/rust/registry/src/index.crates.io-1949cf8c6b5b557f/regex-1.11.1/src/regexset/string.rs
Line | Count | Source |
1 | | use alloc::string::String; |
2 | | |
3 | | use regex_automata::{meta, Input, PatternID, PatternSet, PatternSetIter}; |
4 | | |
5 | | use crate::{Error, RegexSetBuilder}; |
6 | | |
7 | | /// Match multiple, possibly overlapping, regexes in a single search. |
8 | | /// |
9 | | /// A regex set corresponds to the union of zero or more regular expressions. |
10 | | /// That is, a regex set will match a haystack when at least one of its |
11 | | /// constituent regexes matches. A regex set as its formulated here provides a |
12 | | /// touch more power: it will also report *which* regular expressions in the |
13 | | /// set match. Indeed, this is the key difference between regex sets and a |
14 | | /// single `Regex` with many alternates, since only one alternate can match at |
15 | | /// a time. |
16 | | /// |
17 | | /// For example, consider regular expressions to match email addresses and |
18 | | /// domains: `[a-z]+@[a-z]+\.(com|org|net)` and `[a-z]+\.(com|org|net)`. If a |
19 | | /// regex set is constructed from those regexes, then searching the haystack |
20 | | /// `foo@example.com` will report both regexes as matching. Of course, one |
21 | | /// could accomplish this by compiling each regex on its own and doing two |
22 | | /// searches over the haystack. The key advantage of using a regex set is |
23 | | /// that it will report the matching regexes using a *single pass through the |
24 | | /// haystack*. If one has hundreds or thousands of regexes to match repeatedly |
25 | | /// (like a URL router for a complex web application or a user agent matcher), |
26 | | /// then a regex set *can* realize huge performance gains. |
27 | | /// |
28 | | /// # Limitations |
29 | | /// |
30 | | /// Regex sets are limited to answering the following two questions: |
31 | | /// |
32 | | /// 1. Does any regex in the set match? |
33 | | /// 2. If so, which regexes in the set match? |
34 | | /// |
35 | | /// As with the main [`Regex`][crate::Regex] type, it is cheaper to ask (1) |
36 | | /// instead of (2) since the matching engines can stop after the first match |
37 | | /// is found. |
38 | | /// |
39 | | /// You cannot directly extract [`Match`][crate::Match] or |
40 | | /// [`Captures`][crate::Captures] objects from a regex set. If you need these |
41 | | /// operations, the recommended approach is to compile each pattern in the set |
42 | | /// independently and scan the exact same haystack a second time with those |
43 | | /// independently compiled patterns: |
44 | | /// |
45 | | /// ``` |
46 | | /// use regex::{Regex, RegexSet}; |
47 | | /// |
48 | | /// let patterns = ["foo", "bar"]; |
49 | | /// // Both patterns will match different ranges of this string. |
50 | | /// let hay = "barfoo"; |
51 | | /// |
52 | | /// // Compile a set matching any of our patterns. |
53 | | /// let set = RegexSet::new(patterns).unwrap(); |
54 | | /// // Compile each pattern independently. |
55 | | /// let regexes: Vec<_> = set |
56 | | /// .patterns() |
57 | | /// .iter() |
58 | | /// .map(|pat| Regex::new(pat).unwrap()) |
59 | | /// .collect(); |
60 | | /// |
61 | | /// // Match against the whole set first and identify the individual |
62 | | /// // matching patterns. |
63 | | /// let matches: Vec<&str> = set |
64 | | /// .matches(hay) |
65 | | /// .into_iter() |
66 | | /// // Dereference the match index to get the corresponding |
67 | | /// // compiled pattern. |
68 | | /// .map(|index| ®exes[index]) |
69 | | /// // To get match locations or any other info, we then have to search the |
70 | | /// // exact same haystack again, using our separately-compiled pattern. |
71 | | /// .map(|re| re.find(hay).unwrap().as_str()) |
72 | | /// .collect(); |
73 | | /// |
74 | | /// // Matches arrive in the order the constituent patterns were declared, |
75 | | /// // not the order they appear in the haystack. |
76 | | /// assert_eq!(vec!["foo", "bar"], matches); |
77 | | /// ``` |
78 | | /// |
79 | | /// # Performance |
80 | | /// |
81 | | /// A `RegexSet` has the same performance characteristics as `Regex`. Namely, |
82 | | /// search takes `O(m * n)` time, where `m` is proportional to the size of the |
83 | | /// regex set and `n` is proportional to the length of the haystack. |
84 | | /// |
85 | | /// # Trait implementations |
86 | | /// |
87 | | /// The `Default` trait is implemented for `RegexSet`. The default value |
88 | | /// is an empty set. An empty set can also be explicitly constructed via |
89 | | /// [`RegexSet::empty`]. |
90 | | /// |
91 | | /// # Example |
92 | | /// |
93 | | /// This shows how the above two regexes (for matching email addresses and |
94 | | /// domains) might work: |
95 | | /// |
96 | | /// ``` |
97 | | /// use regex::RegexSet; |
98 | | /// |
99 | | /// let set = RegexSet::new(&[ |
100 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
101 | | /// r"[a-z]+\.(com|org|net)", |
102 | | /// ]).unwrap(); |
103 | | /// |
104 | | /// // Ask whether any regexes in the set match. |
105 | | /// assert!(set.is_match("foo@example.com")); |
106 | | /// |
107 | | /// // Identify which regexes in the set match. |
108 | | /// let matches: Vec<_> = set.matches("foo@example.com").into_iter().collect(); |
109 | | /// assert_eq!(vec![0, 1], matches); |
110 | | /// |
111 | | /// // Try again, but with a haystack that only matches one of the regexes. |
112 | | /// let matches: Vec<_> = set.matches("example.com").into_iter().collect(); |
113 | | /// assert_eq!(vec![1], matches); |
114 | | /// |
115 | | /// // Try again, but with a haystack that doesn't match any regex in the set. |
116 | | /// let matches: Vec<_> = set.matches("example").into_iter().collect(); |
117 | | /// assert!(matches.is_empty()); |
118 | | /// ``` |
119 | | /// |
120 | | /// Note that it would be possible to adapt the above example to using `Regex` |
121 | | /// with an expression like: |
122 | | /// |
123 | | /// ```text |
124 | | /// (?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net)) |
125 | | /// ``` |
126 | | /// |
127 | | /// After a match, one could then inspect the capture groups to figure out |
128 | | /// which alternates matched. The problem is that it is hard to make this |
129 | | /// approach scale when there are many regexes since the overlap between each |
130 | | /// alternate isn't always obvious to reason about. |
131 | | #[derive(Clone)] |
132 | | pub struct RegexSet { |
133 | | pub(crate) meta: meta::Regex, |
134 | | pub(crate) patterns: alloc::sync::Arc<[String]>, |
135 | | } |
136 | | |
137 | | impl RegexSet { |
138 | | /// Create a new regex set with the given regular expressions. |
139 | | /// |
140 | | /// This takes an iterator of `S`, where `S` is something that can produce |
141 | | /// a `&str`. If any of the strings in the iterator are not valid regular |
142 | | /// expressions, then an error is returned. |
143 | | /// |
144 | | /// # Example |
145 | | /// |
146 | | /// Create a new regex set from an iterator of strings: |
147 | | /// |
148 | | /// ``` |
149 | | /// use regex::RegexSet; |
150 | | /// |
151 | | /// let set = RegexSet::new([r"\w+", r"\d+"]).unwrap(); |
152 | | /// assert!(set.is_match("foo")); |
153 | | /// ``` |
154 | 0 | pub fn new<I, S>(exprs: I) -> Result<RegexSet, Error> |
155 | 0 | where |
156 | 0 | S: AsRef<str>, |
157 | 0 | I: IntoIterator<Item = S>, |
158 | | { |
159 | 0 | RegexSetBuilder::new(exprs).build() |
160 | 0 | } |
161 | | |
162 | | /// Create a new empty regex set. |
163 | | /// |
164 | | /// An empty regex never matches anything. |
165 | | /// |
166 | | /// This is a convenience function for `RegexSet::new([])`, but doesn't |
167 | | /// require one to specify the type of the input. |
168 | | /// |
169 | | /// # Example |
170 | | /// |
171 | | /// ``` |
172 | | /// use regex::RegexSet; |
173 | | /// |
174 | | /// let set = RegexSet::empty(); |
175 | | /// assert!(set.is_empty()); |
176 | | /// // an empty set matches nothing |
177 | | /// assert!(!set.is_match("")); |
178 | | /// ``` |
179 | 0 | pub fn empty() -> RegexSet { |
180 | 0 | let empty: [&str; 0] = []; |
181 | 0 | RegexSetBuilder::new(empty).build().unwrap() |
182 | 0 | } |
183 | | |
184 | | /// Returns true if and only if one of the regexes in this set matches |
185 | | /// the haystack given. |
186 | | /// |
187 | | /// This method should be preferred if you only need to test whether any |
188 | | /// of the regexes in the set should match, but don't care about *which* |
189 | | /// regexes matched. This is because the underlying matching engine will |
190 | | /// quit immediately after seeing the first match instead of continuing to |
191 | | /// find all matches. |
192 | | /// |
193 | | /// Note that as with searches using [`Regex`](crate::Regex), the |
194 | | /// expression is unanchored by default. That is, if the regex does not |
195 | | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
196 | | /// to match anywhere in the haystack. |
197 | | /// |
198 | | /// # Example |
199 | | /// |
200 | | /// Tests whether a set matches somewhere in a haystack: |
201 | | /// |
202 | | /// ``` |
203 | | /// use regex::RegexSet; |
204 | | /// |
205 | | /// let set = RegexSet::new([r"\w+", r"\d+"]).unwrap(); |
206 | | /// assert!(set.is_match("foo")); |
207 | | /// assert!(!set.is_match("☃")); |
208 | | /// ``` |
209 | | #[inline] |
210 | 0 | pub fn is_match(&self, haystack: &str) -> bool { |
211 | 0 | self.is_match_at(haystack, 0) |
212 | 0 | } |
213 | | |
214 | | /// Returns true if and only if one of the regexes in this set matches the |
215 | | /// haystack given, with the search starting at the offset given. |
216 | | /// |
217 | | /// The significance of the starting point is that it takes the surrounding |
218 | | /// context into consideration. For example, the `\A` anchor can only |
219 | | /// match when `start == 0`. |
220 | | /// |
221 | | /// # Panics |
222 | | /// |
223 | | /// This panics when `start >= haystack.len() + 1`. |
224 | | /// |
225 | | /// # Example |
226 | | /// |
227 | | /// This example shows the significance of `start`. Namely, consider a |
228 | | /// haystack `foobar` and a desire to execute a search starting at offset |
229 | | /// `3`. You could search a substring explicitly, but then the look-around |
230 | | /// assertions won't work correctly. Instead, you can use this method to |
231 | | /// specify the start position of a search. |
232 | | /// |
233 | | /// ``` |
234 | | /// use regex::RegexSet; |
235 | | /// |
236 | | /// let set = RegexSet::new([r"\bbar\b", r"(?m)^bar$"]).unwrap(); |
237 | | /// let hay = "foobar"; |
238 | | /// // We get a match here, but it's probably not intended. |
239 | | /// assert!(set.is_match(&hay[3..])); |
240 | | /// // No match because the assertions take the context into account. |
241 | | /// assert!(!set.is_match_at(hay, 3)); |
242 | | /// ``` |
243 | | #[inline] |
244 | 0 | pub fn is_match_at(&self, haystack: &str, start: usize) -> bool { |
245 | 0 | self.meta.is_match(Input::new(haystack).span(start..haystack.len())) |
246 | 0 | } |
247 | | |
248 | | /// Returns the set of regexes that match in the given haystack. |
249 | | /// |
250 | | /// The set returned contains the index of each regex that matches in |
251 | | /// the given haystack. The index is in correspondence with the order of |
252 | | /// regular expressions given to `RegexSet`'s constructor. |
253 | | /// |
254 | | /// The set can also be used to iterate over the matched indices. The order |
255 | | /// of iteration is always ascending with respect to the matching indices. |
256 | | /// |
257 | | /// Note that as with searches using [`Regex`](crate::Regex), the |
258 | | /// expression is unanchored by default. That is, if the regex does not |
259 | | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
260 | | /// to match anywhere in the haystack. |
261 | | /// |
262 | | /// # Example |
263 | | /// |
264 | | /// Tests which regular expressions match the given haystack: |
265 | | /// |
266 | | /// ``` |
267 | | /// use regex::RegexSet; |
268 | | /// |
269 | | /// let set = RegexSet::new([ |
270 | | /// r"\w+", |
271 | | /// r"\d+", |
272 | | /// r"\pL+", |
273 | | /// r"foo", |
274 | | /// r"bar", |
275 | | /// r"barfoo", |
276 | | /// r"foobar", |
277 | | /// ]).unwrap(); |
278 | | /// let matches: Vec<_> = set.matches("foobar").into_iter().collect(); |
279 | | /// assert_eq!(matches, vec![0, 2, 3, 4, 6]); |
280 | | /// |
281 | | /// // You can also test whether a particular regex matched: |
282 | | /// let matches = set.matches("foobar"); |
283 | | /// assert!(!matches.matched(5)); |
284 | | /// assert!(matches.matched(6)); |
285 | | /// ``` |
286 | | #[inline] |
287 | 0 | pub fn matches(&self, haystack: &str) -> SetMatches { |
288 | 0 | self.matches_at(haystack, 0) |
289 | 0 | } |
290 | | |
291 | | /// Returns the set of regexes that match in the given haystack. |
292 | | /// |
293 | | /// The set returned contains the index of each regex that matches in |
294 | | /// the given haystack. The index is in correspondence with the order of |
295 | | /// regular expressions given to `RegexSet`'s constructor. |
296 | | /// |
297 | | /// The set can also be used to iterate over the matched indices. The order |
298 | | /// of iteration is always ascending with respect to the matching indices. |
299 | | /// |
300 | | /// The significance of the starting point is that it takes the surrounding |
301 | | /// context into consideration. For example, the `\A` anchor can only |
302 | | /// match when `start == 0`. |
303 | | /// |
304 | | /// # Panics |
305 | | /// |
306 | | /// This panics when `start >= haystack.len() + 1`. |
307 | | /// |
308 | | /// # Example |
309 | | /// |
310 | | /// Tests which regular expressions match the given haystack: |
311 | | /// |
312 | | /// ``` |
313 | | /// use regex::RegexSet; |
314 | | /// |
315 | | /// let set = RegexSet::new([r"\bbar\b", r"(?m)^bar$"]).unwrap(); |
316 | | /// let hay = "foobar"; |
317 | | /// // We get matches here, but it's probably not intended. |
318 | | /// let matches: Vec<_> = set.matches(&hay[3..]).into_iter().collect(); |
319 | | /// assert_eq!(matches, vec![0, 1]); |
320 | | /// // No matches because the assertions take the context into account. |
321 | | /// let matches: Vec<_> = set.matches_at(hay, 3).into_iter().collect(); |
322 | | /// assert_eq!(matches, vec![]); |
323 | | /// ``` |
324 | | #[inline] |
325 | 0 | pub fn matches_at(&self, haystack: &str, start: usize) -> SetMatches { |
326 | 0 | let input = Input::new(haystack).span(start..haystack.len()); |
327 | 0 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
328 | 0 | self.meta.which_overlapping_matches(&input, &mut patset); |
329 | 0 | SetMatches(patset) |
330 | 0 | } |
331 | | |
332 | | /// Returns the same as matches, but starts the search at the given |
333 | | /// offset and stores the matches into the slice given. |
334 | | /// |
335 | | /// The significance of the starting point is that it takes the surrounding |
336 | | /// context into consideration. For example, the `\A` anchor can only |
337 | | /// match when `start == 0`. |
338 | | /// |
339 | | /// `matches` must have a length that is at least the number of regexes |
340 | | /// in this set. |
341 | | /// |
342 | | /// This method returns true if and only if at least one member of |
343 | | /// `matches` is true after executing the set against `haystack`. |
344 | | #[doc(hidden)] |
345 | | #[inline] |
346 | 0 | pub fn matches_read_at( |
347 | 0 | &self, |
348 | 0 | matches: &mut [bool], |
349 | 0 | haystack: &str, |
350 | 0 | start: usize, |
351 | 0 | ) -> bool { |
352 | | // This is pretty dumb. We should try to fix this, but the |
353 | | // regex-automata API doesn't provide a way to store matches in an |
354 | | // arbitrary &mut [bool]. Thankfully, this API is doc(hidden) and |
355 | | // thus not public... But regex-capi currently uses it. We should |
356 | | // fix regex-capi to use a PatternSet, maybe? Not sure... PatternSet |
357 | | // is in regex-automata, not regex. So maybe we should just accept a |
358 | | // 'SetMatches', which is basically just a newtype around PatternSet. |
359 | 0 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
360 | 0 | let mut input = Input::new(haystack); |
361 | 0 | input.set_start(start); |
362 | 0 | self.meta.which_overlapping_matches(&input, &mut patset); |
363 | 0 | for pid in patset.iter() { |
364 | 0 | matches[pid] = true; |
365 | 0 | } |
366 | 0 | !patset.is_empty() |
367 | 0 | } |
368 | | |
369 | | /// An alias for `matches_read_at` to preserve backward compatibility. |
370 | | /// |
371 | | /// The `regex-capi` crate used this method, so to avoid breaking that |
372 | | /// crate, we continue to export it as an undocumented API. |
373 | | #[doc(hidden)] |
374 | | #[inline] |
375 | 0 | pub fn read_matches_at( |
376 | 0 | &self, |
377 | 0 | matches: &mut [bool], |
378 | 0 | haystack: &str, |
379 | 0 | start: usize, |
380 | 0 | ) -> bool { |
381 | 0 | self.matches_read_at(matches, haystack, start) |
382 | 0 | } |
383 | | |
384 | | /// Returns the total number of regexes in this set. |
385 | | /// |
386 | | /// # Example |
387 | | /// |
388 | | /// ``` |
389 | | /// use regex::RegexSet; |
390 | | /// |
391 | | /// assert_eq!(0, RegexSet::empty().len()); |
392 | | /// assert_eq!(1, RegexSet::new([r"[0-9]"]).unwrap().len()); |
393 | | /// assert_eq!(2, RegexSet::new([r"[0-9]", r"[a-z]"]).unwrap().len()); |
394 | | /// ``` |
395 | | #[inline] |
396 | 0 | pub fn len(&self) -> usize { |
397 | 0 | self.meta.pattern_len() |
398 | 0 | } |
399 | | |
400 | | /// Returns `true` if this set contains no regexes. |
401 | | /// |
402 | | /// # Example |
403 | | /// |
404 | | /// ``` |
405 | | /// use regex::RegexSet; |
406 | | /// |
407 | | /// assert!(RegexSet::empty().is_empty()); |
408 | | /// assert!(!RegexSet::new([r"[0-9]"]).unwrap().is_empty()); |
409 | | /// ``` |
410 | | #[inline] |
411 | 0 | pub fn is_empty(&self) -> bool { |
412 | 0 | self.meta.pattern_len() == 0 |
413 | 0 | } |
414 | | |
415 | | /// Returns the regex patterns that this regex set was constructed from. |
416 | | /// |
417 | | /// This function can be used to determine the pattern for a match. The |
418 | | /// slice returned has exactly as many patterns givens to this regex set, |
419 | | /// and the order of the slice is the same as the order of the patterns |
420 | | /// provided to the set. |
421 | | /// |
422 | | /// # Example |
423 | | /// |
424 | | /// ``` |
425 | | /// use regex::RegexSet; |
426 | | /// |
427 | | /// let set = RegexSet::new(&[ |
428 | | /// r"\w+", |
429 | | /// r"\d+", |
430 | | /// r"\pL+", |
431 | | /// r"foo", |
432 | | /// r"bar", |
433 | | /// r"barfoo", |
434 | | /// r"foobar", |
435 | | /// ]).unwrap(); |
436 | | /// let matches: Vec<_> = set |
437 | | /// .matches("foobar") |
438 | | /// .into_iter() |
439 | | /// .map(|index| &set.patterns()[index]) |
440 | | /// .collect(); |
441 | | /// assert_eq!(matches, vec![r"\w+", r"\pL+", r"foo", r"bar", r"foobar"]); |
442 | | /// ``` |
443 | | #[inline] |
444 | 0 | pub fn patterns(&self) -> &[String] { |
445 | 0 | &self.patterns |
446 | 0 | } |
447 | | } |
448 | | |
449 | | impl Default for RegexSet { |
450 | 0 | fn default() -> Self { |
451 | 0 | RegexSet::empty() |
452 | 0 | } |
453 | | } |
454 | | |
455 | | /// A set of matches returned by a regex set. |
456 | | /// |
457 | | /// Values of this type are constructed by [`RegexSet::matches`]. |
458 | | #[derive(Clone, Debug)] |
459 | | pub struct SetMatches(PatternSet); |
460 | | |
461 | | impl SetMatches { |
462 | | /// Whether this set contains any matches. |
463 | | /// |
464 | | /// # Example |
465 | | /// |
466 | | /// ``` |
467 | | /// use regex::RegexSet; |
468 | | /// |
469 | | /// let set = RegexSet::new(&[ |
470 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
471 | | /// r"[a-z]+\.(com|org|net)", |
472 | | /// ]).unwrap(); |
473 | | /// let matches = set.matches("foo@example.com"); |
474 | | /// assert!(matches.matched_any()); |
475 | | /// ``` |
476 | | #[inline] |
477 | 0 | pub fn matched_any(&self) -> bool { |
478 | 0 | !self.0.is_empty() |
479 | 0 | } |
480 | | |
481 | | /// Whether all patterns in this set matched. |
482 | | /// |
483 | | /// # Example |
484 | | /// |
485 | | /// ``` |
486 | | /// use regex::RegexSet; |
487 | | /// |
488 | | /// let set = RegexSet::new(&[ |
489 | | /// r"^foo", |
490 | | /// r"[a-z]+\.com", |
491 | | /// ]).unwrap(); |
492 | | /// let matches = set.matches("foo.example.com"); |
493 | | /// assert!(matches.matched_all()); |
494 | | /// ``` |
495 | 0 | pub fn matched_all(&self) -> bool { |
496 | 0 | self.0.is_full() |
497 | 0 | } |
498 | | |
499 | | /// Whether the regex at the given index matched. |
500 | | /// |
501 | | /// The index for a regex is determined by its insertion order upon the |
502 | | /// initial construction of a `RegexSet`, starting at `0`. |
503 | | /// |
504 | | /// # Panics |
505 | | /// |
506 | | /// If `index` is greater than or equal to the number of regexes in the |
507 | | /// original set that produced these matches. Equivalently, when `index` |
508 | | /// is greater than or equal to [`SetMatches::len`]. |
509 | | /// |
510 | | /// # Example |
511 | | /// |
512 | | /// ``` |
513 | | /// use regex::RegexSet; |
514 | | /// |
515 | | /// let set = RegexSet::new([ |
516 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
517 | | /// r"[a-z]+\.(com|org|net)", |
518 | | /// ]).unwrap(); |
519 | | /// let matches = set.matches("example.com"); |
520 | | /// assert!(!matches.matched(0)); |
521 | | /// assert!(matches.matched(1)); |
522 | | /// ``` |
523 | | #[inline] |
524 | 0 | pub fn matched(&self, index: usize) -> bool { |
525 | 0 | self.0.contains(PatternID::new_unchecked(index)) |
526 | 0 | } |
527 | | |
528 | | /// The total number of regexes in the set that created these matches. |
529 | | /// |
530 | | /// **WARNING:** This always returns the same value as [`RegexSet::len`]. |
531 | | /// In particular, it does *not* return the number of elements yielded by |
532 | | /// [`SetMatches::iter`]. The only way to determine the total number of |
533 | | /// matched regexes is to iterate over them. |
534 | | /// |
535 | | /// # Example |
536 | | /// |
537 | | /// Notice that this method returns the total number of regexes in the |
538 | | /// original set, and *not* the total number of regexes that matched. |
539 | | /// |
540 | | /// ``` |
541 | | /// use regex::RegexSet; |
542 | | /// |
543 | | /// let set = RegexSet::new([ |
544 | | /// r"[a-z]+@[a-z]+\.(com|org|net)", |
545 | | /// r"[a-z]+\.(com|org|net)", |
546 | | /// ]).unwrap(); |
547 | | /// let matches = set.matches("example.com"); |
548 | | /// // Total number of patterns that matched. |
549 | | /// assert_eq!(1, matches.iter().count()); |
550 | | /// // Total number of patterns in the set. |
551 | | /// assert_eq!(2, matches.len()); |
552 | | /// ``` |
553 | | #[inline] |
554 | 0 | pub fn len(&self) -> usize { |
555 | 0 | self.0.capacity() |
556 | 0 | } |
557 | | |
558 | | /// Returns an iterator over the indices of the regexes that matched. |
559 | | /// |
560 | | /// This will always produces matches in ascending order, where the index |
561 | | /// yielded corresponds to the index of the regex that matched with respect |
562 | | /// to its position when initially building the set. |
563 | | /// |
564 | | /// # Example |
565 | | /// |
566 | | /// ``` |
567 | | /// use regex::RegexSet; |
568 | | /// |
569 | | /// let set = RegexSet::new([ |
570 | | /// r"[0-9]", |
571 | | /// r"[a-z]", |
572 | | /// r"[A-Z]", |
573 | | /// r"\p{Greek}", |
574 | | /// ]).unwrap(); |
575 | | /// let hay = "βa1"; |
576 | | /// let matches: Vec<_> = set.matches(hay).iter().collect(); |
577 | | /// assert_eq!(matches, vec![0, 1, 3]); |
578 | | /// ``` |
579 | | /// |
580 | | /// Note that `SetMatches` also implemnets the `IntoIterator` trait, so |
581 | | /// this method is not always needed. For example: |
582 | | /// |
583 | | /// ``` |
584 | | /// use regex::RegexSet; |
585 | | /// |
586 | | /// let set = RegexSet::new([ |
587 | | /// r"[0-9]", |
588 | | /// r"[a-z]", |
589 | | /// r"[A-Z]", |
590 | | /// r"\p{Greek}", |
591 | | /// ]).unwrap(); |
592 | | /// let hay = "βa1"; |
593 | | /// let mut matches = vec![]; |
594 | | /// for index in set.matches(hay) { |
595 | | /// matches.push(index); |
596 | | /// } |
597 | | /// assert_eq!(matches, vec![0, 1, 3]); |
598 | | /// ``` |
599 | | #[inline] |
600 | 0 | pub fn iter(&self) -> SetMatchesIter<'_> { |
601 | 0 | SetMatchesIter(self.0.iter()) |
602 | 0 | } |
603 | | } |
604 | | |
605 | | impl IntoIterator for SetMatches { |
606 | | type IntoIter = SetMatchesIntoIter; |
607 | | type Item = usize; |
608 | | |
609 | 0 | fn into_iter(self) -> Self::IntoIter { |
610 | 0 | let it = 0..self.0.capacity(); |
611 | 0 | SetMatchesIntoIter { patset: self.0, it } |
612 | 0 | } |
613 | | } |
614 | | |
615 | | impl<'a> IntoIterator for &'a SetMatches { |
616 | | type IntoIter = SetMatchesIter<'a>; |
617 | | type Item = usize; |
618 | | |
619 | 0 | fn into_iter(self) -> Self::IntoIter { |
620 | 0 | self.iter() |
621 | 0 | } |
622 | | } |
623 | | |
624 | | /// An owned iterator over the set of matches from a regex set. |
625 | | /// |
626 | | /// This will always produces matches in ascending order of index, where the |
627 | | /// index corresponds to the index of the regex that matched with respect to |
628 | | /// its position when initially building the set. |
629 | | /// |
630 | | /// This iterator is created by calling `SetMatches::into_iter` via the |
631 | | /// `IntoIterator` trait. This is automatically done in `for` loops. |
632 | | /// |
633 | | /// # Example |
634 | | /// |
635 | | /// ``` |
636 | | /// use regex::RegexSet; |
637 | | /// |
638 | | /// let set = RegexSet::new([ |
639 | | /// r"[0-9]", |
640 | | /// r"[a-z]", |
641 | | /// r"[A-Z]", |
642 | | /// r"\p{Greek}", |
643 | | /// ]).unwrap(); |
644 | | /// let hay = "βa1"; |
645 | | /// let mut matches = vec![]; |
646 | | /// for index in set.matches(hay) { |
647 | | /// matches.push(index); |
648 | | /// } |
649 | | /// assert_eq!(matches, vec![0, 1, 3]); |
650 | | /// ``` |
651 | | #[derive(Debug)] |
652 | | pub struct SetMatchesIntoIter { |
653 | | patset: PatternSet, |
654 | | it: core::ops::Range<usize>, |
655 | | } |
656 | | |
657 | | impl Iterator for SetMatchesIntoIter { |
658 | | type Item = usize; |
659 | | |
660 | 0 | fn next(&mut self) -> Option<usize> { |
661 | | loop { |
662 | 0 | let id = self.it.next()?; |
663 | 0 | if self.patset.contains(PatternID::new_unchecked(id)) { |
664 | 0 | return Some(id); |
665 | 0 | } |
666 | | } |
667 | 0 | } |
668 | | |
669 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
670 | 0 | self.it.size_hint() |
671 | 0 | } |
672 | | } |
673 | | |
674 | | impl DoubleEndedIterator for SetMatchesIntoIter { |
675 | 0 | fn next_back(&mut self) -> Option<usize> { |
676 | | loop { |
677 | 0 | let id = self.it.next_back()?; |
678 | 0 | if self.patset.contains(PatternID::new_unchecked(id)) { |
679 | 0 | return Some(id); |
680 | 0 | } |
681 | | } |
682 | 0 | } |
683 | | } |
684 | | |
685 | | impl core::iter::FusedIterator for SetMatchesIntoIter {} |
686 | | |
687 | | /// A borrowed iterator over the set of matches from a regex set. |
688 | | /// |
689 | | /// The lifetime `'a` refers to the lifetime of the [`SetMatches`] value that |
690 | | /// created this iterator. |
691 | | /// |
692 | | /// This will always produces matches in ascending order, where the index |
693 | | /// corresponds to the index of the regex that matched with respect to its |
694 | | /// position when initially building the set. |
695 | | /// |
696 | | /// This iterator is created by the [`SetMatches::iter`] method. |
697 | | #[derive(Clone, Debug)] |
698 | | pub struct SetMatchesIter<'a>(PatternSetIter<'a>); |
699 | | |
700 | | impl<'a> Iterator for SetMatchesIter<'a> { |
701 | | type Item = usize; |
702 | | |
703 | 0 | fn next(&mut self) -> Option<usize> { |
704 | 0 | self.0.next().map(|pid| pid.as_usize()) |
705 | 0 | } |
706 | | |
707 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
708 | 0 | self.0.size_hint() |
709 | 0 | } |
710 | | } |
711 | | |
712 | | impl<'a> DoubleEndedIterator for SetMatchesIter<'a> { |
713 | 0 | fn next_back(&mut self) -> Option<usize> { |
714 | 0 | self.0.next_back().map(|pid| pid.as_usize()) |
715 | 0 | } |
716 | | } |
717 | | |
718 | | impl<'a> core::iter::FusedIterator for SetMatchesIter<'a> {} |
719 | | |
720 | | impl core::fmt::Debug for RegexSet { |
721 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
722 | 0 | write!(f, "RegexSet({:?})", self.patterns()) |
723 | 0 | } |
724 | | } |