbreviations can to be ambiguous. For example, the |
1707 | | /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`, |
1708 | | /// `America/Chicago` and `America/Havana`. |
1709 | | /// |
1710 | | /// The lifetime of the string returned is tied to this |
1711 | | /// `TimeZoneOffsetInfo`, which may be shorter than `'t` (the lifetime of |
1712 | | /// the time zone this transition was created from). |
1713 | | /// |
1714 | | /// # Example |
1715 | | /// |
1716 | | /// ``` |
1717 | | /// use jiff::{civil, tz::TimeZone}; |
1718 | | /// |
1719 | | /// let tz = TimeZone::get("US/Eastern")?; |
1720 | | /// // Get the time zone abbreviation for 2023-03-10 00:00:00. |
1721 | | /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp(); |
1722 | | /// let info = tz.to_offset_info(start); |
1723 | | /// assert_eq!(info.abbreviation(), "EST"); |
1724 | | /// // Go forward a day and notice the abbreviation changes due to DST! |
1725 | | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
1726 | | /// let info = tz.to_offset_info(start); |
1727 | | /// assert_eq!(info.abbreviation(), "EDT"); |
1728 | | /// |
1729 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1730 | | /// ``` |
1731 | | #[inline] |
1732 | 0 | pub fn abbreviation(&self) -> &str { |
1733 | 0 | self.abbreviation.as_str() |
1734 | 0 | } |
1735 | | |
1736 | | /// Returns whether daylight saving time is enabled for this offset |
1737 | | /// info. |
1738 | | /// |
1739 | | /// Callers should generally treat this as informational only. In |
1740 | | /// particular, not all time zone transitions are related to daylight |
1741 | | /// saving time. For example, some transitions are a result of a region |
1742 | | /// permanently changing their offset from UTC. |
1743 | | /// |
1744 | | /// # Example |
1745 | | /// |
1746 | | /// ``` |
1747 | | /// use jiff::{civil, tz::{Dst, TimeZone}}; |
1748 | | /// |
1749 | | /// let tz = TimeZone::get("US/Eastern")?; |
1750 | | /// // Get the DST status of 2023-03-11 00:00:00. |
1751 | | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
1752 | | /// let info = tz.to_offset_info(start); |
1753 | | /// assert_eq!(info.dst(), Dst::Yes); |
1754 | | /// |
1755 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1756 | | /// ``` |
1757 | | #[inline] |
1758 | 0 | pub fn dst(&self) -> Dst { |
1759 | 0 | self.dst |
1760 | 0 | } |
1761 | | } |
1762 | | |
1763 | | /// An iterator over time zone transitions going backward in time. |
1764 | | /// |
1765 | | /// This iterator is created by [`TimeZone::preceding`]. |
1766 | | /// |
1767 | | /// # Example: show the 5 previous time zone transitions |
1768 | | /// |
1769 | | /// This shows how to find the 5 preceding time zone transitions (from a |
1770 | | /// particular datetime) for a particular time zone: |
1771 | | /// |
1772 | | /// ``` |
1773 | | /// use jiff::{tz::offset, Zoned}; |
1774 | | /// |
1775 | | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?; |
1776 | | /// let transitions = now |
1777 | | /// .time_zone() |
1778 | | /// .preceding(now.timestamp()) |
1779 | | /// .take(5) |
1780 | | /// .map(|t| ( |
1781 | | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1782 | | /// t.offset(), |
1783 | | /// t.abbreviation().to_string(), |
1784 | | /// )) |
1785 | | /// .collect::<Vec<_>>(); |
1786 | | /// assert_eq!(transitions, vec![ |
1787 | | /// ("2024-11-03 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1788 | | /// ("2024-03-10 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1789 | | /// ("2023-11-05 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1790 | | /// ("2023-03-12 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1791 | | /// ("2022-11-06 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1792 | | /// ]); |
1793 | | /// |
1794 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1795 | | /// ``` |
1796 | | #[derive(Clone, Debug)] |
1797 | | pub struct TimeZonePrecedingTransitions<'t> { |
1798 | | tz: &'t TimeZone, |
1799 | | cur: Timestamp, |
1800 | | } |
1801 | | |
1802 | | impl<'t> Iterator for TimeZonePrecedingTransitions<'t> { |
1803 | | type Item = TimeZoneTransition<'t>; |
1804 | | |
1805 | 0 | fn next(&mut self) -> Option<TimeZoneTransition<'t>> { |
1806 | 0 | let trans = self.tz.previous_transition(self.cur)?; |
1807 | 0 | self.cur = trans.timestamp(); |
1808 | 0 | Some(trans) |
1809 | 0 | } |
1810 | | } |
1811 | | |
1812 | | impl<'t> core::iter::FusedIterator for TimeZonePrecedingTransitions<'t> {} |
1813 | | |
1814 | | /// An iterator over time zone transitions going forward in time. |
1815 | | /// |
1816 | | /// This iterator is created by [`TimeZone::following`]. |
1817 | | /// |
1818 | | /// # Example: show the 5 next time zone transitions |
1819 | | /// |
1820 | | /// This shows how to find the 5 following time zone transitions (from a |
1821 | | /// particular datetime) for a particular time zone: |
1822 | | /// |
1823 | | /// ``` |
1824 | | /// use jiff::{tz::offset, Zoned}; |
1825 | | /// |
1826 | | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?; |
1827 | | /// let transitions = now |
1828 | | /// .time_zone() |
1829 | | /// .following(now.timestamp()) |
1830 | | /// .take(5) |
1831 | | /// .map(|t| ( |
1832 | | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1833 | | /// t.offset(), |
1834 | | /// t.abbreviation().to_string(), |
1835 | | /// )) |
1836 | | /// .collect::<Vec<_>>(); |
1837 | | /// assert_eq!(transitions, vec![ |
1838 | | /// ("2025-03-09 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1839 | | /// ("2025-11-02 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1840 | | /// ("2026-03-08 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1841 | | /// ("2026-11-01 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()), |
1842 | | /// ("2027-03-14 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()), |
1843 | | /// ]); |
1844 | | /// |
1845 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1846 | | /// ``` |
1847 | | #[derive(Clone, Debug)] |
1848 | | pub struct TimeZoneFollowingTransitions<'t> { |
1849 | | tz: &'t TimeZone, |
1850 | | cur: Timestamp, |
1851 | | } |
1852 | | |
1853 | | impl<'t> Iterator for TimeZoneFollowingTransitions<'t> { |
1854 | | type Item = TimeZoneTransition<'t>; |
1855 | | |
1856 | 0 | fn next(&mut self) -> Option<TimeZoneTransition<'t>> { |
1857 | 0 | let trans = self.tz.next_transition(self.cur)?; |
1858 | 0 | self.cur = trans.timestamp(); |
1859 | 0 | Some(trans) |
1860 | 0 | } |
1861 | | } |
1862 | | |
1863 | | impl<'t> core::iter::FusedIterator for TimeZoneFollowingTransitions<'t> {} |
1864 | | |
1865 | | /// A helper type for converting a `TimeZone` to a succinct human readable |
1866 | | /// description. |
1867 | | /// |
1868 | | /// This is principally used in error messages in various places. |
1869 | | /// |
1870 | | /// A previous iteration of this was just an `as_str() -> &str` method on |
1871 | | /// `TimeZone`, but that's difficult to do without relying on dynamic memory |
1872 | | /// allocation (or chunky arrays). |
1873 | | pub(crate) struct DiagnosticName<'a>(&'a TimeZone); |
1874 | | |
1875 | | impl<'a> core::fmt::Display for DiagnosticName<'a> { |
1876 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1877 | 0 | repr::each! { |
1878 | 0 | &self.0.repr, |
1879 | 0 | UTC => write!(f, "UTC"), |
1880 | 0 | UNKNOWN => write!(f, "Etc/Unknown"), |
1881 | 0 | FIXED(offset) => write!(f, "{offset}"), |
1882 | 0 | STATIC_TZIF(tzif) => write!(f, "{}", tzif.name().unwrap_or("Local")), |
1883 | 0 | ARC_TZIF(tzif) => write!(f, "{}", tzif.name().unwrap_or("Local")), |
1884 | 0 | ARC_POSIX(posix) => write!(f, "{posix}"), |
1885 | | } |
1886 | 0 | } |
1887 | | } |
1888 | | |
1889 | | /// A light abstraction over different representations of a time zone |
1890 | | /// abbreviation. |
1891 | | /// |
1892 | | /// The lifetime parameter `'t` corresponds to the lifetime of the time zone |
1893 | | /// that produced this abbreviation. |
1894 | | #[derive(Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)] |
1895 | | pub(crate) enum TimeZoneAbbreviation<'t> { |
1896 | | /// For when the abbreviation is borrowed directly from other data. For |
1897 | | /// example, from TZif or from POSIX TZ strings. |
1898 | | Borrowed(&'t str), |
1899 | | /// For when the abbreviation has to be derived from other data. For |
1900 | | /// example, from a fixed offset. |
1901 | | /// |
1902 | | /// The idea here is that a `TimeZone` shouldn't need to store the |
1903 | | /// string representation of a fixed offset. Particularly in core-only |
1904 | | /// environments, this is quite wasteful. So we make the string on-demand |
1905 | | /// only when it's requested. |
1906 | | /// |
1907 | | /// An alternative design is to just implement `Display` and reuse |
1908 | | /// `Offset`'s `Display` impl, but then we couldn't offer a `-> &str` API. |
1909 | | /// I feel like that's just a bit overkill, and really just comes from the |
1910 | | /// core-only straight-jacket. |
1911 | | Owned(ArrayStr<9>), |
1912 | | } |
1913 | | |
1914 | | impl<'t> TimeZoneAbbreviation<'t> { |
1915 | | /// Returns this abbreviation as a string borrowed from `self`. |
1916 | | /// |
1917 | | /// Notice that, like `Cow`, the lifetime of the string returned is |
1918 | | /// tied to `self` and thus may be shorter than `'t`. |
1919 | 0 | fn as_str<'a>(&'a self) -> &'a str { |
1920 | 0 | match *self { |
1921 | 0 | TimeZoneAbbreviation::Borrowed(s) => s, |
1922 | 0 | TimeZoneAbbreviation::Owned(ref s) => s.as_str(), |
1923 | | } |
1924 | 0 | } |
1925 | | } |
1926 | | |
1927 | | /// This module defines the internal representation of a `TimeZone`. |
1928 | | /// |
1929 | | /// This module exists to _encapsulate_ the representation rigorously and |
1930 | | /// expose a safe and sound API. |
1931 | | mod repr { |
1932 | | use core::mem::ManuallyDrop; |
1933 | | |
1934 | | use crate::{ |
1935 | | tz::tzif::TzifStatic, |
1936 | | util::{constant::unwrap, t}, |
1937 | | }; |
1938 | | #[cfg(feature = "alloc")] |
1939 | | use crate::{ |
1940 | | tz::{posix::PosixTimeZoneOwned, tzif::TzifOwned}, |
1941 | | util::sync::Arc, |
1942 | | }; |
1943 | | |
1944 | | use super::Offset; |
1945 | | |
1946 | | // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used. |
1947 | | #[allow(unused_imports)] |
1948 | | use self::polyfill::{without_provenance, StrictProvenancePolyfill}; |
1949 | | |
1950 | | /// A macro for "matching" over the time zone representation variants. |
1951 | | /// |
1952 | | /// This macro is safe to use. |
1953 | | /// |
1954 | | /// Note that the `ARC_TZIF` and `ARC_POSIX` branches are automatically |
1955 | | /// removed when `alloc` isn't enabled. Users of this macro needn't handle |
1956 | | /// the `cfg` themselves. |
1957 | | macro_rules! each { |
1958 | | ( |
1959 | | $repr:expr, |
1960 | | UTC => $utc:expr, |
1961 | | UNKNOWN => $unknown:expr, |
1962 | | FIXED($offset:ident) => $fixed:expr, |
1963 | | STATIC_TZIF($static_tzif:ident) => $static_tzif_block:expr, |
1964 | | ARC_TZIF($arc_tzif:ident) => $arc_tzif_block:expr, |
1965 | | ARC_POSIX($arc_posix:ident) => $arc_posix_block:expr, |
1966 | | ) => {{ |
1967 | | let repr = $repr; |
1968 | | match repr.tag() { |
1969 | | Repr::UTC => $utc, |
1970 | | Repr::UNKNOWN => $unknown, |
1971 | | Repr::FIXED => { |
1972 | | // SAFETY: We've ensured our pointer tag is correct. |
1973 | | let $offset = unsafe { repr.get_fixed() }; |
1974 | | $fixed |
1975 | | } |
1976 | | Repr::STATIC_TZIF => { |
1977 | | // SAFETY: We've ensured our pointer tag is correct. |
1978 | | let $static_tzif = unsafe { repr.get_static_tzif() }; |
1979 | | $static_tzif_block |
1980 | | } |
1981 | | #[cfg(feature = "alloc")] |
1982 | | Repr::ARC_TZIF => { |
1983 | | // SAFETY: We've ensured our pointer tag is correct. |
1984 | | let $arc_tzif = unsafe { repr.get_arc_tzif() }; |
1985 | | $arc_tzif_block |
1986 | | } |
1987 | | #[cfg(feature = "alloc")] |
1988 | | Repr::ARC_POSIX => { |
1989 | | // SAFETY: We've ensured our pointer tag is correct. |
1990 | | let $arc_posix = unsafe { repr.get_arc_posix() }; |
1991 | | $arc_posix_block |
1992 | | } |
1993 | | _ => { |
1994 | | debug_assert!(false, "each: invalid time zone repr tag!"); |
1995 | | // SAFETY: The constructors for `Repr` guarantee that the |
1996 | | // tag is always one of the values matched above. |
1997 | | unsafe { |
1998 | | core::hint::unreachable_unchecked(); |
1999 | | } |
2000 | | } |
2001 | | } |
2002 | | }}; |
2003 | | } |
2004 | | pub(super) use each; |
2005 | | |
2006 | | /// The internal representation of a `TimeZone`. |
2007 | | /// |
2008 | | /// It has 6 different possible variants: `UTC`, `Etc/Unknown`, fixed |
2009 | | /// offset, `static` TZif, `Arc` TZif or `Arc` POSIX time zone. |
2010 | | /// |
2011 | | /// This design uses pointer tagging so that: |
2012 | | /// |
2013 | | /// * The size of a `TimeZone` stays no bigger than a single word. |
2014 | | /// * In core-only environments, a `TimeZone` can be created from |
2015 | | /// compile-time TZif data without allocating. |
2016 | | /// * UTC, unknown and fixed offset time zone does not require allocating. |
2017 | | /// * We can still alloc for TZif and POSIX time zones created at runtime. |
2018 | | /// (Allocating for TZif at runtime is the intended common case, and |
2019 | | /// corresponds to reading `/usr/share/zoneinfo` entries.) |
2020 | | /// |
2021 | | /// We achieve this through pointer tagging and careful use of a strict |
2022 | | /// provenance polyfill (because of MSRV). We use the lower 4 bits of a |
2023 | | /// pointer to indicate which variant we have. This is sound because we |
2024 | | /// require all types that we allocate for to have a minimum alignment of |
2025 | | /// 8 bytes. |
2026 | | pub(super) struct Repr { |
2027 | | ptr: *const u8, |
2028 | | } |
2029 | | |
2030 | | impl Repr { |
2031 | | const BITS: usize = 0b111; |
2032 | | pub(super) const UTC: usize = 1; |
2033 | | pub(super) const UNKNOWN: usize = 2; |
2034 | | pub(super) const FIXED: usize = 3; |
2035 | | pub(super) const STATIC_TZIF: usize = 0; |
2036 | | pub(super) const ARC_TZIF: usize = 4; |
2037 | | pub(super) const ARC_POSIX: usize = 5; |
2038 | | |
2039 | | // The minimum alignment required for any heap allocated time zone |
2040 | | // variants. This is related to the number of tags. We have 6 distinct |
2041 | | // values above, which means we need an alignment of at least 6. Since |
2042 | | // alignment must be a power of 2, the smallest possible alignment |
2043 | | // is 8. |
2044 | | const ALIGN: usize = 8; |
2045 | | |
2046 | | /// Creates a representation for a `UTC` time zone. |
2047 | | #[inline] |
2048 | 0 | pub(super) const fn utc() -> Repr { |
2049 | 0 | let ptr = without_provenance(Repr::UTC); |
2050 | 0 | Repr { ptr } |
2051 | 0 | } |
2052 | | |
2053 | | /// Creates a representation for a `Etc/Unknown` time zone. |
2054 | | #[inline] |
2055 | 0 | pub(super) const fn unknown() -> Repr { |
2056 | 0 | let ptr = without_provenance(Repr::UNKNOWN); |
2057 | 0 | Repr { ptr } |
2058 | 0 | } |
2059 | | |
2060 | | /// Creates a representation for a fixed offset time zone. |
2061 | | #[inline] |
2062 | 0 | pub(super) const fn fixed(offset: Offset) -> Repr { |
2063 | 0 | let seconds = offset.seconds_ranged().get_unchecked(); |
2064 | | // OK because offset is in -93599..=93599. |
2065 | 0 | let shifted = unwrap!( |
2066 | 0 | seconds.checked_shl(4), |
2067 | 0 | "offset small enough for left shift by 4 bits", |
2068 | | ); |
2069 | 0 | assert!(usize::MAX >= 4_294_967_295); |
2070 | | // usize cast is okay because Jiff requires 32-bit. |
2071 | 0 | let ptr = without_provenance((shifted as usize) | Repr::FIXED); |
2072 | 0 | Repr { ptr } |
2073 | 0 | } |
2074 | | |
2075 | | /// Creates a representation for a created-at-compile-time TZif time |
2076 | | /// zone. |
2077 | | /// |
2078 | | /// This can only be correctly called by the `jiff-static` proc macro. |
2079 | | #[inline] |
2080 | 0 | pub(super) const fn static_tzif(tzif: &'static TzifStatic) -> Repr { |
2081 | 0 | assert!(core::mem::align_of::<TzifStatic>() >= Repr::ALIGN); |
2082 | 0 | let tzif = (tzif as *const TzifStatic).cast::<u8>(); |
2083 | 0 | // We very specifically do no materialize the pointer address here |
2084 | 0 | // because 1) it's UB and 2) the compiler generally prevents. This |
2085 | 0 | // is because in a const context, the specific pointer address |
2086 | 0 | // cannot be relied upon. Yet, we still want to do pointer tagging. |
2087 | 0 | // |
2088 | 0 | // Thankfully, this is the only variant that is a pointer that |
2089 | 0 | // we want to create in a const context. So we just make this |
2090 | 0 | // variant's tag `0`, and thus, no explicit pointer tagging is |
2091 | 0 | // required. (Becuase we ensure the alignment is at least 4, and |
2092 | 0 | // thus the least significant 3 bits are 0.) |
2093 | 0 | // |
2094 | 0 | // If this ends up not working out or if we need to support |
2095 | 0 | // another `static` variant, then we could perhaps to pointer |
2096 | 0 | // tagging with pointer arithmetic (like what the `tagged-pointer` |
2097 | 0 | // crate does). I haven't tried it though and I'm unclear if it |
2098 | 0 | // work. |
2099 | 0 | Repr { ptr: tzif } |
2100 | 0 | } |
2101 | | |
2102 | | /// Creates a representation for a TZif time zone. |
2103 | | #[cfg(feature = "alloc")] |
2104 | | #[inline] |
2105 | 0 | pub(super) fn arc_tzif(tzif: Arc<TzifOwned>) -> Repr { |
2106 | 0 | assert!(core::mem::align_of::<TzifOwned>() >= Repr::ALIGN); |
2107 | 0 | let tzif = Arc::into_raw(tzif).cast::<u8>(); |
2108 | 0 | assert!(tzif.addr() % 4 == 0); |
2109 | 0 | let ptr = tzif.map_addr(|addr| addr | Repr::ARC_TZIF); |
2110 | 0 | Repr { ptr } |
2111 | 0 | } |
2112 | | |
2113 | | /// Creates a representation for a POSIX time zone. |
2114 | | #[cfg(feature = "alloc")] |
2115 | | #[inline] |
2116 | 0 | pub(super) fn arc_posix(posix_tz: Arc<PosixTimeZoneOwned>) -> Repr { |
2117 | 0 | assert!( |
2118 | 0 | core::mem::align_of::<PosixTimeZoneOwned>() >= Repr::ALIGN |
2119 | 0 | ); |
2120 | 0 | let posix_tz = Arc::into_raw(posix_tz).cast::<u8>(); |
2121 | 0 | assert!(posix_tz.addr() % 4 == 0); |
2122 | 0 | let ptr = posix_tz.map_addr(|addr| addr | Repr::ARC_POSIX); |
2123 | 0 | Repr { ptr } |
2124 | 0 | } |
2125 | | |
2126 | | /// Gets the offset representation. |
2127 | | /// |
2128 | | /// # Safety |
2129 | | /// |
2130 | | /// Callers must ensure that the pointer tag is `FIXED`. |
2131 | | #[inline] |
2132 | 0 | pub(super) unsafe fn get_fixed(&self) -> Offset { |
2133 | 0 | #[allow(unstable_name_collisions)] |
2134 | 0 | let addr = self.ptr.addr(); |
2135 | 0 | // NOTE: Because of sign extension, we need to case to `i32` |
2136 | 0 | // before shifting. |
2137 | 0 | let seconds = t::SpanZoneOffset::new_unchecked((addr as i32) >> 4); |
2138 | 0 | Offset::from_seconds_ranged(seconds) |
2139 | 0 | } |
2140 | | |
2141 | | /// Returns true if and only if this representation corresponds to the |
2142 | | /// `Etc/Unknown` time zone. |
2143 | | #[inline] |
2144 | 0 | pub(super) fn is_unknown(&self) -> bool { |
2145 | 0 | self.tag() == Repr::UNKNOWN |
2146 | 0 | } |
2147 | | |
2148 | | /// Gets the static TZif representation. |
2149 | | /// |
2150 | | /// # Safety |
2151 | | /// |
2152 | | /// Callers must ensure that the pointer tag is `STATIC_TZIF`. |
2153 | | #[inline] |
2154 | 0 | pub(super) unsafe fn get_static_tzif(&self) -> &'static TzifStatic { |
2155 | 0 | #[allow(unstable_name_collisions)] |
2156 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2157 | 0 | // SAFETY: Getting a `STATIC_TZIF` tag is only possible when |
2158 | 0 | // `self.ptr` was constructed from a valid and aligned (to at least |
2159 | 0 | // 4 bytes) `&TzifStatic` borrow. Which must be guaranteed by the |
2160 | 0 | // caller. We've also removed the tag bits above, so we must now |
2161 | 0 | // have the original pointer. |
2162 | 0 | unsafe { &*ptr.cast::<TzifStatic>() } |
2163 | 0 | } |
2164 | | |
2165 | | /// Gets the `Arc` TZif representation. |
2166 | | /// |
2167 | | /// # Safety |
2168 | | /// |
2169 | | /// Callers must ensure that the pointer tag is `ARC_TZIF`. |
2170 | | #[cfg(feature = "alloc")] |
2171 | | #[inline] |
2172 | 0 | pub(super) unsafe fn get_arc_tzif<'a>(&'a self) -> &'a TzifOwned { |
2173 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2174 | 0 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
2175 | 0 | // `self.ptr` was constructed from a valid and aligned |
2176 | 0 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
2177 | 0 | // the tag bits above, so we must now have the original |
2178 | 0 | // pointer. |
2179 | 0 | let arc = ManuallyDrop::new(unsafe { |
2180 | 0 | Arc::from_raw(ptr.cast::<TzifOwned>()) |
2181 | 0 | }); |
2182 | 0 | // SAFETY: The lifetime of the pointer returned is always |
2183 | 0 | // valid as long as the strong count on `arc` is at least |
2184 | 0 | // 1. Since the lifetime is no longer than `Repr` itself, |
2185 | 0 | // and a `Repr` being alive implies there is at least 1 |
2186 | 0 | // for the strong `Arc` count, it follows that the lifetime |
2187 | 0 | // returned here is correct. |
2188 | 0 | unsafe { &*Arc::as_ptr(&arc) } |
2189 | 0 | } |
2190 | | |
2191 | | /// Gets the `Arc` POSIX time zone representation. |
2192 | | /// |
2193 | | /// # Safety |
2194 | | /// |
2195 | | /// Callers must ensure that the pointer tag is `ARC_POSIX`. |
2196 | | #[cfg(feature = "alloc")] |
2197 | | #[inline] |
2198 | 0 | pub(super) unsafe fn get_arc_posix<'a>( |
2199 | 0 | &'a self, |
2200 | 0 | ) -> &'a PosixTimeZoneOwned { |
2201 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2202 | 0 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
2203 | 0 | // `self.ptr` was constructed from a valid and aligned (to at least |
2204 | 0 | // 4 bytes) `Arc<PosixTimeZoneOwned>`. We've removed the tag |
2205 | 0 | // bits above, so we must now have the original pointer. |
2206 | 0 | let arc = ManuallyDrop::new(unsafe { |
2207 | 0 | Arc::from_raw(ptr.cast::<PosixTimeZoneOwned>()) |
2208 | 0 | }); |
2209 | 0 | // SAFETY: The lifetime of the pointer returned is always |
2210 | 0 | // valid as long as the strong count on `arc` is at least |
2211 | 0 | // 1. Since the lifetime is no longer than `Repr` itself, |
2212 | 0 | // and a `Repr` being alive implies there is at least 1 |
2213 | 0 | // for the strong `Arc` count, it follows that the lifetime |
2214 | 0 | // returned here is correct. |
2215 | 0 | unsafe { &*Arc::as_ptr(&arc) } |
2216 | 0 | } |
2217 | | |
2218 | | /// Returns the tag on the representation's pointer. |
2219 | | /// |
2220 | | /// The value is guaranteed to be one of the constant tag values. |
2221 | | #[inline] |
2222 | 0 | pub(super) fn tag(&self) -> usize { |
2223 | 0 | #[allow(unstable_name_collisions)] |
2224 | 0 | { |
2225 | 0 | self.ptr.addr() & Repr::BITS |
2226 | 0 | } |
2227 | 0 | } |
2228 | | |
2229 | | /// Returns a dumb copy of this representation. |
2230 | | /// |
2231 | | /// # Safety |
2232 | | /// |
2233 | | /// Callers must ensure that this representation's tag is UTC, |
2234 | | /// UNKNOWN, FIXED or STATIC_TZIF. |
2235 | | /// |
2236 | | /// Namely, this specifically does not increment the ref count for |
2237 | | /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`. |
2238 | | /// This means that incorrect usage of this routine can lead to |
2239 | | /// use-after-free. |
2240 | | /// |
2241 | | /// NOTE: It would be nice if we could make this `copy` routine safe, |
2242 | | /// or at least panic if it's misused. But to do that, you need to know |
2243 | | /// the time zone variant. And to know the time zone variant, you need |
2244 | | /// to "look" at the tag in the pointer. And looking at the address of |
2245 | | /// a pointer in a `const` context is precarious. |
2246 | | #[inline] |
2247 | 0 | pub(super) const unsafe fn copy(&self) -> Repr { |
2248 | 0 | Repr { ptr: self.ptr } |
2249 | 0 | } |
2250 | | } |
2251 | | |
2252 | | // SAFETY: We use automic reference counting. |
2253 | | unsafe impl Send for Repr {} |
2254 | | // SAFETY: We don't use an interior mutability and otherwise don't permit |
2255 | | // any kind of mutation (other than for an `Arc` managing its ref counts) |
2256 | | // of a `Repr`. |
2257 | | unsafe impl Sync for Repr {} |
2258 | | |
2259 | | impl core::fmt::Debug for Repr { |
2260 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2261 | 0 | each! { |
2262 | 0 | self, |
2263 | 0 | UTC => write!(f, "UTC"), |
2264 | 0 | UNKNOWN => write!(f, "Etc/Unknown"), |
2265 | 0 | FIXED(offset) => write!(f, "{offset:?}"), |
2266 | | STATIC_TZIF(tzif) => { |
2267 | | // The full debug output is a bit much, so constrain it. |
2268 | 0 | let field = tzif.name().unwrap_or("Local"); |
2269 | 0 | f.debug_tuple("TZif").field(&field).finish() |
2270 | | }, |
2271 | | ARC_TZIF(tzif) => { |
2272 | | // The full debug output is a bit much, so constrain it. |
2273 | 0 | let field = tzif.name().unwrap_or("Local"); |
2274 | 0 | f.debug_tuple("TZif").field(&field).finish() |
2275 | | }, |
2276 | 0 | ARC_POSIX(posix) => write!(f, "Posix({posix})"), |
2277 | | } |
2278 | 0 | } |
2279 | | } |
2280 | | |
2281 | | impl Clone for Repr { |
2282 | | #[inline] |
2283 | 0 | fn clone(&self) -> Repr { |
2284 | 0 | // This `match` is written in an exhaustive fashion so that if |
2285 | 0 | // a new tag is added, it should be explicitly considered here. |
2286 | 0 | match self.tag() { |
2287 | | // These are all `Copy` and can just be memcpy'd as-is. |
2288 | | Repr::UTC |
2289 | | | Repr::UNKNOWN |
2290 | | | Repr::FIXED |
2291 | 0 | | Repr::STATIC_TZIF => Repr { ptr: self.ptr }, |
2292 | | #[cfg(feature = "alloc")] |
2293 | | Repr::ARC_TZIF => { |
2294 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2295 | 0 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
2296 | 0 | // `self.ptr` was constructed from a valid and aligned |
2297 | 0 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
2298 | 0 | // the tag bits above, so we must now have the original |
2299 | 0 | // pointer. |
2300 | 0 | unsafe { |
2301 | 0 | Arc::increment_strong_count(ptr.cast::<TzifOwned>()); |
2302 | 0 | } |
2303 | 0 | Repr { ptr: self.ptr } |
2304 | | } |
2305 | | #[cfg(feature = "alloc")] |
2306 | | Repr::ARC_POSIX => { |
2307 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2308 | 0 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
2309 | 0 | // `self.ptr` was constructed from a valid and aligned (to |
2310 | 0 | // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've |
2311 | 0 | // removed the tag bits above, so we must now have the |
2312 | 0 | // original pointer. |
2313 | 0 | unsafe { |
2314 | 0 | Arc::increment_strong_count( |
2315 | 0 | ptr.cast::<PosixTimeZoneOwned>(), |
2316 | 0 | ); |
2317 | 0 | } |
2318 | 0 | Repr { ptr: self.ptr } |
2319 | | } |
2320 | | _ => { |
2321 | 0 | debug_assert!(false, "clone: invalid time zone repr tag!"); |
2322 | | // SAFETY: The constructors for `Repr` guarantee that the |
2323 | | // tag is always one of the values matched above. |
2324 | | unsafe { |
2325 | 0 | core::hint::unreachable_unchecked(); |
2326 | | } |
2327 | | } |
2328 | | } |
2329 | 0 | } |
2330 | | } |
2331 | | |
2332 | | impl Drop for Repr { |
2333 | | #[inline] |
2334 | 0 | fn drop(&mut self) { |
2335 | 0 | // This `match` is written in an exhaustive fashion so that if |
2336 | 0 | // a new tag is added, it should be explicitly considered here. |
2337 | 0 | match self.tag() { |
2338 | | // These are all `Copy` and have no destructor. |
2339 | | Repr::UTC |
2340 | | | Repr::UNKNOWN |
2341 | | | Repr::FIXED |
2342 | 0 | | Repr::STATIC_TZIF => {} |
2343 | | #[cfg(feature = "alloc")] |
2344 | | Repr::ARC_TZIF => { |
2345 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2346 | 0 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
2347 | 0 | // `self.ptr` was constructed from a valid and aligned |
2348 | 0 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
2349 | 0 | // the tag bits above, so we must now have the original |
2350 | 0 | // pointer. |
2351 | 0 | unsafe { |
2352 | 0 | Arc::decrement_strong_count(ptr.cast::<TzifOwned>()); |
2353 | 0 | } |
2354 | | } |
2355 | | #[cfg(feature = "alloc")] |
2356 | | Repr::ARC_POSIX => { |
2357 | 0 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2358 | 0 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
2359 | 0 | // `self.ptr` was constructed from a valid and aligned (to |
2360 | 0 | // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've |
2361 | 0 | // removed the tag bits above, so we must now have the |
2362 | 0 | // original pointer. |
2363 | 0 | unsafe { |
2364 | 0 | Arc::decrement_strong_count( |
2365 | 0 | ptr.cast::<PosixTimeZoneOwned>(), |
2366 | 0 | ); |
2367 | 0 | } |
2368 | | } |
2369 | | _ => { |
2370 | 0 | debug_assert!(false, "drop: invalid time zone repr tag!"); |
2371 | | // SAFETY: The constructors for `Repr` guarantee that the |
2372 | | // tag is always one of the values matched above. |
2373 | | unsafe { |
2374 | 0 | core::hint::unreachable_unchecked(); |
2375 | | } |
2376 | | } |
2377 | | } |
2378 | 0 | } |
2379 | | } |
2380 | | |
2381 | | impl Eq for Repr {} |
2382 | | |
2383 | | impl PartialEq for Repr { |
2384 | 0 | fn eq(&self, other: &Repr) -> bool { |
2385 | 0 | if self.tag() != other.tag() { |
2386 | 0 | return false; |
2387 | 0 | } |
2388 | 0 | each! { |
2389 | 0 | self, |
2390 | 0 | UTC => true, |
2391 | 0 | UNKNOWN => true, |
2392 | | // SAFETY: OK, because we know the tags are equivalent and |
2393 | | // `self` has a `FIXED` tag. |
2394 | 0 | FIXED(offset) => offset == unsafe { other.get_fixed() }, |
2395 | | // SAFETY: OK, because we know the tags are equivalent and |
2396 | | // `self` has a `STATIC_TZIF` tag. |
2397 | 0 | STATIC_TZIF(tzif) => tzif == unsafe { other.get_static_tzif() }, |
2398 | | // SAFETY: OK, because we know the tags are equivalent and |
2399 | | // `self` has an `ARC_TZIF` tag. |
2400 | 0 | ARC_TZIF(tzif) => tzif == unsafe { other.get_arc_tzif() }, |
2401 | | // SAFETY: OK, because we know the tags are equivalent and |
2402 | | // `self` has an `ARC_POSIX` tag. |
2403 | 0 | ARC_POSIX(posix) => posix == unsafe { other.get_arc_posix() }, |
2404 | | } |
2405 | 0 | } |
2406 | | } |
2407 | | |
2408 | | /// This is a polyfill for a small subset of std's strict provenance APIs. |
2409 | | /// |
2410 | | /// The strict provenance APIs in `core` were stabilized in Rust 1.84, |
2411 | | /// but it will likely be a while before Jiff can use them. (At time of |
2412 | | /// writing, 2025-02-24, Jiff's MSRV is Rust 1.70.) |
2413 | | /// |
2414 | | /// The `const` requirement is also why these are non-generic free |
2415 | | /// functions and not defined via an extension trait. It's also why we |
2416 | | /// don't have the useful `map_addr` routine (which is directly relevant to |
2417 | | /// our pointer tagging use case). |
2418 | | mod polyfill { |
2419 | 0 | pub(super) const fn without_provenance(addr: usize) -> *const u8 { |
2420 | 0 | // SAFETY: Every valid `usize` is also a valid pointer (but not |
2421 | 0 | // necessarily legal to dereference). |
2422 | 0 | // |
2423 | 0 | // MSRV(1.84): We *really* ought to be using |
2424 | 0 | // `core::ptr::without_provenance` here, but Jiff's MSRV prevents |
2425 | 0 | // us. |
2426 | 0 | unsafe { core::mem::transmute(addr) } |
2427 | 0 | } |
2428 | | |
2429 | | // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used. |
2430 | | #[allow(dead_code)] |
2431 | | pub(super) trait StrictProvenancePolyfill: |
2432 | | Sized + Clone + Copy |
2433 | | { |
2434 | | fn addr(&self) -> usize; |
2435 | | fn with_addr(&self, addr: usize) -> Self; |
2436 | 0 | fn map_addr(&self, map: impl FnOnce(usize) -> usize) -> Self { |
2437 | 0 | self.with_addr(map(self.addr())) |
2438 | 0 | } Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr>::get_arc_tzif::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr>::get_arc_posix::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr>::get_static_tzif::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr>::arc_tzif::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr>::arc_posix::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr as core::clone::Clone>::clone::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr as core::clone::Clone>::clone::{closure#1}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr as core::ops::drop::Drop>::drop::{closure#0}> Unexecuted instantiation: <*const u8 as jiff::tz::timezone::repr::polyfill::StrictProvenancePolyfill>::map_addr::<<jiff::tz::timezone::repr::Repr as core::ops::drop::Drop>::drop::{closure#1}> |
2439 | | } |
2440 | | |
2441 | | impl StrictProvenancePolyfill for *const u8 { |
2442 | 0 | fn addr(&self) -> usize { |
2443 | 0 | // SAFETY: Pointer-to-integer transmutes are valid (if you are |
2444 | 0 | // okay with losing the provenance). |
2445 | 0 | // |
2446 | 0 | // The implementation in std says that this isn't guaranteed to |
2447 | 0 | // be sound outside of std, but I'm not sure how else to do it. |
2448 | 0 | // In practice, this seems likely fine? |
2449 | 0 | unsafe { core::mem::transmute(self.cast::<()>()) } |
2450 | 0 | } |
2451 | | |
2452 | 0 | fn with_addr(&self, address: usize) -> Self { |
2453 | 0 | let self_addr = self.addr() as isize; |
2454 | 0 | let dest_addr = address as isize; |
2455 | 0 | let offset = dest_addr.wrapping_sub(self_addr); |
2456 | 0 | self.wrapping_offset(offset) |
2457 | 0 | } |
2458 | | } |
2459 | | } |
2460 | | } |
2461 | | |
2462 | | #[cfg(test)] |
2463 | | mod tests { |
2464 | | #[cfg(feature = "alloc")] |
2465 | | use crate::tz::testdata::TzifTestFile; |
2466 | | use crate::{civil::date, tz::offset}; |
2467 | | |
2468 | | use super::*; |
2469 | | |
2470 | | fn unambiguous(offset_hours: i8) -> AmbiguousOffset { |
2471 | | let offset = offset(offset_hours); |
2472 | | o_unambiguous(offset) |
2473 | | } |
2474 | | |
2475 | | fn gap( |
2476 | | earlier_offset_hours: i8, |
2477 | | later_offset_hours: i8, |
2478 | | ) -> AmbiguousOffset { |
2479 | | let earlier = offset(earlier_offset_hours); |
2480 | | let later = offset(later_offset_hours); |
2481 | | o_gap(earlier, later) |
2482 | | } |
2483 | | |
2484 | | fn fold( |
2485 | | earlier_offset_hours: i8, |
2486 | | later_offset_hours: i8, |
2487 | | ) -> AmbiguousOffset { |
2488 | | let earlier = offset(earlier_offset_hours); |
2489 | | let later = offset(later_offset_hours); |
2490 | | o_fold(earlier, later) |
2491 | | } |
2492 | | |
2493 | | fn o_unambiguous(offset: Offset) -> AmbiguousOffset { |
2494 | | AmbiguousOffset::Unambiguous { offset } |
2495 | | } |
2496 | | |
2497 | | fn o_gap(earlier: Offset, later: Offset) -> AmbiguousOffset { |
2498 | | AmbiguousOffset::Gap { before: earlier, after: later } |
2499 | | } |
2500 | | |
2501 | | fn o_fold(earlier: Offset, later: Offset) -> AmbiguousOffset { |
2502 | | AmbiguousOffset::Fold { before: earlier, after: later } |
2503 | | } |
2504 | | |
2505 | | #[cfg(feature = "alloc")] |
2506 | | #[test] |
2507 | | fn time_zone_tzif_to_ambiguous_timestamp() { |
2508 | | let tests: &[(&str, &[_])] = &[ |
2509 | | ( |
2510 | | "America/New_York", |
2511 | | &[ |
2512 | | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
2513 | | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
2514 | | ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)), |
2515 | | ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)), |
2516 | | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)), |
2517 | | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)), |
2518 | | ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)), |
2519 | | ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)), |
2520 | | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
2521 | | ], |
2522 | | ), |
2523 | | ( |
2524 | | "Europe/Dublin", |
2525 | | &[ |
2526 | | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(1)), |
2527 | | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
2528 | | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)), |
2529 | | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)), |
2530 | | ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)), |
2531 | | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)), |
2532 | | ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)), |
2533 | | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)), |
2534 | | ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)), |
2535 | | ], |
2536 | | ), |
2537 | | ( |
2538 | | "Australia/Tasmania", |
2539 | | &[ |
2540 | | ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)), |
2541 | | ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)), |
2542 | | ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)), |
2543 | | ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)), |
2544 | | ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)), |
2545 | | ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)), |
2546 | | ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)), |
2547 | | ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)), |
2548 | | ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)), |
2549 | | ], |
2550 | | ), |
2551 | | ( |
2552 | | "Antarctica/Troll", |
2553 | | &[ |
2554 | | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
2555 | | // test the gap |
2556 | | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
2557 | | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)), |
2558 | | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)), |
2559 | | // still in the gap! |
2560 | | ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)), |
2561 | | ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)), |
2562 | | // finally out |
2563 | | ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)), |
2564 | | // test the fold |
2565 | | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)), |
2566 | | ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)), |
2567 | | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)), |
2568 | | // still in the fold! |
2569 | | ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)), |
2570 | | ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)), |
2571 | | // finally out |
2572 | | ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)), |
2573 | | ], |
2574 | | ), |
2575 | | ( |
2576 | | "America/St_Johns", |
2577 | | &[ |
2578 | | ( |
2579 | | (1969, 12, 31, 20, 30, 0, 0), |
2580 | | o_unambiguous(-Offset::hms(3, 30, 0)), |
2581 | | ), |
2582 | | ( |
2583 | | (2024, 3, 10, 1, 59, 59, 999_999_999), |
2584 | | o_unambiguous(-Offset::hms(3, 30, 0)), |
2585 | | ), |
2586 | | ( |
2587 | | (2024, 3, 10, 2, 0, 0, 0), |
2588 | | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
2589 | | ), |
2590 | | ( |
2591 | | (2024, 3, 10, 2, 59, 59, 999_999_999), |
2592 | | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
2593 | | ), |
2594 | | ( |
2595 | | (2024, 3, 10, 3, 0, 0, 0), |
2596 | | o_unambiguous(-Offset::hms(2, 30, 0)), |
2597 | | ), |
2598 | | ( |
2599 | | (2024, 11, 3, 0, 59, 59, 999_999_999), |
2600 | | o_unambiguous(-Offset::hms(2, 30, 0)), |
2601 | | ), |
2602 | | ( |
2603 | | (2024, 11, 3, 1, 0, 0, 0), |
2604 | | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
2605 | | ), |
2606 | | ( |
2607 | | (2024, 11, 3, 1, 59, 59, 999_999_999), |
2608 | | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
2609 | | ), |
2610 | | ( |
2611 | | (2024, 11, 3, 2, 0, 0, 0), |
2612 | | o_unambiguous(-Offset::hms(3, 30, 0)), |
2613 | | ), |
2614 | | ], |
2615 | | ), |
2616 | | // This time zone has an interesting transition where it jumps |
2617 | | // backwards a full day at 1867-10-19T15:30:00. |
2618 | | ( |
2619 | | "America/Sitka", |
2620 | | &[ |
2621 | | ((1969, 12, 31, 16, 0, 0, 0), unambiguous(-8)), |
2622 | | ( |
2623 | | (-9999, 1, 2, 16, 58, 46, 0), |
2624 | | o_unambiguous(Offset::hms(14, 58, 47)), |
2625 | | ), |
2626 | | ( |
2627 | | (1867, 10, 18, 15, 29, 59, 0), |
2628 | | o_unambiguous(Offset::hms(14, 58, 47)), |
2629 | | ), |
2630 | | ( |
2631 | | (1867, 10, 18, 15, 30, 0, 0), |
2632 | | // A fold of 24 hours!!! |
2633 | | o_fold( |
2634 | | Offset::hms(14, 58, 47), |
2635 | | -Offset::hms(9, 1, 13), |
2636 | | ), |
2637 | | ), |
2638 | | ( |
2639 | | (1867, 10, 19, 15, 29, 59, 999_999_999), |
2640 | | // Still in the fold... |
2641 | | o_fold( |
2642 | | Offset::hms(14, 58, 47), |
2643 | | -Offset::hms(9, 1, 13), |
2644 | | ), |
2645 | | ), |
2646 | | ( |
2647 | | (1867, 10, 19, 15, 30, 0, 0), |
2648 | | // Finally out. |
2649 | | o_unambiguous(-Offset::hms(9, 1, 13)), |
2650 | | ), |
2651 | | ], |
2652 | | ), |
2653 | | // As with to_datetime, we test every possible transition |
2654 | | // point here since this time zone has a small number of them. |
2655 | | ( |
2656 | | "Pacific/Honolulu", |
2657 | | &[ |
2658 | | ( |
2659 | | (1896, 1, 13, 11, 59, 59, 0), |
2660 | | o_unambiguous(-Offset::hms(10, 31, 26)), |
2661 | | ), |
2662 | | ( |
2663 | | (1896, 1, 13, 12, 0, 0, 0), |
2664 | | o_gap( |
2665 | | -Offset::hms(10, 31, 26), |
2666 | | -Offset::hms(10, 30, 0), |
2667 | | ), |
2668 | | ), |
2669 | | ( |
2670 | | (1896, 1, 13, 12, 1, 25, 0), |
2671 | | o_gap( |
2672 | | -Offset::hms(10, 31, 26), |
2673 | | -Offset::hms(10, 30, 0), |
2674 | | ), |
2675 | | ), |
2676 | | ( |
2677 | | (1896, 1, 13, 12, 1, 26, 0), |
2678 | | o_unambiguous(-Offset::hms(10, 30, 0)), |
2679 | | ), |
2680 | | ( |
2681 | | (1933, 4, 30, 1, 59, 59, 0), |
2682 | | o_unambiguous(-Offset::hms(10, 30, 0)), |
2683 | | ), |
2684 | | ( |
2685 | | (1933, 4, 30, 2, 0, 0, 0), |
2686 | | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2687 | | ), |
2688 | | ( |
2689 | | (1933, 4, 30, 2, 59, 59, 0), |
2690 | | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2691 | | ), |
2692 | | ( |
2693 | | (1933, 4, 30, 3, 0, 0, 0), |
2694 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2695 | | ), |
2696 | | ( |
2697 | | (1933, 5, 21, 10, 59, 59, 0), |
2698 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2699 | | ), |
2700 | | ( |
2701 | | (1933, 5, 21, 11, 0, 0, 0), |
2702 | | o_fold( |
2703 | | -Offset::hms(9, 30, 0), |
2704 | | -Offset::hms(10, 30, 0), |
2705 | | ), |
2706 | | ), |
2707 | | ( |
2708 | | (1933, 5, 21, 11, 59, 59, 0), |
2709 | | o_fold( |
2710 | | -Offset::hms(9, 30, 0), |
2711 | | -Offset::hms(10, 30, 0), |
2712 | | ), |
2713 | | ), |
2714 | | ( |
2715 | | (1933, 5, 21, 12, 0, 0, 0), |
2716 | | o_unambiguous(-Offset::hms(10, 30, 0)), |
2717 | | ), |
2718 | | ( |
2719 | | (1942, 2, 9, 1, 59, 59, 0), |
2720 | | o_unambiguous(-Offset::hms(10, 30, 0)), |
2721 | | ), |
2722 | | ( |
2723 | | (1942, 2, 9, 2, 0, 0, 0), |
2724 | | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2725 | | ), |
2726 | | ( |
2727 | | (1942, 2, 9, 2, 59, 59, 0), |
2728 | | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2729 | | ), |
2730 | | ( |
2731 | | (1942, 2, 9, 3, 0, 0, 0), |
2732 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2733 | | ), |
2734 | | ( |
2735 | | (1945, 8, 14, 13, 29, 59, 0), |
2736 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2737 | | ), |
2738 | | ( |
2739 | | (1945, 8, 14, 13, 30, 0, 0), |
2740 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2741 | | ), |
2742 | | ( |
2743 | | (1945, 8, 14, 13, 30, 1, 0), |
2744 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2745 | | ), |
2746 | | ( |
2747 | | (1945, 9, 30, 0, 59, 59, 0), |
2748 | | o_unambiguous(-Offset::hms(9, 30, 0)), |
2749 | | ), |
2750 | | ( |
2751 | | (1945, 9, 30, 1, 0, 0, 0), |
2752 | | o_fold( |
2753 | | -Offset::hms(9, 30, 0), |
2754 | | -Offset::hms(10, 30, 0), |
2755 | | ), |
2756 | | ), |
2757 | | ( |
2758 | | (1945, 9, 30, 1, 59, 59, 0), |
2759 | | o_fold( |
2760 | | -Offset::hms(9, 30, 0), |
2761 | | -Offset::hms(10, 30, 0), |
2762 | | ), |
2763 | | ), |
2764 | | ( |
2765 | | (1945, 9, 30, 2, 0, 0, 0), |
2766 | | o_unambiguous(-Offset::hms(10, 30, 0)), |
2767 | | ), |
2768 | | ( |
2769 | | (1947, 6, 8, 1, 59, 59, 0), |
2770 | | o_unambiguous(-Offset::hms(10, 30, 0)), |
2771 | | ), |
2772 | | ( |
2773 | | (1947, 6, 8, 2, 0, 0, 0), |
2774 | | o_gap(-Offset::hms(10, 30, 0), -offset(10)), |
2775 | | ), |
2776 | | ( |
2777 | | (1947, 6, 8, 2, 29, 59, 0), |
2778 | | o_gap(-Offset::hms(10, 30, 0), -offset(10)), |
2779 | | ), |
2780 | | ((1947, 6, 8, 2, 30, 0, 0), unambiguous(-10)), |
2781 | | ], |
2782 | | ), |
2783 | | ]; |
2784 | | for &(tzname, datetimes_to_ambiguous) in tests { |
2785 | | let test_file = TzifTestFile::get(tzname); |
2786 | | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
2787 | | for &(datetime, ambiguous_kind) in datetimes_to_ambiguous { |
2788 | | let (year, month, day, hour, min, sec, nano) = datetime; |
2789 | | let dt = date(year, month, day).at(hour, min, sec, nano); |
2790 | | let got = tz.to_ambiguous_zoned(dt); |
2791 | | assert_eq!( |
2792 | | got.offset(), |
2793 | | ambiguous_kind, |
2794 | | "\nTZ: {tzname}\ndatetime: \ |
2795 | | {year:04}-{month:02}-{day:02}T\ |
2796 | | {hour:02}:{min:02}:{sec:02}.{nano:09}", |
2797 | | ); |
2798 | | } |
2799 | | } |
2800 | | } |
2801 | | |
2802 | | #[cfg(feature = "alloc")] |
2803 | | #[test] |
2804 | | fn time_zone_tzif_to_datetime() { |
2805 | | let o = |hours| offset(hours); |
2806 | | let tests: &[(&str, &[_])] = &[ |
2807 | | ( |
2808 | | "America/New_York", |
2809 | | &[ |
2810 | | ((0, 0), o(-5), "EST", (1969, 12, 31, 19, 0, 0, 0)), |
2811 | | ( |
2812 | | (1710052200, 0), |
2813 | | o(-5), |
2814 | | "EST", |
2815 | | (2024, 3, 10, 1, 30, 0, 0), |
2816 | | ), |
2817 | | ( |
2818 | | (1710053999, 999_999_999), |
2819 | | o(-5), |
2820 | | "EST", |
2821 | | (2024, 3, 10, 1, 59, 59, 999_999_999), |
2822 | | ), |
2823 | | ((1710054000, 0), o(-4), "EDT", (2024, 3, 10, 3, 0, 0, 0)), |
2824 | | ( |
2825 | | (1710055800, 0), |
2826 | | o(-4), |
2827 | | "EDT", |
2828 | | (2024, 3, 10, 3, 30, 0, 0), |
2829 | | ), |
2830 | | ((1730610000, 0), o(-4), "EDT", (2024, 11, 3, 1, 0, 0, 0)), |
2831 | | ( |
2832 | | (1730611800, 0), |
2833 | | o(-4), |
2834 | | "EDT", |
2835 | | (2024, 11, 3, 1, 30, 0, 0), |
2836 | | ), |
2837 | | ( |
2838 | | (1730613599, 999_999_999), |
2839 | | o(-4), |
2840 | | "EDT", |
2841 | | (2024, 11, 3, 1, 59, 59, 999_999_999), |
2842 | | ), |
2843 | | ((1730613600, 0), o(-5), "EST", (2024, 11, 3, 1, 0, 0, 0)), |
2844 | | ( |
2845 | | (1730615400, 0), |
2846 | | o(-5), |
2847 | | "EST", |
2848 | | (2024, 11, 3, 1, 30, 0, 0), |
2849 | | ), |
2850 | | ], |
2851 | | ), |
2852 | | ( |
2853 | | "Australia/Tasmania", |
2854 | | &[ |
2855 | | ((0, 0), o(11), "AEDT", (1970, 1, 1, 11, 0, 0, 0)), |
2856 | | ( |
2857 | | (1728142200, 0), |
2858 | | o(10), |
2859 | | "AEST", |
2860 | | (2024, 10, 6, 1, 30, 0, 0), |
2861 | | ), |
2862 | | ( |
2863 | | (1728143999, 999_999_999), |
2864 | | o(10), |
2865 | | "AEST", |
2866 | | (2024, 10, 6, 1, 59, 59, 999_999_999), |
2867 | | ), |
2868 | | ( |
2869 | | (1728144000, 0), |
2870 | | o(11), |
2871 | | "AEDT", |
2872 | | (2024, 10, 6, 3, 0, 0, 0), |
2873 | | ), |
2874 | | ( |
2875 | | (1728145800, 0), |
2876 | | o(11), |
2877 | | "AEDT", |
2878 | | (2024, 10, 6, 3, 30, 0, 0), |
2879 | | ), |
2880 | | ((1712415600, 0), o(11), "AEDT", (2024, 4, 7, 2, 0, 0, 0)), |
2881 | | ( |
2882 | | (1712417400, 0), |
2883 | | o(11), |
2884 | | "AEDT", |
2885 | | (2024, 4, 7, 2, 30, 0, 0), |
2886 | | ), |
2887 | | ( |
2888 | | (1712419199, 999_999_999), |
2889 | | o(11), |
2890 | | "AEDT", |
2891 | | (2024, 4, 7, 2, 59, 59, 999_999_999), |
2892 | | ), |
2893 | | ((1712419200, 0), o(10), "AEST", (2024, 4, 7, 2, 0, 0, 0)), |
2894 | | ( |
2895 | | (1712421000, 0), |
2896 | | o(10), |
2897 | | "AEST", |
2898 | | (2024, 4, 7, 2, 30, 0, 0), |
2899 | | ), |
2900 | | ], |
2901 | | ), |
2902 | | // Pacific/Honolulu is small eough that we just test every |
2903 | | // possible instant before, at and after each transition. |
2904 | | ( |
2905 | | "Pacific/Honolulu", |
2906 | | &[ |
2907 | | ( |
2908 | | (-2334101315, 0), |
2909 | | -Offset::hms(10, 31, 26), |
2910 | | "LMT", |
2911 | | (1896, 1, 13, 11, 59, 59, 0), |
2912 | | ), |
2913 | | ( |
2914 | | (-2334101314, 0), |
2915 | | -Offset::hms(10, 30, 0), |
2916 | | "HST", |
2917 | | (1896, 1, 13, 12, 1, 26, 0), |
2918 | | ), |
2919 | | ( |
2920 | | (-2334101313, 0), |
2921 | | -Offset::hms(10, 30, 0), |
2922 | | "HST", |
2923 | | (1896, 1, 13, 12, 1, 27, 0), |
2924 | | ), |
2925 | | ( |
2926 | | (-1157283001, 0), |
2927 | | -Offset::hms(10, 30, 0), |
2928 | | "HST", |
2929 | | (1933, 4, 30, 1, 59, 59, 0), |
2930 | | ), |
2931 | | ( |
2932 | | (-1157283000, 0), |
2933 | | -Offset::hms(9, 30, 0), |
2934 | | "HDT", |
2935 | | (1933, 4, 30, 3, 0, 0, 0), |
2936 | | ), |
2937 | | ( |
2938 | | (-1157282999, 0), |
2939 | | -Offset::hms(9, 30, 0), |
2940 | | "HDT", |
2941 | | (1933, 4, 30, 3, 0, 1, 0), |
2942 | | ), |
2943 | | ( |
2944 | | (-1155436201, 0), |
2945 | | -Offset::hms(9, 30, 0), |
2946 | | "HDT", |
2947 | | (1933, 5, 21, 11, 59, 59, 0), |
2948 | | ), |
2949 | | ( |
2950 | | (-1155436200, 0), |
2951 | | -Offset::hms(10, 30, 0), |
2952 | | "HST", |
2953 | | (1933, 5, 21, 11, 0, 0, 0), |
2954 | | ), |
2955 | | ( |
2956 | | (-1155436199, 0), |
2957 | | -Offset::hms(10, 30, 0), |
2958 | | "HST", |
2959 | | (1933, 5, 21, 11, 0, 1, 0), |
2960 | | ), |
2961 | | ( |
2962 | | (-880198201, 0), |
2963 | | -Offset::hms(10, 30, 0), |
2964 | | "HST", |
2965 | | (1942, 2, 9, 1, 59, 59, 0), |
2966 | | ), |
2967 | | ( |
2968 | | (-880198200, 0), |
2969 | | -Offset::hms(9, 30, 0), |
2970 | | "HWT", |
2971 | | (1942, 2, 9, 3, 0, 0, 0), |
2972 | | ), |
2973 | | ( |
2974 | | (-880198199, 0), |
2975 | | -Offset::hms(9, 30, 0), |
2976 | | "HWT", |
2977 | | (1942, 2, 9, 3, 0, 1, 0), |
2978 | | ), |
2979 | | ( |
2980 | | (-769395601, 0), |
2981 | | -Offset::hms(9, 30, 0), |
2982 | | "HWT", |
2983 | | (1945, 8, 14, 13, 29, 59, 0), |
2984 | | ), |
2985 | | ( |
2986 | | (-769395600, 0), |
2987 | | -Offset::hms(9, 30, 0), |
2988 | | "HPT", |
2989 | | (1945, 8, 14, 13, 30, 0, 0), |
2990 | | ), |
2991 | | ( |
2992 | | (-769395599, 0), |
2993 | | -Offset::hms(9, 30, 0), |
2994 | | "HPT", |
2995 | | (1945, 8, 14, 13, 30, 1, 0), |
2996 | | ), |
2997 | | ( |
2998 | | (-765376201, 0), |
2999 | | -Offset::hms(9, 30, 0), |
3000 | | "HPT", |
3001 | | (1945, 9, 30, 1, 59, 59, 0), |
3002 | | ), |
3003 | | ( |
3004 | | (-765376200, 0), |
3005 | | -Offset::hms(10, 30, 0), |
3006 | | "HST", |
3007 | | (1945, 9, 30, 1, 0, 0, 0), |
3008 | | ), |
3009 | | ( |
3010 | | (-765376199, 0), |
3011 | | -Offset::hms(10, 30, 0), |
3012 | | "HST", |
3013 | | (1945, 9, 30, 1, 0, 1, 0), |
3014 | | ), |
3015 | | ( |
3016 | | (-712150201, 0), |
3017 | | -Offset::hms(10, 30, 0), |
3018 | | "HST", |
3019 | | (1947, 6, 8, 1, 59, 59, 0), |
3020 | | ), |
3021 | | // At this point, we hit the last transition and the POSIX |
3022 | | // TZ string takes over. |
3023 | | ( |
3024 | | (-712150200, 0), |
3025 | | -Offset::hms(10, 0, 0), |
3026 | | "HST", |
3027 | | (1947, 6, 8, 2, 30, 0, 0), |
3028 | | ), |
3029 | | ( |
3030 | | (-712150199, 0), |
3031 | | -Offset::hms(10, 0, 0), |
3032 | | "HST", |
3033 | | (1947, 6, 8, 2, 30, 1, 0), |
3034 | | ), |
3035 | | ], |
3036 | | ), |
3037 | | // This time zone has an interesting transition where it jumps |
3038 | | // backwards a full day at 1867-10-19T15:30:00. |
3039 | | ( |
3040 | | "America/Sitka", |
3041 | | &[ |
3042 | | ((0, 0), o(-8), "PST", (1969, 12, 31, 16, 0, 0, 0)), |
3043 | | ( |
3044 | | (-377705023201, 0), |
3045 | | Offset::hms(14, 58, 47), |
3046 | | "LMT", |
3047 | | (-9999, 1, 2, 16, 58, 46, 0), |
3048 | | ), |
3049 | | ( |
3050 | | (-3225223728, 0), |
3051 | | Offset::hms(14, 58, 47), |
3052 | | "LMT", |
3053 | | (1867, 10, 19, 15, 29, 59, 0), |
3054 | | ), |
3055 | | // Notice the 24 hour time jump backwards a whole day! |
3056 | | ( |
3057 | | (-3225223727, 0), |
3058 | | -Offset::hms(9, 1, 13), |
3059 | | "LMT", |
3060 | | (1867, 10, 18, 15, 30, 0, 0), |
3061 | | ), |
3062 | | ( |
3063 | | (-3225223726, 0), |
3064 | | -Offset::hms(9, 1, 13), |
3065 | | "LMT", |
3066 | | (1867, 10, 18, 15, 30, 1, 0), |
3067 | | ), |
3068 | | ], |
3069 | | ), |
3070 | | ]; |
3071 | | for &(tzname, timestamps_to_datetimes) in tests { |
3072 | | let test_file = TzifTestFile::get(tzname); |
3073 | | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3074 | | for &((unix_sec, unix_nano), offset, abbrev, datetime) in |
3075 | | timestamps_to_datetimes |
3076 | | { |
3077 | | let (year, month, day, hour, min, sec, nano) = datetime; |
3078 | | let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap(); |
3079 | | let info = tz.to_offset_info(timestamp); |
3080 | | assert_eq!( |
3081 | | info.offset(), |
3082 | | offset, |
3083 | | "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})", |
3084 | | ); |
3085 | | assert_eq!( |
3086 | | info.abbreviation(), |
3087 | | abbrev, |
3088 | | "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})", |
3089 | | ); |
3090 | | assert_eq!( |
3091 | | info.offset().to_datetime(timestamp), |
3092 | | date(year, month, day).at(hour, min, sec, nano), |
3093 | | "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})", |
3094 | | ); |
3095 | | } |
3096 | | } |
3097 | | } |
3098 | | |
3099 | | #[cfg(feature = "alloc")] |
3100 | | #[test] |
3101 | | fn time_zone_posix_to_ambiguous_timestamp() { |
3102 | | let tests: &[(&str, &[_])] = &[ |
3103 | | // America/New_York, but a utopia in which DST is abolished. |
3104 | | ( |
3105 | | "EST5", |
3106 | | &[ |
3107 | | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
3108 | | ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)), |
3109 | | ], |
3110 | | ), |
3111 | | // The standard DST rule for America/New_York. |
3112 | | ( |
3113 | | "EST5EDT,M3.2.0,M11.1.0", |
3114 | | &[ |
3115 | | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
3116 | | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
3117 | | ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)), |
3118 | | ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)), |
3119 | | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)), |
3120 | | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)), |
3121 | | ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)), |
3122 | | ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)), |
3123 | | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
3124 | | ], |
3125 | | ), |
3126 | | // A bit of a nonsensical America/New_York that has DST, but whose |
3127 | | // offset is equivalent to standard time. Having the same offset |
3128 | | // means there's never any ambiguity. |
3129 | | ( |
3130 | | "EST5EDT5,M3.2.0,M11.1.0", |
3131 | | &[ |
3132 | | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
3133 | | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
3134 | | ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)), |
3135 | | ((2024, 3, 10, 2, 59, 59, 999_999_999), unambiguous(-5)), |
3136 | | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-5)), |
3137 | | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-5)), |
3138 | | ((2024, 11, 3, 1, 0, 0, 0), unambiguous(-5)), |
3139 | | ((2024, 11, 3, 1, 59, 59, 999_999_999), unambiguous(-5)), |
3140 | | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
3141 | | ], |
3142 | | ), |
3143 | | // This is Europe/Dublin's rule. It's interesting because its |
3144 | | // DST is an offset behind standard time. (DST is usually one hour |
3145 | | // ahead of standard time.) |
3146 | | ( |
3147 | | "IST-1GMT0,M10.5.0,M3.5.0/1", |
3148 | | &[ |
3149 | | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
3150 | | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
3151 | | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)), |
3152 | | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)), |
3153 | | ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)), |
3154 | | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)), |
3155 | | ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)), |
3156 | | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)), |
3157 | | ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)), |
3158 | | ], |
3159 | | ), |
3160 | | // This is Australia/Tasmania's rule. We chose this because it's |
3161 | | // in the southern hemisphere where DST still skips ahead one hour, |
3162 | | // but it usually starts in the fall and ends in the spring. |
3163 | | ( |
3164 | | "AEST-10AEDT,M10.1.0,M4.1.0/3", |
3165 | | &[ |
3166 | | ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)), |
3167 | | ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)), |
3168 | | ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)), |
3169 | | ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)), |
3170 | | ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)), |
3171 | | ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)), |
3172 | | ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)), |
3173 | | ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)), |
3174 | | ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)), |
3175 | | ], |
3176 | | ), |
3177 | | // This is Antarctica/Troll's rule. We chose this one because its |
3178 | | // DST transition is 2 hours instead of the standard 1 hour. This |
3179 | | // means gaps and folds are twice as long as they usually are. And |
3180 | | // it means there are 22 hour and 26 hour days, respectively. Wow! |
3181 | | ( |
3182 | | "<+00>0<+02>-2,M3.5.0/1,M10.5.0/3", |
3183 | | &[ |
3184 | | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
3185 | | // test the gap |
3186 | | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
3187 | | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)), |
3188 | | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)), |
3189 | | // still in the gap! |
3190 | | ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)), |
3191 | | ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)), |
3192 | | // finally out |
3193 | | ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)), |
3194 | | // test the fold |
3195 | | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)), |
3196 | | ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)), |
3197 | | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)), |
3198 | | // still in the fold! |
3199 | | ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)), |
3200 | | ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)), |
3201 | | // finally out |
3202 | | ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)), |
3203 | | ], |
3204 | | ), |
3205 | | // This is America/St_Johns' rule, which has an offset with |
3206 | | // non-zero minutes *and* a DST transition rule. (Indian Standard |
3207 | | // Time is the one I'm more familiar with, but it turns out IST |
3208 | | // does not have DST!) |
3209 | | ( |
3210 | | "NST3:30NDT,M3.2.0,M11.1.0", |
3211 | | &[ |
3212 | | ( |
3213 | | (1969, 12, 31, 20, 30, 0, 0), |
3214 | | o_unambiguous(-Offset::hms(3, 30, 0)), |
3215 | | ), |
3216 | | ( |
3217 | | (2024, 3, 10, 1, 59, 59, 999_999_999), |
3218 | | o_unambiguous(-Offset::hms(3, 30, 0)), |
3219 | | ), |
3220 | | ( |
3221 | | (2024, 3, 10, 2, 0, 0, 0), |
3222 | | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
3223 | | ), |
3224 | | ( |
3225 | | (2024, 3, 10, 2, 59, 59, 999_999_999), |
3226 | | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
3227 | | ), |
3228 | | ( |
3229 | | (2024, 3, 10, 3, 0, 0, 0), |
3230 | | o_unambiguous(-Offset::hms(2, 30, 0)), |
3231 | | ), |
3232 | | ( |
3233 | | (2024, 11, 3, 0, 59, 59, 999_999_999), |
3234 | | o_unambiguous(-Offset::hms(2, 30, 0)), |
3235 | | ), |
3236 | | ( |
3237 | | (2024, 11, 3, 1, 0, 0, 0), |
3238 | | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
3239 | | ), |
3240 | | ( |
3241 | | (2024, 11, 3, 1, 59, 59, 999_999_999), |
3242 | | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
3243 | | ), |
3244 | | ( |
3245 | | (2024, 11, 3, 2, 0, 0, 0), |
3246 | | o_unambiguous(-Offset::hms(3, 30, 0)), |
3247 | | ), |
3248 | | ], |
3249 | | ), |
3250 | | ]; |
3251 | | for &(posix_tz, datetimes_to_ambiguous) in tests { |
3252 | | let tz = TimeZone::posix(posix_tz).unwrap(); |
3253 | | for &(datetime, ambiguous_kind) in datetimes_to_ambiguous { |
3254 | | let (year, month, day, hour, min, sec, nano) = datetime; |
3255 | | let dt = date(year, month, day).at(hour, min, sec, nano); |
3256 | | let got = tz.to_ambiguous_zoned(dt); |
3257 | | assert_eq!( |
3258 | | got.offset(), |
3259 | | ambiguous_kind, |
3260 | | "\nTZ: {posix_tz}\ndatetime: \ |
3261 | | {year:04}-{month:02}-{day:02}T\ |
3262 | | {hour:02}:{min:02}:{sec:02}.{nano:09}", |
3263 | | ); |
3264 | | } |
3265 | | } |
3266 | | } |
3267 | | |
3268 | | #[cfg(feature = "alloc")] |
3269 | | #[test] |
3270 | | fn time_zone_posix_to_datetime() { |
3271 | | let o = |hours| offset(hours); |
3272 | | let tests: &[(&str, &[_])] = &[ |
3273 | | ("EST5", &[((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0))]), |
3274 | | ( |
3275 | | // From America/New_York |
3276 | | "EST5EDT,M3.2.0,M11.1.0", |
3277 | | &[ |
3278 | | ((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0)), |
3279 | | ((1710052200, 0), o(-5), (2024, 3, 10, 1, 30, 0, 0)), |
3280 | | ( |
3281 | | (1710053999, 999_999_999), |
3282 | | o(-5), |
3283 | | (2024, 3, 10, 1, 59, 59, 999_999_999), |
3284 | | ), |
3285 | | ((1710054000, 0), o(-4), (2024, 3, 10, 3, 0, 0, 0)), |
3286 | | ((1710055800, 0), o(-4), (2024, 3, 10, 3, 30, 0, 0)), |
3287 | | ((1730610000, 0), o(-4), (2024, 11, 3, 1, 0, 0, 0)), |
3288 | | ((1730611800, 0), o(-4), (2024, 11, 3, 1, 30, 0, 0)), |
3289 | | ( |
3290 | | (1730613599, 999_999_999), |
3291 | | o(-4), |
3292 | | (2024, 11, 3, 1, 59, 59, 999_999_999), |
3293 | | ), |
3294 | | ((1730613600, 0), o(-5), (2024, 11, 3, 1, 0, 0, 0)), |
3295 | | ((1730615400, 0), o(-5), (2024, 11, 3, 1, 30, 0, 0)), |
3296 | | ], |
3297 | | ), |
3298 | | ( |
3299 | | // From Australia/Tasmania |
3300 | | // |
3301 | | // We chose this because it's a time zone in the southern |
3302 | | // hemisphere with DST. Unlike the northern hemisphere, its DST |
3303 | | // starts in the fall and ends in the spring. In the northern |
3304 | | // hemisphere, we typically start DST in the spring and end it |
3305 | | // in the fall. |
3306 | | "AEST-10AEDT,M10.1.0,M4.1.0/3", |
3307 | | &[ |
3308 | | ((0, 0), o(11), (1970, 1, 1, 11, 0, 0, 0)), |
3309 | | ((1728142200, 0), o(10), (2024, 10, 6, 1, 30, 0, 0)), |
3310 | | ( |
3311 | | (1728143999, 999_999_999), |
3312 | | o(10), |
3313 | | (2024, 10, 6, 1, 59, 59, 999_999_999), |
3314 | | ), |
3315 | | ((1728144000, 0), o(11), (2024, 10, 6, 3, 0, 0, 0)), |
3316 | | ((1728145800, 0), o(11), (2024, 10, 6, 3, 30, 0, 0)), |
3317 | | ((1712415600, 0), o(11), (2024, 4, 7, 2, 0, 0, 0)), |
3318 | | ((1712417400, 0), o(11), (2024, 4, 7, 2, 30, 0, 0)), |
3319 | | ( |
3320 | | (1712419199, 999_999_999), |
3321 | | o(11), |
3322 | | (2024, 4, 7, 2, 59, 59, 999_999_999), |
3323 | | ), |
3324 | | ((1712419200, 0), o(10), (2024, 4, 7, 2, 0, 0, 0)), |
3325 | | ((1712421000, 0), o(10), (2024, 4, 7, 2, 30, 0, 0)), |
3326 | | ], |
3327 | | ), |
3328 | | ( |
3329 | | // Uses the maximum possible offset. A sloppy read of POSIX |
3330 | | // seems to indicate the maximum offset is 24:59:59, but since |
3331 | | // DST defaults to 1 hour ahead of standard time, it's possible |
3332 | | // to use 24:59:59 for standard time, omit the DST offset, and |
3333 | | // thus get a DST offset of 25:59:59. |
3334 | | "XXX-24:59:59YYY,M3.2.0,M11.1.0", |
3335 | | &[ |
3336 | | // 2024-01-05T00:00:00+00 |
3337 | | ( |
3338 | | (1704412800, 0), |
3339 | | Offset::hms(24, 59, 59), |
3340 | | (2024, 1, 6, 0, 59, 59, 0), |
3341 | | ), |
3342 | | // 2024-06-05T00:00:00+00 (DST) |
3343 | | ( |
3344 | | (1717545600, 0), |
3345 | | Offset::hms(25, 59, 59), |
3346 | | (2024, 6, 6, 1, 59, 59, 0), |
3347 | | ), |
3348 | | ], |
3349 | | ), |
3350 | | ]; |
3351 | | for &(posix_tz, timestamps_to_datetimes) in tests { |
3352 | | let tz = TimeZone::posix(posix_tz).unwrap(); |
3353 | | for &((unix_sec, unix_nano), offset, datetime) in |
3354 | | timestamps_to_datetimes |
3355 | | { |
3356 | | let (year, month, day, hour, min, sec, nano) = datetime; |
3357 | | let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap(); |
3358 | | assert_eq!( |
3359 | | tz.to_offset(timestamp), |
3360 | | offset, |
3361 | | "\ntimestamp({unix_sec}, {unix_nano})", |
3362 | | ); |
3363 | | assert_eq!( |
3364 | | tz.to_datetime(timestamp), |
3365 | | date(year, month, day).at(hour, min, sec, nano), |
3366 | | "\ntimestamp({unix_sec}, {unix_nano})", |
3367 | | ); |
3368 | | } |
3369 | | } |
3370 | | } |
3371 | | |
3372 | | #[test] |
3373 | | fn time_zone_fixed_to_datetime() { |
3374 | | let tz = offset(-5).to_time_zone(); |
3375 | | let unix_epoch = Timestamp::new(0, 0).unwrap(); |
3376 | | assert_eq!( |
3377 | | tz.to_datetime(unix_epoch), |
3378 | | date(1969, 12, 31).at(19, 0, 0, 0), |
3379 | | ); |
3380 | | |
3381 | | let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
3382 | | let timestamp = Timestamp::new(253402207200, 999_999_999).unwrap(); |
3383 | | assert_eq!( |
3384 | | tz.to_datetime(timestamp), |
3385 | | date(9999, 12, 31).at(23, 59, 59, 999_999_999), |
3386 | | ); |
3387 | | |
3388 | | let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone(); |
3389 | | let timestamp = Timestamp::new(-377705023201, 0).unwrap(); |
3390 | | assert_eq!( |
3391 | | tz.to_datetime(timestamp), |
3392 | | date(-9999, 1, 1).at(0, 0, 0, 0), |
3393 | | ); |
3394 | | } |
3395 | | |
3396 | | #[test] |
3397 | | fn time_zone_fixed_to_timestamp() { |
3398 | | let tz = offset(-5).to_time_zone(); |
3399 | | let dt = date(1969, 12, 31).at(19, 0, 0, 0); |
3400 | | assert_eq!( |
3401 | | tz.to_zoned(dt).unwrap().timestamp(), |
3402 | | Timestamp::new(0, 0).unwrap() |
3403 | | ); |
3404 | | |
3405 | | let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
3406 | | let dt = date(9999, 12, 31).at(23, 59, 59, 999_999_999); |
3407 | | assert_eq!( |
3408 | | tz.to_zoned(dt).unwrap().timestamp(), |
3409 | | Timestamp::new(253402207200, 999_999_999).unwrap(), |
3410 | | ); |
3411 | | let tz = Offset::from_seconds(93_598).unwrap().to_time_zone(); |
3412 | | assert!(tz.to_zoned(dt).is_err()); |
3413 | | |
3414 | | let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone(); |
3415 | | let dt = date(-9999, 1, 1).at(0, 0, 0, 0); |
3416 | | assert_eq!( |
3417 | | tz.to_zoned(dt).unwrap().timestamp(), |
3418 | | Timestamp::new(-377705023201, 0).unwrap(), |
3419 | | ); |
3420 | | let tz = Offset::from_seconds(-93_598).unwrap().to_time_zone(); |
3421 | | assert!(tz.to_zoned(dt).is_err()); |
3422 | | } |
3423 | | |
3424 | | #[cfg(feature = "alloc")] |
3425 | | #[test] |
3426 | | fn time_zone_tzif_previous_transition() { |
3427 | | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3428 | | ( |
3429 | | "UTC", |
3430 | | &[ |
3431 | | ("1969-12-31T19Z", None), |
3432 | | ("2024-03-10T02Z", None), |
3433 | | ("-009999-12-01 00Z", None), |
3434 | | ("9999-12-01 00Z", None), |
3435 | | ], |
3436 | | ), |
3437 | | ( |
3438 | | "America/New_York", |
3439 | | &[ |
3440 | | ("2024-03-10 08Z", Some("2024-03-10 07Z")), |
3441 | | ("2024-03-10 07:00:00.000000001Z", Some("2024-03-10 07Z")), |
3442 | | ("2024-03-10 07Z", Some("2023-11-05 06Z")), |
3443 | | ("2023-11-05 06Z", Some("2023-03-12 07Z")), |
3444 | | ("-009999-01-31 00Z", None), |
3445 | | ("9999-12-01 00Z", Some("9999-11-07 06Z")), |
3446 | | // While at present we have "fat" TZif files for our |
3447 | | // testdata, it's conceivable they could be swapped to |
3448 | | // "slim." In which case, the tests above will mostly just |
3449 | | // be testing POSIX TZ strings and not the TZif logic. So |
3450 | | // below, we include times that will be in slim (i.e., |
3451 | | // historical times the precede the current DST rule). |
3452 | | ("1969-12-31 19Z", Some("1969-10-26 06Z")), |
3453 | | ("2000-04-02 08Z", Some("2000-04-02 07Z")), |
3454 | | ("2000-04-02 07:00:00.000000001Z", Some("2000-04-02 07Z")), |
3455 | | ("2000-04-02 07Z", Some("1999-10-31 06Z")), |
3456 | | ("1999-10-31 06Z", Some("1999-04-04 07Z")), |
3457 | | ], |
3458 | | ), |
3459 | | ( |
3460 | | "Australia/Tasmania", |
3461 | | &[ |
3462 | | ("2010-04-03 17Z", Some("2010-04-03 16Z")), |
3463 | | ("2010-04-03 16:00:00.000000001Z", Some("2010-04-03 16Z")), |
3464 | | ("2010-04-03 16Z", Some("2009-10-03 16Z")), |
3465 | | ("2009-10-03 16Z", Some("2009-04-04 16Z")), |
3466 | | ("-009999-01-31 00Z", None), |
3467 | | ("9999-12-01 00Z", Some("9999-10-02 16Z")), |
3468 | | // Tests for historical data from tzdb. No POSIX TZ. |
3469 | | ("2000-03-25 17Z", Some("2000-03-25 16Z")), |
3470 | | ("2000-03-25 16:00:00.000000001Z", Some("2000-03-25 16Z")), |
3471 | | ("2000-03-25 16Z", Some("1999-10-02 16Z")), |
3472 | | ("1999-10-02 16Z", Some("1999-03-27 16Z")), |
3473 | | ], |
3474 | | ), |
3475 | | // This is Europe/Dublin's rule. It's interesting because its |
3476 | | // DST is an offset behind standard time. (DST is usually one hour |
3477 | | // ahead of standard time.) |
3478 | | ( |
3479 | | "Europe/Dublin", |
3480 | | &[ |
3481 | | ("2010-03-28 02Z", Some("2010-03-28 01Z")), |
3482 | | ("2010-03-28 01:00:00.000000001Z", Some("2010-03-28 01Z")), |
3483 | | ("2010-03-28 01Z", Some("2009-10-25 01Z")), |
3484 | | ("2009-10-25 01Z", Some("2009-03-29 01Z")), |
3485 | | ("-009999-01-31 00Z", None), |
3486 | | ("9999-12-01 00Z", Some("9999-10-31 01Z")), |
3487 | | // Tests for historical data from tzdb. No POSIX TZ. |
3488 | | ("1990-03-25 02Z", Some("1990-03-25 01Z")), |
3489 | | ("1990-03-25 01:00:00.000000001Z", Some("1990-03-25 01Z")), |
3490 | | ("1990-03-25 01Z", Some("1989-10-29 01Z")), |
3491 | | ("1989-10-25 01Z", Some("1989-03-26 01Z")), |
3492 | | ], |
3493 | | ), |
3494 | | ]; |
3495 | | for &(tzname, prev_trans) in tests { |
3496 | | let test_file = TzifTestFile::get(tzname); |
3497 | | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3498 | | for (given, expected) in prev_trans { |
3499 | | let given: Timestamp = given.parse().unwrap(); |
3500 | | let expected = |
3501 | | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3502 | | let got = tz.previous_transition(given).map(|t| t.timestamp()); |
3503 | | assert_eq!(got, expected, "\nTZ: {tzname}\ngiven: {given}"); |
3504 | | } |
3505 | | } |
3506 | | } |
3507 | | |
3508 | | #[cfg(feature = "alloc")] |
3509 | | #[test] |
3510 | | fn time_zone_tzif_next_transition() { |
3511 | | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3512 | | ( |
3513 | | "UTC", |
3514 | | &[ |
3515 | | ("1969-12-31T19Z", None), |
3516 | | ("2024-03-10T02Z", None), |
3517 | | ("-009999-12-01 00Z", None), |
3518 | | ("9999-12-01 00Z", None), |
3519 | | ], |
3520 | | ), |
3521 | | ( |
3522 | | "America/New_York", |
3523 | | &[ |
3524 | | ("2024-03-10 06Z", Some("2024-03-10 07Z")), |
3525 | | ("2024-03-10 06:59:59.999999999Z", Some("2024-03-10 07Z")), |
3526 | | ("2024-03-10 07Z", Some("2024-11-03 06Z")), |
3527 | | ("2024-11-03 06Z", Some("2025-03-09 07Z")), |
3528 | | ("-009999-12-01 00Z", Some("1883-11-18 17Z")), |
3529 | | ("9999-12-01 00Z", None), |
3530 | | // While at present we have "fat" TZif files for our |
3531 | | // testdata, it's conceivable they could be swapped to |
3532 | | // "slim." In which case, the tests above will mostly just |
3533 | | // be testing POSIX TZ strings and not the TZif logic. So |
3534 | | // below, we include times that will be in slim (i.e., |
3535 | | // historical times the precede the current DST rule). |
3536 | | ("1969-12-31 19Z", Some("1970-04-26 07Z")), |
3537 | | ("2000-04-02 06Z", Some("2000-04-02 07Z")), |
3538 | | ("2000-04-02 06:59:59.999999999Z", Some("2000-04-02 07Z")), |
3539 | | ("2000-04-02 07Z", Some("2000-10-29 06Z")), |
3540 | | ("2000-10-29 06Z", Some("2001-04-01 07Z")), |
3541 | | ], |
3542 | | ), |
3543 | | ( |
3544 | | "Australia/Tasmania", |
3545 | | &[ |
3546 | | ("2010-04-03 15Z", Some("2010-04-03 16Z")), |
3547 | | ("2010-04-03 15:59:59.999999999Z", Some("2010-04-03 16Z")), |
3548 | | ("2010-04-03 16Z", Some("2010-10-02 16Z")), |
3549 | | ("2010-10-02 16Z", Some("2011-04-02 16Z")), |
3550 | | ("-009999-12-01 00Z", Some("1895-08-31 14:10:44Z")), |
3551 | | ("9999-12-01 00Z", None), |
3552 | | // Tests for historical data from tzdb. No POSIX TZ. |
3553 | | ("2000-03-25 15Z", Some("2000-03-25 16Z")), |
3554 | | ("2000-03-25 15:59:59.999999999Z", Some("2000-03-25 16Z")), |
3555 | | ("2000-03-25 16Z", Some("2000-08-26 16Z")), |
3556 | | ("2000-08-26 16Z", Some("2001-03-24 16Z")), |
3557 | | ], |
3558 | | ), |
3559 | | ( |
3560 | | "Europe/Dublin", |
3561 | | &[ |
3562 | | ("2010-03-28 00Z", Some("2010-03-28 01Z")), |
3563 | | ("2010-03-28 00:59:59.999999999Z", Some("2010-03-28 01Z")), |
3564 | | ("2010-03-28 01Z", Some("2010-10-31 01Z")), |
3565 | | ("2010-10-31 01Z", Some("2011-03-27 01Z")), |
3566 | | ("-009999-12-01 00Z", Some("1880-08-02 00:25:21Z")), |
3567 | | ("9999-12-01 00Z", None), |
3568 | | // Tests for historical data from tzdb. No POSIX TZ. |
3569 | | ("1990-03-25 00Z", Some("1990-03-25 01Z")), |
3570 | | ("1990-03-25 00:59:59.999999999Z", Some("1990-03-25 01Z")), |
3571 | | ("1990-03-25 01Z", Some("1990-10-28 01Z")), |
3572 | | ("1990-10-28 01Z", Some("1991-03-31 01Z")), |
3573 | | ], |
3574 | | ), |
3575 | | ]; |
3576 | | for &(tzname, next_trans) in tests { |
3577 | | let test_file = TzifTestFile::get(tzname); |
3578 | | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3579 | | for (given, expected) in next_trans { |
3580 | | let given: Timestamp = given.parse().unwrap(); |
3581 | | let expected = |
3582 | | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3583 | | let got = tz.next_transition(given).map(|t| t.timestamp()); |
3584 | | assert_eq!(got, expected, "\nTZ: {tzname}\ngiven: {given}"); |
3585 | | } |
3586 | | } |
3587 | | } |
3588 | | |
3589 | | #[cfg(feature = "alloc")] |
3590 | | #[test] |
3591 | | fn time_zone_posix_previous_transition() { |
3592 | | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3593 | | // America/New_York, but a utopia in which DST is abolished. There |
3594 | | // are no time zone transitions, so next_transition always returns |
3595 | | // None. |
3596 | | ( |
3597 | | "EST5", |
3598 | | &[ |
3599 | | ("1969-12-31T19Z", None), |
3600 | | ("2024-03-10T02Z", None), |
3601 | | ("-009999-12-01 00Z", None), |
3602 | | ("9999-12-01 00Z", None), |
3603 | | ], |
3604 | | ), |
3605 | | // The standard DST rule for America/New_York. |
3606 | | ( |
3607 | | "EST5EDT,M3.2.0,M11.1.0", |
3608 | | &[ |
3609 | | ("1969-12-31 19Z", Some("1969-11-02 06Z")), |
3610 | | ("2024-03-10 08Z", Some("2024-03-10 07Z")), |
3611 | | ("2024-03-10 07:00:00.000000001Z", Some("2024-03-10 07Z")), |
3612 | | ("2024-03-10 07Z", Some("2023-11-05 06Z")), |
3613 | | ("2023-11-05 06Z", Some("2023-03-12 07Z")), |
3614 | | ("-009999-01-31 00Z", None), |
3615 | | ("9999-12-01 00Z", Some("9999-11-07 06Z")), |
3616 | | ], |
3617 | | ), |
3618 | | ( |
3619 | | // From Australia/Tasmania |
3620 | | "AEST-10AEDT,M10.1.0,M4.1.0/3", |
3621 | | &[ |
3622 | | ("2010-04-03 17Z", Some("2010-04-03 16Z")), |
3623 | | ("2010-04-03 16:00:00.000000001Z", Some("2010-04-03 16Z")), |
3624 | | ("2010-04-03 16Z", Some("2009-10-03 16Z")), |
3625 | | ("2009-10-03 16Z", Some("2009-04-04 16Z")), |
3626 | | ("-009999-01-31 00Z", None), |
3627 | | ("9999-12-01 00Z", Some("9999-10-02 16Z")), |
3628 | | ], |
3629 | | ), |
3630 | | // This is Europe/Dublin's rule. It's interesting because its |
3631 | | // DST is an offset behind standard time. (DST is usually one hour |
3632 | | // ahead of standard time.) |
3633 | | ( |
3634 | | "IST-1GMT0,M10.5.0,M3.5.0/1", |
3635 | | &[ |
3636 | | ("2010-03-28 02Z", Some("2010-03-28 01Z")), |
3637 | | ("2010-03-28 01:00:00.000000001Z", Some("2010-03-28 01Z")), |
3638 | | ("2010-03-28 01Z", Some("2009-10-25 01Z")), |
3639 | | ("2009-10-25 01Z", Some("2009-03-29 01Z")), |
3640 | | ("-009999-01-31 00Z", None), |
3641 | | ("9999-12-01 00Z", Some("9999-10-31 01Z")), |
3642 | | ], |
3643 | | ), |
3644 | | ]; |
3645 | | for &(posix_tz, prev_trans) in tests { |
3646 | | let tz = TimeZone::posix(posix_tz).unwrap(); |
3647 | | for (given, expected) in prev_trans { |
3648 | | let given: Timestamp = given.parse().unwrap(); |
3649 | | let expected = |
3650 | | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3651 | | let got = tz.previous_transition(given).map(|t| t.timestamp()); |
3652 | | assert_eq!(got, expected, "\nTZ: {posix_tz}\ngiven: {given}"); |
3653 | | } |
3654 | | } |
3655 | | } |
3656 | | |
3657 | | #[cfg(feature = "alloc")] |
3658 | | #[test] |
3659 | | fn time_zone_posix_next_transition() { |
3660 | | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3661 | | // America/New_York, but a utopia in which DST is abolished. There |
3662 | | // are no time zone transitions, so next_transition always returns |
3663 | | // None. |
3664 | | ( |
3665 | | "EST5", |
3666 | | &[ |
3667 | | ("1969-12-31T19Z", None), |
3668 | | ("2024-03-10T02Z", None), |
3669 | | ("-009999-12-01 00Z", None), |
3670 | | ("9999-12-01 00Z", None), |
3671 | | ], |
3672 | | ), |
3673 | | // The standard DST rule for America/New_York. |
3674 | | ( |
3675 | | "EST5EDT,M3.2.0,M11.1.0", |
3676 | | &[ |
3677 | | ("1969-12-31 19Z", Some("1970-03-08 07Z")), |
3678 | | ("2024-03-10 06Z", Some("2024-03-10 07Z")), |
3679 | | ("2024-03-10 06:59:59.999999999Z", Some("2024-03-10 07Z")), |
3680 | | ("2024-03-10 07Z", Some("2024-11-03 06Z")), |
3681 | | ("2024-11-03 06Z", Some("2025-03-09 07Z")), |
3682 | | ("-009999-12-01 00Z", Some("-009998-03-10 07Z")), |
3683 | | ("9999-12-01 00Z", None), |
3684 | | ], |
3685 | | ), |
3686 | | ( |
3687 | | // From Australia/Tasmania |
3688 | | "AEST-10AEDT,M10.1.0,M4.1.0/3", |
3689 | | &[ |
3690 | | ("2010-04-03 15Z", Some("2010-04-03 16Z")), |
3691 | | ("2010-04-03 15:59:59.999999999Z", Some("2010-04-03 16Z")), |
3692 | | ("2010-04-03 16Z", Some("2010-10-02 16Z")), |
3693 | | ("2010-10-02 16Z", Some("2011-04-02 16Z")), |
3694 | | ("-009999-12-01 00Z", Some("-009998-04-06 16Z")), |
3695 | | ("9999-12-01 00Z", None), |
3696 | | ], |
3697 | | ), |
3698 | | // This is Europe/Dublin's rule. It's interesting because its |
3699 | | // DST is an offset behind standard time. (DST is usually one hour |
3700 | | // ahead of standard time.) |
3701 | | ( |
3702 | | "IST-1GMT0,M10.5.0,M3.5.0/1", |
3703 | | &[ |
3704 | | ("2010-03-28 00Z", Some("2010-03-28 01Z")), |
3705 | | ("2010-03-28 00:59:59.999999999Z", Some("2010-03-28 01Z")), |
3706 | | ("2010-03-28 01Z", Some("2010-10-31 01Z")), |
3707 | | ("2010-10-31 01Z", Some("2011-03-27 01Z")), |
3708 | | ("-009999-12-01 00Z", Some("-009998-03-31 01Z")), |
3709 | | ("9999-12-01 00Z", None), |
3710 | | ], |
3711 | | ), |
3712 | | ]; |
3713 | | for &(posix_tz, next_trans) in tests { |
3714 | | let tz = TimeZone::posix(posix_tz).unwrap(); |
3715 | | for (given, expected) in next_trans { |
3716 | | let given: Timestamp = given.parse().unwrap(); |
3717 | | let expected = |
3718 | | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3719 | | let got = tz.next_transition(given).map(|t| t.timestamp()); |
3720 | | assert_eq!(got, expected, "\nTZ: {posix_tz}\ngiven: {given}"); |
3721 | | } |
3722 | | } |
3723 | | } |
3724 | | |
3725 | | /// This tests that the size of a time zone is kept at a single word. |
3726 | | /// |
3727 | | /// This is important because every jiff::Zoned has a TimeZone inside of |
3728 | | /// it, and we want to keep its size as small as we can. |
3729 | | #[test] |
3730 | | fn time_zone_size() { |
3731 | | #[cfg(feature = "alloc")] |
3732 | | { |
3733 | | let word = core::mem::size_of::<usize>(); |
3734 | | assert_eq!(word, core::mem::size_of::<TimeZone>()); |
3735 | | } |
3736 | | #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))] |
3737 | | { |
3738 | | #[cfg(debug_assertions)] |
3739 | | { |
3740 | | assert_eq!(8, core::mem::size_of::<TimeZone>()); |
3741 | | } |
3742 | | #[cfg(not(debug_assertions))] |
3743 | | { |
3744 | | // This asserts the same value as the alloc value above, but |
3745 | | // it wasn't always this way, which is why it's written out |
3746 | | // separately. Moreover, in theory, I'd be open to regressing |
3747 | | // this value if it led to an improvement in alloc-mode. But |
3748 | | // more likely, it would be nice to decrease this size in |
3749 | | // non-alloc modes. |
3750 | | assert_eq!(8, core::mem::size_of::<TimeZone>()); |
3751 | | } |
3752 | | } |
3753 | | } |
3754 | | |
3755 | | /// This tests a few other cases for `TimeZone::to_offset` that |
3756 | | /// probably aren't worth showing in doctest examples. |
3757 | | #[test] |
3758 | | fn time_zone_to_offset() { |
3759 | | let ts = Timestamp::from_second(123456789).unwrap(); |
3760 | | |
3761 | | let tz = TimeZone::fixed(offset(-5)); |
3762 | | let info = tz.to_offset_info(ts); |
3763 | | assert_eq!(info.offset(), offset(-5)); |
3764 | | assert_eq!(info.dst(), Dst::No); |
3765 | | assert_eq!(info.abbreviation(), "-05"); |
3766 | | |
3767 | | let tz = TimeZone::fixed(offset(5)); |
3768 | | let info = tz.to_offset_info(ts); |
3769 | | assert_eq!(info.offset(), offset(5)); |
3770 | | assert_eq!(info.dst(), Dst::No); |
3771 | | assert_eq!(info.abbreviation(), "+05"); |
3772 | | |
3773 | | let tz = TimeZone::fixed(offset(-12)); |
3774 | | let info = tz.to_offset_info(ts); |
3775 | | assert_eq!(info.offset(), offset(-12)); |
3776 | | assert_eq!(info.dst(), Dst::No); |
3777 | | assert_eq!(info.abbreviation(), "-12"); |
3778 | | |
3779 | | let tz = TimeZone::fixed(offset(12)); |
3780 | | let info = tz.to_offset_info(ts); |
3781 | | assert_eq!(info.offset(), offset(12)); |
3782 | | assert_eq!(info.dst(), Dst::No); |
3783 | | assert_eq!(info.abbreviation(), "+12"); |
3784 | | |
3785 | | let tz = TimeZone::fixed(offset(0)); |
3786 | | let info = tz.to_offset_info(ts); |
3787 | | assert_eq!(info.offset(), offset(0)); |
3788 | | assert_eq!(info.dst(), Dst::No); |
3789 | | assert_eq!(info.abbreviation(), "UTC"); |
3790 | | } |
3791 | | |
3792 | | /// This tests a few other cases for `TimeZone::to_fixed_offset` that |
3793 | | /// probably aren't worth showing in doctest examples. |
3794 | | #[test] |
3795 | | fn time_zone_to_fixed_offset() { |
3796 | | let tz = TimeZone::UTC; |
3797 | | assert_eq!(tz.to_fixed_offset().unwrap(), Offset::UTC); |
3798 | | |
3799 | | let offset = Offset::from_hours(1).unwrap(); |
3800 | | let tz = TimeZone::fixed(offset); |
3801 | | assert_eq!(tz.to_fixed_offset().unwrap(), offset); |
3802 | | |
3803 | | #[cfg(feature = "alloc")] |
3804 | | { |
3805 | | let tz = TimeZone::posix("EST5").unwrap(); |
3806 | | assert!(tz.to_fixed_offset().is_err()); |
3807 | | |
3808 | | let test_file = TzifTestFile::get("America/New_York"); |
3809 | | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3810 | | assert!(tz.to_fixed_offset().is_err()); |
3811 | | } |
3812 | | } |
3813 | | } |